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IV. Existence, Uniqueness, Continuation, and Continuous Dependence

Let D be an open subset of R × Rn and let f : D → Rn be given. By a solution
of the differential equation

(DE) ẋ(t) = f(t, x(t)),

we mean a differentiable function x : Dom(x) → Rn such that Dom(x) is an interval
with nonempty interior, Gr(x) ⊂ D, and (DE) holds for all t ∈ Dom(x). [Here
Dom(x) is the domain of x and Gr(x) is the graph of x, i.e. Gr(x) = {(t, x(t)) : t ∈
Dom(x)}.] Given (to, xo) ∈ D, a solution of the initial-value problem

(IVP) ẋ(t) = f(t, x(t)); x(to) = xo,

is a solution x of (DE) such that to ∈ Dom(x) and x(to) = xo. We say that f has
the uniqueness property if for each (to, xo) ∈ D and every pair x, x∗ of solutions of
(IVP) we have x(t) = x∗(t) for all t ∈ Dom(x) ∩ Dom(x∗). Let x be a solution of
(DE). By a continuation (or extension) of x we mean a solution x∗ of (DE) such that
Gr(x) ⊂ Gr(x∗); we say that x∗ is a proper continuation (or proper extension) of
x if x∗ is a solution of (DE) such that Gr(x) $ Gr(x∗). Finally, we say that x is
noncontinuable (or inextensible) if x has no proper continuation.

The following lemma (which is an immediate consequence of the fundamental
theorem of calculus) plays an important role in the fundamental theory of (IVP).

Lemma 4.1 Assume that f : D → Rn is continuous and let (to, xo) ∈ D be given. Let
I be an interval with nonempty interior and to ∈ I. A continuous function x : I → Rn

is a solution of (IVP) if and only if x satisfies

(IE) x(t) = xo +

∫ t

to

f(s, x(s))ds

for every t ∈ I.

Theorem 4.2 (Peano) Assume that f is continuous and let (to, xo) ∈ D be given.
Then there exists h > 0 such that (IVP) has at least one solution on [to −h, to +h].

Continuity of f does not imply the uniqueness property, as the following example
shows.
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Example 4.3: Let n = 1 and consider the initial-value problem

(4.1) ẋ(t) = x(t)1/3; x(0) = 0.

For each t∗ ≥ 0, define xt∗ : R → R by

(4.2) xt∗(t) =















0, t ≤ t∗

(

2

3
(t − t∗)

)3/2

, t > t∗.

It is straightforward to show that for each t∗ ≥ 0, xt∗ and −xt∗ are solutions of
(4.1). The zero function is also a solution of (4.1). This initial value problem has
uncountably many solutions having the same domain R.

We say that f is locally Lipschitzean on D provided that for each closed and
bounded set K ⊂ D there exists LK ∈ R such that

(4.3) ||f(t, z) − f(t, y)|| ≤ LK ||z − y|| for all (t, y), (t, z) ∈ K.

We say that f is globally Lipschitzean on D if there exists L ∈ R such that

(4.4) ||f(t, z) = f(t, y)|| ≤ L ||z − y|| for all (t, y) ∈ D.

Proposition 4.4:

(a) If the partial derivatives f,2 , f,3 , . . . f,n+1 are continuous on D then f is locally
Lipschitzean on D.

(b) If D is convex and the partial derivatives f,2 , f,3 , . . . f,n+1 are bounded and
continuous on D then f is globally Lipschitzean on D.

If f is continuous and locally Lipschitzean on D, then f has the uniqueness property;
moreover, the method of successive approximation or Picard iteration can be used to
construct solutions. Given (to, xo) ∈ D the Picard iterates

{

x(m)

}

∞

m=0
for (IVP) are

defined recursively as follows:

(4.5)

x(0)(t) = xo

x(m+1)(t) = xo +

∫ t

to

f(s, x(m)(s))ds for all m ∈ N ∪ {0}.

Theorem 4.5 (Picard-Lindelöf): Assume that f is continuous and locally Lips-
chitzean on D. Then f has the uniqueness property. Furthermore, for each (to, xo) ∈
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D there exists h > 0 such that the Picard iterates for (IVP) converge uniformly on
[to − h, to + h] to the solution of (IVP).

Even if the domain of f is all of R × Rn and x is a noncontinuable solution of
(DE) the domain of x may be a proper subset of R, as the following example shows.

Example 4.6: Let n = 1. Let xo > 0 be given and consider the initial value problem

(4.6) ẋ(t) = x(t)2; x(0) = xo.

It is straightforward to check that the function x : (−∞, 1/xo) → R defined by

(4.7) x(t) =
xo

1 − txo

for all t ∈ (−∞, 1/xo)

is a noncontinuable solution of (4.6).

Theorem 4.7: Assume that f is continuous and let x be a noncontinuable solution of
(DE). Them Dom(x) is an open interval. Furthermore, for each closed and bounded
set K ⊂ D there exist t∗, t∗ ∈ Dom(x) such that

(4.8)
(t, x(t)) /∈ K for all t ∈ Dom(x) ∩ (−∞, t∗)

(t, x(t)) /∈ K for all t ∈ Dom(x) ∩ (t∗,∞).

Corollary 4.8: Let D = R×Rn and assume that f is continuous. Let x be a noncon-
tinuable solution of (DE) with Dom(x) = (η−, η+). If η− > −∞ then ||x(t)|| → ∞
as t ↓ η−. If η+ < ∞ then ||x(t)|| → ∞ as t ↑ η+.

Theorem 4.9: Let D = R × Rn. Assume that f is continuous and that either f is
bounded on R × Rn or f is globally Lipschitzean on R × Rn. If x is an inextensible
solution of (DE) then Dom(x) = (−∞,∞).

Theorem 4.10: Assume that f is continuous and let x be a solution of (DE). Then
x has a continuation x∗ such that x∗ is inextensible.

Theorem 4.11: Assume that f is continuous and has the uniqueness property. For
each (to, xo) ∈ D let (η−(to, xo), η+(to, xo)) denote the domain of the unique non-
continuable solution of (IVP). Define E ⊂ R × R × Rn by

E = {(t, to, xo) : η− (to, xo) < t < η+ (to, xo) , (to, xo) ∈ D}

and ϕ : E → Rn by ϕ (t, to, xo) is the value at time t of the solution of (IVP). Then
E is open and ϕ is continuous on E.
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