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Feasible Banzhaf Power Distributions for Five-Player
Weighted Voting Systems1

Christopher Carter Gay2, Jabari Harris3, and John Tolle4

In 1954, Lloyd Shapley and Martin Shubik introduced [SS] a method of
measuring the voting efficacy of a single voting party (whether an individual or
a bloc), as a percentage of the total amount of “power” present in a weighted
voting system. Throughout this paper we shall use the term player to describe
a voting party who must cast all of its votes in favor of a measure, or against the
measure. We may briefly describe the Shapley-Shubik approach as considering
all permutations of the players and determining the unique player in each which
“swings” the vote from one outcome to another, provided all players up to
and including the “swing player” vote together. If we equate power with the
potential for casting deciding votes, then the power of a player is proportional
to the number of permutations for which that player is the swing player.

In many applications, the order in which the players vote is not a factor or is
simply not applicable, e.g., if all players vote at once by secret ballot. In these
contexts, the Banzhaf model [B] provides an alternative for describing how the
power is distributed.

We assume a finite number of players P1, P2, . . . , Pn. Player Pi casts a
positive integer number of votes, vi. The number q of votes needed to pass a
motion shall be called the quota, and we assume

v1 + · · ·+ vn

2
< q ≤ v1 + · · ·+ vn

and that q is an integer. We represent a weighted voting system (WVS) by

[q; v1, v2, . . . , vn]

and assume v1 ≥ v2 ≥ . . . ≥ vn.
We shall also stipulate that vi < q holds for each i; otherwise it would be

possible for Pi to vote alone and pass a motion. But in addition, we assume
that for all i, ∑

j 6=i

vj ≥ q.
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If this were not true for some i, then Pi would have the power to prevent any
motion from passing; the votes of all the other players would not meet the quota.
We call such a condition veto power.

A coalition in a WVS is a subset of the players. A winning coalition is a
coalition for which the combined votes of the players meet or exceed the quota.
Otherwise, we have a losing coalition. We call a player in a winning coalition
critical if the removal of that player results in a losing coalition. The presence
of a critical player in a winning coalition will be called a critical instance; if a
winning coalition has k critical players, we shall say that there are k critical
instances corresponding to that coalition.

We are now ready to define the Banzhaf power index for a player Pi (or we
may say the Banzhaf power of Pi) as the ratio of the number of instances in
which Pi is critical to the total number of critical instances. We shall denote
this ratio by B(Pi). Note that since each B(Pi) is a percentage, we have

B(P1) + · · ·+ B(Pn) = 1.

The Banzhaf power distribution associated with a WVS shall be denoted by

β = (B(P1), . . . , B(Pn)).

We shall call two weighted voting systems equivalent if β is the same for each.
We note that i ≥ j implies vi ≥ vj , and in turn B(Pi) ≥ B(Pj). Hence

B(P1) ≥ · · · ≥ B(Pn).

We also have that vi = vj implies B(Pi) = B(Pj); however, the converse is not
true, and in some sense this is what makes the whole endeavor to model power
interesting. We may (and often do) discover that two players have the same
power index even though one player casts many more votes than the other. The
point is that the ratios vi/vj are not reliable indicators of comparative power.

Practical considerations make the absence of veto power a reasonable stipu-
lation, but as a mathematical notion, Banzhaf power is still an applicable idea
if veto power is present. One can also lift the assumption that v1, . . . , vn and q
are integers, and one may even consider low quota weighted voting systems, i.e.,
those for which

0 ≤ q ≤ v1 + · · ·+ vn

2
,

and extend the notion of the Banzhaf power distribution to this setting. How-
ever, by lifting the requirement

q >
v1 + · · ·+ vn

2
,

we are no longer assured that the complement of a winning coalition is a losing
coalition, and so the terms winning and losing serve merely to sort the power



set of {P1, . . . , Pn} into two subcollections. As a game-theoretic notion, the low
quota WVS is meaningful (and might better be called simply a voting game, as
in [DS] and [TZ]), but for most applications, a low quota is unacceptable.

In short, our results apply if the voters’ weights and the quota are merely
nonnegative real numbers, but do not apply in the case of a low quota or in the
case that veto power is present.

Now let us observe that if we have vi ≥ q for any i, then Pi has veto power,
since

∑
j 6=i

vj < q. So the requirement that veto power be absent automatically

guarantees that every player’s weight is below the quota. Next we note that it
is enough to ask that P1 not have veto power, for then we have

v2 + v3 + · · ·+ vn ≥ q,

which expresses the fact that {P2, P3, . . . , Pn} is a winning coalition. It follows
that if we replace any player Pi, i 6= 1, in this coalition with P1, then we still
have a winning coalition, since v1 ≥ vi, so that∑

j 6=i

vj ≥ q. (1)

Hence (1) holds for all i if it holds for i = 1. We observe, then, that veto power
is absent from a WVS if and only if

{P2, P3, . . . , Pn}

is a winning coalition.
In view of the above observations, we can present a fairly simple proof of

the following result.

Theorem 1: In any WVS with no veto power, we must have B(P3) > 0.

Proof: Begin by considering the coalition {P2, P3}. If this is a winning
coalition for the WVS, then both P2 and P3 are critical, so that we immediately
have B(P3) > 0. If, on the other hand, {P2, P3} is a losing coalition, then so is
{P2, Pn}, since vn ≤ v3.

Now consider {P2, P3, Pn}. If this coalition is a winner, it follows that
P3 is a critical player, since {P2, Pn} loses. Therefore B(P3) > 0. But if
{P2, P3, Pn} loses, then by replacing P3 with Pn−1, we obtain another losing
coalition {P2, Pn−1, Pn}.

