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Chapter 1

Introduction

Functional and geometric inequalities, and particularly those of Sobolev and isoperi-
metric type, play a key role in a number of problems arising in the calculus of vari-
ations, partial differential equations, and geometry. A prototypical example is the

classical Sobolev inequality on R" for n > 2, which says that, for 1 < p <n,
IVullLo@ny = Slull g oy (1.0.1)

for any u € WP(R")." Here, p* = np/(n — p) and S = S(n,p) denotes the optimal
constant. Intimately related to Sobolev inequalities are isoperimetric inequalities,
the most ubiquitous example of which is the Euclidean isoperimetric inequality: for
n > 2, one has

P(E) > n|B|Y™ E[M"" (1.0.2)

n' =n/(n — 1), with equality if and only if £ is a dilation or translation of the unit

ball B.

The main results of this thesis address two primary questions for certain Sobolev and

isoperimetric inqualities:

! For p = 1, (1.0.1) holds for any u € BV (R") with the left-hand side replaced by the total
variation | Du|(R™).



Problem 1: Is equality attained in the inequality? Can one characterize all extremals

in the inequality?

An inequality with suitable scaling invariance can be equivalently be viewed

variationally—for instance, (1.0.1) is equivalent to the minimization problem
inf { ||Vl Loy ¢ [l e @y = 1} = 5. (1.0.3)

With this perspective in mind, we identify the problem of characterizing extremals
in the inequality with that of characterizing minimizers in the associated variational

problem.

If both parts of Problem 1 are answered in the affirmative for a given inequality, a

second natural question to ask is the following:

Problem 2: Suppose a function or set almost achieves equality in the inequality.

Then, is it close, in a suitable sense, to an extremal function or set?

Problem 2 addresses the stability of the inequality, or, more precisely, the quantitative

stability of the minimizers in the equivalent variational problem.

In the following two sections of the introduction, we briefly outline known stability and
minimality properties for the Sobolev and isoperimetric inequalities considered in this

thesis and present the main results that are proven in the subsequent chapters.



1.1 Sobolev inequalities

In the eighty years since the seminal papers [Sob36, Sob38| of S.L. Sobolev, Sobolev-
type inequalities have been significantly refined and generalized and have become
central tools in modern analysis. They are used, for instance, to address the solvabil-
ity of certain boundary values problems and the structure of the spectra of elliptic
operators (see [Maz85, Chaper 6]), and, in conjunction with energy inequalities, to
prove various types of regularity results for elliptic and parabolic PDE (as in [DG57]).
Determining the value of the sharp constants and characterizing the associated ex-
tremal functions in these inequalities often provides interesting geometric information.
For example, the sharp constant and extremals in (1.0.1) played a crucial role in the
solution of the Yamabe problem in conformal geometry, which asks whether every
compact Riemannian manifold (M, g) admits a metric with constant scalar curvature
that is conformal to g (see [Yam60, Tru68, Aub76a, Sch84| and the survey [LP87]). It
was with this motivation that Aubin showed in [Aub76b], concurrently with Talenti
in [Tal76|, that equality in (1.0.1) for 1 < p < n is uniquely achieved by dilations,

translations, and constant multiples of the function

1

Us(z) = A ) (1.1.1)
In other words, the (n + 2)-dimensional family of extremals is given by
M={cUs(Mx —1xz0)) : ce Ry AeRy, zo € R"}. (1.1.2)

Both proofs used symmetrization methods and an analysis of the Euler-Lagrange

equation associated to the variational problem (1.0.3). A quite different proof of this



characterization is given by tracing through the argument presented in [CENV04],
which uses the Brenier-McCann theorem from the theory of mass transportation (see
Section 2.2). A remarkable feature of this proof is that does not rely on geometric

properties like symmetry and holds without modification for non-Euclidean norms on

R™.

For p = 1, the Sobolev inequality is equivalent to the isoperimetric inequality (see
[FF60, FR60, Maz60|), and accordingly, the extremal functions are translations, di-

lations, and constant multiples of the characteristic functions of the ball.

Related to the Yamabe problem is the question of whether every compact Rie-
mannian manifold (M, g) with boundary admits a scalar flat metric conformal to
g with constant mean curvature on the boundary. In this problem, considered in
[Esc92al, the role of (1.0.1) is played by the Sobolev trace inequality on the half-

space H = {x; > 0} C R™ for n > 2, which states that

for all 1 < p < n. Here, p* = (n — 1)p/(n — p) and Q = Q(n,p) is the optimal
constant. Escobar showed in [Esc88| that when p = 2, all extremal functions in
(1.1.3) are given by dilations, constant multiples, and translations by xzy € H of the
function |z +e;|>~". Beckner gave another proof in an unpublished note in 1987, later
expanded into [Bec93]. Both proofs, though different in nature, crucially exploit the
conformal invariance that is specific to the case p = 2. For the general case 1 < p < n,
it was not until [Naz06] that the function

1
Ve = e e oo

(1.1.4)



and its invariant scalings {cUg(A(z + z0)) : ¢ € R, A € Ry, xy € H} were shown to
be extremals of (1.1.3), confirming a conjecture of Escobar in [Esc88|.? The proof used

a variant of the aforementioned optimal transport argument developed in [CENV04].

In Chapter 2, based on joint work with F. Maggi in [MN17], we prove a new one-
parameter family of sharp constrained Sobolev inequalities which interpolate between
the Sobolev inequality (1.0.1) and the Sobolev trace inequality (1.1.3), and charac-
terize all extremal functions in each inequality. More specifically, we consider the

following family of variational problems:
o(T) =it {IVulloim : Nl iy = 1 Nl ey =T} T>0.  (115)

We characterize minimizers in (1.1.5) for every 7' > 0 and every 1 < p < n, and
then use this information to provide a qualitative description of the behavior of the
infimum value ®(7T) as a function of T. For 1 < p < n, the characterization result

involves the following three families of functions:

Sobolev family: Let Ug be defined as in (1.1.1) and set, for every ¢t € R,

Us(z —teq)

Uq,(z) = -
507) = [Tsld = te0) Lo

reH,

and

Ts(t) = Uspll ot orry > Gs(t) = IVUsllomy -

2 The uniqueness of this family of extremals was left open in [Naz06], but was shown in [MN17];
see Appendix B.



FEscobar family: Letting Ug be as in (1.1.4), we set for every ¢ < 0

_ Ug(x —tey)
[Uq(id — tex)|| o ()

A simple computation shows that the trace and gradient norms of the Ug; are inde-

Ug.(x) reH.

pendent of ¢t < 0, and we set
Uil ot omy = Ta IVUQulleny = Go

for these constant values.

Beyond-FEscobar family: We consider the function
Up(z) = (Jaf” = )P=2%  Ja| > 1,

and define, for every t < —1,

UB(I —1 61)
Upi(z) = - r € H.
1Us(id — tex) | o ()
Correspondingly, for every ¢t < —1, we set
Ts(t) = Ul ot o) - Gp(t) = IVUs o) -

Theorem 1.1.1 (Existence and Characterization of Minimizers). Let n > 2 and
p € (1,n). For every T € (0,+00), a minimizer exists in the variational problem

(1.1.5) and is unique up to dilations and translations orthogonal to e;. More precisely:
(1) for every T € (0,1g), there exists a unique t € R such that
T ="Ts(t), O(T) = Gs(t),

and Ugy is the uniquely minimizer in (1.1.5) up to dilations and translations

orthogonal to ey;



(i1) if T =Tg, then, up to dilations and translations orthogonal to e1, {Ug, : t < 0}

is the unique family of minimizers of (1.1.5);

(1ii) for every T € (T, +00) there exists a unique t < —1 such that
T =Tz(t), O(T) = Gpt), (1.1.6)

and Ugy is the unique minimizer of (1.1.5) up to dilations and translations

orthogonal to ey.

As a consequence of Theorem 1.1.1, we obtain the sharp constants and characteriza-
tion of extremals for the following family of constrained Sobolev inequalities: for any
0<T < o0,

19l oy > (Tl o (1.1.7)
for all u € W'2(H) with lull s /[l o) = T

We also prove a qualitative description of ®(7) as a function of T'; see Theo-

rem 2.1.2.

Carlen and Loss first considered the variational problem (1.1.5) for p = 2 in [CL94],
where they characterize minimizers using their method of competing symmetries de-
veloped in [CL90b, CL90a, CL92|. Hence, Theorem 1.1.1 can be seen as a generaliza-
tion of [CL94| from the case p = 2 to the full range p € (1,n). Their method, like the
results of [Esc88] and [Bec93| characterizing extremals in (1.1.3), relies in an essential
way on the conformal invariance that is present only in the case p = 2. In view of

these considerations, we prove Theorem 1.1.1 with a mass transportation argument

in the spirit of [CENV04].



Chapter 3 deals with the question of stability for the Sobolev inequality on R™, which
was first raised Brezis and Lieb in [BL85|. To quantify how close a function is to
achieving equality in (1.0.1), we define the deficit of a function u € W?(R") in the

Sobolev inequality by
_ HVU||]2P(Rn)

B Sp”“”ip* (R™)

55(?1,) — 1.

Note that this nonnegative quantity vanishes if and only if u € M, with M as defined
in (1.1.2). For an appropriately defined distance d of u to the family M, we seek an

inequality of the form

Js(u) > w(d(u)), (1.1.8)

where w is a function such that w(d(u)) — 07 as d(u) — 07. Such an inequality can
be viewed as a quantitative form of the Sobolev inequality with w(d(u)) serving as a

remainder term in (1.0.1): after rearranging, (1.1.8) becomes
90l gy 2 Sl gy (1 + d())).

There are two natural distances to consider for 1 < p < n:

[|u — UHLP*(R")

ag(u) = inf and
UeM ||u||LP*(R") (1 1 9)
Bs(u) = inf |Vu = VU|| rwn)
5 veM  |Vullpr@ny

Note that Sg(u) controls aig(u) and that Sg(u) is the strongest notion of distance that

one expects to control by the deficit.

Stability for (1.0.1) was first shown by Bianchi and Egnell in [BE91] in the case p = 2.

They showed that dg(u) controls Bs(u)?, providing a stability result that is optimal



both in the strength of the distance and the rate of decay. At the core of their
proof is an analysis of the second variation of the deficit through a spectral analysis
of suitably weighted Laplace operator. Though these methods strongly exploit the
Hilbertian structure of W%2(R"), we shall see in Chapter 3 that it is possible to

extend these ideas even when p # 2.

For p = 1, following earlier results in [Cia06] and [FMPO07], it was shown in [FMP13|
that dg(u) controls the appropriate analogue® of Sg(u)? using rearrangement tech-
niques and mass transportation theory. Again, this result is optimal both in the

strength of the distance and the exponent of decay.

The general case 1 < p < n is more difficult. In [CFMPO09|, Cianchi, Fusco, Maggi,
and Pratelli proved that the deficit controls ag(u) with a non-sharp exponent, combin-
ing symmetrization techniques and a one-dimensional mass transportation argument.
However, in view of [BE91| and [FMP13|, one expects that the deficit should control
a power of Sg(u). In Chapter 3, we show that this is true for p > 2. More precisely,
the main result of the chapter, based on joint work with A. Figalli in [FN], states the
following;:

Theorem 1.1.2. Let 2 < p < n. There exists a constant C' > 0, depending only on

p and n, such that for all u € WHP(R™),
Bs(u)® < Cog(u), (1.1.10)

where ( = p*p (3 +4p — 3p+1)2.

n

3 Since the extremals in (1.0.1) for p = 1 lie in the space BV (R™) but not W' (R™), the distance
takes a slightly different form; see [FMP13].



A key idea behind Theorem 1.1.2 is to introduce a Hilbertian structure to Wh?(R")
by defining a different weighted L?-space for each U € M. In this way, we can analyze
the second variation using a spectral gap argument in the spirit of [BE91]|, though
the spectral analysis is somewhat delicate because we deal with a degenerate elliptic
operator. This approach does not directly lead to (1.1.10), since when p # 2, there are
certain terms in an expansion of the deficit that are in competition with the second
variation. To overcome these difficulties, we develop an interpolation argument that
makes use of the main result of [CFMP09]. We remark that ¢ is likely not the optimal
rate of decay in (1.1.10), which is conjectured to be max{p,2}; see [Fusl5, Section
6].

The topic of stability for Sobolev-type inequalities has generated much interest in
recent years. In addition to the aforementioned papers, results of this type have been
addressed for the log-Sobolev inequality [IM14, BGRS14, FIL16|, the higher order
Sobolev inequality [GW10, BWWO03], the fractional Sobolev inequality [CEW13], the
Morrey-Sobolev inequality [Cia08] and the Gagliardo-Nirenberg-Sobolev inequality
[CF13, DT13, Rufl4, Ngu|. Apart from their intrinsic interest, these results can be
used to obtain quantitative rates of convergence for certain diffusion equations, as in

[CF13, Ngul].

1.2 Isoperimetric inequalities

Many physical phenomena are governed by the minimization of energies related to

surface area, so isoperimetric inequalities naturally come into play in a number

10



of variational problems modeling these situations. In the description of systems
of an anisotropic nature, such as equilibrium configurations for solid crystals (see
[Wul01, Her51, Tay78|) and phase transitions (see [Gur85]), one must consider a gen-
eralization of the perimeter functional that is weighted to favor configurations where
the boundary of a set faces certain directions. The anisotropic surface energy of a set
E C R" is defined by

F(E)= [ flvp(x))dH" (z)

O*E

for a convex positively 1-homogeneous function f : R™ — [0, +00) that is positive on
S~ (Here, 0*E is reduced boundary and the v is the measure theoretic outer unit
normal; see Section 4.2.1.) Just as the ball minimizes perimeter among sets at fixed
volume, as expressed by (1.0.2), the surface energy is uniquely minimized among sets
of a given volume by translations and dilations of the bounded convex set K known

as the Wulff shape of F given by

K= ﬂ {reR":z-v<f(v)}.

vesn—1

The minimality of the Wulff shape is expressed by the Wulff inequality:
F(E) > n|K[V/" B, (1.2.1)

with equality if and only if F is a translation or dilation of K. This was first shown
in [Tay78] under certain assumptions, then in [Fon91, FM91, BM94|; see also [DP92,
DGS92|. Observe that the isoperimetric inequality is the particular case of the Wulff

inequality with f(z) = |z|.

11



In the setting of the isoperimetric inequalities, the question of stability dates back
to the work of Bonnesen [Bon24| in the plane. To quantify how close a set is to
achieving equality in (4.1.1), we define the deficit of a set F to be the scaling invariant

quantity
F(E)

O1(E) = S B

1.

A natural and well-studied distance of a set E to the family of extremals is the

asymmetry index, of(E), defined by

oy (E) = min

{‘EA(TK“‘/)' . [rK| = |E|}, (1.2.2)
B

where FAF = (E\ F)U(F\ E) is the symmetric difference of F and F. This L'-type

distance plays the role of the functional ag(u) defined in (1.1.9). The quantitative

isoperimetric inequality with respect to the asymmetry index was proven in sharp

form by Fusco, Maggi, and Pratelli in [FMPO08|. Using symmetrization techniques,

they showed that if E is a set of finite perimeter with 0 < |E| < oo, then
a1 (E)? < C(n)éy(E). (1.2.3)

Here and in the sequel, we use the notation d; and oy for the deficit and asymmetry
index corresponding to the perimeter. Before this full proof of (1.2.3) was given,
several partial results were shown in [Fug89, Hal92, HHW91|. Another proof of (1.2.3)
was given in [CL12|, introducing a technique known as the selection principle, where
a penalization technique and the regularity theory for almost-minimizers of perimeter

reduce the problem to the case shown in [Fug89].

12



Stability of the Wulff inequality was first addressed in [EFTO05]|, without the sharp
exponent. Figalli, Maggi, and Pratelli later proved the sharp version in [FMP10]
exploiting the mass transportation proof of (4.1.1) given in [BM94, MS86]. They

showed that there exists a constant C'(n) such that
o (E)* < C(n)ds(E) (1.2.4)

for any set of finite perimeter F with 0 < |E| < oo. In both (1.2.3) and (1.2.4), the

power 2 is sharp.

In the aforementioned result of [Fug89], Fuglede proved (1.2.3) when OF is a small C*
perturbation of B. Within this class of sets, Fuglede’s result is actually stronger: he

showed that 6;(FE) controls a stronger distance, now known as the oscillation index

B1(E), defined by

su(B) = min { (B [ 1-vee) S L)) a2
= min —vp(r)  —= T , 2.
' yER™ o*E " [z —y|

which controls a4 (E) and is the analogue of Sg(u) in this setting. In [FJ14], Fusco
and Julin used a selection principle argument and the result of [Fug89| to improve

(1.2.3) by showing
a1 (E)* + B1(E)* < C(n)é(E) (1.2.6)

for any set of finite perimeter E with 0 < |E| < oo. Once again, the power 2 in

(1.2.6) is sharp for both ay(F) and 51(E).

The main result of Chapter 4, based on [Neul6|, is a strong-form stability result for the

Wulff inequality in the spirit of (1.2.6). Determining the appropriate analogue [y of

13



the oscillation index is actually a subtle point (see Sections 4.1 and 4.6). After defining
it in Definition 4.1.2, we prove several stability results, which can be summarized in
the following statement:

Theorem 1.2.1. Fix n > 2 and let F be an anisotropic surface energy. There exist

C=C(n,f) >0 and a(n, f) > 0 such that
af(E)? + Br(E)* < Cop(E) (1.2.7)

for any set of finite perimeter E with 0 < |E| < oco.

There are two settings in which we obtain the sharp exponent o« = 2: when f is
A-elliptic, that is, f has sufficient regularity and convexity properties, or when n = 2
and f is crystalline, that is, the Wulff shape of K is a polygon. For an arbitrary
surface tension f, we obtain the likely non-optimal exponent o = 4n/(n+ 1), but can

prove the theorem with the constant C' depending only on the dimension.

The proof of Theorem 1.2.1 uses a selection principle argument in the spirit of [CL12,
FJ14|, which allows us to reduce to the case of sets which are almost-minimizers
of the anisotropic perimeter and are L!-close to K. However, a key component of
the selection principle is the regularity theory for almost-minimizers. For general
anisotropies, we are missing this component. In the case of a crystalline surface
tension in dimension 2, in lieu of the regularity theory, we use a rigidity result of
Figalli and Maggi in [FM11] which lets us assume that £ is a convex polygon with
sides that align with those of K. For an arbitrary surface tension, density estimates
are the strongest regularity property that one can hope to extract, and so, pairing

these estimates with (1.2.4), we obtain the result with the non-sharp exponent.

14



When f is A-elliptic, almost-minimizers of the corresponding surface energy F do
enjoy strong regularity properties, so we may take OF to be a small C! perturbation
of 0K. We then prove the following analogue of Fuglede’s result in the anisotropic
case, which is interesting in its own right.

Proposition 1.2.2. Let f be M-elliptic with corresponding surface energy F and
Wulff shape K. Let E be a set such that |E| = |K| and bar E = bar K, where

bar E = |E|™" [, x dx denotes the barycenter of E. Suppose
OF = {z +u(x)vg(x) : x € 0K}

where u : 0K — R is in C*(OK). There exist C and &, depending on f such that if
|ullcrory < €1, then

Hu||§{1(aK) < Cép(B). (1.2.8)

Fuglede proved Proposition 1.2.2 in the isotropic case using a spectral gap argument
much in the sprit of [BE91|, strongly exploiting the fact that the eigenvalues and
eigenfunctions of the Laplacian on the sphere are explicitly known. At its core, the
proof of Proposition 1.2.2 also relies on a spectral gap, but nothing explicit can be
said about the spectrum of the elliptic differential operator on K that plays the role
of the Laplacian on 0B. In the absence of explicit spectral information, we instead
perform an implicit spectral analysis, using the main result of [FMP10] to establish

the existence of an appropriately placed spectral gap.

The study of stability for isoperimetric type inequalities has seen an explosion of

results in recent years. The literature is much too broad to account for here, so

15



let us simply mention that analogous strong-form quantitative inequalities have re-
cently been studied in several settings: in Gaussian space [Eld15, BBJ|, on the sphere
[BDF], and in hyperbolic n-space [BDS15|. We refer the reader to the recent survey
paper [Fuslb| for a rather complete overview of contemporary stability results for

isoperimetric-type inequalities, and to [Oss79| for a survey of earlier results.
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Chapter 2

A bridge between the Sobolev and Sobolev trace
inequalities and beyond

2.1 Overview

2.1.1 A variational problem interpolating the Sobolev and Sobolev trace
inequalities

In this chapter,! we illustrate a strong link between the Sobolev inequality on R™

||VU||LP(R7L) 2 S ||u||Lp*(Rn) p* — s (211)

and the Sobolev trace inequality on the half-space H = {z1 > 0}

(n—1)p
IVullrn > Q llull it oy PP = gt (2.1.2)

where n > 2 and p € [1,n). These classical sharp inequalities both arise as particular

cases of the variational problem ®(T") = ®®)(T) defined by
(1) = inf { [ Vull o+ el my = 1o Nl e oy =T} T20,  (21.3)

with 7" = 0 in the case of (2.1.1), and with 7" = Ty, for a suitable Ty > 0 in the case

of (2.1.2). Our main result, Theorems 2.1.1 and 2.1.2, characterize the minimizers of

IThis chapter is based on joint work with F. Maggi originally appearing in [MN17].

17



O (T) for every T' > 0 and give a description of the behavior of ®(T") as a function of
T.

The cases p = 2 and p = 1 have interpretations in conformal geometry and in capil-
larity theory respectively. In particular, when p = 2, (2.1.3) amounts to minimizing
a total curvature functional among conformally flat metrics on H — see (2.1.26) be-
low. An interesting feature of this problem is that the corresponding minimizing
geometries change their character from spherical (for 7" € (0,75)) to hyperbolic (for
T >Tp).

Let us start by setting our terminology and framework, focusing on the case p €
(1,n). We work with locally summable functions u € L (R") that are vanishing at
infinity, that is, [{|u| > t}| < oo for every t > 0. If Du denotes the distributional
gradient of u, then the minimization in (2.1.3) is over functions with Du = Vudzx
for Vu € LP(H;R"™). We recall from the introduction that equality holds in (2.1.1) if

and only if there exist A > 0 and z € R" such that
u(z) = XPP UGNz — 2)) Vo € R™, (2.1.4)

where

Us(x) = (1 + |z|P)P—M/P g eR". (2.1.5)

(Here, as usual, p’ = p/(p —1).) We also reacall that equality holds in (2.1.2) if and

only if there exist A > 0 and z € R™ with z; < 0 such that

u(x) = AP UL Nz — 2)) Vee H, (2.1.6)
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where Uy is the fundamental solution of the p-Laplacian on R":

Ug(a) = |z|®™/e=D xR\ {0}. (2.1.7)

Referring to the monograph [Maz85| for a broader picture on Sobolev-type inequali-
ties, we now pass to the starting point of our analysis, which is the realization that
(2.1.1) and (2.1.2) can be “embedded” in the family of variational problems (2.1.3).
Indeed:

(a) The Sobolev inequality is essentially equivalent to the variational problem ®(7")
with the choice T = 0. Indeed, if © = 0 on JH, then by applying (2.1.1) to the
zero extension of u outside of H, we find that ®(0) > S. Next, by considering an
appropriate sequence of scalings as in (2.1.4) multiplied by smooth cutoff functions,
we actually find that

o(0)=2S5.

The characterization of equality cases in (2.1.1) implies that ®(0) does not admit
minimizers. However, a concentration-compactness argument shows that every min-
imizing sequence is asymptotically close to a sequence of optimal functions in the
Sobolev inequality that is either concentrating at an interior point of H or whose
peaks have distance from 0H diverging to infinity. From this point of view, we con-

sider the variational problem

S = lIlf {”VUHLP(RTL) . ”u”Lp*(Rn) = ]_}

to be essentially equivalent to ®(0).
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(b) The Sobolev trace inequality boils down to the variational problem ®(7") corre-

sponding to T' = Tf, for the constant

1Uq ||Lpﬁ ({z1=1})

1Uql o (a1 >13)
Indeed, a simple scaling argument shows that, for every function u(z) as in (2.1.6),

one has
HUHLpﬁ(aH) B
Hu”LP*(H)

independently of the choices of A\ and, more surprisingly, of z. Thus, by the definition

of Ty and the characterization of equality cases in (2.1.2), we have
||u||Lpn(aH) =Ty for every u optimal function in (2.1.2) with [lul[ por gy = 1.

As a consequence,
and (the variational problem defined by) the Sobolev trace inequality is equivalent to

(2.1.3) with T = T,.

2.1.2 What is known about ®(7)

As discussed in the introduction, a full characterization of ®(7") in the important case
p = 2 was already given by Carlen and Loss in [CL94]. The situation is quite different
when p # 2. We now collect the information that, to the best of our knowledge, is all
that is presently known about ®(7"). As we have just seen, ®(0) = S by the Sobolev

inequality, and we have a global linear lower bound

®T)>QT VT >0, (2.1.9)
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with equality if 7" = Ty, thanks to the Sobolev trace inequality. Another piece of
information comes from the validity of the gradient domain inequality (see [MVOS,

Section 7.2] for the terminology adopted here) on H:
IVull Loy = 27" 3 [l o oy » (2.1.10)
with equality if and only if there exists A > 0 such that
u(x) = \"PPUg(Nz) Vo eR".

The validity of (2.1.10), with equality cases, follows immediately by applying the
Sobolev inequality (2.1.1) to the extension by reflection of u to R™. The gradient
domain inequality implies that

O(T)>27"S, VT >0 (2.1.11)
with equality if and only if T' = T, where

HUSHLP’i (8H)
0= T -
1Usl| o ()
As we will prove later on (see Proposition 2.3.2(i)),
Ty < TQ ,

while clearly (by applying (2.1.10) to an optimal function for (2.1.2))

O(Ty) =2"""5 <Q = d(Ty). (2.1.12)

Next, we notice that, thanks to the divergence theorem and Holder’s inequality, for

every non-negative u that is admissible in ®(7), we have
L= e v = [ T e < IVl
H
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where Holder’s inequality must be strict (otherwise, u would just depend on z;, and
thus could not satisfy u € LP"(H)). As a consequence, we find that, with strict
inequality,

T
O(T) > — VT >0. (2.1.13)
p

Finally, given any open connected Lipschitz set 2 C R", let us set
Do (T) = inf {|Vullsey : llullzor @) = 1 Il oy =T} T 20,

(so that &5 = ® by (2.1.3)), and define

PQ)

With this notation, the Euclidean isoperimetric inequality takes the form
ISO (©2) > ISO (By), (2.1.14)

with equality if and only if Q = Bgr(z) = {y € R" : |y — x| < R} for some x € R" and

R > 0. The following trace-Sobolev comparison theorem was proved in [MV05]:
Oo(T) > &p,(T), VT € [O,ISO (Bl)l/p”] , (2.1.15)

with the additional information that: (i) if 0 < 7' < ISO (By)Y/?*, ®o(T) = ®p,(T),
and ®q(T') admits a minimizer, then 2 is a ball; (ii) ®p, is strictly concave (and
decreasing) on [0,ISO (B;)'/?"]. Notice that (2.1.15) cannot hold on a larger interval
of Ts: indeed, ®p, (T) = 0 forces T = ISO (B;)'/?*, and so if 2 is not a ball and thus
ISO (©2) > ISO (By), then

Oy, (ISO (V7)) > 0 = D (ISO (Q)/7) .
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This said, we can apply (2.1.15) with = H to obtain an additional lower bound on
® on the interval [0,ISO (By)Y/#].

The constant lower bound given in (2.1.11) is actually stronger than the other three

lower bounds for some values of T'. Indeed, there exists § > 0 such that

Tv* ,
O(Ty) > max{1[0,180(31)1/pu](T)CI)31 (1),QT, } if [T — Tyl < 6. (2.1.16)

By continuity, it suffices to check this assertion at T' = Tj, and since (2.1.13) is
strict for every T' > 0, we only need to worry about (2.1.9) and (2.1.15). The fact
that ®(Ty) > ®p, (Ty) if Ty < ISO (B;)/#" follows by property (i) after (2.1.15) and
from the existence of a minimizer for ®(7;) shown in Theorem 2.1.1 below. At the
same time, ®(7y) > Q Ty, for otherwise, the explicit minimizer in ®(7p), that is the
“half-Sobolev optimizer” Ug (see (2.1.17) below), would be optimal in (2.1.2), contra-
dicting the characterization of equality cases for (2.1.2) (which is already implicitly
contained in [Naz06|, and is rigorously established in here). This proves (2.1.16).
We thus find the qualitative picture of the known lower bounds on ®(7") depicted in

Figure 2.1.

2.1.3 Main results

Our main result consists of characterizing minimizers in ®(7") for every 7' > 0, and
then using this knowledge to give a qualitative description of the behavior of ®(T').

Let us recall from three families of functions involved in the characterizaion:
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Figure 2.1: A qualitative picture of the known lower bounds on ®(7"). The picture gives
sharp information only for three values of T', namely 0, Ty, and T, which are depicted by
black squares.

Sobolev family: Let Ug be defined as in (2.1.5) and set, for every ¢t € R,

Us(z —teq)
Usa() = —— veH, 2.1.17
) = s = e Lo (2117
and
Ts(t) = Usill ot orry»  Gs(t) = [IVUstll Lo - (2.1.18)

Thus, Ug, is a translation of the optimal function Ug in the Sobolev inequality so that
its maximum point lies at signed distance ¢ from 0H, normalized to have LP -norm

in H equal to 1.

FEscobar family: Letting Ug be as in (2.1.7), we set for every ¢ < 0

Ug(x —tey)
1Uq(id — te1)| o (ar)

Ugslz) = reH. (2.1.19)

As noticed before, a simple computation (factoring out |t| from |z — te;| and then

changing variables y = —x/t) shows that the trace and gradient norms of the Ug
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are independent of ¢ < 0, and we set

HUQ,tHLpﬁ(aH) =Ty, HVUQ,tHLP(H) = GQ (2.1.20)

for these constant values. Each function Ug, is thus obtained by centering the funda-
mental solution of the p-Laplacian outside of H, and then by normalizing its LP"-norm

in H.
Beyond-FEscobar family: We consider the function
Ug(x) = (|z]f =)=/ g > 1, (2.1.21)

and define, for every t < —1,

Up(z —tey)
Upi(z) = - re H.
20 = a0 — ten) o
Correspondingly, for every t < —1, we set
Ts(t) = IUstll 1ot o) Gp(t) = IVUs|| o) - (2.1.22)

As the name of this family of functions suggests, we later prove that Ts(t) > Ty for
every t < —1, so that {Ug(t) }1<—1 enters the description of ®(T") for T > T,. Notice
that (2.1.21) defines a function on the complement of the unit ball. The function Up
is thus obtained by centering this unit ball outside of H, at distance |¢| from 0H, and
the by normalizing its tail to have unit L -norm in H.

Theorem 2.1.1 (Characterization of minimizers of ®(7")). If n > 2 and p € (1,n),
then for every T' > 0, there exists a minimizer in ®(T) that is unique up to dilations

and translations orthogonal to e;. More precisely:
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(1) the function Ts(t) is strictly decreasing on R with range (0,Tq) and with Ts(0) =
Ty < Ty; in particular, for every T € (0,Ty), there exists a unique t € R such
that

T =Ts(t) O(T) = Gs(t) (2.1.23)

and Ugy uniquely minimizes ®(T') up to dilations and translations orthogonal

to eq;

(1) if T = Tg, then, up to dilations and translations orthogonal to ey, {Ug, : t < 0}

is the unique family of minimizers of ®(1g);

(111) the function Tp(t) is strictly increasing on (—oo, —1) with range (T, +00); in

particular, for every T > T there exists a unique t < —1 such that
T = Tg(t) O(T) = Gp(t) (2.1.24)

and Up, uniquely minimizes ®(T') up to dilations and translations orthogonal

to €.

Theorem 2.1.1 provides an implicit description of ® on [0, 00), and extends the Carlen—
Loss theorem [CL94| from the case p = 2 to the full range p € (1,n). Notice that an
implicit description of ®, on the interval [0,ISO (B;)Y#*] was obtained in [MV05],
and was at the basis of the further results obtained therein. (No characterization of
®p, for T > ISO (B;)'/7* seems to be known.) Starting from the characterization of
® obtained in Theorem 2.1.1, we can obtain a quite complete picture of its properties,

which is stated in the next result and illustrated in Figure 2.2.
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Figure 2.2: A qualitative picture of Theorem 2.1.2, which improves on the situation depicted
in Figure 2.1. First, since in Theorem 2.1.1 we have proved that ®(7") always admits
minimizers, we are sure that ®(7') > ®p,(T) for every T' € [0,ISO (Bl)l/pu], that is to
say, the comparison theorem (2.1.15) is never optimal (but at T = 0). Notice also that
the divergence theorem lower bound (2.1.13) turns out to be sharp, and is asymptotically
saturated by the functions Up; ast — 17.

Theorem 2.1.2 (Properties of ®(7)). If n > 2 and p € (1,n), then ®(T) is differen-
tiable on (0, 00), it is strictly decreasing on (0, Ty) with ®(0) = S and ®(Ty) = 274" S

and strictly increasing on (Ty, 00) with

O(T) = —+o0(1) as T — 0. (2.1.25)
Moreover, ®(T) is strictly convex on (Ty, +00), and there exists T, € (0,Ty) such that
O(T) is strictly concave on (0,T}).

We see from (2.1.25) that the lower bound (2.1.13) is saturated asymptotically as
T — oo. A simple but interesting corollary of the characterization result obtained

in Theorem 2.1.1 is the following comparison theorem, which is complementary to

(2.1.15), the main result in [MVO05].
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Corollary 2.1.3 (Half-spaces have the best Sobolev inequalities). If Q is a non-empty

open set with Lipschitz boundary on R™, then

Oo(T) < ®(T) VT >0.

We now comment on the meaning of these theorems in the geometrically relevant

cases p =2 and p = 1.

2.1.4 The special case p =2

In this case, which implicitly requires n > 3, (2.1.3) can be reformulated as a family

of minimization problems on conformally flat metrics on H,

\P(P):inf{/H Rudvolu+2(n—1)/a hudau:volu(H):l,Pu(H):P},

H

(2.1.26)
for P > 0, which is related to the Yamabe problem on manifolds with boundary stud-
ied in the classical papers [Esc88, Esc92a, Esc92b|. Here, we view H as a conformally
flat Riemannian manifold with boundary, endowed with the metric ©* (2§, where

0 is the standard Euclidean metric. The volume and perimeter of a set 2 C H with

respect to this metric are computed as

vol ,(2) = / u* du, P,(Q2) = / u A (2.1.27)
Q o0

while R,(z) and h,(z) stand, respectively, for the scalar curvature of (H,u* =2 §)
at # € H, and the mean curvature of 0H in (H,u* ™2 §) at € 0H computed with
respect to the outer unit normal vy to H. Explicitly,

4n—1)  Au po_ 2 1w
n—92 ypmt2)/n-2)° YT =2 un/(2) gy

R, — — (2.1.28)
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An integration by parts thus gives

/|Vu|2 = —/ uAu—/ u%
H H or 011

n—2 / n—2/
= — R, dvol , + h, do, .
4n—1) Jy 2 oH

In this way, we see the equivalence of the problems (2.1.3) when p = 2 and (2.1.26)

through the identities

4(n—1)
n—2

<I>(2)(T) _ ( n—2 ))I/QQ(T”)W W(P) = CD(Z)(Pl/Qn)?,

4(n—1
A standard argument shows that if u is a positive minimizer for ®(7) (with a generic

p € (1,n)), then there exist A\, o € R such that

{—Apu = P! in H

—|VulP~20,,u = cu”~!  on OH .

This basic fact, applied with p = 2, implies that every minimizer in the variational
problem (2.1.26) is a conformally flat metric on H with constant scalar curvature
and with boundary of constant mean curvature. By [CL94, Theorem 3.1], or with an
alternative proof, by Theorem 2.1.1 with p = 2, every minimizer actually has constant
sectional curvature. Indeed, as a by-product of the characterization of minimizers of
{®(T")}r>0, we deduce that, as P increases from 0 to Py = Tg, minimizing metrics in
(2.1.26) correspond to spherical caps of decreasing radii rescaled to unit volume. Their
sectional curvature will be constant and positive along the way, while the constant
mean curvature of the boundaries will initially be negative and then change sign in

correspondence to hemispheres (P = Py = T2"). Then, as P increases from Py to +0c0,

minimizing metrics in (2.1.26) correspond to suitable sections of the hyperbolic space,
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all with constant negative sectional curvature and constant positive mean curvature
of the boundary. Thus, we have a transition from spherical to hyperbolic geometry
along minimizing metrics in (2.1.26). These results are summarized in the following
statement:

Theorem 2.1.4 (Theorem 3.1 in [CL94| or Theorem 2.1.1 with p = 2). For each
P >0, a minimizing conformal metric gp exists in (2.1.26) and is given, uniquely up

to dilations and translations orthogonal to ey, by

U;l7/t(n—2) J for some t € R if P e (0,Fy),
Ué{t(n_m ) for anyt <0 if P= Py,
Ugft(”‘?) J for some t < —1 if P e (Pg,00).

For P € (0,Fy), (H,gp) is isometric to a spherical cap (X, go) with the standard
metric induced by the embedding S™ — R™™! whose radius is determined by P; con-
sequently, it has constant positive sectional curvature. The mean curvature of OH
1s constant and negative for 0 < P < Py = TO2jj and is constant and positive for

Py< P < PQ.

For P = Py, (H,gp) has zero sectional curvature and constant positive mean curva-

ture of OH .

For P € (Py,0), (H,gp) has constant negative sectional curvature and is therefore

a model for hyperbolic space. The mean curvature of OH is constant and positive.
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2.1.5 The special case p=1

In this case, the minimization in (2.1.3) takes place in the class of those u € L (H),

vanishing at infinity, and whose distributional gradient Du is a measure on H with

finite total variation, |Du|(H) < co. We thus consider the problems
O(T) = inf {|Duy(H) Nl prron g = 1, Jull oo = T} T>0. (2.1.29)

In the restricted class of characteristic functions u = 1x for X C H, this is the relative
isoperimetric problem in H with an additional constraint (aside from the unit volume
constraint) on the contact region between the boundary of X and the boundary of
H. In the notation of distributional perimeters, this restricted problem takes the

form
Boio(T) = inf{P(X;H) X C H,|X|=1,P(X;0H) = T} T>0, (2.1.30)

where P(X;A) = H" '(ANJX) whenever X is an open set with Lipschitz bound-
ary. The unique minimizers in (2.1.30) are obtained by intersecting H with balls (of
suitable radius and centered at suitable distance from 0H); see, e.g., [Magl2, The-
orem 19.15], which also describes the relevance of (2.1.30) in capillarity theory. In
the original problem (2.1.29), one obtains scaled versions of the characteristic func-
tions of these sets as minimizers; precisely, v is a minimizer in (2.1.29) if and only if
u(x) = A" 1 1x(Az) for some A > 0 and X a minimizer in (2.1.30). When T = 0,
(2.1.30) is simply the Euclidean isoperimetric problem, and (2.1.29) is the Sobolev in-
equality on functions of bounded variation. Notice that the Sobolev trace inequality,

in the case p = 1, takes the simple form

|Du|(H) = ||ullzr@m) (2.1.31)
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or, in more geometric terms, that is, for u = 1x with X C H,
P(X;H)> P(X;0H).

Along the lines of (2.1.13), this follows by simply applying the divergence theorem

on X to the constant vector field T'(z) = e; to get

O:/div(el):/ UX-81+/ (—e1) ey < P(X;H)— P(X;0H)
X HNoX OHMOX

where the inequality is strict as soon as |X| > 0. The proof of (2.1.31) is analogous,
and in particular, there is no nontrivial equality case in (2.1.31). In the case p = 1,
Theorems 2.1.1 and Theorem 2.1.2 take the following form.

Theorem 2.1.5. For every n > 2 and T > 0 there exists a minimizer in (2.1.29),
which 1s given, uniquely up to dilations and translations orthogonal to ey, by

131(:6—7561)

— re H
115, (- — te)|l o

U5'7t (I)

for some t € (—=1,1). The function ®(T) defined by (2.1.29) is a smooth function of

T > 0 given by the parametric curve
O(Ts(t)) = Gs(t) -1l<t< -1,

where Ts(t) = ||Us¢|lpromy and Gs(t) = |DUsy|(H). If we set Ty = Ts(0), then
O(T) is strictly decreasing on (0,Ty) and strictly increasing on (Ty, 00), with ®(0) =
ISO (B;) and ®(Ty) = 27Y/"1SO (B;). Moreover, ® is strictly convex on (Ty, o0), there
exists T, € (0,Ty) such that (T') is strictly concave on (0,T%), and ®(T) =T + o(1)

as T — 0.