Now consider {P2, P3, Pn−1, Pn}. If this coalition wins, then P3 is critical,
and B(P3) > 0. Otherwise, the coalition loses, and it follows that

{P2, Pn−2, Pn−1, Pn}



loses as well, as we have replaced P3 with the weaker player Pn−2. If we add P3

to this coalition and find that

{P2, P3, Pn−2, Pn−1, Pn}

wins, then P3 is critical for this coalition, so that B(P3) > 0.
The idea is to continue examining coalitions of the form

{P2, P3, Pn−k, . . . , Pn−1, Pn}

until we find one in which P3 is critical. At worst, one finally arrives at the
losing coalition

{P2, P4, P5, . . . , Pn},
and observes that if this coalition loses, then P3 is critical for the coalition

{P2, P3, P4, P5, . . . , Pn},

which is guaranteed to be a winner due to the absence of veto power. The result
is proved.

A natural question to consider at this point is whether P4 is guaranteed some
positive percentage of Banzhaf power, if n ≥ 4. The answer is no, for given n,
we can construct the WVS

[2(n− 2);n− 2, n− 2, n− 2, 1, 1, . . . , 1], (2)

which meets all of our requirements. For example,

v1 + · · ·+ vn

2
=

3(n− 2) + n− 3
2

=
4n− 9

2

= 2n− 9
2

< 2n− 4 = q < 4n− 9 = v1 + · · ·+ vn.

Veto power is absent since v2 + v3 + · · ·+ vn = 3n− 7 > q. Players P1, P2 and
P3 have positive power, since each two-player coalition involving these players
wins, with each player involved critical. But noting that every winning coalition
contains at least two of P1, P2, P3, we see that P4 cannot be critical in any
winning coalition. The same is true for P5, . . . , Pn. Hence B(P1) = B(P2) =
B(P3) = 1/3 and B(P4) = · · · = B(Pn) = 0.

Now we turn our attention to weighted voting systems of given sizes; by the
“size” of a WVS we mean the number of players, n. We wish to explore how
many distinct Banzhaf power distributions are feasible for a given value of n,
under the restriction that veto power is absent.

We note first that if n = 3, then we must have β = (1/3, 1/3, 1/3); this is the
only power distribution possible. So all weighted voting systems of size 3 (with
no veto power) are equivalent, since the winning coalitions must be precisely

{P1, P2}, {P1, P3}, {P2, P3}, and {P1, P2, P3}.



In each of the two-player coalitions, both players are critical, but in the three-
player coalition, no player is critical. So we have six critical instances; each
player is critical twice and therefore has Banzhaf power 2/6 = 1/3. Examples are
[13; 12, 11, 2], [66; 64, 55, 11], and [2000; 1999, 1999, 1]. Despite the very different
appearances of these systems and the disparity between v1 and v3, each player
has precisely the same potential for criticality, so that all three systems are
equivalent to [2; 1, 1, 1].

In the case n = 4, we have the following result, proved in [To].

Theorem 2: In any four-player WVS with no veto power, there are only five
feasible power distributions:

(a) β =
(

1
4
,
1
4
,
1
4
,
1
4

)

(b) β =
(

1
3
,
1
3
,
1
3
, 0

)

(c) β =
(

1
2
,
1
6
,
1
6
,
1
6

)

(d) β =
(

1
3
,
1
3
,
1
6
,
1
6

)

(e) β =
(

5
12

,
1
4
,
1
4
,

1
12

)
The proof is merely an exercise in considering the possible compositions for

the collection of winning coalitions, and there are but five cases. So each case
corresponds to a distinct power distribution. In every case, the absence of veto
power guarantees that all four 3-player coalitions win (and of course the 4-player
coalition wins as well but contributes no critical instances); the cases are thus
distinguished by which 2-player coalitions are winners. All cases result in a total
of 12 critical instances, but this is a special feature of 4-player systems; as we
shall see, the total number of critical instances is a characteristic of the WVS
itself and is not determined solely by n.

Specific “canonical”5 examples of 4-player weighted voting systems are given
below, along with more complex equivalent systems. The point is that in prac-
tice, any 4-player WVS with no veto power is equivalent to and may be replaced
by one of the canonical forms to make the power structure more evident, since
the canonical examples have the property that vi = vj implies B(Pi) = B(Pj).

5We hesitate to provide a precise definition of canonical and use it here as an informal
notion. We are not claiming any form we are calling canonical is in every case the unique
WVS with no veto power which corresponds to a given power distribution and minimizes q
and all vi; though in many cases this is undoubtedly true. We only guarantee that vi = vj

implies B(Pi) = B(Pj) for these forms.



[3; 1, 1, 1, 1] yields case (a), as does [162; 94, 67, 57, 38]
[4; 2, 2, 2, 1] yields case (b), as does [46; 38, 25, 23, 4]

[3; 2, 1, 1, 1] yields case (c), as does [112; 76, 51, 42, 36]
[4; 2, 2, 1, 1] yields case (d), as does [125; 88, 84, 35, 25]
[5; 3, 2, 2, 1] yields case (e), as does [82; 53, 49, 32, 28]

Note that every power distribution feasible for the 4-player case results in
equal power for at least two of the players; that is, a strict hierarchy of Banzhaf
power is not possible for n = 4.

Before leaving 4-player systems, we observe that when n = 4, the maximum
percentage of Banzhaf power possible is 1/2. Is this true for any value of n?
The answer is no. Of course, given n, only finitely many power distributions
are feasible, so that there is a maximum value for B(P1) corresponding to that
value of n. Call this value Mn. We shall see that M5 = 7/11; we conjecture
that the proof of the following theorem gives a general formula for Mn. We can
at least conclude the following:

Theorem 3: lim
n→∞

Mn = 1

Proof: Given n, consider the WVS [n−1;n−2, 1, 1, . . . , 1]. There are a total
of 2n − 3 votes, and the quota is greater than half of this total. We note that
P1 belongs to every winning coalition except

{P2, P3, . . . , Pn}

and moreoever, P1 is critical in every winning coalition to which it belongs except
the n-player coalition. We now undertake to count these coalitions: There are
n− 1 two-player winning coalitions; they are

{P1, P2}, {P1, P3}, . . . , {P1, Pn}.