32



We note that in the case p = 1, we have a single minimizing family, corresponding to
the Sobolev family of the case p € (1,n), but no Escobar or beyond-Escobar families.

This is a reflection of the fact that

lim Tyh(n,p) = oo,

p—1t

proven in Proposition 2.3.4 below. This fact indicates that no analogues of the Escobar
or beyond-Escobar families exist for p = 1. In the same vein, one notices that the &
curve asymptotically has the same slope (equal to 1) as the (limit position as p — 17

of the) Sobolev trace line.

2.1.6 Organization of the chapter

In Section 2.2, we use a mass transportation argument to prove a family of inequalities
which will serve as a key tool for proving the main results. In Section 2.3, we prove
Theorems 2.1.1, 2.1.2, and 2.1.5. Finally, in Appendix A, we address some technical

points related to the mass transportation argument.

2.2 Mass transportation argument

The starting point of our analysis is the mass transportation proof of the Sobolev
inequality from [CENVO04|. This argument, whose origin can be traced back to
[Kno57, MS86|, was exploited in [MVO05| to prove a parameterized “mother family”
of trace Sobolev inequalities on arbitrary Lipschitz domains, leading to the sharp
comparison theorem stated in (2.1.15). In [Naz06], this method of proof is adapted

to obtain the sharp Sobolev trace inequality for every p € (1,n). It is important
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to mention that, as already shown in [CENV04] (see also [AGK04, MVO08, Ngul5|),
this optimal transportation argument can also be applied to a very interesting special
family of Gagliardo—Nirenberg inequalities, having some Faber-Krahn and log-Sobolev

inequalities as limit cases.

At the core of this paper is a new iteration of this by-now-classical mass transporta-
tion argument. This iteration lies in between the ones of [MV05| and [Naz06]. In
Theorem 2.2.1 we implement the same trick introduced in [Naz06], namely subtract-
ing a unit vector from the Brenier map, but with the seemingly harmless addition of
an intensity parameter t. (To be precise, the argument in [Naz06| corresponds to the
choice t = —1 in the proof of Theorem 2.2.1.) This simple expedient leads to a new
parameterized “mother family” of Sobolev trace-type inequalities on the half-space,
whose equality cases (see Theorem 2.2.3 below) are given by the functions Ugy, Ug
and Up, introduced in (2.1.17), (2.1.19) and (2.1.21). This means that each inequality
in the mother family provides a sharp trace-Sobolev bound, which thus agrees with
®(T') for a specific value of T depending on t. By adopting the same point of view
of [MVO05], where the ®-function of the ball was computed for a special range of T,
in Section 2.3 we exploit this implicit description of ®(7T") in order to prove Theorem

2.1.1.

Let us now recall some facts from the theory of optimal transportation. Given a (Borel
regular) probability measure p on R™ and a Borel measurable map 7' : R” — R, the

push-forward of p through T is the probability measure defined by

T#u(A) = w(T'(4)  VACR
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As a consequence of this definition, for every Borel measurable function £ : R" —
0, 0o] we have

EdT#pu= | €oTdu. (2.2.1)

R7 R™

If F'dx and G dx are absolutely continuous probability measures on R™, then the
Brenier-McCann theorem (see |[Bre91l, McC97| or [Vil03, Cor. 2.30]) ensures the
existence of a lower semicontinuous convex function ¢ : R* — R U {400} such
that

(Vo)#F dx = Gdx. (2.2.2)

By convexity, ¢ is differentiable a.e. on the open convex set {2 defined as the interior

of {¢ < oo}, its gradient satisfies
Vi € (BV N LY (R,

and F' dx is concentrated on 2 with

spt(G dx) = V(spt(F dx)), (2.2.3)

thanks to (2.2.2). The map T' = V is called the Brenier map between F dx and G dx,
and, as shown in [McC97] (cf. [Vil03, Theorem 4.8]), it satisfies the Monge-Ampere
equation

F(z) = G(V(z)) detVp(r) a.e. on spt(F dz). (2.2.4)

Notice that the distributional gradient DT of T" is an n X n-symmetric tensor valued
Radon measure on 2. In (2.2.4) we have set V?p = VT where DT = VT dz + D*T

is the decomposition of DT with respect to the Lebesgue measure on 2. Notice that
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VT dx < DT on €, and thus, setting divT = tr(VT) and denoting by DivT the

distributional divergence of T', we have
div Tdx <DivT as measures on §2.

Since VT (zx) is positive semidefinite, by the arithmetic-geometric mean inequal-

ity,
detV2p(2))Y" = (det VT '(z U”Sdlv—w for a.e. € Q,
¥
n
we finally conclude that
DivT
(detV2p)/m dx < al as measures on ). (2.2.5)
n

Theorem 2.2.1. If n > 2, p € [1,n), and f and g are non-negative functions in
L (H), vanishing at infinity, with
[ IV fIP < o0 and [, |z[F'g” < oo ifp>1

|IDf|(H) < 0o and sptg CC H ifp=1 (2.2.6)
”fHLP*(H) = ”g”LP*(H) =1
then for every t € R, we have

w [ ¢ de <HIV Y )+ [ ane (2.2.7)
H o]

H

where we let

/

N / 1/p
p — p 3
Y(t,g) = (ng [z —te dx) ip>1, (2.2.8)
sup{|z —tei| : z €spt(g)} ifp=1,
and where ||V fl| Loy s replaced by |Df|(H) when p = 1.
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Remark 2.2.2. Let us first recall that the assumption that f is vanishing at infinity
means that [{f > t}| < oo for every ¢ > 0. Next we notice that, by (2.1.2), (2.2.6)
implies f € Lp”(aH ), so that the multiplication by a possibly negative ¢ on the
right-hand side of (2.2.7) is of no concern. Finally, we notice that (2.2.7) implies
that g € L (H), but this fact can be more directly deduced by means of Holder’s

inequality from the assumptions on g stated in (2.2.6).

Proof. Arguing by approximation, it suffices to prove (2.2.7) when f € C}(H) (that
is, f admits an extension in C}(R")). Let us set F = 15 f?" and G = 1y ¢*" and
consider the Brenier map V¢ between the probability measures F'dr and G'dz. In
this way, T' = V¢ € (BV N L®)0.(;R™) with  defined as above and Fdx is
concentrated on 2. By (2.2.2), (2.2.1) (applied with & = 1{g=0y G=Y/"), (2.2.4) and

(2.2.5) respectively, we have

/ gpu _ / Gl—l/n _ G(V@)_l/nF
H n Rn

(2.2.9)
— / (deth@)l/nFl_l/n S

1 / FUYnd(divT).

n

We subtract the divergence-free vector field te; from T,
/ FUng(DivT) = / f¥ d(Div S) S=T-—te,
n H

where S € (BV N L>),,.(£2;R™). By the trace theorem for BV functions (see e.g.
[EG92, Theorem 1, p.177]), S has a trace S € L (2N OH) such that

/zﬁd(DivS)z—/ Vo-S— | w(S-e), Wel QnH).
H H OH
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We now use the assumption that f € C}(H), along with the fact that F dx is con-

centrated on €2, to apply this identity with ¢ = fpu. In this way, we find

/f”ud(divS):—pﬁ/fpﬁ_IVf~Sda:—/ S ey dH !
H H oOH

Since T'(spt(F dz)) = spt(Gdx) C H, by standard properties of the trace operator

we have S(z) - (—e;) <t for H" '-a.e. on x € spt(f) NOH. So, in summary,

n/ ¢ < —pﬁ/ fp“—IVf-(T—tel)th/ fEAH (2.2.10)
H H OH

Finally, we bound the first term on the right hand side of (2.2.10). In the case that

p € (1,n), by using Holder’s inequality and the transport condition (2.2.1) we find

x / /v
_pti/ PV (T —tey) gptiHVfHLp(H)(/ [P T (@)~ tey] do)
H H
i p* P’ 2
=p HVfHLP(H)< ¢ |z —tei d:z:) L (2.2.11)
H
Combining this with (2.2.10) implies (2.2.7). In the case p = 1, in place of Holder’s

inequality, we simply use (2.2.3) and the fact that p* = 1 to bound the left-hand side
of (2.2.11) by Y(t,9) |Df|(H). O

In order to analyze the mother family of inequalities of Theorem 2.2.1 we will need
a characterization of the corresponding equality cases, which involves the functions
Usy, Ugt and Up, previously introduced in (2.1.17), (2.1.19) and (2.1.21). Following
[CENV04], given two non-negative measurable functions f and g, we call f a dilation-
translation image of g if there exist C' > 0,\ # 0, and xy € R™ such that f(z) =
Cg(A(z — xp)). Since (2.2.7) is not invariant with respect to translations in the e,

direction, we distinguish that f is a dilation-translation image of g orthogonal to e; if
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f is a dilation-translation image of g with zy-e; = 0. If fH P de = fH ¢ dx and f is
a dilation-translation image of ¢ orthogonal to e;, then C' must be equal to A»=P)/7,
and the Brenier map pushing forward f?" dz onto ¢gF" dx satisfies Vo = A\(Id — )
with zg-e; = 0. With this terminology at hand, we state the required characterization
theorem:

Theorem 2.2.3. Under the same assumptions of Theorem 2.2.1, suppose that

n/ ¢ de = |V fllanY (tg) +t [ f7dH™ !, />0, (2212
H oOH oOH

where | D f|(H) replaces ||V f|| Loy when p = 1.

If p € (1,n), then (2.2.12) holds for t > 0 if and only if f and g are both dilation-
translation images orthogonal to e; of Ugy; and for t < 0 if and only if f and g are

both dilation-translation itmages orthogonal to ey of either Usy, Ugy, or Upy.

If p=1, then (2.2.12) can hold only fort € (—1,1). For such t, (2.2.12) holds if and

only if f and g are dilation-translation images orthogonal to e; of Ug.

It is easily verified that the aforementioned functions are equality cases of (2.2.12).
The uniqueness Theorem 2.2.3 is a technical variant of a similar argument from

[CENV04|, we postpone its discussion to Appendix A.

2.3 Study of the variational problem ®(7)

By Theorem 2.2.3, if equality is achieved in the mother inequality (2.2.7) by a triple
(t, f.g) with [, f7* > 0, then we have

f:g:US,t or f:g:UQ’t or f:g:UB,t
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(with the second and third possibilities only when ¢ < 0 or ¢ < —1 respectively).
The same scaling argument used in (2.1.20) shows that Y'(¢t,Ug:) = |t| Yo, where we
let Yo = Y(—1,Uq 1) and Y (¢, g) be as defined in (2.2.8). Therefore, recalling the

notation of (2.1.20), equality in (2.2.7) for the Escobar family implies that
n/H UL, de = —tpfGoYo +tTh Vit <0. (2.3.1)
Similarly, let us define the functions
Ys(t) =Y (t,Usy) and Ye(t) =Y (t,Ugy).

Then, recalling the definitions in (2.1.18) and (2.1.22), equality in (2.2.7) for the

Sobolev and beyond-Escobar families implies the identities

n / U, dx = pGis(t)Ys(t) + t Ts(t)” ViER,
(2.3.2)
/Ugtd;@_ PGpt)Yp(t) +tTa(t)”  Vt< —1.

From (2.3.1) and (2.3.2), Theorems 2.2.1 and 2.2.3 yield the following corollary.
Corollary 2.3.1. If h € L{ (H) is a non-negative function vanishing at infinity with

Vh e LP(H;R") and ||h|| o+ gy = 1, then,

PYs(OGs(t) + tTs(t)" < pYsOVhllim + IR, WEER, (233)

PYp()Gat) + t To(t)” < pYp(t)[Vhlwan + B2, V<1, (234)
#

PFYaGa — T < Yol Vhllgn — 1%, ., (2.3.5)

Furthermore, equality in (2.3.3) (resp. (2.3.4), (2.3.5)) is attained if and only if h is

a dilation-translation image orthogonal to ey of Usy (resp. Upy, Ugy). Particularly,

Il oy = Ts(t) = Gis(t) < VAo
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bll e oy = To() = G(t) < VRl
1bll o = T = Ga < VAl
and the following identities hold
O(Ts(t) = Gs(t) VEER,

B(Ty) = Gq.

Next, we prove some properties of the Sobolev and beyond-Escobar families.

Proposition 2.3.2. The following properties hold:
(1) Ts is strictly decreasing on R with range (0,Ty), and Ts(0) =Ty < Tp;

(ii) Gs is strictly increasing on [0,00) with range [27Y/"S,G), and is strictly de-

creasing on (—o0,0) with range (27Y"S,Gg);
(111) Tg(t) is strictly increasing for t < —1 with range (Tg, 00);

(iv) Gg(t) is strictly increasing for t < —1 with range (Gg, 00).

Proof. Step 1: Monotonicity of Ts(t) and Tg(t). Fix t1,t2 € R and suppose Ts(t1) =
Ts(ta) = T. Then, (2.3.3) implies that

PYs(t)Gs(t) + 1T < pYs(t)Gs(t) + TP, thus Gs(t) < Gs(ts), and

PYs(ta)Gs(ts) + TP < pYs(ta)Gs(th) + TP, thus Gg(ts) < Gs(ty).

That is, Gg(t1) = Gs(t2) = G. Hence, Ug,, attains equality in (2.3.3) with ¢ = ¢;.

Uniqueness in (2.3.3) then implies that ¢; = t5. We conclude that Ts(t) is injective,
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and, as Tg(t) is continuous, it is strictly monotone for t € R. The identical argument

using (2.3.4) shows that T is strictly monotone for all t < —1.

Step 2: Piecewise monotonicity of Gs(t) and Gp(t). Fix t1,t; > 0 and suppose that
Gs(t1) = Gg(ta) = G. Then, (2.3.3) implies that

PYs(t)G + 1 Ts(t)P < pYs(t))G + 6 Ts(to)”, thus Ts(t) < Ts(t,), and
PYs(ta)G + taTs(t)” < p Vs (ts)G + taTs(t1)", thus Ts(ts) < Ts(t).
Since Ts(t) is injective, we conclude that t; = t5. Thus, Gg(t) is strictly monotone

for ¢ > 0. The analogous argument shows that Gg(t) is strictly monotone for ¢ < 0

and that Gp(t) is strictly monotone for ¢t < —1.

Step 3: Limit values of Ts(t) and Gg(t). As Ug, is a renormalized translation of
the optimal function Ug in (2.1.1), centered at tey, it is clear that Ts(t) — 0 and

Gs(t) = S as t — oco. To compute the limit as t — —o0, let us set
e(z) = (L fo —ted) = [t (jt] 7 + [y + e )

for t <0 and y = —z/t. With this notation,

# ’
(faH S/ d%nfl)l/p (n—p) ( fH T le —te dm)l/p
(fH " dx)l/p (p— 1)(fH o dx)l/p

Now, suppose t < 0 and let 0 = —(n—p)/(p—1). After factoring out —t and changing

Ts(t) = , Gs(t) = (2.3.7)

variables, we find that

[t = e (e gy ey g
OH OH
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/’M = !t\”'”*”/ (It + |y + e )" dy,
H H
/ Wz —te | dr = |t|""”+”'+”/ (L7 + |y +e) "y +ea dy.
H H
Since

—p'n—1)+n—-1) —pnt+n

7 — - 0 =0,
p p p p*
we find that, setting
B(y) = (t7 +ly+eu) yeH,
we have
1\ VP / 1/p
o () (=) (Jy il + el dy)
S(t> - 1/p* GS(t) - n 1/p*
(wa) (=D ([ )
By monotone convergence, we thus find that
1UQ(- + 1)l 0z VUq(- »
lim Ts(t) = - M) _ o i () = 10Tl _

t=—o00 1UQ(- + €)ll o (i) t=—o00 1UQ(- + ex) | o (i)

as claimed. Having shown that T is smooth and injective on R with Ts(4-00) = 0 and

Ts(—o0) =Ty > 0, we deduce that Ty is strictly decreasing on R with range (0, 7).

Since Ty = Ts(0) < Ts(—o0) = T, we have completed the proof of statement (i).

Similarly, the first part of (ii) follows since Gs(0) = 271/"S < S = G5(+00) and Gy is

smooth and injective on [0, 00). Similarly, the injectivity of Gs on (—o0,0) together

with the fact that by (2.1.10) (recall (2.1.12)) G5(0) = 27/" S < Q = Gg = G5(—x)

implies that Gg is strictly decreasing on (—oo, 0) with range (27'/"5, Q). This proves

statement (ii).
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Step 4: Limit values of Tg(t) and Gg(t). With an argument identical to that given
for Ts and Gg, we establish that Ts(t) — Ty and Gp(t) — Gg as t - —oo. To
compute the limit as ¢ — —17, we first notice that, for every ¢ < —1 and setting

e=|t| -1,

den—l
| vsle—tey’ = | —
oH Byy| 4 (ter)NOH (|Jz —telt" — 1)

Since Bjyi.(te1) N 0H is a (n — 1)-dimensional disk of radius /(|t| +¢)? — 2 =
V2e [t] + €2 > c+/e, and since |z —te [P — 1 < (|t| +¢)” — 1 < Ce for constants ¢

and C depending on n and p only, we find that

_ pt C B Cc
/8H UB(.T tel) Z 5(71—1)/2 = |t T 1|(n—1)/2 . (238)

At the same time, we have

/UB(x—te1)p*:/(|$—te1!p/—1)"dx:/ (" —1) " HH(HNOB,(—ter)) dr
H H —

t
where, thanks to the coarea formula,
1
H" ' (HNOB,(—ter)) = c(n) r”l/ (1— s =325
—t/r
Since 1 < (14 5)"=3/2 < C(n) for s € (—t/r,1) and
1
rt / (1—28)"324s = C(n)r"t (1 4t/r)" /2 = ¢ r=D/2 (p 4 1) (0=1)/2
—t/r

we conclude that

H 1 (HNOB,(—tey))
c(n) < TV (g ) < C(n), Vr e (—t,00). (2.3.9)
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Hence, by p > 1, and provided ¢ is close enough to —1

, 00 p(n-1)/2 (1 p)(n-1)/2
/(|x—tel|p —1)™"dr < C’/ L (r+1) dr
H

(r? = 1)
+ C/ e TH) T
—1)n

IN

o0} nl
0/2 dr—i—C’/tT_ln_nl)/2

< C(L+[t+ 17002 <Ot 4177072
(We also notice that, by (2.3.9), one also has an analogous estimate from below, that
is
/ (|Jz —te [P —1)™dx > ¢t + 1|71/ for |t 4+ 1| small enough  (2.3.10)
H
as well as

/ (| —teP —1)" Ve < C |t +1|~/2 for |t + 1] small enough. (2.3.11)
H

Both estimates will be used in the last step of the proof of Theorem 2.1.2.) By

combining this last estimate with (2.3.8) we find that

)1/17“1/1)*

Th(t) > ¢ <|t +1]~(D/2 = clt+ 1|7V (2.3.12)

for every t close enough to —1, where ¢ = ¢(n,p) > 0. This proves that Ts(t) — 400

as t — —1. Analogously, again with ¢ = |t + 1],

/ \VUg(x —ter)]P > ¢ / (Jo —teg] — 1) |z —telF da
H HﬂBMJrE(tel)

—tte (7‘2 _ t2)(n71)/2r P’
d
/ o~
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so that, setting r = |t| 4+ s |t + 1|, noticing that r> — > > cs|t + 1] and 1 < 77" <

1+ C|t+ 1], we get

Ls=D72t 4 1] d
S S &
VUg(x —te))]P > |t 1<”—1>/2/ > .
L‘ B(x el)’ = ‘ + ‘ 0 |t+1|n = ‘t_i_l‘(nfl)/Q
Hence,
(1/p)~(1/p*)
Gu(t) > ¢ (yt n 1y*<"*1>/2> = c|t+ 1|V (2.3.13)
and

p——1t

(We also notice, again for future use in the proof of Theorem 2.1.2, that together with

(2.3.13) we also have
Gp(t) < C(n) |t + 1|~/ (2.3.14)

provided t is close enough to —1.) Statements (iii) and (iv) follow immediately. [
Proof of Theorem 2.1.1. Immediate from Theorem 2.2.3 and Proposition 2.3.2. [

We now turn to the quantitative study of ®(7T"). Let us recall that, by a classical
variational argument, if v is a minimizer in ®(7"), then there exists constants A and
o such that

{—Apu = A\U!p*_Qu in H (2315>

—|VulP20,u = ofu/"2u  on OH .
Observe that the existence of constants A and o satisfying (2.3.15) follows by direct
computation using our characterization of minimizers. Moreover, we know that non-

negative minimizers are positive, so that there is no need for the absolute values in

(2.3.15).
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Lemma 2.3.3. Letn > 2 and 1 < p < n. Fix T € (0,00) and let X and o be
the Lagrange multipliers appearing in (2.3.15) corresponding to a minimizer u in the
variational problem ®(T'). Then, the following identities hold:

_ pﬁTpﬁ_l

(TP =A+0T",  &(T) ST

o (2.3.16)

Proof. The first identity follows from an integration by parts and (2.3.15), so we
focus on the second. Since T" > 0 implies faH w > 0, there must be a function

p € C*(0H) such that
/ o dH T =1, (2.3.17)
O0H

Similarly, there exists £ € C2°(H) such that

/ u e =1.
H

Let v be any function 1 € C%°(H) with 1) = p on OH, and extend ¢ to H by setting

p=v= ([ wv)e.
Then ¢ € C>°(H) and
/ u” Tl =0. (2.3.18)
H

Now define a function f : R?* — [0, 00) by setting

f(5,5)2—1+/ |lu + e + 0P (¢,0) € R?.
H
Since u > 0 on H, there exists a neighborhood U of (g,d) = (0, 0) such that u +ep +

5¢ > 0 on H for every (g,0) € U. Correspondingly, by (2.3.18)

fectwy 0.0 ooy /H =1,
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and thus there exists g9 > 0 and ¢ : (—eg,60) — R such that(e, g(¢)) € U and

f(e,g(e)) =0 for every |e| < €o. In particular,

*

vmutep e MO0 [ =1 Vel <a,
H

By (2.3.17),
d 4
- / ”T dH" ™ = / Wlo=1, (2.3.19)
€le=0 Jou P OH
so that the function 7(¢) = ||ve]| (o) Satisfies 7(0) = T and is strictly increasing on

(—€0,€0), up to possibly decreasing the value of gy. If we set I'(e) = [}, [Vv.|P, then,
by construction, ®(7(g))? < I'(e) for every |e| < eg, with equality at € = 0, and thus

d

de

B(r(e)y = 1

(). (2.3.20)

e=0 e=0

We compute that

1d
pde

[(e) :/ |VulP2Vu - Vo dr = —/ Apugp—/ |VulP~20,,up dH" .
e=0 H H 0H
(2.3.21)
From (2.3.15), —A,up = Mu?"~!, and so the first term on the right-hand side of
(2.3.21) is equal to zero. Then, from (2.3.15) and (2.3.19), the right-hand side of
(2.3.21) is equal to o, and thus that of (2.3.20) to po. Since, again by (2.3.17),

v
/ JR—
T (0) - pﬁ ’

we conclude from (2.3.19) that

T

(TP~ (T) =0,
P

thus completing the proof of the lemma. n
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We now prove Theorem 2.1.2, Corollary 2.1.3 and Theorem 2.1.5.