Noting that each of these contains P1 and one other player, we have
(

n− 1
1

)
such coalitions.

The three-player winning coalitions number
(

n− 1
2

)
, since each contains

P1 and two other players. Similarly, each four-player winning coalition contains

P1 and three other players, so that these number
(

n− 1
3

)
. We continue in

this manner, finally considering the (n − 1)-player coalitions, which must all
win; there are n of these, and P1 belongs to n − 1 of them. Each contains P1

and n− 2 other players, so that we can describe the number of such coalitions

by
(

n− 1
n− 2

)
. So the total number of coalitions in which P1 is critical is

α =
n−2∑
k=1

(
n− 1

k

)
.



Now we must compute the total number of critical instances; for this, we
simply determine how players other than P1 may be critical. Choose Pi with
i 6= 1, and note that {P1, Pi} is a winning coalition with both players critical.
So this contributes one critical instance for Pi. Next consider the coalition
C = {P2, P3, . . . , Pn}. This coalition wins, and Pi is critical, since C is the only
winning coalition not containing P1. (So if Pi is removed from C, the result is
a losing coalition by virtue of P1 /∈ C − {Pi}.)

So far we have 2 critical instances for Pi. But there can be no more, because
if 3 ≤ k ≤ n − 2, and Pi belongs to a k-player winning coalition, then P1 also
belongs to this coalition, so removing Pi results in a (k − 1)-player coalition to
which P1 also belongs, yielding another winning coalition. Hence Pi cannot be
critical in the k-player coalition.

So P1 is critical in α instances, and each other player is critical in 2 instances.
The total number of critical instances is therefore α + 2(n− 1), so that

B(P1) =
α

α + 2(n− 1)
.

We note that α is polynomial in n, with degree greater than or equal to 2
whenever n ≥ 5. Since

lim
n→∞

2(n− 1)
α

= 0,

and since Mn ≥ B(P1), we obtain the result.

Now we consider power distribution for weighted voting systems of size 5.
As in the 4-player case, we consider each feasible composition for the collection
of winning coalitions, but here the situation is considerably more complicated.
The winning coalitions must include the 5-player coalition and all five 4-player
coalitions, so the cases are distinguished by which 2- and 3-player coaltions win.
The total number of critical instances is not the same for all cases, an issue
which we discuss shortly.

We shall close this paper with the proof (by exhaustion of cases) that a
total of 35 power distributions are possible for weighted voting systems of size
5. (This is Theorem 5.) The proof is not difficult, but it is tedious, so for now
we merely preview the results. Some of the power distributions in the 5-player
case are obviously feasible, such as

β =
(

1
5
,
1
5
,
1
5
,
1
5
,
1
5

)
(3)

and

β =
(

1
3
,
1
3
,
1
3
, 0, 0

)
. (4)

Note that to obtain (4), we simply construct the WVS given by (2), which is
[6; 3, 3, 3, 1, 1].



The proof of Theorem 5 reveals the interesting fact that all of the feasible
power distributions except (3) are attainable in only one way, which is to say
that if two weighted voting systems of size 5 are equivalent, then the collection
of winning coalitions must be precisely the same for both, unless the power is
evenly distributed. So there are in total 36 possibilities for how the collection
of winning coalitions is composed; two of them give rise to (3), and we shall
discuss these two later.

Our results for n = 5 raise the interesting open question of whether it is
possible to find two equivalent n-player weighted voting systems (with no veto
power) for which

β 6=
(

1
n

, . . . ,
1
n

)
and the collection of winning coalitions is different for each. If this is possible,
what is the minimum value of n for which this can occur? And if there is such a
minimum value N , can such a pair of examples always be found for any n ≥ N?

The power distribution which maximizes B(P1) in the 5-player case is

β =
(

7
11

,
1
11

,
1
11

,
1
11

,
1
11

)
,

and we note that this is the outcome predicted by the proof of Theorem 3,
corresponding to weighted voting systems which are equivalent to [4; 3, 1, 1, 1, 1].
There is one other feasible power distribution which gives P1 over half of the
power; it is

β =
(

13
23

,
3
23

,
3
23

,
3
23

,
1
23

)
.

Only two more power distributions on the list give P1 at least half of the total
power, and they are

β =
(

1
2
,
1
6
,
1
6
,
1
6
, 0

)
(5)

and

β =
(

1
2
,
1
6
,
1
6
,

1
12

,
1
12

)
.

If the reader is interested in the issue of powerlessness, we can preview how
this occurs when n = 5; in addition to (4) and (5), there are three other ways in
which we can have a powerless player. The corresponding power distributions
are

β =
(

1
3
,
1
3
,
1
6
,
1
6
, 0

)
,

β =
(

1
4
,
1
4
,
1
4
,
1
4
, 0

)
,



and

β =
(

5
12

,
1
4
,
1
4
,

1
12

, 0
)

.

Comparing these five power distributions involving a powerless player, with
n = 5, to the five power distributions in Theorem 2, with n = 4, we note
that whenever P5 is powerless, the WVS is in some sense reduced to a de facto
4-player system, and the distribution of power among the other players obeys
the restrictions of Theorem 2. We wonder, then, if there are exactly 35 ways
for P6 to be powerless in a 6-player WVS, with the power distribution for the
other five players conforming to one of the possibilities given in Theorem 5.

In contrast to the 4-player case, a strict hierarchy of Banzhaf power is pos-
sible when n = 5. But surprisingly, there is only one way for this to occur, and
in that case we have

β =
(

9
25

,
7
25

,
1
5
,

3
25

,
1
25

)
. (6)

A canonical example is [9; 5, 4, 3, 2, 1]. (See Case 21 in the proof of Theorem 5
to see why the WVS [8; 5, 4, 3, 2, 1] does not induce (6).) The almost irresistible
pattern in (6), viz., (

2n− 1
n2

,
2n− 3

n2
, . . . ,

1
n2

)
,

is probably a red herring6, for though we have not undertaken an exhaustive
analysis of 6-player systems, we do know that strict hierarchy of power for n = 6
need not induce

β =
(

11
36

,
1
4
,

7
36

,
5
36

,
1
12

,
1
36

)
. (7)

In fact, we have not found an example yielding (7). However, we have found
the example [15; 9, 7, 4, 3, 2, 1], which induces the following strict hierarchy of
power:

β =
(

5
12

,
3
16

,
1
6
,
1
8
,

1
16

,
1
24

)
.