Proof of Theorem 2.1.2. Step 1: Differentiability and monotonicity. By Proposition
2.3.2, we know that ®(T5(t)) = Gp(t) for every t € (—oo, —1), where T is smooth
and strictly increasing on (—oo, —1) with range (T, 00) and Gp(t) is smooth and
strictly increasing on (—oo, —1) with range (Gg, 00). Thus, ® is smooth on (7, 00)
with ®'(T') = G',(t)/Tx(t) > 0 for T = Tg(t). This shows that & is smooth and

strictly increasing on (Tg, 00). One can compute that

lim ®(7T) = lim Cplt) _ Ga

s =0 Th(t) ~ To

=Q.

Similarly, ®(Ts(t)) = Gs(t) for every t € R where T is strictly decreasing on R with
range (0,7y), and Ts(0) = Ty < T, and where Gy is strictly increasing on [0, 00)
with range [27/5,S), and is strictly decreasing on (—oo,0) with range (27'/"5, Q).
So, ® is smooth on (0,7y), and ®'(T') = G(t)/T4(t) > 0 for T = Ts(t). Hence, @ is

strictly decreasing on (0,7}) and strictly increasing on (7y, Ty), and one computes

/
lim ®(T) = lim G, s(t) _ Go
T, = Tg(t)  To

-Q.

Therefore, ® is differentiable at 7' = Ty, and thus on (0, co).

Step 2: Concavity of ®. Next, we use Lemma 2.3.3 to show that ® is concave for T

sufficiently small. By (2.3.16), we find that for every t € R,

d _ D Dl

—d(Ts(t)) = Gs( = -o(Us()), (2.3.22)

dr
where o(Us(t)) denotes the boundary Lagrange multiplier of Ug(t). By combining

(2.1.17) and (2.3.15), we see that

o(Us(t)) = —c(n, p) t s o,
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for a positive constant ¢(n,p). Thus,

pi—1

d ” SHLpﬁ ({z1=t})
L (13(1)) = —(n.p)1

Y

||VUS ||Lp({x1>t})

so, differentiating in ¢ (recall that ® is smooth (0,7)), we find that

& (T T4(t) = —c(n, ) (t E ) .

Since T{(t) < 0 for every t € R, we conclude that ®(7") is going to be concave on any

interval J = {Ts(t) : t € J'} corresponding to an interval J’ C R such that

|Us|l”; o ({1
9 Jog (t L {w =) ) <0, VtelJ. (2.3.23)
dt HVUS‘ Lr( {I1>t})

For the sake of brevity, set

h(t):/ Ug”:/ (1+ [z — ter Py~ gpnt.
{z1=t} OH

We are thus looking for an interval J’ such that

L P =10 p—1 8 Sy VUsP

-+ <0 vte J.
13 p* h(t) p f{x1>t} ‘VUS‘p

Since |, (2154} |VUgl? is trivially increasing in ¢, it suffices to find an interval J’ such

that
1 np-1) K¢

t  p(n—1) h(t)
If t > 0, then factoring and changing variables, we find that

<0 vte J .

h(t) = t~(n=D/ (= 1)/ (t77 + |z — ey [P) "V gL
OH
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Therefore, we compute

W) n=1 P 1) [ (7 4 e e) K

ey =t o (5 e eap) T A

where trivially ¢ + |z 4 e, [P > 1 for x € OH, and thus

./ @1“+Lr+eﬂﬂ)”dH”1<i/ (7 4 |2 + er[) "D gyt
OH

o0H

We have thus proved that for every ¢t > 0,

h(t) p—1 v
so that
1 np-1)HKEt 1 1n p
— PO i
t+pm—1>uw-t+tp< )

This last quantity is negative for ¢ > (p*)'/?. Thus, (3.4.6) holds with the choice
J' = (—o0, (p*)"/*") and correspondingly ®(T) is strictly concave on (0, 7T}) provided
we set

T, = Ts((p")"").

Step 3: Convexity of . By (2.3.4) we have that, for every t < —1,

o(T) > GB(t)+tM

VT >0, 2.3.24
= VAT (23.24)

with equality if and only if T = Tg(t). If we denote by W(T') the right-hand side of
(2.3.24), this shows that

O(T) =sup W,(T) VT € {Tp(t) :t < -1} = (Tg, ).

t<—1
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Since each W;(7T) is convex as a function of 7' (recall that ¢ is negative), this proves
that ®(7') is convex on (T, 00). We can perform the same argument based on (2.3.3),
as soon as the parameter ¢t € R describing the Sobolev family is negative. This proves

the convexity of ®(7") over the interval
{Ts(t) : t <0} = (Tp, Tp) -

Since ®(T') is convex on (1y, 1) and on (T, 00), with &(T") > QT for every T > 0
and ®(Ty) = Q Ty, we conclude that ®(T") is convex on (1, 00).

Step 4: Asymptotic growth of ®. First, we claim that

il
im 220

T—o0 T'pﬁ

Having in mind (2.1.13), and taking into account that Tg(t) — +o0 as t — —1, it

suffices to show that
P*Gp(t)
im =
t——1 TB(t)p”

To prove this, we notice that the identity
n / UE, = Gu(t) Ya(t) + t To() Wt < -1, (2.3.25)
H
allows us to write

Gp(t) t n [y Ugtt
v Ts(t)* — Ya() + Y5(t) Tg(t)P*

It will thus be enough to prove

lim Yp(t) =1  lim [ Uh,=0. (2.3.26)
H

t——1 t——1
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To this end, we first notice that by (2.3.10) and (2.3.11)

/ [yl —tey" —1)=(n=1 It + 1|~ (3)/2
Yp(t) —1=" Cn) ———F—75 =Cn) |t +1],
o fH(’x —te P —=1)™ (n) |t 4 1|-(n—1)/2 (n) [t +1]
while
/ Ugit ) e 1|/ ) (= =) |t’ + 1||_(n—1)2/2n = C(n) [t + 1|0 +D/2n
" ([y(lz —te” —1)—7)

so that (2.3.26) is proven. Now, to prove that

v
lim &(7) — — =0,
T—00 pﬂ

we simply notice that, again by (2.3.25),

Y5(t n
pGa(t) ~To(0 = G0 (1+20) = 2 [ 0.
H
Since [t + Yg(t)| < [t + 1| + |1 — Y5(t)| < C(n) |t + 1|, thanks to (2.3.14) we have

Y5(t)
t

GB(t)’1 + ‘ < C(n) [t + 110020 = O(n) [t 4 1|HD/20 5 0.

This completes the proof of Theorem 2.1.2. O

Proof of Corollary 2.1.5. Since ) is a set of locally finite perimeter in R" [Magl2,

Example 12.6], there exists zo € 02 such that, up to a rotation,

Q. — H in L]

loc

(R"),
) (2.3.27)
H 00, 2 HY L OH as Radon measures on R".

where we have set €, = (Q—x)/r, r > 0. Precisely, every ¢ in the reduced boundary

of Q satisfies (2.3.27) up to a rotation, see e.g. [Magl2, Theorem 15.5].
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We now define a function wr depending on 7' as follows. If T € (0,7), setting
t="T5'(T), we let
wr(x) = Ugy(x) Ve e R";

if T'="Tg, we set t = —1 and let
wr(x) = Ugy(x) Ve € R"\ {e1};

finally, if T > Tp, then, setting t = T (T) < —1, we let

wr(z) = Upy(x) Vr e R"\ Bi(tey).

Notice that in each case, there exists a compact set K¢ with K N H = () such that
wy € LP"(R"\ U) and Vwy € LP(R™\ U) for every open neighborhood U of Kr. In
particular, for &€ > 0 small enough depending on 7', we have {z; > —¢} N Ky = 0.
We pick ¢ € C*°(R") such that ( =1 on {z; > —¢} and ( = 0 on K7, and define

vpr = Cwr on the whole R™. Then

v € L7 (R™) Vour € LP(R™) vp =wr on H. (2.3.28)

Next, we fix R > 0 and consider g € C°(Bag; [0, 1]) with g = 1 on Bg. Finally,

for each r > 0, we define

u,(z) = ri"/p (vaT)(x _74%) xr €.

By (2.3.27), (2.3.28) and ¢¥gr € C°(Bag; [0, 1]) we can exploit dominated convergence
to find that

[ = [ towneny = [ rory” = [ @aury
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[ [ werenr.

as r — 0. Similarly, since (Y vp)? € CO(R™), by (2.3.27) we have

/ A = / (ror)” d(H'L00,) = | (rop)” dH T = / (p wr ) dH*
0N n

oH oOH

as r — 0T. Since

/ wg* =1, / w%ﬂ = Tpﬁ, / |Vwr|P = ®(T),
H OH H

for every § > 0 there exists r small enough and R large enough such that

]/@*-1“)/ Vu, [P — ®(T) +‘/ W TP <5
0 0 20
In particular, we can find {& },~o C C°(€2) such that
[y + &l 0 [ 01
Lt 09) HOD  _p s,
lur + &l e + &l @)

and [|& ]| o (o) — 0 and ||V, ||zr) — 0 as 7 — 07. Then, for r sufficiently small,

||vur + Vgr”[ﬂ”(ﬂ)
v + &oll 1o (@)

for a constant C' = C'(n, p). O

Oo(T) < < (14C8)d(T)

Proof of Theorem 2.1.5. With the same reasoning as given in Corollary 2.3.1, we find
that

Ys(t)Gs(t) +tTs(T) < Ys(t)|Dh|(H) + t]|] 1 @0m)
for any t € (—1,1) and any non-negative h, vanishing at infinity, with |Dh|(H) < oo,
and with equality if and only if & is a dilation translation image of Ug; orthogonal to

er. In particular, if additionally [|A||z1@am) = Ts(t), then

Gs(t) < |Dh|(H).
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From this, we deduce that
O(Ts(1)) = Gs (1)
for ¢t € (—1,1). The same arguments given in the proof of Proposition 2.3.2 imply that
Ts(t) is a strictly decreasing function with range [0, 00), and that Gg(t) is strictly
increasing for ¢ > 0 with range (27'/"S,S) and is strictly decreasing for ¢ < 0 with
range (27175, c0). Finally, the same proof as that of Theorem 2.1.2 shows that ®(T')
is a smooth function of 7" that is decreasing for T' € (0, Tp) and concave for T' € (0, T5)
for some 0 < T, < Ty and increasing and convex for T' € (Tj, 00). Finally, to show
that ®(T) =T+ o(1) as T" — oo, we will equivalently show that Gs(t) = Ts(t) +o(1)
as t — —1. Indeed, since Y (t,Ug;) = 1 for all =1 < ¢ < 1 when p = 1, (2.3.2) implies
that
Gﬂﬂ:nlf&r4jﬂﬂ:Tﬂw+n%¥h¢—@+mjﬂﬁ

Note that

| Bi(ter) N H| 1
Usy = = |Bi(te;) N H|Y" = o(1
/H >t |Bi(ter) N H|(n=b/n [Ba(ter) | o)

as t — —1. Furthermore, since

T wn—l(l _ 252)(7171)/2
t) =
( ) |Bl(tel)ﬂH|(”_1)/”’

and we easily estimate that

1 1

(1 o 82)(71—1)/2 ds Z C/ (1 _ S)(n—l)/Q Z C|1 +t|(n+1)/2

—t

|Bl(t€1) N H| = wn_l/
—t
for t < 0, we see that

|t 4+ 1T (t) < [t + 1|' =D/ — (1),

Hence, Gg(t) = Ts(t) + o(1) as t — —1 and the proof is complete. O
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We conclude with the following proposition, which was mentioned after the statement
of Theorem 2.1.5.

Proposition 2.3.4. For every n > 2, one has Tg(n,p) — +o0o asp — 17,

Proof. As a first step, we explicitly compute

F( n—1 ) F(n+p—1) (n—1)/n
T = C <M> / <(p — )2l (2.3.29)
Q e 0 :
r(55-1) NE =),

where, here and throughout the proof, C' denotes a constant depending only on n,

whose value may change at each instance. Indeed,

/ v+ ey |~ gt = / (|22 4 1)~ =V /2 g, = C / (r? 4+ 1)~ (=VP'/2pn=2 g
OH Rn-1 0

Making the change of variables s = 1/(r? + 1), the right-hand side becomes

1 1
C / Sln=0w'/22 (1 1 _ )9/ go / Sl D/2-1]1 (1 _ ) 8)/2 g
0 0

- CB<2€;_—11)’n;1> - CF<2(np—_—11)>/F<%>‘

To express the term in the denominator of Tf, the coarea formula implies that

oo 1
/ |z + 1| da = / P =) / (1 — 5332 dsdr.
H 1 1/r

By Fubini’s Theorem, the right-hand side is equal to

1 00 1
/ (1—s*)n9r / P/ 1)1 g g — 21 / (1 — %)=/ =1 g
0 1 0

s n

With the change of variables p = s2, this is equal to

p—1 [ (n—=3)/2 _[n/2(p—1)]~1/2 p—1 (” -1 n 1)
P2 [ = p n/2(p dp = B -
(1—p) p== +

o J, P 2 2(p—1) 2
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o015 ()

This proves (2.3.29). By taking the logarithm of Tg‘/C’, we find that

log(TY /C) = 1ogr( n-l ) - logF<M>

2(p—1) 2(p — 1)
(2.3.30)
n ; 1 {log(p —1) +logf(%> — 10gF<2(p"f 1)” )

By Stirling’s approximation, log I'(z) asymptotically behaves like zlog(z) as z — oc.
Hence, in the limit p — 1 the first two terms on the right-hand side of (2.3.30),
behave like

n—1 n—1 p(n—1) p(n—1)
=1 (=) ~ 2=1 = (55 =1))
__pn=1) (n—1)

On the other hand, the term in brackets on the right-hand side of (2.3.30) behaves
like

n+p-—1 n+p—1 np np
log(p — 1)+—log( )— 2 log (2(—>

2(p— 1) 2(p—1) p—1) p—1)
=log(p — 1) <n ;L 1) Z&p_—l)l log(n+p—1)— Zzzgiof(?)) — 2(pnf ) log(p) + C.

So, the full right-hand side of (2.3.30) asymptotically behaves like

n—1 n—1
1 -1+ —7

[—=(n+p—1)log(n+p—1)+nplog(n)] + C.

Since log(n +p — 1) =log(n) + (p — 1)/n + o(p — 1), this quantity is bounded above
and below (with appropriate choices of C') by

nz—nl log(p—1)+ #__11) [—(n +p— 1)<log(n) +]%1> +nplog(n)} +C
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n—1 (n—1)

n+p-—1
log (p— 1) + S

+C.

(n —1)log(n)

2n

The second term is bounded above and below by dimensional constants, while the

first term goes to 400 as p — 17. O
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Chapter 3

Strong-form stability for the Sobolev inequality on
R": the case p > 2

3.1 Overview

In this chapter,! we prove strong-form stability for the Sobolev inequality
IVulle = Sljull g (3.1.1)

in the case p > 2. All integrals and function spaces in this chapter will be over R", so
we omit the domain of integration when no confusion arises. Furthermore, throughout
the chapter, we assume that 2 < p < n. Recall that equality is attained in (3.1.1) if

and only if u belongs to the (n + 2)-dimensional manifold of extremal functions
M={cUyy:ceR, NeR;, yeR"}, (3.1.2)

where U, ,(z) = cA"P"U;(A\(x — y)) and

Ko
(1+ |x|p’)(n—p)/p’

Ui(z) = (3.1.3)

Here, £y is chosen so that ||v1]|;,+ = 1, and so ||cvyy||z»+ = ¢. In the introduction, we

introduced the scaling invariant Sobolev deficit dg(u); for simplicity we will now use

!This chapter is based on joint work with A. Figalli originally appearing in [FN].
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the p-homogeneous deficit §(u) defined by
0(u) = SP|lully,-0s(uw) = [IVullL, — SP|ull7,- -

Our main result is the following theorem:
Theorem 3.1.1. Let 2 < p < n. There exists a constant C' > 0, depending only on

p and n, such that for all u € WP,

|Vu—VU|, < C8(u) + Cflul,!

w—Ul| e (3.1.4)

for some U € M.

By combining Theorem 3.1.1 and the main result of [CEMP09| (see Theorem 3.4.5),
we deduce the following corollary, proving the desired stability at the level of gradi-
ents:

Corollary 3.1.2. Let 2 < p < n. There exists a constant C' > 0, depending only on
p and n, such that for all u € Whe,

VU — Vol \ ¢ 5(u)
4 < (C 3.1.5
( N ) =Tl (3.15)

for some U € M, where ( = p*p (3 +4p — 3p+1>2 .

3.1.1 Theorem 3.1.1: idea of the proof

As a starting point to prove stability of (3.1.1) at the level of gradients, one would
like to follow the argument used to prove the analogous result in [BE91]. However,
this approach turns out to be sufficient only in certain cases, and additional ideas

are needed to conclude the proof. Indeed, a Taylor expansion of the deficit 6(u) and
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a spectral gap for the linearized problem allow us to show that the second variation
is strictly positive, but in general we cannot absorb the higher order terms. Let us
provide a few more details to see to what extent this approach works, where it breaks

down, and how we get around it.

3.1.1.1 The expansion approach.

Let us sketch how an argument following [BE91| would go. In order to introduce a
Hilbert space structure to our problem, we define a weighted L?-distance of a function

u € W to M. To this end, for each U € M, we define

r—y

Ap(x) == (p = 2)|VUP*F @+ |VUPId, = Rk

(3.1.6)

where (a ® b)c := (a - ¢)b. Then, with the notation Ay[a,a] := a’ Aya for a € R™, we
define

1/2
d(u, M) = inf{</AU[vu— VU, Vu - VU]) s U e M, U] = el e }

1/2
— inf {(/ACUM[VU —VeUy,, Vi — chA,y]) L AER,, y € R, ¢ = |jul }
(3.1.7)

Note that
/AU[vu—VU, Vu— VU] :/]VU|”‘2|Vu—VU|2+(p—2)/|VU|p_2\8Tu—8TU|2.

A few remarks about this definition are in order.

Remark 3.1.3. The motivation to define d(u, M) in this way instead of, for instance,
) S\ 1/2
inf{</|VU|p_ |IVu — VU| > s UeM, Ul = ||u||Lp*},
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will become apparent in Section 3.2. This choice, however, is only technical, as
/\VU]”2|VU—VU\2 < /AU[VU—VU, Vu—-VU] < (p—l)/]VU\pQ\Vu—VUP.

Remark 3.1.4. One could alternatively define the distance in (3.1.7) without the
constraint ¢ = ||ul|;»+, instead also taking the infimum over the parameter c. Up
to adding a small positivity constraint to ensure that the infimum is not attained
at U = 0, this definition works, but ultimately the current presentation is more
straightforward.

Remark 3.1.5. The distance d(u, M) has homogeneity p/2, that is, d(cu, M) =
&2d(u, M).

In Proposition 3.3.1(1), we show that there exists dy = do(n, p) > 0 such that if
0(u) < b0l VL, (3.1.8)

then the infimum in d(u, M) is attained. Given a function u € W' satisfying (3.1.8),
let U € M attain the infimum in (3.1.7) and define

B u—U
|V(u—U)lls’

2

so that u = U + ep with € = ||[V(u — U)||1» and [ |[V|P = 1. Since U is a minimum
of §, the Taylor expansion of the deficit of u at U vanishes at the zeroth and first

order. Thus, the expansion leaves us with
o(u) = €2p/AU[V90,Vs0] —2SPp(p* — 1) / \UP"=2|o|* + o(<?). (3.1.9)

Since U is a projection of u into M, €p is orthogonal (in an appropriate sense) to

the tangent space of M at U, which coincides with the span the first two eigenspaces
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of an appropriate weighted linearized p-Laplacian. A gap in the spectrum in this

operator allows us to show that

P2l

cd(u, M)? = ceQ/AU[Vw, V] < 52p/AU[Vg0, V] —2SPp(p* — 1) / |U

for a positive constant ¢ = ¢(n, p). Together with (3.1.9), this implies
d(u, M)? + o(e®) < CS(u).

Now, if the term o(g?) could be absorbed into d(u, M)?, then we could use the estimate
(3.1.11) below to obtain
/\Vu —VUP < Cd(u),

which would conclude the proof.

3.1.1.2 Where the expansion approach falls short.

The problem arises exactly when trying to absorb the term o(¢?). Indeed, recalling

that e = [|[V(u — U)||», we are asking whether
o(||Vu — VU||Z,) < d(u, M)?* ~ / IVU|P~2|Vu — VU?

(recall Remark 3.1.3), and unfortunately this is false in general. Notice that this
problem never arises in [BE91| for the case p = 2, as the above inequality reduces

to

o(||Vu = VU||z2) < [Vu = VUL,

which is clearly true.
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3.1.1.3 The solution.

A Taylor expansion of the deficit will not suffice to prove Theorem 3.1.1 as we cannot
hope to absorb the higher order terms. Instead, for a function u € W'?, we give two
different expansions, each of which gives a lower bound on the deficit, by splitting
the terms between the second order term and the pth order term. Pairing this with
an analysis of the second variation, we obtain the following:

Proposition 3.1.6. There exist constants cq, Ca, and Cs, depending only on p and
n, such that the following holds. Let u € WP be a function satisfying (3.1.8) and let

U € M be a function where the infimum of the distance (3.1.7) is attained. Then
c; d(u, M)? — C, / |Vu — VU < 6(u), (3.1.10)

—Cyd(u, M)? + }l/wu — VU < §(u). (3.1.11)

Individually, both inequalities are quite weak. However, as shown in Corollary 3.3.3,
they allow us to prove Theorem 3.1.1 (in fact, the stronger statement [ |[Vu—VU|P <

d(u)) for the set of functions u such that
d(u, M)? = /AU[vu — VU, Vu - VU] < / |Vu — VU|P
or (3.1.12)
d(u, M)? = /AU[vu — VU, Vu — VU] > / |Vu — VUP.
We are then left to consider the middle regime, where
/AU[Vu VU, Vu— VU] ~ / V- VU,

We handle this case as follows. Let u; := (1 — t)u + tU be the linear interpolation

between u and U. Choosing ¢, small enough, u,, falls in the second regime in (3.1.12),
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so Theorem 3.1.1 holds for u;,. We then must relate the deficit and distance of wu,,
to those of u. While relating the distances is straightforward, it is not clear for the

deficits whether the estimate (u, ) < Cd(u) holds. Still, we can show that

S(up,) < Co(u) + C|U|E !

U= UHLP*v

which allows us to conclude the proof. It is this point in the proof that introduces that
term ||u—U]||z»* in Theorem 3.1.1, and for this reason we rely on the main theorem of
[CEMPO09] to prove Corollary 3.1.2. We note that the application of [CFMP09] is not
straightforward, since the function U which attains the minimum in our setting is a

priori different from the one considered there (see Section 3.4 for more details).

3.1.2 Outline of the chapter

In Section 3.2, we introduce the operator Ly that appears in the second variation of
the deficit and prove some facts about the spectrum of this operator. We also prove
some elementary but crucial inequalities in Lemma 3.2.2 and provide orthogonality
constraints that arise from taking the infimum in (3.1.7). In Section 3.3, we prove
Proposition 3.1.6. In Section 3.4, we prove Theorem 3.1.1 and Corollary 3.1.2. In
Section 3.5, we show that £y has a discrete spectrum and justify the use of Sturm-

Liouville theory in the proof of Proposition 3.2.1.
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3.2 Preliminaries

3.2.1 The tangent space of M and the operator Ly

The set M of extremal functions defined in (3.1.2) is an (n+ 2)-dimensional manifold
which is smooth except at 0 € M. For a nonzero U = ¢yU,,,, € M, the tangent

space is computed to be

TyM = span{U, o U, 0, U, ..., 0nU},

where y’ denotes the ith component of y and U = 0ir=nU, 0,U =
Oyilyimyi U
Since the functions U = U,,,, minimize v — §(u) and have ||Uy, 4l = 1, by

computing the Euler-Lagrange equation one discovers that
~AU = SPUP (3.2.1)

where the p-Laplacian A, is defined by Ayw = div (|[Vw[P72Vw). Hence, differenti-

ating (3.2.1) with respect to y* or A, we see that
—div (Ay(z)Vw) = (p* —1)SPUP 2w, w € span{o\U, 0, U, ..., 0nU}, (3.2.2)

where Ay (x) is as defined in (3.1.6). This motivates us to consider the weighted

operator

Lyw = —div (Ay(z)Vw)U* (3.2.3)

on the space L%(UP ~2), where, for a measurable weight w : R* — R, we let
2 1/2 2 n
oz = ( [l W) W) = {w R S R wl pa) < o0},
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Proposition 3.2.1. The operator Ly has a discrete spectrum {a;}52,, with 0 < a; <

a;yq for alli, and

a; = (p—1)5°, H, =span{U}, (3.2.4)

a = (p* —1)5P, Hy = span {O\U, 0,.U, ..., 0,nU}, (3.2.5)

where H; denotes the eigenspace corresponding to «;.

Proposition 3.2.1 implies that
TyM = span {H; U Hy} (3.2.6)

and that

= inf{ (Lyw,wy [ Ay[Vw,Vuw]

(w,wy — [UP 22 w L span {H; U H2}} : (3.2.7)

Here, orthogonality is with respect to the inner product defined by
(wy,wy) = /Up*_2 Wy Wy. (3.2.8)

Proof of Proposition 3.2.1. A scaling argument shows that the eigenvalues of Ly are
invariant under changes of A and y, so it suffices to consider the operator £ = Ly for
U="U:. Welet A= Ap,,. The discreteness of the spectrum of Ly is standard after
establishing the right compact embedding theorem; we show the compact embedding

in Corollary 3.5.2 and give details confirming the discrete spectrum in Corollary 3.5.3.

One easily verifies that U is an eigenfunction of £ with eigenvalue (p —1)SP and that

O\U and 0,:U are eigenfunctions with eigenvalue (p* —1)SP, using (3.2.1) and (3.2.2)
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repectively. Furthermore, U > 0, so a3 = (p — 1)SP is the first eigenvalue, which is

simple, so (3.2.4) holds.

To prove (3.2.5), we must show that ay = (p* — 1)S? is the second eigenvalue and
verify that there are no other eigenfunctions in H,. Both of these facts follow from
separation of variables and Sturm-Liouville theory. Indeed, an eigenfunction ¢ of £

satisfies

div (A(x)Vp) + aUP 2p = 0. (3.2.9)

Assume that ¢ takes the form p(z) = Y () f(r), where Y : S"! - Rand f: R — R.

In polar coordinates,

A(A@)TE) = (p— D)IVUP20,0 + L= l)r(n —Yigup-,6
1 — (3.2.10)
+ S IVUP Y 0+ (0= Dlp = 2IVUP9,U 9,U 0,0

j=1
(this computation is given in Appendix B for the convenience of the reader). As U is
radially symmetric, that is, U(z) = w(|z|), we introduce the slight abuse of notation
by letting U(r) also denote the radial component: U(r) = w(r), so U'(r) = 0,U and
U"(r) = 0,.U. From (3.2.10), we see that (3.2.9) takes the form

0= - Dy + LD e ey o)

1 _ _ *_
+5IUPf (1) Aea Y (0) + (0 = Dp = U UU" [ (r)Y (0) + U £ (r)Y (6),
which yields the system

0= Agn1Y(0) + pY () on S"1, (3.2.11)
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—1)(n—-1)

R S i

on [0,00). (3.2.12)
+p—1)(p—2U P UV f +aUP 2 f
The eigenvalues and eigenfunctions of (3.2.11) are explicitly known; these are the

spherical harmonics. The first two eigenvalues are iy = 0 and ps =n — 1.

Taking p = p1 = 0 in (3.2.12), we claim that:
- o} = (p—1)SP and the corresponding eigenspace is span {U };

- a3 = (p* — 1)SP with the corresponding eigenspace span {9 U }.

Indeed, Sturm-Liouville theory ensures that each eigenspace is one-dimensional, and
that the ith eigenfunction has i — 1 interior zeros. Hence, since U (resp. 0, U) solves
(3.2.12) with p = 0 and o = (p — 1)SP (resp. a = (p* — 1)SP), having no zeros (resp.

one zero) it must be the first (resp. second) eigenfunction.

For ps = n — 1, the eigenspace for (3.2.11) is n dimensional with n eigenfunctions
giving the spherical components of 9,:U, for i = 1, ..., n. The corresponding equation
in (3.2.12) gives a} = (p* — 1)SP. As the first eigenvalue of (3.2.12) with u = o, o}

is simple.

The eigenvalues are strictly increasing, so this shows that o > (p* — 1)S? and o3 >

(p* —1)SP, concluding the proof. ]

The application of Sturm-Liouville theory in the proof above is not immediately
justified because ours is a singular Sturm-Liouville problem. The proof of Sturm-
Liouville theory in our setting, that is, that each eigenspace is one-dimensional and

that the ith eigenfunction has ¢ — 1 interior zeros, is shown in Section 3.5.
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3.2.2 Some useful inequalities

The following lemma contains four elementary inequalities that will yield bounds on

the deficit in lieu of a Taylor expansion, allowing us to circumvent the issues with

higher order terms presented in the chapter overview.

Lemma 3.2.2. Let z,y € R" and a,b € R. The following inequalities hold.

For all k > 0, there ezists a constant C = C(p,n, k) such that
|z +ylP > |2fP +plafPPr -y

Py pp —2 _
+ 0= (a2l + P22 japmi e ) - Ol

For all k > 0, there exists C = C(p, k) such that

* * * * *_1 *
-t b <l + plal2ab+ (P a2 4 o

There exists C = C(p,n) such that

- - yl”
o4 017 > [al? + plal -y — Clap=2yf? + 2
There exists C = C(p) such that
la +b]P" < |a” + p*lalP” "2ab + Cla["" 2|b]* + 2|b|"".

p*

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

Proof of Lemma 3.2.2. We only give the proof of (3.2.13), as the proofs of (3.2.14)—

(3.2.16) are analogous. Observe that if p is an even integer or p* is an integer, these

inequalities follow (with explicit constants) from a binomial expansion and splitting

the intermediate terms between the second order and pth or p*th order terms using

Young’s inequality.
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Suppose (3.2.13) fails. Then there exists £ > 0, {C;} C R such that C; — oo, and
{z;}, {y;} € R" such that

|2; + sl — 2P < pla; P Pa; -y

(p—2)

p - p _
0= (Bl 2l + P2 Dty ) - Gl

If z; = 0, we immediately get a contradiction. Otherwise, we divide by |z;|? to obtain

|[zj + ;P Ty p <|yj (%"%)2) ;[P
| R +(1-rk F(p—2) Y o 3.2.17
2P g T g TP AT ey G210

The left-hand side is bounded below by —1, so in order for (3.2.17) to hold, |y;|/|z;|

’ 2

converges to 0 at a sufficiently fast rate. In this case, |y;| is much smaller that |z},

so a Taylor expansion reveals that the left-hand side behaves like

vy plyl | e —2) (x5 - y;)? |y
p > tT5o s+ —to 5
;> 2] 2 |51 |51
which is larger than the right-hand side, contradicting (3.2.17). O

With the same proof, one can show (3.2.14) with the opposite sign: For all x > 0,

there exists C = C(p, k) such that

E3

* * * * - 1 *
la+ b7 > + p*la”" 2ab — <%+m> PP2p2 —
Applying this and (3.2.14) P one
obtains
—2U¢‘ ( P22 4 O (3.2.18)
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3.2.3 Orthogonality constraints for v — U

Given a function u € W' satisfying (3.1.8), suppose the infimum in (3.1.7) is attained

Jur = [

ENy) = /ACOUM[Vu — VU, y, Vu—coVUy,]|,

at U = cyUyyy,- Then
P (3.2.19)

and the energy

has a critical point at (Ao, yo):

0= a)\|)\:)\0 /AcoUhy [VU — C()VU)%” Vu — C()VU)\,y]7
(3.2.20)
0=d,

i /ACOUM[VU — VU, Vu — cgVU, .

Y=y}
Let u = U + ep with ¢ scaled such that [|Vp[P = 1. By (3.2.19) and (3.2.18), we

have

v (3.2.21)

. =1
furu otz [

for any k > 0, with C = C(p, n, k). Computing the derivatives in (3.2.20) yields

P2 4 Ce / B

: / Ay [VOU, Vi 2520{ / Vo VU PV - VoU
(3.2.22)
-2 / |V¢|2|VUIP—48TU0MU}

and

a/AU[vayiU, V] :62(]{/|V<p\2|VU]p_4VU-V8yiU
+(p—2) / VePIVUPo,U 0, U (3.2.23)

+ 2/ IVUP~20,oV ¢ - O, },
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where 7 is as in (3.1.6) and C' = (p — 2)/2. At the same time, multiplying (3.2.2) by

e and integrating by parts implies that
577 = Ve [ 0P 070 = [ 40vow, vyl
SP(p* — 1)s/|UyP*—QayiU¢ = e/AU[vayiU, V.
Combining this with (3.2.22) and (3.2.23) and letting C; = (p — 2)/2(p* — 1)SP, we
have the following “almost orthogonality” constraints:
. / |U|p*26AUg0:52C1{ / Vo [VUPYU - VoyU (3.2.24)
+ip-2) [ 19ePIVUP 00,0},
5/|U|p*_28yiUg0:5201{/|V<,0|2|VU|”_4VU-V8¢U (3.2.25)
+0-2) [ IVePIVUP-0,0 0,0

+ 2/ |VUP~20,0oV ¢ - (%#} :

The conditions (3.2.24), (3.2.25), and (3.2.21) show that ¢ is “almost orthogonal” to
Ty M with respect to the inner product given in (3.2.8). Indeed, dividing through by ¢,
the inner product of ¢ with each basis element of Ty M appears on the left-hand side of
(3.2.24), (3.2.25), and (3.2.21), while the right-hand side is O(e). As a result of (3.2.6)
and ¢ being almost orthogonal to Ty M, we show that ¢ satisfies a Poincaré-type
inequality (3.3.13), which is an essential point in the proof of Proposition 3.1.6.

Remark 3.2.3. In [BE91], the analogous constraints give orthogonality rather than
almost orthogonality; this is easily seen here, as taking p = 2 makes the right-hand

sides of (3.2.24) and (3.2.25) vanish.

74



3.3 Two expansions of the deficit and their consequences

We prove Proposition 3.1.6 combining an analysis of the second variation and the
inequalities of Lemma 3.2.2. As a consequence (Corollary 3.3.3), we show that, up to
removing the assumption (3.1.8), Theorem 3.1.1 holds for the two regimes described

in (3.1.12).

To prove Proposition 3.1.6, we will need two facts. First, we want to know that the
infimum in (3.1.7) is attained, so that we can express u as u = U-+ep where [ |[Vp|P =
1 and ¢ satisfies (3.2.24), (3.2.25), and (3.2.21). Second, it will be important to know
that if dp in (3.1.8) is small enough, then ¢ is small as well. For this reason, we first
prove the following:

Proposition 3.3.1. The following two claims hold.

1. There exists g = dp(n,p) > 0 such that if
0(u) < || VullZ,, (3.3.1)

then the infimum in (3.1.7) is attained. In other words, there exists some U €

M with [ |U

Pr = [|u"" such that
/AU[VU — VU, Vu — VU] = d(u, M)
2. For all ey > 0, there exists 6y = do(n, p,e0) > 0 such that if u € WP satisfies

(3.3.1), then
e:=||Vu— VU] <&

where U € M is a function that attains the infimum in (3.1.7).
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Proof. We begin by showing the following fact, which will be used in the proofs of
both parts of the proposition: for all v > 0, there exists dy = do(n, p,y) > 0 such that
if §(u) < do||Vull},, then

1nf{HVu - VUHLP U e M} S ’}/HVUHLP (332)

Otherwise, for some > 0, there exists a sequence {u;} C W' such that | V|| =

1 and 6(uy) — 0 while
inf{||Vur — VU||pr : U € M} > 7.

A concentration compactness argument as in [Lio85, Str84] ensures that there exist
sequences { )} and {yx} such that, up to a subsequence, A% wy (Ax(z—y)) converges

strongly in W' to some U € M. Since

—0
Lr

v < Hwk v [A,;"“’W(fk + yk)}

= Hv [/\Z/p*uk()\k(- _ yk))] v

this gives a contradiction for k sufficiently large, hence (3.3.2) holds.

Proof of (1). Suppose u satisfies (3.3.1), with &y to be determined in the proof. Up to
multiplication by a constant, we may assume that ||u|;,~ = 1. By the claim above,

we may take dy small enough so that (3.3.2) holds for 7 as small as needed.

The infimum on the left-hand side of (3.3.2) is attained. Indeed, let {Ux} be a
minimizing sequence with Uy = ¢xUy, .. The sequences {c;}, {\¢}, {1/}, and
{yx} are bounded: if A\; — oo or Ay — 0, then for k large enough there will be little

cancellation in the term |Vu — VUi|?, so that

1
/\Vu—VUkV’ > §/|wp,
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contradicting (3.3.2). The analogous argument holds if |yx| — oo or |cx| — oo.
Thus {ct}, {M\}, {1/}, and {y.} are bounded and so, up to a subsequence,
(cky My Yk) — (Co, Ao, yo) for some (co, Mg, 4o) € R x RT x R™. Since the functions
cU), are smooth, decay nicely, and depend smoothly on the parameters, we deduce
that Uy — coUsyy = U in WP (actually, they also converge in C* for any k), hence

U attains the infimum.