The most naive attempt to effect strict hierarchy of power with n = 6, the WVS
[11; 6, 5, 4, 3, 2, 1], fails to deliver, for this WVS yields

β =
(

9
28

,
1
4
,

5
28

,
3
28

,
3
28

,
1
28

)
.

We observe, then, that it is far from obvious how to effect strict hierarchy of
power when such an outcome is appropriate and/or desired. Merely constructing
the WVS

[q;n, n− 1, n− 2, . . . , 2, 1],

6In fact, we cannot say with certainty that n2 critical instances is always possible for an
n-player WVS, though Theorem 4 does allow this possibility.



with q just large enough to avoid low quota, i.e.,

q = 1 +
[
n(n + 1)

4

]
,

may not work. (Here [r] denotes the integer round-down of r.) Of course, by
Theorem 2, the strategy cannot work for n = 4; we obtain [6; 4, 3, 2, 1], which
is alternative (e). For n = 5, the strategy “almost” works ([8; 5, 4, 3, 2, 1]) but
results in equal power for P2 and P3. Raising the quota from 8 to 9 achieves the
desired effect. But for n = 6, no appropriate7 value of q yields strict hierarchy
of power for [q; 6, 5, 4, 3, 2, 1].

A “real-life” 6-player WVS was among the original motivations for attorney
John Banzhaf to devise his model of power. The Nassau County, New York,
Board of Supervisors consisted of six voting members, each representing one
municipality and casting a number of votes in proportion to the population
of that municipality8. As of 1958 the operative WVS was [16; 9, 9, 7, 3, 1, 1],
and by 1964 updated population data resulted in the adoption of the WVS
[58; 31, 31, 28, 21, 2, 2]. Unfortunately, the two systems are equivalent and have

β =
(

1
3
,
1
3
,
1
3
, 0, 0, 0

)
,

so that they are in fact equivalent to [8; 4, 4, 4, 1, 1, 1], given by (2). How long
would the power structure have gone unnoticed if this canonical WVS had been
in use instead?

However, in view of the fact that five players are just enough to make strict
hierarchy of power possible and the likelihood that the number of feasible power
distributions is significantly larger than 35 when n = 6, it is conceivable that
the variety of feasible power distributions for 6-player systems is quite great.
Perhaps Nassau County’s predicament could have been remedied by some WVS
for which β more closely reflected the population distribution, which was clearly
the intent9.

Our proof of Theorem 5, below, unfortunately sheds no light on how one
might obtain a formula, in terms of n, for the number of power distributions
feasible for weighted voting systems of size n. A more efficient method of count-
ing cases might produce such a formula as a byproduct. But from an applied

7For the WVS [q; 6, 5, 4, 3, 2, 1], we must have q ≥ 11 to avoid low quota, but we must also
have q ≤ 15 to avoid veto power.

8More precisely, five municipalities were represented, the largest by two voting members.
9The population figures given in [B], when compared with the 1958 WVS, do reveal one

anomaly: v3 = 7 and v4 = 3, even though the two municipalities in the roles of P3 and P4 are
fairly close in population. However, the narrative in [B] strongly suggest that representation
in proportion to population was the aim of the WVS. We do not know if a misprint may be
responsible or if there were unrelated political reasons for the underallocation of votes to P4.
We have inferred the quotas for each WVS; they are not explicitly stated. If the 1958 vote
allocations were given instead as [q; 9, 9, 7, 6, 1, 1], then we would infer q = 17. But then the

power distribution is β =
(

2
7
, 2
7
, 3
14

, 1
14

, 1
14

, 1
14

)
.



standpoint, an even more desirable tool would be a way to determine, given n
and a prescribed power distribution β∗, how to construct a WVS so that the
actual power distribution β comes as close as possible (by some measure) to
β∗. Merely knowing the number of feasible power distributions would not give
enough information to construct the desired WVS. But surely the larger the
value of n, the more realistic the stated goal becomes. In [T], β is computed
for the US Electoral College, which one can view as a 51-player WVS involving
the 50 states and the District of Columbia. If β∗ is given by computing each
player’s percentage of the total number of electoral votes, then one observes
that β approximates β∗ reasonably well. Even Banzhaf’s paper, trumpeting
(in its very title) the claim that Weighted Voting Doesn’t Work [B], contains
the computation of β for the weighted voting plan adopted by the New Jersey
Senate10, amounting to a 21-player WVS, with each county casting a (nonin-
teger) number of votes exactly equal to that county’s percentage of the state’s
population. A more naive approach is hard to imagine; yet β is again close to
the ideal. In fairness, however, we should mention that the Banzhaf power of
the three largest counties was slightly above the ideal, while the power of the
other 18 counties was slightly below11. The same was true (prior to the 2001
reapportionment) for the US Electoral College; the three largest states12 held
slightly more Banzhaf power than β∗ would give, and the 48 other players held
slightly less13.

We now return to the question of the total number of critical instances one
may expect, given n. In general, n alone does not determine this number; the
structure of the WVS itself contributes as well. Dubey and Shapley considered
this question, and one may refer to their result as a partial check on one’s work
in calculating Banzhaf power for a WVS. Theorems 2 and 3 in [DS], combined
and adapted for our assumptions, become the following result.

Theorem 4: Given a WVS with no veto power, let n be the number of players,
and let m = 1 + [n/2]. Then the number c of critical instances satisfies

n(n− 1) ≤ c ≤ m

(
n
m

)
.