To show that the infimum is attained in (3.1.7), we obtain an upper bound on the
distance by using U = U/||U||;»~ as a competitor. Indeed, recalling Remark 3.1.3, it

follows from Holder’s inequality that
A, My < (p = 1) [ [VOP™* |Vu— VO < (p — DS Tu - VO,

Notice that, since |jul|;+ = 1, it follows by (3.3.1) that ||Vul/» < 2SP provided

dp < 1/2. Hence, since
TN = 1< U = ull o < STPIVU = Va1,

it follows by (3.3.2) and the triangle inequality that ||[Vu — VU||» < C(n,p)7,
therefore

d(u, M)? < C(n,p)y¥?. (3.3.3)

Hence, if {Uy} is a minimizing sequence for (3.1.7) with Uy = U, ,, (so that [ |Uy|P" =

Jlu

{\}, {1/A}, or {yx} are unbounded, then

P" = 1), the analogous argument as above shows that if either of the sequences

d(u, M)* >

N | —
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contradicting (3.3.3) for + sufficiently small. This implies that U — Uy, in W"?,

and by continuity U, ,, attains the infimum in (3.1.7).

Proof of (2). We have shown that (3.3.2) holds for d, sufficiently small. Therefore,
we need only to show that, up to further decreasing dy, there exists C' = C(p, n) such
that

Vu — VUpl||zr < Cinf{||Vu — VU||» : U € M},

where Uy € M is the function where the infimum is attained in (3.1.7).

Suppose for the sake of contradiction that there exists a sequence {u;} such that

d(u;) — 0 and ||Vu;||» =1 but
/|Vuj — VU] zj/\vuj — VU, (3.3.4)
where U;, U; € M are such that
/ Ay, [Vu; — VU;, Vu; — VU;] = d(uj, M)?

and

/|vuj—VUj|P=mf{/|vuj—Vijp : UeM}.

Since §(u;) — 0, the same concentration compactness argument as above implies that
there exist sequences {);} and {y;} such that, up to a subsequence, /\;L/ P (N (z—y;))
converges in W' to some U € M with ||VU||z» = 1. By an argument analogous to

that in part (1), we determine that U; — U in C* and U; — U in C* for any k. Let

Uj — Uj — Uj — Uj
= and  ¢; = :
IVu; = VU | L» TV = VUl

?;
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Then (3.3.4) implies that

1:/|V¢j|P zj/|v¢‘>jyp. (3.3.5)

In particular, V¢; — 0 in LP. Now define

|Vu; — VUl

V=g — ¢ =

For any n > 0, (3.3.5) implies that 1 — n < ||V¢;|» < 1+ for j large enough. In
particular, {V,} is bounded in L? and so Vi); — V4 in LP for some ¢ € Wwte,

We now consider the finite dimensional manifold M := {U — U : U,U € M}. Since
U;,U; — U, the sequences {\;}, {1/}, {y;}, {1}, {1/\;} and {g;} are contained in
some compact set, and thus all norms of U; — U; are equivalent: for any norm ||-|| on

M there exists p > 0 such that

WV T, — VU, < |[VT, — VU ||| < %anj — VU (3.3.6)

Dividing (3.3.6) by [|Vu; — VUj| 1 gives
(1 =) < WVl < V01 < LIVl < =2 @337
Taking the norm ||-|| = || - ||cx, the upper bound in (3.3.7) and the Arzela-Ascoli

theorem imply that 1; converges, up to a subsequence, to 1 in C*. The lower bound

in (3.3.7) implies that ||¢||cx # 0.
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To get a contradiction, we use the minimality of U; for d(u;, M) to obtain
[190 V6, + - 2) [190, 0.6
> [IVUP2196, + 0-2) [ (VU100
= / VU, P72V, [* + 2/ VU, P2V ¢ - Vi + / VU, P2V
w-2 ( [Ivur-adr 2 [ 19020600+ [ 1900 00).
Since
JIvOraa - [ [wuver - o
and
[IvO 0.6~ [190 0.6, >0,
the above inequality implies that
0>2lim [ [VU;P?V; - Vip; + lim /IVUJ-PH]V%F
j—o0 j—vo0
) (3.3.8)
+(p—2) (2 lim /yVUj\PQaropjarwj + lim /]VUJ-]M\aW) :
J—0Q J—00

However, since V(ﬁj — 0in LP,

hm /\VUjIPQVqﬁj : ij =0 and hm /‘VUj‘pZar(bjarwj =0.
j—roo

J]—00

In addition, the terms
/ VU2V 2 and / VU, (0,4

converge to something strictly positive, as ¢; = ¢ # 0 and U; — U with VU (x) # 0
for all x # 0. This contradicts (3.3.8) and concludes the proof. O]
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The following Poincaré inequality will be used in the proof of Proposition 3.1.6:

Lemma 3.3.2. There exists a constant C' > 0 such that, for all p € W' andU € M,

I

Proof. Let U € M and ¢ € C§°. As U is a local minimum of the functional 9,

Yol < O / VU2V, (3.3.9)

2

0< —
~ de?

5(U +ep) = p / VUP2 VP + plp — 2) / VU210,
_Qp £_ p* ”%_2 p*—2 2
so((Z () fuorwe)
N )
+(p*—1)</|U”> /IU”‘2</)2).
Noting that

+\P/P" =2
[ivurogr < [rovrever. ([or)”" ([

this implies that

e=0

2
Ry 30) >0,

0<ptp=1) [ VUVl -5 -1 [ 10

p*>p*/p—1 / |U\p*_2g02.

Thus (3.3.9) holds for ¢ € C5°, and for ¢ € W'? by approximation. O
We now prove Proposition 3.1.6.

Proof of Proposition 3.1.6. First of all, thanks to (3.1.8), we can apply Proposi-
tion 3.3.1(1) to ensure that some U = ¢yUy,,, € M attains the infimum in (3.1.7).
Expressing u as u = U+ep where [ |Vp[P = 1, it follows from Proposition 3.3.1(2) and
the discussion in Section 3.2.3 that € can be assumed to be as small as desired (pro-

vided ¢y is chosen small enough) and that ¢ satisfies (3.2.24), (3.2.25), and (3.2.21).
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Note that, since all terms in (3.1.10) and (3.1.11) are p-homogeneous, without loss of

generality we may take ¢ = 1.

Proof of (3.1.10). The inequalities (3.2.13) and (3.2.14) are used to expand the

gradient term and the function term in 0(u) respectively.

From (3.2.13) and for k = k(p,n) > 0 to be chosen at the end of the proof, we have

/|Vu|p > /|VU|p+5p/|VU|p_2VU-V<,0 (3.3.10)

+ =0 [1vup-2i9el +(p-2) / VUP0l) - C [ 1vep.

Note that the second order term is precisely =E(1 — k) [ Ay[Vp, V. Similarly,
(3.2.14) gives

* * * *_1 *l‘f
/|u|p §1+€p*/Up “p+e?(E (p2 >+§Sp>/Up 2% 4 Ce¥' /w
(3.3.11)

From the identity (3.2.1), the first order term in (3.3.11) is equal to
ep*/Up*_lw = 5p*S_p/|VU|p_2VU-ch. (3.3.12)
Using (3.3.12) and recalling that (p* — 1)S? = ay (see (3.2.5)), (3.3.11) becomes

2%
/|u|p* <1 e°p (a2+n)/Up 22 o,

25p
The following estimate holds, and is shown below:

2
/ Ur- (1 +2m)23 / Ap[V, Vo + Ce?, (3.3.13)
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Philosophically, (3.3.13) follows from a spectral gap analysis, using (3.2.7) and the
fact that (3.2.24), (3.2.25), and (3.2.21) imply that ¢ is “almost orthogonal" to H;
and H.

As £ may be taken as small as needed, using (3.3.13) we have

/|u|p* < 1+%(5/|VU|P—2VU-V¢+€

The function z + |2|P/P" is concave, so Jull? - <1+ z%(f lulP” —1):

(g + k) (1 + 2k)
2&3

/AU[Vgo, V) +C€p).

(g + k) (1 + 2kK)

SPlull? . < Sp—l—p<5/\VU|p2VU-V<;J—|—8 /AU[V% V@]+C€p>.

20[3
(3.3.14)
Subtracting (3.3.14) from (3.3.10) gives
2 142
d(u) > °p <1 —K— (az + /)1 + I{)) /A[V@,Vgo] — Ce”.
2 Q3
Since 1 — o> > 0, we may choose & sufficiently small so that 1 — x — W > 0.

To conclude the proof of (3.1.10), we need only to prove (3.3.13).

Proof of (3.3.13). If ¢ were orthogonal to Ty M instead of almost orthogonal, that
is, if the right-hand sides of (3.2.24), (3.2.25), and (3.2.21) were equal to zero, then
(3.3.13) would be an immediate consequence of (3.2.7). Therefore, the proof involves
showing that the error in the orthogonality relations is truly higher order, in the sense

that it can be absorbed in the other terms.

Up to rescaling v and U, we may assume that \j = 1 and yy = 0. We recall the inner

product (w,y) defined in (3.2.8) which gives rise to the norm

Jull = ([ 1o 22) ™
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As in Section 3.2, we let H; denote the eigenspace of Ly in L?(UP"~2) corresponding

to eigenvalue «;, so H; = span{Y;;}. NGO where Y; ; is an eigenfunction with eigenvalue

j=1>
a; with ||Y; ;|| = 1. We express e in the basis of eigenfunctions:
oo N(7)
cp=Y > BiYi;  where ;= 5/ UIP 2¢Yi;.
=1 j=1

We let €@ be the truncation of p:
2 N(@)
Ep=¢€p — Z Zﬁi,jYi,j,
i=1 j=1
so that ¢ is orthogonal to span{H; U Hy} and, introducing the shorthand (? :=
SING g2
j=1 Fij
/ U 2(z)* = / U =2(e)* + B + 53 (3.3.15)

Applying (3.2.7) to ¢ implies that

/ U ()

which combined with (3.3.15) gives

(ﬁ b, @),

Q|m

2
*_ g o .
J 0P 20 < Si2vp. )+ 8+ 53

1 o
- > i+ B+ B (3.3.16)
=3

2

< Z_3<£U(Pa ©) + (1 - _> (51 "‘52)

We thus need to estimate 37 + 3. The constraint (3.2.21) implies

+
< (BT [y o [ i)
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< 054(/!U”*2|¢\2)2+052p*(/\90p*)2.

By (3.3.9), [|U[P"72|¢|* < [ VU[P72|V¢|?. Furthermore, both [|VU|P72|V|? and

i |o|P" are universally bounded, so for ¢ sufficiently small depending only on p and n

and k,

2
82 < %(/me—?\wm (p—2)/|VU\p_2|8rgp\2) + Ce?, (3.3.17)
3

For 33|, we notice that Holder’s inequality and (3.2.24) imply

VoAU 2
2 < 2 p—3 2| A
62,1 — (prng /|VU| |V(,0| ||8,\U||>
J VU2 VOUP?

[\

(3.3.18)

<c,. / VUP4[eVgl* = O e / VUP-Vel,

where the final equality follows because the term [ |VU|P"2|VOU|?/||0\U|* is

bounded (in fact, it is bounded by ay). Then, using Young’s inequality, we get

%K _ _
W(/WUV’ 96+ (0= 2) [ IVUP210.F) + Cue? [ 19417

2
<
/62,1 — (n+1

The analogous argument using (3.2.25) implies that

O, \2
B2 < Cpuet [ [NUPV[ + Couet | [ VU 20,0V 222 ) . (3.3.19)
=G g 0,01
Y

for j =2,...,n+ 1. For the second term in (3.3.19), Holder’s inequality implies that

Oy \ 10,72
VUP20,oVp - — ) §/|VU|P—4|W|4/|VU|P i
(fiwv 19,01 19,01

Since

0T

TR

|z]
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P 2
we find that | |VU p% converges, so (3.3.19) implies that
0,:Ull

B3 < Cpuct / IVUPP~*|Vl|*.

Then using Young’s inequality just as in (3.3.18), we find that

By < /IVUI” IVe|* + (p—2) /|VU|p 218,/ )+0ﬁpe /yww

(n + 1)
and thus

B S — /|VU|” 2Vl + (p—2) /\VUV’ 210,02 )+Cnp6p (3.3.20)

Together (3.3.16), (3.3.17), and (3.3.20) imply (3.3.13), as desired.

Proof of (3.1.11). The proof of (3.1.11) is similar to, but simpler than, the proof
of (3.1.10), as no spectral gap or analysis of the second variation is needed. The
principle of the expansion is the same, but now we use (3.2.15) and (3.2.16) to expand

the deficit.

From (3.2.15), we have

/ Vup > / VU + pe / VUPVU - Vg — Ce2 / VUVl + / Vol
3 3. 21

Similarly, (3.2.16) implies

/|u|P* < 1+ap*/UP*—1<p+CaQ/UP*—2<p2+2ap*/|<p|f’*. (3.3.22)

As before, the identity (3.2.1) implies (3.3.12), so (3.3.22) becomes
/]u|p* <1 +€p*S”/ |VU|P2VU -V + CsZ/Up*2g02 + 2¢F" / |fP".
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By the Poincaré inequality (3.3.9),
/|u|P* <1 +5p*S_p/ |VU|P2VU -V + (352/|VU|P—2|W|2 4 2eP",
As in (3.3.14), the concavity of z — |2|P/?" yields
S?llull?,. < 57+ ep / VUP-2VU - Vi + Ce2 / VUP-2|Vel + Ce”. (3.3.23)
Subtracting (3.3.23) from (3.3.21) gives

P
§(u) > —Ce? / VU P2 |Vp|* + % — Ce?

2, €

The final inequality follows from Remark 3.1.3 and once more taking ¢ is as small as

needed. This concludes the proof of (3.1.11). O

Corollary 3.3.3. Suppose u € W' is a function satisfying (3.1.8) and U € M is a
function where the infimum in (3.1.7) is attained. There exist constants C,,c, and

¢, depending on n and p only, such that if

[ Ay[Vu — VU, Vu — VU]
[Vu— VU

[ Ay[Vu—VU,Vu — VU]

C. <
= [Vu—VUP

or c, >

. (3.3.24)

then
c/|Vu—VU|p < o(u).

Proof. Let C, = % and let ¢, = ﬁ where ci, Cy and Cj are as defined in Propo-

sition 3.1.6. First suppose that u satisfies the first condition in (3.3.24). Then in
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(3.1.10), we may absorb the term C, [ |Vu — VU|? into the term ¢;d(u, M)?, giving
us

Cy

5 d(u, M)* < 6(u).

Given this control, we may bootstrap using (3.1.11) to gain control of the stronger

distance:

%/WU — VU < §(u) + Cs d(u, M)* < Co(u).

Similarly, if u satisfies the second condition in (3.3.24), then we may absorb the term

C; d(u, M)? into the term § [ |Vu — VU in (3.1.11), giving us

1

3.4 Proof of the main result

Corollary 3.3.3 implies Theorem 3.1.1 for the functions u € WP that satisfy (3.1.8)
and that lie in one of the two regimes described in (3.1.12). Therefore, to prove
Theorem 3.1.1, it remains to understand the case when the terms f Ay|[Vu—VU,Vu—
VU] and [ |Vu — VU|P are comparable and to remove the assumption (3.1.8). The
following proposition accomplishes the first.

Proposition 3.4.1. Let u € W' be a function satisfying (3.1.8), and let U € M be

a function where the infimum in (3.1.7) is attained. If

J Ay[Vu = VU, Vu = VU] _ c. (5.41)
[Vu - VU

c. <
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where ¢, and C, are the constants from the Corollary 3.3.3, then

/ Vu— VUP < C(u) + CIUN o — Ul (3.4.2)

for a constant C' depending only on p and n.

Proof. Suppose u lies in the regime (3.4.1). Then we consider the linear interpolation
u :=tu+ (1 —t)U and notice that

[ Av[Vu, = VU, Vu, = VU] _ £ [ Ay[Vu— VU, Vu— VU]
[Vu, — VU t# [|Vu— VU

> 27 P,

Hence, there exists t, sufficiently small, depending only on p and n, such that t2~Pc, >

C..

We claim that we may apply Corollary 3.3.3 to u;,. This is not immediate because U
may not attain the infimum in (3.1.7) for w,;,. However, each step of the proof holds
if we expand wu;, around U. Indeed, keeping the previous notation of u — U = ep
with [ |[Ve|P = 1, we have u,, — U = t,ep. so the orthogonality constraints in
(3.2.24), (3.2.25), and (3.2.21) still hold for u;, and U by simply multiplying through
by . (this changes the constants by a factor of , but this does not affect the proof).
Furthermore, (3.1.8) is used in the proofs of Proposition 3.1.6 and (3.3.13) to ensure
that ¢ is a small as needed to absorb terms. Since t, < 1, if ¢ is sufficiently small then
so is t,e. With these two things in mind, every step in the proof of Proposition 3.1.6,

and therefore Corollary 3.3.3 goes through for wu,, .

Corollary 3.3.3 then implies that

t{f/|Vu—VU|p:/|Vut* — VU < C5(uy,).
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Therefore, (3.4.2) follows if we can show

S(uz,) < Co(u) + C|U|E !

w— Ul (3.4.3)

In the direction of (3.4.3), by convexity and recalling that |VU|» = S||U||x =

S|l =, we have
6(up,) = / t.Vu+ (1 —t,)VUP — S [[tau+ (1 —t)U|" .
< t*/IVu!”+ (1-— t*)/\VUV’ — SP|[teu+ (1=t YU, (3.4.4)

= .0(u) + 8 (1], — [t + (L= £)U[2,.)
Also, by the triangle inequality,
[t(u = U) + Ul7,- = (10l = lt(w = U)ll )",
and by the convexity of the function f(z) = |z|F, f(z 4+ y) > f(2) + f'(2)y, and so
(10N = (e = U)o )P 2 U e = PIU NG [l = Ull e

These two inequalities imply that

U1, = llteu+ (L= t)UII,. < plIUIT,:

u—UllL.

Combining this with (3.4.4) yields (3.4.3), concluding the proof. O
From here, the proof of Theorem 3.1.1 follows easily:

Proof of Theorem 3.1.1. Together, Corollary 3.3.3 and Proposition 3.4.1 imply the
following: there exists some constant C' such that if v € W'? satisfies (3.1.8), then

there is some U € M such that

u = Ul

Lr*

/ Vu— VUP < Co(u) + C|U|P
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Therefore, we need only to remove the assumption (3.1.8) in order to complete the
proof of Theorem 3.1.1. However, in the case where (3.1.8) fails, then trivially,
1
inf{||Vu — VU||Z, : U € M} < |[|Vullj, < —d(u).
0

Choosing the constant to be sufficiently large, Theorem 3.1.1 is proven. O

We now prove Corollary 3.1.2 using the main result from [CEMP09|, which we recall
here:
Theorem 3.4.2 (Cianchi, Fusco, Maggi, Pratelli, [CFMP09|). There exists C' such
that

A lull e < CUVulle — Sl o), (3.4.5)

v = [l

where A(u) = inf {|ju — U||1£p/

p* (3—|—4p — 3”“)2.

n

ulff. U € M, [|U

p*} and ¢ =

Proof of Corollary 3.1.2. As before, if (3.1.8) does not hold, then Corollary 3.1.2
holds trivially by simply choosing the constant to be sufficiently large. Now suppose
u € W' satisfies (3.1.8). There are two obstructions to an immediate application of
Theorem 3.4.2. The first is the fact that the deficit in (3.4.5) is defined as ||Vu||» —
Slull e+, while in our setting it is defined as ||Vull7, — SP|ul|”,.. However, this is

easy to fix. Indeed, using the elementary inequality
a? -t >a—0b Ya>b>1,

we let a = |Vul|z»/S||ul| 1+ and b =1 to get

[Vuller = Sl _ IVullzy = SPllullf, 1 [Vl = S7lullf,-
Sllull - SPlull, 10 IVullZs ’
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where the last inequality follows from (3.1.8). Therefore, up to increasing the con-
stant, (3.4.5) implies that

/ d(u)

w227
Au) _CHVUHIL)IJ. (3.4.6)

The second obstruction to applying Theorem 3.4.2 is the fact that (3.4.5) holds for
the infimum in A(u), while we must control ||u — U||;,+ for U attaining the infimum

in (3.1.7). To solve this issue it is sufficient to show that there exists some constant
C = C(n,p) such that

t/W—u ffZ/mf}

where U attains the infimum in (3.1.7). The proof of this fact is nearly identical

P Scinf{Hu—U roiUeM, /yU

(with the obvious adaptations) to that of part (2) of Proposition 3.3.1, with the only
nontrivial difference being that one must integrate by parts to show that the analogue

of first term in (3.3.8) goes to zero.