10According to Banzhaf, considerations of New Jersey state law resulted in the courts quickly
squelching the plan.

11Also in fairness to Banzhaf, we should mention his statement in [B]: “The purpose in
this paper is neither to attack nor defend weighted voting per se”, nor is this the legacy of
Banzhaf’s work, which is rather the astute observation that weighted voting “does not even
theoretically produce the effects which have been claimed to justify it.”

12California, New York, and Texas
13Interestingly, the Shapley-Shubik model of power also yields a power distribution for the

Electoral College in which the large states hold more than the ideal share of power. The seven
largest states have power greater than ideal, and the other 44 players have power below the
ideal. See [T].



Moreover, c is exactly equal to m

(
n
m

)
if and only if every coalition containing

more than n/2 players wins and every coalition containing less than n/2 players
loses.

Note that in case n = 4, the absence of veto power ensures that every
coalition with less than 2 players loses and every coalition with more than 2
players wins; this explains why all five cases have c = 12. But for n = 5, the
number of critical instances does not always meet the upper bound of 30. In
fact, there is only one of the 36 cases in which we do have c = 30, and this is
the case in which we have no 2-player winning coalitions and in which every
3-player coalition wins. As intuition would suggest, this scenario gives all five
players equal power, so that we have (2). A canonical example is [3; 1, 1, 1, 1, 1].
At the other end of the spectrum is the unique case in which c = 20, which
occurs when the winning coalitions are exactly (and only) those which are
guaranteed − namely, the 4-player coalitions and the 5-player coalition. This
scenario also induces (2), and a canonical example is [4; 1, 1, 1, 1, 1].

We are now ready to state and prove our main result.

Theorem 5: For weighted voting systems of size 5 with no veto power, there
are 35 feasible Banzhaf power distributions. They are as follows.

1.
(

1
5
,
1
5
,
1
5
,
1
5
,
1
5

)

2.
(

7
29

,
7
29

,
5
29

,
5
29

,
5
29

)

3.
(

2
7
,

3
14

,
3
14

,
1
7
,
1
7

)

4.
(

1
3
,

5
27

,
5
27

,
5
27

,
1
9

)

5.
(

7
27

,
7
27

,
7
27

,
1
9
,
1
9

)

6.
(

5
13

,
2
13

,
2
13

,
2
13

,
2
13

)

7.
(

4
13

,
3
13

,
3
13

,
2
13

,
1
13

)

8.
(

9
25

,
1
5
,
1
5
,

3
25

,
3
25

)



9.
(

7
25

,
7
25

,
1
5
,
1
5
,

1
25

)

10.
(

1
3
,
1
4
,
1
6
,
1
6
,

1
12

)

11.
(

1
4
,
1
4
,
1
4
,
1
4
, 0

)

12.
(

7
23

,
7
23

,
3
23

,
3
23

,
3
23

)

13.
(

7
23

,
5
23

,
5
23

,
5
23

,
1
23

)

14.
(

3
11

,
3
11

,
2
11

,
2
11

,
1
11

)

15.
(

5
21

,
5
21

,
5
21

,
1
7
,
1
7

)

16.
(

2
7
,
2
7
,
1
7
,
1
7
,
1
7

)

17.
(

1
3
,

7
27

,
5
27

,
1
9
,
1
9

)

18.
(

5
13

,
3
13

,
2
13

,
2
13

,
1
13

)

19.
(

8
25

,
8
25

,
1
5
,

2
25

,
2
25

)

20.
(

11
25

,
1
5
,

3
25

,
3
25

,
3
25

)

21.
(

9
25

,
7
25

,
1
5
,

3
25

,
1
25

)

22.
(

1
3
,
1
3
,
1
6
,
1
6
, 0

)

23.
(

5
12

,
1
4
,
1
6
,

1
12

,
1
12

)

24.
(

9
23

,
7
23

,
3
23

,
3
23

,
1
23

)



25.
(

4
11

,
4
11

,
1
11

,
1
11

,
1
11

)

26.
(

5
13

,
3
13

,
3
13

,
1
13

,
1
13

)

27.
(

11
25

,
1
5
,
1
5
,

3
25

,
1
25

)

28.
(

9
25

,
7
25

,
7
25

,
1
25

,
1
25

)

29.
(

5
12

,
1
4
,
1
4
,

1
12

, 0
)

30.
(

1
2
,
1
6
,
1
6
,

1
12

,
1
12

)

31.
(

11
23

,
5
23

,
5
23

,
1
23

,
1
23

)

32.
(

1
2
,
1
6
,
1
6
,
1
6
, 0

)

33.
(

1
3
,
1
3
,
1
3
, 0, 0

)

34.
(

13
23

,
3
23

,
3
23

,
3
23

,
1
23

)

35.
(

7
11

,
1
11

,
1
11

,
1
11

,
1
11

)

Proof: The feasible power distributions above are listed in the order in which
we consider the various cases. (The only exception arises from the two distinct
cases inducing power distribution number 1.) We repeat here that all five 4-
player coalitions are guaranteed to win. However, the critical instances corre-
sponding to these coalitions depend on which 3-player coalitions are winners.
Hence for every case, we must list all 2-, 3-, and 4-player winning coalitions to
find all instances of criticality.

Our work is slightly simplified by observing that there can be no more
than four 2-player winning coalitions, for note {P4, P5} can never be a winner:
v4 + v5 ≤ v1 + v2 + v3. Similarly we can eliminate {P3, P5}, {P3, P4}, {P2, P4},
and {P2, P5}, leaving only five potential 2-player winning coalitions. But then
we note that {P1, P4} and {P2, P3} cannot win simultaneously; nor can {P1, P5}



and {P2, P3}. It follows that the only way we can have as many as four 2-
player winning coalitions is if they are exactly {P1, P2}, {P1, P3}, {P1, P4}, and
{P1, P5}. We must also keep in mind that whenever a 2- or 3-player coalition
wins, its complement loses. However, the converse is not true; if a coalition
loses, it does not follow that the complement wins.