Therefore, (3.4.5) implies

(L= U)o 0
full Wl

where U € M attains the infimum in (3.1.7). Paired with Theorem 3.1.1, this proves

Corollary 3.1.2 with ¢ = ('p. ]

3.5 Spectral Properties of Ly

In this section, we give the proofs of the compact embedding theorem and Sturm-
Liouville theory that were postponed in the proof of Proposition 3.2.1. As in Proposi-

tion 3.2.1, by scaling, it suffices to consider the operator £ = Ly where U = Uy ;.
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3.5.1 The discrete spectrum of L

Given two measurable functions wp,w; : 2 — R, let
W, wo, wi) == {g : [19llwr2@uown) < 00},

where || - |lw12(0wow) i the norm defined by

1/2
191l ) = < [+ | |Vg|2w1) . (3.5.1)
Q Q

The space W()I’Q(Q,wo,wl) is defined as the completion of the space C§°(£2) with
respect to the norm || - |ly1.2(Quwow ). The following compact embedding result was
shown in [Opi88|:

Theorem 3.5.1 (Opic, [Opi88|). Let Z = Wol’z(]R”,wo,wl) and suppose

w; € L. and w;1/2 c L, (3.5.2)
1 =0,1. If there are local compact embeddings
WY2( By, wy,w1) CC L*(By,wp), k €N, (3.5.3)
where By = {z : |z| < k}, and if
]}LIEO sup { ||l 2@ Brwo) : v € Z, |lullz <1} =0, (3.5.4)
then Z embeds compactly in L*(R™, wy).
We apply Theorem 3.5.1 to show that the space
X =W (R, U =2 |VU[P?), (3.5.5)

embeds compactly into L?(R", UP"~2).
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Corollary 3.5.2. The compact embedding X CC L*(R™, UP"~2) holds, with X as in
(3.5.5).

Proof. Let us verify that Theorem 3.5.1 may be applied in our setting, taking
wo=UP"2  w =|VUP™

In other words, we must show that (3.5.2)—(3.5.4) are satisfied. A simple computation
verifies (3.5.2). To show (3.5.3), we fix § > 0 small (the smallness depending only on

n and p) and show the three inclusions below:

(1) 2) (3)
WhH(B,, we,wy) C W20/ (B )y cC L*(B,) C L*(B,,w).

Since (2n/(2+4n))* = 2, the Rellich-Kondrachov compact embedding theorem implies
(2), while the inclusion (3) holds simply because U?" =2 > ¢, ,,, for x € B,. In the

direction of showing (1), we use this fact and Holder’s inequality to obtain

p*—2|u|2.

By By B

(3.5.6)

Furthermore, since
|VU]p72 =C(1+ |x|p/)fn(pf2)/p|x|(pf2)/(p71) > cn,p7r|x|(p*2)/(p*1) for = € B,,

Holder’s inequality implies that

</ |Vu|2(n+5)/(n+2))(N+2)/(n+5) < </ |x\(p2)/(p1)]Vu]2>(/ |x]5)(2_6)/(n+6)
B 5. .

By
(3.5.7)
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where = (i%f) (z—ig) (2£2). Then the inclusion (1) follows from (3.5.6) and (3.5.7),

and thus (3.5.3) is verified.

To show (3.5.4), let u; be a function almost attaining the supremum in (3.5.4), in

other words, for a fixed n > 0, let uy be such that u, € X, ||ux||x <1, and

sup {HUHLQ(R"\Bk,wo) tu€ X, HUHX < 1} < ||uk||L2(R"\Bk,wo) +n.

By mollifying « and multiplying by a smooth cutoff n € C§°(R"™\ By), we may assume
without loss of generality that u, € C§°(R™\By). Recalling that U = U; with U, as
in (3.1.3), we have

/ Up*—zui :/ K0(1+|I’p’)f(p*72)(n—p)/pui < 2,%0/ \x|*(p**2)("*p)/(p*1)ui
R™\ By, R™\ By, R™\ B,
(3.5.8)

for k > 2. We use Hardy’s inequality in the form

/ |z|*u? SC/ |2|*T2 | Vul? (3.5.9)
n Rn

for u € C3°(R™) (see, for instance, [Zyg02]). Applying (3.5.9) to the right-hand side
of (3.5.8) implies
/ |$‘*(p*72)(nfp)/(pfl)uz <C |x‘f(p*72)(nfp)/(p71)+2|Vuk|2 (3.5.10)
R7\ By, R\ By,
and (3.5.8) and (3.5.10) combined give
/ UP =22 < ¢ [~ =D -D /-2 7y, 2
R"\ By — JrmB,

_ c/ (2|7 | DD/ g
R7\ By,
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<cw [ Upvp,
R\ By,
where the final inequality follows because
VU P2 > Q|| @20=D/G=1 for 2 € R"\B,.
Thus
/ U 2uj < Ck ™ lug|x,
R™\ By,

and (3.5.4) is proven. O

Thanks to the compact embedding X CC L?(R",wp), we can now prove the following
important fact:

Corollary 3.5.3. The operator L has a discrete spectrum {a;}$2,.

Proof. We show that the operator £ : L2(UP"~%) — L*(U? ~?) is bounded, com-
pact, and self-adjoint. From there, one applies the spectral theorem (see for instance

[Eva9d8]) to deduce that £ has a discrete spectrum, hence so does L.

Approximating by functions in C§°(R™), the Poincaré inequality (3.3.9) holds for all
functions ¢ € X, with X as defined in (3.5.5). Thanks to this fact, the existence and
uniqueness of solutions to Lu = f for f € L*(UP"~2) follow from the Direct Method,

so the operator £7! is well defined.
Self-adjointness is immediate. From (3.3.9) and Hoélder’s inequality, we have
clull < [ U2Vl < [ ATwT0] < JullCul -2y

This proves that £7! is bounded from L*(UP ~2) to L*(U? ~?), and by Corollary 3.5.2

we see that £7! is a compact operator. ]
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3.5.2 Sturm-Liouville theory

Multiplying by the integrating factor r"~! the ordinary differential equation (3.2.12)

takes the form of the Sturm-Liouville eigenvalue problem
Lf+af=0 on [0,00), (3.5.11)
where
Lf =[P - @f

with
P(r)=(p—1)|U'P 2",

Q(r) = pr"?|U' P2, (3.5.12)
w(r) = UP ~2pn 1,
This is a singular Sturm-Liouville problem; first of all, our domain is unbounded, and
second of all, the equation is degenerate because U’(0) = 0. Nonetheless, we show
that Sturm-Liouville theory holds for this singular problem.

Lemma 3.5.4 (Sturm-Liouville Theory). The following properties hold for the sin-

gular Sturm-Liouville eigenvalue problem (3.5.11):

1. If f1 and fy are two eigenfunctions corresponding to the eigenvalue o, then

fi1 =cfs. In other words, each eigenspace of L is one-dimensional.
2. The ith eigenfunction of L has v — 1 interior zeros.

Note that L has a discrete spectrum because £ does (Corollary 3.5.3), and that

eigenfunctions f of L live in the space

Y = Wy?([0,00), U7 2" L |U/ P20,
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using the notation introduced at the beginning of Section 3.5.1. In any ball Bg
around zero, the operator L is degenerate elliptic with the matrix A bounded by an
Ay-Muckenhoupt weight, so eigenfunctions of £ are Holder continuous; see [FKS82,
Gut89]. Therefore, eigenfunctions of L are Holder continuous on [0, 00).

Remark 3.5.5. The function P(r) as defined in (3.5.12) has the following behavior:
P(r) ~ pp=2@=Dtn=1 - ip [0, 1],
P(r) = r(= /=D g5 1 5 0.
In particular, the weight |U’[P=2r"~! &~ r(*=D/(P=1) goes to infinity as r — oo, which
implies that floo |f'|?dr < oo for any f €Y.

In order to prove Lemma 3.5.4, we first prove the following lemma, which describes
the asymptotic decay of solutions of (3.5.11).
Lemma 3.5.6. Suppose f € Y is a solution of (3.5.11). Then, for any 0 < < %,

there exist C and ro such that
f(r)<Cr? and |f'(r)] < Cr 77!
forr > .

Proof. Step 1: Qualitative Decay of f. For any function f € Y, f(r) — 0 as r — oc.

Indeed, near infinity, |U’[P~2rP~! behaves like Cr? where 7 := ;T_i > 1. Then for any

r, s large enough with r < s,

() — F(s)] < / i < ( / " rwear) / Toa)” 3513)
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by Holder’s inequality. As both integrals on the right-hand side of (3.5.13) converge,
for any € > 0, we may take r large enough such that the right-hand side is bounded

by ¢, so the limit of f(r) as r — oo exists.

We claim that this limit must be equal to zero. Indeed, since Y is obtained as a
completion of C§°, if we apply (3.5.13) to a sequence f;, € C§°(]0,00)) converging in

Y to f and we let s — 0o, we get

< ([ srea) ([T ea)”

thus, by letting £ — oo,

o< ([ rorea) ([T o)

Since the right-hand side tends to zero as r — oo, this proves the claim.

Step 2: Qualitative Decay of f'. For r > 0, (3.5.11) can be written as

L'f=f"+af +bf=0 (3.5.14)
where
P’ —
a= y2l and b= w.

Fixing € > 0, an explicit computation shows that there exists ry large enough such

that

and
p 1 (14¢e)eno
S PR




for r > ry, where ¢, , is a positive constant depending only on n and p. Asymptoti-

cally, therefore, our equation behaves like

1" n_lf/ <Cpna K )f
—_— — = — =0.
f+p—1r+ P’ p—1

If f is a solution of (3.5.11), then squaring (3.5.14) on [rg, c0), we obtain

|f//‘2§2(<g:1+5>£) +2<<(1+€)/Cp,na+ 2 >f) SO(‘f|2+|f/|2)

r TP p—1 r2

Integrating on [R, R + 1] for R > ry implies

R+1 R+1 R+1
/ R <C / Fe / 5P
R R R

Step 1 and Remark 3.5.5 ensure that both terms on the right-hand side go to zero.
Applying Morrey’s embedding to f'nr, where ng is a smooth cutoff equal to 1 in
[R, R+ 1], we determine that || f'|| L ((r,r+1)) — 0 as R — oo, proving that f’(r) — 0

as r — OoQ.

Step 3: Quantitative Decay of f and f'. Standard arguments (see for instance [CH89,
VI.6]) show that, also in our case, the ith eigenfunction f of L has at most i—1 interior
zeros; in particular, f(r) does not change sign for r sufficiently large. Without loss

of generality, we assume that eventually f > 0.

Taking 7o as in Step 2 and applying the operator L’ defined in (3.5.14) to the function

g=Cr=f+c c>0, forr>ry gives

s (A=) -1) 5, ((I+e)gua  p s
Lg S CB(B+ 172 = 2202 (s —p_l)m p-2 1 ()
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(1—5)(n—1)5+
p—1 TP

(1+ 5)cp7na> N (1+ 5)Cp,n04€
' r@3p=2)/(p-1)

< Cr 2 (B(s+1) -

For any 0 < < (n—p)/(p—1), o may be taken large enough (and therefore ¢ small
enough) such that

L'g<0 on [rg,00),
so ¢ is a supersolution of the equation on this interval.

Choosing C' = f(ro)rf and ¢ > 0, then (g — f)(ro) > 0 and (g — f)(r) — ¢ > 0 as
r — 00. Since L'(g — f) < 0, we claim that g — f > 0 on (ry, 00). Indeed, otherwise,

g — f would have a negative minimum at some r € (ry, o0), implying that

(g=/)r) <0, (9=f)(r)=0, and (9—f)"(r) 20,

forcing L'(g — f) > 0, a contradiction. This proves that 0 < f < g on [rg,c0), and

since ¢ > 0 was arbitrary, we determine that f < Cr=" on [rg, c0).

We now derive bounds on f’: by the fundamental theorem of calculus and using

(3.5.14) and the bound on f for r > ry, we get

rol=| [ S [ rvel e

< 15 + 5o < o

C
< =
—r b+2

+C

[]

With these asymptotic decay estimates in hand, we are ready to prove

Lemma 3.5.4.
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Proof of Lemma 3.5.4. We begin with the following remark about uniqueness of so-

lutions. If f; and f, are two solutions of (3.5.11) and

fi(ro) = fa(ro), f{(ro) = fé(ro)

for some ro > 0, then f; = f; on [0,00). Indeed, for r > 0, we may express our
equation as in (3.5.14). As a and b are continuous on (0,00), the standard proof of
uniqueness for (non-degenerate) second order ODE holds. Once f; = f2 on (0, 00),

they are also equal at » = 0 by continuity.

Proof of (1). Suppose « is an eigenvalue of L with f; and f5 satisfying (3.5.11). In
view of the uniqueness remark, if there exists ry > 0 and some linear combination f
of fi and fs such that f(rg) = f'(ro) = 0, then f is constantly zero and f; and f, are

linearly dependent. Let

W) = W(fi, f)(r) = det { j% 2 } (r)

denote the Wronskian of f; and fo. This is well defined for r > 0 (since f; and fo
are C? there) and a standard computation shows that (PW)" = 0 on (0, 00): indeed,

since W' = fify — fofi, we get
(PW) = PW'+ P'W = P(fify — fof!) + P'(fufs = fo 1),
and by adding and subtracting the term (cw — Q) f1 fo it follows that

(PW) = fi(Pfy + P'fy + (aw = Q) f2) = fa (Pf + P'f; + (aw — Q) 1) = 0.
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Thus PW is constant on (0,00). We now show that that PW is continuous up to
r =0 and that (PW)(0) = 0. Indeed, (3.5.11) implies that

(Pfi/), = (Q — aw) f;

for i = 1,2. The right-hand side is continuous, so (Pf/)" is continuous, from which it

follows easily that PW is also continuous on [0, 00).

To show that (PW)(0) = 0, we first prove that (Pf/)(0) = 0. Indeed, let ¢; :=
(Pf1)(0). If ¢; # 0, then keeping in mind Remark 3.5.5,

& &

B~ 7B for r < 1, (3.5.15)

=

=
2
.

therefore

f 1p—2| £12, m—1 f (p—2)/(p—1)+n—1| 1|2 f dr
- =1y > p=2)/(p=1)+n~ > -
/0 ’U | ‘f | r d,r ~ /0 r |f | d,r ~ /0 r(p—Q)/(p—l)—l-’n—l +OO7

contradicting the fact that f € Y. Hence, we conclude that lir%(P fH(r) = 0, and
T—

using this fact we obtain
(PW)(0) = lim (Pfif = Pfyf1) = lim (Pf{) lim f — lim (P f3) lim f; = 0.
r—0 r—0 r—0 r—0 r—0

Therefore (PW)(r) = 0 for all r € [0,00). Since P(r) > 0 for r > 0, we determine
that W(r) = 0 for all » > 0. In particular, given o € (0,00), there exist ¢;, ¢y such

that ¢? + 3 # 0 and

c1fi(ro) + cafa(ro) =0,

c1f1(ro) + c2f3(ro) = 0.
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Then f := ¢1f1 + cafs solves (3.5.11) and f(rg) = f'(ro) = 0. By uniqueness, f =0

for all t € (0,00), and so f; = cfs.

Proof of (2). Thanks to our preliminary estimates on the behavior of f; at infinity,

the following is an adaptation of the standard argument in, for example, [CH89, VI1.6].

Suppose that f; and f, are eigenfunctions of L corresponding to eigenvalues oy and

a respectively, with a; < as, that is,

(Pf)) = Qfi + acswf; = 0.

Our first claim is that between any two consecutive zeros of f; is a zero of f5, including

zeros at infinity. Note that

(PW)' = P[fLfy = fof{] + P'lfifs — fofi]
= [il(Pfy) + (a2 = Q) fo] = L[(Pf1) + (caw — Q) fi] + (1 — ax)w f1 fo

= (a1 — a)wfifa. (3.5.16)

Suppose that f; has consecutive zeros at r; and ry, and suppose for the sake of
contradiction that fs has no zeros in the interval (11, 7r2). With no loss of generality,
we may assume that f; and f, are both nonnegative in [rq, rs).
Case 1: Suppose that o < co. Then integrating (3.5.16) from r; to ry implies
T2
0> (Ckl — CYQ)/ wf1f2 = (PW)(TQ) — (PW)(Tl)
T1

= P(rg)[f1(r2) fo(ra) — fi(re) f2(r2)] — P(r)[f1(r1) fo(r1) — fi(r1) fa(r1)]
= —P(ra) fi(r2) f2(r2) + P(r1) f1(r1) fa(r1).
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The function f; is positive on (r1,72), so fi(r1) > 0 and f{(r2) < 0. Also, since
fi(r1) = fi(ra) = 0 we cannot have f{(r;) = 0 or fi{(re) = 0, as otherwise f; would
vanish identically. Furthermore, fs is nonnegative on [ry, rs], so we conclude that the
right-hand side is nonnegative, giving us a contradiction.

Case 2: Suppose that ro = co. Again integrating the identity (3.5.16) from 7 to oo,

we obtain

0> (Oél — 012) /OO Wflfg = TIL%(PW)(T) — (PW)(T‘l)

1

= lim [P(r)(f1(r) f5(r) = fi(r) f2(r))] = P(r1)(fi(r0) fa(r1) = fi(r) fa(r)).
(3.5.17)

We notice that Lemma 3.5.6 implies that

lim [P(r)(f1(r) f5(r) = fi(r) f2(r))] = 0.

T—00

Indeed, taking 57t < 6 < 7%,

[fife = Fufal VAN + AN < Cr7227h

and, recalling Remark 3.5.5,
P(r) < C,n(nfl)/(pfl)’

implying that
Plfifs= fifs] < Cr7 =0,
where vy = =26 — 1 + =2 < 0. Then (3.5.17) becomes

n—
p—

0> —P(r1) fi(r1) f2(r1).

105



Since f{(r1) > 0 and fa(r;) > 0 (see the argument in Case 1), this gives us a contra-

diction.

We now claim that f; has a zero in the interval [0,7;), where r; is the first zero of
f1. Again, we assume for the sake of contradiction that f, has no zero in this interval
and that, without loss of generality, f; and f; are nonnegative in [0, r;]. Integrating

(3.5.16) implies
0> (Oél — 042) /Orl wf1f2 = PW(Tl) — PW(O) (3518)

The same computation as in the proof of Part (1) of this lemma implies that

(PW)(0) =0, so (3.5.18) becomes

0> —P(r1) fi(r1) fa(r1),

once more giving us a contradiction.

The first eigenfunction of an operator is always positive in the interior of the domain,
so the second eigenfunction of L must have at least one interior zero by orthogonality.
Thus the claims above imply that the th eigenfunction has at least ¢ —1 interior zeros.
On the other hand, as mentioned in the proof of Lemma 3.5.6, the standard theory
also implies that the ith eigenfunction has at most ¢ — 1 interior zeros, and the proof

is complete. O
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Chapter 4

Strong form stability for the Wulff inequality

4.1 Overview

In this chapter,! we prove a strong form stability result for the Wulff inequality
F(E) > n|K|Y" BN (4.1.1)

Let us recall from the introduction that the (anisotropic) surface energy of a set of

finite perimeter £/ C R" is defined by

F(E) = . f(ve(e)) dH" (z)

given a convex positively 1-homogeneous surface tension f : R™ — [0, 400) that is
positive on S"!. We also recall that equality is attained in (4.1.1) if and only if F is

a translation or dilation of the Wulff shape

K = m {reR":z-v<f(v)}.

vesn—1

Given a surface tension f, the gauge function f, : R™ — [0, 4+00) is defined by

fulz) =sup{z-v: f(v) <1}
The gauge function provides another characterization of the Wulff shape: K = {x :

fe(z) < 1}

IThis chapter is based on work originally appearing in [Neul6].
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4.1.1 Statements of the main theorems

We prove a strong form of the quantitative Wulff inequality along the lines of (1.2.6),
improving (1.2.4) by adding a term to the left hand side that quantifies the oscillation
of 0*FE with respect to K. We define the anisotropic oscillation index by
. 1 r—y . 1/2
8(E) = min <W [ 1e@)  vela) - s an <x>) .
(4.1.2)
The following theorem is a strong form of the quantitative Wulff inequality that holds

for an arbitrary surface tension.

Theorem 4.1.1. There exists a constant C' depending only on n such that
ap(E)? + Bp(BE)™ ™) < C§4(E) (4.1.3)

for every set of finite perimeter E with 0 < |E| < occ.