We now organize the proof into 5 parts, according to the number of 2-player
coalitions which win. The cases are numbered 1 through 35, so that Case i
induces power distribution number i on our list. An exception to the numbering
scheme is Case 1(a), presented first, and Case 1(b), presented between Case 15
and Case 16. Cases 1(a) and 1(b) each induce power distribution number 1.

For each case, we have included a canonical example of a particular WVS, so
that the reader may see more easily that the case we describe is indeed feasible.

Part I: Assume there are no winning 2-player coalitions. If this is the case,
then in every winning 3-player coalition, all three players will be critical.

Case 1(a): All ten 3-player coalitions win. An example is [3; 1, 1, 1, 1, 1].
In this case, no player can be critical in a 4-player winning coalition, so all
instances of criticality come from the 3-player coalitions. We have a total of 30
such instances, 6 for each player. Hence B(Pi) = 6/30 = 1/5 for each i. So we
have

β =
(

1
5
,
1
5
,
1
5
,
1
5
,
1
5

)
.

Case 2: Nine 3-player coalitions win. Then the only loser is {P3, P4, P5}. The
situation is then summarized in the following table. The left-hand column gives
an abbreviated description of each winning coalition; for example, 235 means
that {P2, P3, P5} is a winning coalition. The right-hand column indicates which
players are critical for the coalition to the left; for example, 2 means that only
P2 is critical, while 134 means that P1, P3, and P4 are critical. Here and in
the sequel we omit 12345, which represents the 5-player coalition, for though it
wins, it never contributes critical instances.



Winners Critical
123 123
124 124
125 125
134 134
135 135
145 145
234 234
235 235
245 245
2345 2
1345 1
1245 none
1235 none
1234 none

An example is [7; 3, 3, 2, 2, 2], and we have

β =
(

7
29

,
7
29

,
5
29

,
5
29

,
5
29

)
.

Case 3: Eight 3-player coalitions win. Then the losers must be {P3, P4, P5}
and {P2, P4, P5}. The situation is depicted below.

Winners Critical
123 123
124 124
125 125
134 134
135 135
145 145
234 234
235 235
2345 23
1345 1
1245 1
1235 none
1234 none

An example is [8; 4, 3, 3, 2, 2], and we have

β =
(

2
7
,

3
14

,
3
14

,
1
7
,
1
7

)
.

Case 4: Seven 3-player coalitions win, and the losers are {P3, P4, P5}, {P2, P4, P5},
and {P2, P3, P5}. (There is one other possibility, namely that {P1, P4, P5} loses
instead of {P2, P3, P5}. This is Case 5.)



Winners Critical
123 123
124 124
125 125
134 134
135 135
145 145
234 234
2345 234
1345 1
1245 1
1235 1
1234 none

An example is [6; 3, 2, 2, 2, 1], and we have

β =
(

1
3
,

5
27

,
5
27

,
5
27

,
1
9

)
.

Case 5: Seven 3-player coalitions win as indicated below.

Winners Critical
123 123
124 124
125 125
134 134
135 135
234 234
235 235
2345 23
1345 13
1245 12
1235 none
1234 none

An example is [5; 2, 2, 2, 1, 1], and we have

β =
(

7
27

,
7
27

,
7
27

,
1
9
,
1
9

)
.

Case 6: Six 3-player coalitions are winners. One way this can occur is if all
six of these contain P1.



Winners Critical
123 123
124 124
125 125
134 134
135 135
145 145
2345 2345
1345 1
1245 1
1235 1
1234 1

An example is [4; 2, 1, 1, 1, 1], and we have

β =
(

5
13

,
2
13

,
2
13

,
2
13

,
2
13

)
.

Case 7: The six 3-player winning coalitions are as above but with {P1, P4, P5}
replaced by {P2, P3, P4}.

Winners Critical
123 123
124 124
125 125
134 134
135 135
234 234
2345 234
1345 13
1245 12
1235 1
1234 none

An example is [8; 4, 3, 3, 2, 1], and we have

β =
(

4
13

,
3
13

,
3
13

,
2
13

,
1
13

)
.

There is no other way to have six 3-player winning coalitions.
Case 8: Five 3-player coalitions are winners. There are two ways for this to

occur. One way is as follows.



Winners Critical
123 123
124 124
125 125
134 134
135 135
2345 2345
1345 13
1245 12
1235 1
1234 1

An example is [6; 3, 2, 2, 1, 1], and we have

β =
(

9
25

,
1
5
,
1
5
,

3
25

,
3
25

)
.

Case 9: Another way in which we may have five 3-player winning coalitions
is by replacing {P1, P3, P5} with {P2, P3, P4}.

Winners Critical
123 123
124 124
125 125
134 134
234 234
2345 234
1345 134
1245 12
1235 12
1234 none

An example is [7; 3, 3, 2, 2, 1], and we have

β =
(

7
25

,
7
25

,
1
5
,
1
5
,

1
25

)
.

Case 10: There are two ways in which we may have four 3-player winning
coalitions. One is as follows.



Winners Critical
123 123
124 124
125 125
134 134
2345 2345
1345 134
1245 12
1235 12
1234 1

An example is [8; 4, 3, 2, 2, 1], and we have

β =
(

1
3
,
1
4
,
1
6
,
1
6
,

1
12

)
.

Case 11: By replacing {P1, P2, P5} in the preceding case by {P2, P3, P4}, we
obtain the following.

Winners Critical
123 123
124 124
134 134
234 234
2345 234
1345 134
1245 124
1235 123
1234 none

An example is [6; 2, 2, 2, 2, 1], and we have

β =
(

1
4
,
1
4
,
1
4
,
1
4
, 0

)
.

Case 12: There are three 3-player winning coalitions; this may occur two
ways. One is the following.

Winners Critical
123 123
124 124
125 125
2345 2345
1345 1345
1245 12
1235 12
1234 none



An example is [5; 2, 2, 1, 1, 1], and we have

β =
(

7
23

,
7
23

,
3
23

,
3
23

,
3
23

)
.

Case 13: By replacing {P1, P2, P5} in the preceding case with {P1, P3, P4},
we have the following.

Winners Critical
123 123
124 124
134 134
2345 2345
1345 134
1245 124
1235 123
1234 1

An example is [7; 3, 2, 2, 2, 1], and we have

β =
(

7
23

,
5
23

,
5
23

,
5
23

,
1
23

)
.

Case 14: If there are but two 3-player winning coalitions, then they must be
{P1, P2, P3} and {P1, P2, P4}.

Winners Critical
123 123
124 124
2345 2345
1345 1345
1245 124
1235 123
1234 12

An example is [8; 3, 3, 2, 2, 1], and we have

β =
(

3
11

,
3
11

,
2
11

,
2
11

,
1
11

)
.

Case 15: Only one 3-player coalition wins, namely {P1, P2, P3}.

Winners Critical
123 123
2345 2345
1345 1345
1245 1245
1235 123
1234 123



An example is [6; 2, 2, 2, 1, 1], and we have

β =
(

5
21

,
5
21

,
5
21

,
1
7
,
1
7

)
.

Case 1(b): If no 3-player coalitions win, then we are left with only those coali-
tions guaranteed to win, such as in [4; 1, 1, 1, 1, 1]. The result is that B(Pi) = 1/5
for all i.

Part II: For this set of cases (16-25), we consider systems for which the only
2-player winning coalition is {P1, P2}. Then we are guaranteed that {P3, P4, P5}
is a losing coalition, so we may have at most nine 3-player winning coalitions,
as in Case 16. We proceed as in Part I, by decreasing the number of 3-player
winners.

Case 16: If all 3-player coalitions except {P3, P4, P5} win, then we have the
following.

Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
145 145
234 234
235 235
245 245
2345 2
1345 1
1245 none
1235 none
1234 none

An example is [4; 2, 2, 1, 1, 1], and we have

β =
(

2
7
,
2
7
,
1
7
,
1
7
,
1
7

)
.

Case 17: If we have eight 3-player winning coalitions, then the losers must
be {P3, P4, P5} and {P2, P4, P5}, so we have the following.



Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
145 145
234 234
235 235
2345 23
1345 1
1245 1
1235 none
1234 none

An example is [9; 5, 4, 3, 2, 2], and we have

β =
(

1
3
,

7
27

,
5
27

,
1
9
,
1
9

)
.

Case 18: If we have seven 3-player winning coalitions, then the new loser
may be either {P2, P3, P5} or {P1, P4, P5}. In the former event, we have the
following.

Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
145 145
234 234
2345 234
1345 1
1245 1
1235 1
1234 none

An example is [8; 5, 4, 2, 2, 1], and we have

β =
(

5
13

,
3
13

,
2
13

,
2
13

,
1
13

)
.

Case 19: If {P1, P4, P5} is instead struck from Case 17, we have the following.



Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
234 234
235 235
2345 2
1345 13
1245 12
1235 none
1234 none

An example is [7; 4, 4, 2, 1, 1], and we have

β =
(

8
25

,
8
25

,
1
5
,

2
25

,
2
25

)
.

Case 20: If there are six 3-player winning coalitions, then one way this may
occur is as follows.

Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
145 145
2345 2345
1345 1
1245 1
1235 1
1234 1

An example is [5; 3, 2, 1, 1, 1], and we have

β =
(

11
25

,
1
5
,

3
25

,
3
25

,
3
25

)
.

Case 21: Now we come to the unique case in which strict hierarchy of
Banzhaf power is possible for a 5-player WVS. With six 3-player winning coali-
tions we may have the following.



Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
234 234
2345 234
1345 13
1245 12
1235 1
1234 none

An example is [9; 5, 4, 3, 2, 1], and we have

β =
(

9
25

,
7
25

,
1
5
,

3
25

,
1
25

)
.

An observation we can make at this point is that giving i votes to Pi seems
an obvious, albeit naive, way to effect strict hierarchy of power, but we note
that in the case of 5 players, this results in a total of 15 votes, so that we must
have q ≥ 8. But setting q equal to 8 instead of 9 yields a WVS for which
B(P2) = B(P3), equivalent to [8; 5, 3, 3, 2, 1], which is Case 27.

Case 22: If there are five 3-player winning coalitions, then this may occur
as follows.

Winners Critical
12 12
123 12
124 12
125 12
134 134
234 234
2345 234
1345 134
1245 12
1235 12
1234 none

An example is [10; 5, 5, 3, 3, 1], and we have

β =
(

1
3
,
1
3
,
1
6
,
1
6
, 0

)
.

Case 23: Another way we may have five 3-player winning coalitions is by
replacing {P2, P3, P4} in the previous case with {P1, P3, P5}. The we have the
following.



Winners Critical
12 12
123 12
124 12
125 12
134 134
135 135
2345 2345
1345 13
1245 12
1235 1
1234 1

An example is [7; 4, 3, 2, 1, 1], and we have

β =
(

5
12

,
1
4
,
1
6
,

1
12

,
1
12

)
.

Case 24: If there are four 3-player winning coalitions, then they must be as
follows.

Winners Critical
12 12
123 12
124 12
125 12
134 134
2345 2345
1345 134
1245 12
1235 12
1234 1

An example is [9; 5, 4, 2, 2, 1], and we have

β =
(

9
23

,
7
23

,
3
23

,
3
23

,
1
23

)
.

Case 25: There can be no fewer than three 3-player winning coalitions in case
{P1, P2} wins, for then the coalitions {P1, P2, P3}, {P1, P2, P4}, and {P1, P2, P5}
automatically win. Hence our last case for Part II is as follows.



Winners Critical
12 12
123 12
124 12
125 12
2345 2345
1345 1345
1245 12
1235 12
1234 12

An example is [6; 3, 3, 1, 1, 1], and we have

β =
(

4
11

,
4
11

,
1
11

,
1
11

,
1
11

)
.

Part III: Now suppose there are exactly two winning 2-player coalitions.
Then they must be {P1, P2} and {P1, P3}. It follows that the coalitions {P1, P2, P3},
{P1, P2, P4}, {P1, P2, P5}, {P1, P3, P4}, and {P1, P3, P5} automatically win. So
we can have no fewer than five 3-player winning coalitions. On the other hand,
we can have no more than eight, since the coalitions {P3, P4, P5} and {P2, P4, P5}
must lose.

Case 26: With eight 3-player winning coalitions, we have the following.

Winners Critical
12 12
13 13
123 1
124 12
125 12
134 13
135 13
145 145
234 234
235 235
2345 23
1345 1
1245 1
1235 none
1234 none

An example is [5; 3, 2, 2, 1, 1], and we have

β =
(

5
13

,
3
13

,
3
13

,
1
13

,
1
13

)
.



Case 27: We may have seven 3-player winning coalitions by striking either
{P2, P3, P5} or {P1, P4, P5} from the list in Case 26. In the former event, we
have the following.

Winners Critical
12 12
13 13
123 1
124 12
125 12
134 13
135 13
145 145
234 234
2345 234
1345 1
1245 1
1235 1
1234 none

An example is [8; 5, 3, 3, 2, 1], and we have

β =
(

11
25

,
1
5
,
1
5
,

3
25

,
1
25

)
.

Case 28: In case {P1, P4, P5} is struck from the list in Case 26, we obtain
the following.

Winners Critical
12 12
13 13
123 1
124 12
125 12
134 13
135 13
234 234
235 235
2345 23
1345 13
1245 12
1235 none
1234 none



An example is [7; 4, 3, 3, 1, 1], and we have

β =
(

9
25

,
7
25

,
7
25

,
1
25

,
1
25

)
.

Case 29: We may have six 3-player winning coalitions in one of two ways;
one way is to strike {P2, P3, P5} from the list in Case 28. Then we have the
following.

Winners Critical
12 12
13 13
123 1
124 12
125 12
134 13
135 13
234 234
2345 234
1345 13
1245 12
1235 1
1234 none

An example is [10; 6, 4, 4, 2, 1], and we have

β =
(

5
12

,
1
4
,
1
4
,

1
12

, 0
)

.

Case 30: Another way we may we have six 3-player winning coalitions is by
striking {P2, P3, P4} from the list in Case 27. Then we have the following.

Winners Critical
12 12
13 13
123 1
124 12
125 12
134 13
135 13
145 145
2345 2345
1345 1
1245 1
1235 1
1234 1



An example is [6; 4, 2, 2, 1, 1], and we have

β =
(

1
2
,
1
6
,
1
6
,

1
12

,
1
12

)
.

Case 31: If we have five 3-player winning coalitions, then these are exactly
those we identified at the beginning of Part II.

Winners Critical
12 12
13 13
123 1
124 12
125 12
134 13
135 13
2345 2345
1345 13
1245 12
1235 1
1234 1

An example is [8; 5, 3, 3, 1, 1], and we have

β =
(

11
23

,
5
23

,
5
23

,
1
23

,
1
23

)
.

Part IV: If we have exactly three 2-player winning coalitions, then {P1, P2}
and {P1, P3} must win, and the third may be either {P2, P3} or {P1, P4}.

Case 32: Suppose the 2-player winners are {P1, P2}, {P1, P3}, and {P1, P4},
and their complements are the only losing 3-player coalitions. Then we have
the following.



Winners Critical
12 12
13 13
14 14
123 1
124 1
125 12
134 1
135 13
145 14
234 234
2345 234
1345 1
1245 1
1235 1
1234 none

An example is [6; 4, 2, 2, 2, 1], and we have(
1
2
,
1
6
,
1
6
,
1
6
, 0

)
.

Case 33: Suppose instead that {P1, P2}, {P1, P3}, and {P2, P3} win. Then
their complements are guaranteed to lose. But observe also that the seven
remaining 3-player coalitions are guaranteed to win, since they all contain two
of the players P1, P2, P3. So in this case we have the following.

Winners Critical
12 12
13 13
23 23
123 none
124 12
125 12
134 13
135 13
234 23
235 23
2345 23
1345 13
1245 12
1235 none
1234 none



An example is [6; 3, 3, 3, 1, 1], and we have

β =
(

1
3
,
1
3
,
1
3
, 0, 0

)
.

Case 34: The only case remaining under Part IV is the case in which
{P1, P2}, {P1, P3}, and {P1, P4} are the winning 2-player coalitions, their com-
plements lose, and the coalition {P2, P3, P4} also loses. Then we have the fol-
lowing.

Winners Critical
12 12
13 13
14 14
123 1
124 1
125 12
134 1
135 13
145 145
2345 2345
1345 1
1245 1
1235 1
1234 1

An example is [7; 5, 2, 2, 2, 1], and we have

β =
(

13
23

,
3
23

,
3
23

,
3
23

,
1
23

)
.

Part V: Finally, suppose there are four 2-player winning coalitions. This
is the maximum number possible with 5 players and, as we mentioned at the
beginning of the proof, this can only occur if the winners are {P1, P2}, {P1, P3},
{P1, P4}, and {P1, P5}. Now only one case remains.

Case 35: The winning coalitions are now completely determined, since the
complements of {P1, P2}, {P1, P3}, {P1, P4}, and {P1, P5} lose, while the six

remaining 3-player coalitions are guaranteed to win. We come to the case
which gives P1 maximum Banzhaf power, corresponding to the scenario in the
proof of Theorem 3.



Winners Critical
12 12
13 13
14 14
123 1
124 1
125 12
134 1
135 13
145 145
2345 2345
1345 1
1245 1
1235 1
1234 1

An example is [4; 3, 1, 1, 1, 1], and we have

β =
(

7
11

,
1
11

,
1
11

,
1
11

,
1
11

)
.

The proof is complete.
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