As in (1.2.4), the constant is independent of f. We expect that, as in (1.2.6), the
sharp exponent for §¢(FE) in (4.1.3) should be 2. With additional assumptions on
the surface tension f, we prove the stability inequality in sharp form for two special
cases.
Definition 4.1.2. A surface tension f is A-elliptic, A > 0, if f € C*(R™\ {0}) and
2
)
T— (17— )—
w|/ vl

(V2 f()r) -7 > %

forv,m € R™ with v # 0.

This is a uniform ellipticity assumption for V2f(v) in the tangential directions to v.

If f is A-elliptic, then the corresponding Wulff shape K is of class C? and uniformly
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convex (see [Schl3|, page 111). When F is a surface energy corresponding to a A-
elliptic surface tension, the following sharp result holds. The constant depends on
my and My, a pair of constants defined in (4.2.2) that describe how much f stretches
and shrinks unit-length vectors.
Theorem 4.1.3. Suppose f is a A-elliptic surface tension with corresponding surface
energy F. There exists a constant C depending on n,\,mg/M;, and ||V f|co@mr)
such that

ap(E) 4 By (E)* < C84(E) (4.1.4)

for any set of finite perimeter E with 0 < |E| < oo.

The second case where we obtain the strong form quantitative Wulff inequality with
the sharp power is the case of a crystalline surface tension.

Definition 4.1.4. A surface tension f is crystalline if it is the mazximum of finitely
many linear functions, in other words, if there exists a finite set {xj}év:l C R™\

{0}, N € N, such that

_ . n—1
flv) = 121%}5\/{% v}  forallve S".

If f is a crystalline surface tension, then the corresponding Wulff shape K is a convex
polyhedron. In dimension two, when f is a crystalline surface tension, we prove the
following sharp quantitative Wulff inequality.

Theorem 4.1.5. Let n = 2 and suppose f is a crystalline surface tension with

corresponding surface energy F. There exists a constant C' depending on [ such that
af(E)* + Br(E)* < Coy(E)
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for any set of finite perimeter E with 0 < |E| < oco.

Some remarks about the definition of the anisotropic oscillation index [f in (4.1.2)
are in order. The oscillation index £ (£) in (1.2.5) measures oscillation of the reduced
boundary of a set F with respect to the boundary of the ball. Indeed, the quantity
p1(F) is the integral over 0*E of the Cauchy-Schwarz deficit 1 — ﬁ - vg(x), which
quantifies in a Euclidean sense how closely vg(x) aligns with %

To understand (4.1.2), we remark that f and f, satisfy a Cauchy-Schwarz-type in-

equality called the Fenchel inequality, which states that

e < f(ve(r)). (4.1.5)

Just as (1 (F) in (1.2.5) quantifies the overall Cauchy-Schwarz deficit between oy and
vp(x), the term f;(F) is an integral along 0* E of the deficit in the Fenchel inequality.
In Section 4.2.2, we show that f(vg(x)) =y - ve(z) for y € 0K if and only if vg(z)
is normal to a supporting hyperplane of K at y. In this way, 5;(F) quantifies how
much normal vectors of E align with corresponding normal vectors of K, and thus

provides a measure of the oscillation of the reduced boundary of E with respect to

the boundary of K. Note that in the case f constantly equal to one, 3; agrees with
b

It is not immediately clear that (4.1.2) is the appropriate analogue of (1.2.5) in the
anisotropic case. Noting that z — (x—y)/f.(x —y) is the radial projection of R™\ {0}

onto 0K + y, one may initially want to consider the term

* : 1 r—Yy 2 n—1 2
B7(E) = min <2n]K]1/n\E\1/n’ /aE ‘”E(‘” N VK(f*(x - y))‘ a <x)>
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_ . 1 r—y n—1 2
= ek <n|K|1/n|E|l/n’ /M L —vp(z)- VK(f*(x - y)> dH (x)) '
(4.1.6)

In Section 4.6, however, we show that such a term does not admit any stability result
for general f. Indeed, in Example 4.6.1, we construct a sequence of crystalline surface

tensions that show that there does not exist a power ¢ such that
BH(E)” < C(n, f)és(E) (4.1.7)

for all sets E of finite perimeter with 0 < |EF| < oo and for all F. Furthermore,
Example 4.6.2 shows that even if we restrict our attention to surface energies which
are -\ convex, a weaker notion of M-ellipticity introduced in Definition 4.1.6, an
inequality of the form (4.1.7) cannot hold with an exponent less than o = 4. The
examples in Section 4.6 illustrate the fact that, in the anisotropic case, measuring
the alignment of normal vectors in a Euclidean sense is not suitable for obtaining
a stability inequality for general f; it is essential to account for the anisotropy in
this measurement. The anisotropic oscillation index [;(E) in (4.1.2) does exactly

this.

In the positive direction, when the surface tension f is v-A convex, ﬂ;é(E) is controlled
by B;(E). As one expects from Example 4.6.2, the exponent in this bound depends
on the y-\ convexity of f. We now define -\ convexity.

Definition 4.1.6. Let f : R® — R be a nonnegative, convex, positively one-
homogeneous function. Then we say that f is v-\ convex for v > 0, A > 0 if

- mp
e e
w1/ vl

24y

Fw )+ =) =2/ () >

||

(4.1.8)

for all v, € R™ such that v # 0.

111



Dividing (4.1.8) by 72, the left hand side gives a second difference quotient of f.
While M-ellipticity assumes that f € C*(R" \ {0}) and that its second derivatives in
directions 7 that are orthogonal to v are bounded from below, -\ convexity only
assumes that the second difference quotients in these directions have a bound from
below that degenerates as 7 goes to 0. Of course, a 0-\ convex surface tension f with
f € C3(R™\{0}) is A-elliptic. The 7 norms f,(z) = (31, |z:[?)V/? for p € (1, 00) are
examples of y-A convex surface tensions; see Section 4.6. For a -\ convex surface
tension f, the following theorem shows that 3y controls /3.

Theorem 4.1.7. Let f be a v-\ convex surface tension. Then there exists a constant
C' depending on ~y, A, and mys/M; such that

v/4
5;(E)(2+7)/2 <C (%) Br(E).

for any set of finite perimeter E with 0 < |E| < oco.

As in Theorem 4.1.3, the constant depends on my and My which are defined in (4.2.2).
As an immediate consequence of Theorem 4.1.7, Theorem 4.1.1, and Theorem 4.1.3,
we have the following result.

Corollary 4.1.8. If f is a v-A convex surface tension, then there exists a constant

C' depending on n,v, A, and ms/M;y such that

P(E) yn/(n+1)
2 * o
ap(E)" + G(E)” <C (W) 0f(E)

for any set of finite perimeter E with 0 < |E| < oo, where 0 = 2n(2+v)/(n+ 1).

If f is a M-elliptic surface tension, then there exists a constant C depending on
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n, v, A,y /My, and ||V fllcoor) such that
ap(E)* + Bi(E)* < Co(E)

for any set of finite perimeter E with 0 < |E| < co.

4.1.2 Discussion of the proofs

At the core of the proof of (1.2.6) are a selection principle argument, the regularity
theory of almost-minimizers of perimeter, and an analysis of the second variation of
perimeter. Indeed, with a selection principle argument in the spirit of the proof of
(1.2.3) by Cicalese and Leonardi in [CL12]|, Fusco and Julin reduce to a sequence {F}}
such that each F} is a (A, rp)-minimizer of perimeter (Definition 4.4.4) and F; — B
in L'. Then, by the standard regularity theory, each set F; has boundary given by a
small C'! perturbation of the boundary of the ball. This case is handled by a theorem
of Fuglede in [Fug89|, which says the following: Let E be a nearly spherical set, i.e., a

set with barycenter bar E = |E|™! [, dz at the origin such that |E| = |B| and
OF ={z+u(x)x:xz € OB}

for u : OB — R with u € C*(9B). There exist C' and ¢ depending on n such that if
|u|lc10m) < €, then

HUH%H(@B) < Co(E). (4.1.9)

The proof of (4.1.9) makes explicit use of spherical harmonics to provide a lower bound
for the second variation of perimeter. It is then easily shown that oy (E) + f1(E) <

C||lu|| g1 (s8), and therefore (4.1.9) implies (1.2.6) in the case of nearly spherical sets.
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Indeed, a1 (E) < CpB;(F) as shown in Proposition 4.2.4, and in the case of nearly
spherical sets, the oscillation index f3; is essentially an L? distance of gradients: if
w(z) =z + u(zr)z, then

~ x(1+u(z)) + Vu(x)
VO a Ve
where the Vu is the tangential gradient of u. Then

vp(w(z))

n|K|ﬁ1(E)2§/ 1 — vp(w) - L g

OF |w|

= V(1 +u)? + | Va2 — (1 +u)dH"
oB

1 _
_ /83 5| Vul® + O(Vul?) di"™" < lullfom.

In each of Theorems 4.1.1, 4.1.3, and 4.1.5, at least one of the three key ingredients of
the proof of Fusco and Julin is missing. The proof of Theorem 4.1.1 uses a selection
principle to reduce to a sequence of (A, rg)-minimizers of F converging in L' to K.
However, for an arbitrary surface tension, uniform density estimates (Lemma 4.3.3)
are the strongest regularity property that one can hope to extract. We pair these

estimates with (1.2.4) to obtain the result.

The proof of Theorem 4.1.3 follows a strategy similar to that of the proof of (1.2.6) in
[FJ14]. If f is a A-elliptic surface tension, then (A, rp)-minimizers of the correspond-
ing surface energy JF enjoy strong regularity properties. Using a selection principle
argument and the regularity theory, we reduce to the case where OF is a small C*
perturbation of K. The difficulty arises, however, in showing the following analogue

of Fuglede’s result (4.1.9) in the setting of the anisotropic surface energy.
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Proposition 4.1.9. Let f be a \-elliptic surface tension with corresponding surface
energy F and Wulff shape K. Let E be a set such that |E| = | K| and bar E' = bar K,

where bar E = |E|™! fE:de denotes the barycenter of E. Suppose
OF = {z +u(x)vg(z) : x € 0K}

where u : 0K — R is in CY(OK). There exist C and ¢, depending on n,\, and

my /My such that if ||ul|crox) < €1, then

ull7 or) < COf(E). (4.1.10)

Again, my and M, are defined in (4.2.2). To prove (4.1.9), Fuglede shows that, due
to the volume and barycenter constraints respectively, the function w is orthogonal
to the first and second eigenspaces of the Laplace operator on the sphere. This
implies that, thanks to a gap in the spectrum of this operator, functions satisfying
these constraints satisfy an improved Poincaré inequality. Fuglede’s reasoning uses
that fact that the eigenvalues and eigenfunctions of the Laplacian on the sphere are

explicitly known.

The analogous operator on K arising in the second variation of F also has a discrete
spectrum, but one cannot expect to understand its spectrum explicitly. Instead, to
prove (4.1.9), we exploit (1.2.4) in order to obtain an improved Poincaré inequality

for functions v € H'(OK) satisfying the volume and barycenter constraints.

Then, as in the isotropic case, one shows that ay(E) 4 B¢(E) < Cllullgr k) for a
constant C' = C(n, ||V?f||cooxk)), and therefore (4.1.10) implies (4.1.4) for small C*

perturbations. Indeed, Proposition 4.2.4 implies that af(E) < C(n)Bs(E), while
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Br(E) < Cllullmox) by a Taylor expansion and a change of coordinates. The
computation is postponed until (4.4.16) as it relies on notation introduced in Sec-

tion 4.4.

The proof of Theorem 4.1.5 also uses a selection principle-type argument to reduce
to a sequence of almost-minimizers of F converging in L! to the Wulff shape. In
this case, a rigidity result of Figalli and Maggi in [FM11] allows us reduce to the
case where F is a convex polygon whose set of normal vectors is equal to the set of
normal vectors of K. From here, an explicit computation (Proposition 4.5.1) shows

the result.

4.1.3 Organization of the chapter

In Section 4.2, we introduce some necessary preliminaries for our main objects of
study. Section 4.3 is dedicated to the proof of Theorem 4.1.1, while in Sections 4.4
and 4.5 we prove Theorems 4.1.3 and 4.1.5 respectively. In Section 4.6, we consider
the term (7(E) defined in (4.1.6), providing two examples that show that one
cannot expect stability with a power independent of the regularity of f and proving

Theorem 4.1.7.

4.2 Preliminaries

Let us introduce a few key properties about sets of finite perimeter, the anisotropic

surface energy, and the anisotropic oscillation index ;.
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4.2.1 Sets of finite perimeter

Given an R"-valued Borel measure p on R, the total variation |p| of p on a Borel
set F is defined by
l(2) =sw { L (el 505 =0, JEB B}
jEN jEN
A measurable set £ C R" is said to be a set of finite perimeter if the distributional

gradient D1g of the characteristic function of E is an R"-valued Borel measure on R"

with [D1g|(R") < oc.

For a set of finite perimeter E, the reduced boundary 0*E is the set of points x € R"
such that |D1g|(B,(x)) > 0 for all » > 0 and

lim D1g(B,(x))

: n—1
D118, () exists and belongs to 5" . (4.2.1)

If x € O*FE, then we let —vp denote the limit in (4.2.1). We then call vg : 0*E —
S™=1 the measure theoretic outer unit normal to E. Up to modifying E on a set of
Lebesgue measure zero, one may assume that the topological boundary OF is the
closure of the reduced boundary 0*E. For the remainder of the chapter, we make this

assumption.

4.2.2 The surface tension and the gauge function

Throughout the chapter, we let

my = inf f(v), M; = sup f(v). (4.2.2)

vesSn—1 l/ESn71
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It follows that

1
— = inf f.(z), — = (7).
M Ll S D= sup f(a)

One easily shows that f(v) = sup{z-v:2 € K} and f.(r) = inf{\ : { € K}. This
also implies that B,,, C K C By, and so if [K| = 1, then m}|B| <1 < My|B].
As mentioned in the chapter overview, f and f, satisfy the Fenchel inequality (4.1.5)
for all z,v € R". We may characterize the equality cases in the Fenchel inequality:
for any v, - v = f.(z)f(v) if and only if v is normal to a supporting hyperplane of

K at the point € 0K. Indeed, v is normal to a supporting hyperplane of K at

f()
zeoK ifandonlyif v-(y—2z) <0 (sov-y <wv-zx)forall y € K. This holds if and
onlyif v-z=sup{y-v:y € K} = f(v). In particular, if z € 0*K, then f.(z) =1

and

fvk(x)) =z - vi(x). (4.2.3)

We may compute the gradient of f, at points of differentiability using the Fenchel

inequality. The gauge function f, is differentiable at zy € R™ if there is a unique

supporting hyperplane to K at 5 ( 5 € OK. For such an xg, let vy = I/K(f G )) eR"
be normal to the supporting hyperplane to K" at 72—, so {2 vy = f(vo) by (4.2.3).
We define the Fenchel deficit functional by G(z) = f(v0) f«(z) — x - vy. By the Fenchel

inequality, G(x) > 0 for all x and G(xy) = 0, so G has a local minimum at z, and

thus
0= VG(ZL‘()) = f(Vo)Vf*(ZE()) — ).
Rearranging, we obtain Vf.(xy) = 7oy The 1-homogeneity of f then implies
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that
f(Vfi(x)) =1. (4.2.4)
Furthermore, this implies that

X

i)

(alternatively, this follows from Euler’s identity for homogeneous functions). An

z-Vf(x)=x- VK< ) = fu(2) (4.2.5)

analogous argument ensures that
Vilk(z)) =2 (4.2.6)

for x € 0*K. Furthermore, using (4.2.5), we compute

. r  n-—1
div AOREACE (4.2.7)

4.2.3 Properties of oy, (5, and ¢

Using the divergence theorem, by approximation and the dominated convergence

theorem, and (4.2.7), we find that for any y € R",

r—y nl _ dz
/B*E folz —y) ve() dit = 1)/Ef*<m —y)

We may then write
F(E) — (n— 1)y (E)

E) = 4.2.
ﬂf( ) n|K|1/n|E|1/n/ ) ( 8)
where v¢(E) is defined by
dx
ve(E) = sup/ T a— 4.2.9
AEV = ) T 29
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The supremum in (4.2.9) is attained, though perhaps not uniquely. If y € R" is a

9= e

then we call y a center of E, and we denote by yp a generic center of £. The Wulft

point such that

shape K has unique center yx = 0. Indeed, take any y € R", y # 0, and recall that
K ={f.(z) < 1}. Then

/fdw /f (x—y /fdw K+yf:i(:;)

d
_/ —/ * >/ 1dx—/ ldz = 0.
K\(K +y) f*( ) Sk @) 7 iy (K+y)\K

A similar argument verifies that if |E| = | K|, then

Moreover, (n — 1)y¢(K) = F(K) = n|K].
The following continuity properties of F and v, will be useful.
Proposition 4.2.1. Suppose that {E;} is a sequence of sets converging in L' to

a set E, and suppose that {f’} is a sequence of surface tensions converging locally

uniformly to f, with corresponding surface energies {F;} and F.
(1) The following lower semicontinuity property holds:

F(E) < liminf F;(E;).

_]—)OO

2) The function defined in (4.2.9) is Holder continuous with respect to L' con-
(2) f vy defi (4.2.9) D

vergence of sets with Holder exponent equal to 1/n'. In particular,

()~ 5P < Ly pary
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for any two sets of finite perimeter £, F C R™. Moreover,
lim 53 (Ej) = ¢ (E).

Proof. Proof of (1): From the divergence theorem and the characterization f(v) =
sup{z - v : f.(z) < 1}, one finds that the surface energy of a set E is the anisotropic
total variation of its characteristic function 15:

Fi(E;) = TVys(1g,) := sup {/ divTde | T € CHR",R"), fi(T) < 1}. (4.2.11)

Let T € C}(R",R") be a vector field such that f,(T) <1 for all z € R". Then,

/diVTd:L‘ = lim [ divTdz = lim ||f(T)]| o ®n) / div Sj dz < liminf F;(E;),

Jj—r00 E; E; Jj—r00

where we take S; = T/||f{(T)|| Lo ®n). Taking the supremum over all ' € C;(R",R")

with f.(T) < 1, we obtain the result.

Proof of (2): By (4.2.9),

(E) /f — Yr) /f _/EAFﬁ'

Letting 7 be such that [rK| = |EFAF| and recalling (4.2.10), we have

dx
[ S —_
K n—1 e
T ; . ik _ Ml g
n—1 n—1 n —

Thus v¢(E) — v¢(F) < "|K| |[EAF|Y™. The analogous argument holds for v;(F) —

v¢(E), implying the Holder continuity of 7.
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For the second equation, we note that if f/ — f locally uniformly, then fJ — f,

locally uniformly and My — M;. The triangle inequality gives

1755 () = v (E)] < |vps (By) — v (E))| + |y (Ey) — v (E)].

The second term goes to zero by the Holder continuity that we have just shown. To
bound the first term, let yz, be a center of E; with respect to the surface energy F;.

If v (Ej) > v¢(E;), then

1 1 1 !
0 < 75 (Ej)—r(Ej) < /Ej fla—yp) M- ij)dx N /Ej+ij fix) f*(l‘)dx

| 1 1 L
= /Rn 1(Ej+ij)\Ba(0) (m B m) do /BS(O) % - mdiﬁ

For € > 0 fixed, the first integral goes to zero as j — oo. For the second integral, we

have

1 1 Mg+ M
/ — + dx < / el dr < Ce"t
B.o) fi(z)  f«(2) B.o) |7

Taking ¢ — 0, we conclude that v (E;) —v7(E;) — 0 as j — oo. The case where

vi (E;) < v4(Ej;) is analogous. O

Remark 4.2.2. With sequences as in the hypothesis of Proposition 4.2.1 above, 3¢

has the following lower semicontinuity property:

B4(E) < liminf By (E;).

j—o00
This follows immediately from parts (1) and (2) of Proposition 4.2.1 and the decom-
position in (4.2.8).

Lemma 4.2.3. For every ¢ > 0, there exists n > 0 such that if |[FAK| < n, then

lyr| < € for any center yg of F.
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Proof. Suppose |KAF;| — 0. By the triangle inequality,

« % = ‘ /K ffl(fw - /F ﬂ(scdfyp,.)

dx dx dx

By (4.2.12), the first two terms on the right hand side go to zero as j — oo, implying

+

that
/ d_x < lim / d—x
K Jo(x) T v Ji [z — )
Because K has unique center yx = 0, we conclude that |yg | — 0. O

We now introduce the relative surface energy and the anisotropic coarea formula.
Given an open set A and a set of finite perimeter F, the anisotropic surface energy
of E relative to A is defined by

F(B; A) = / f(vs(x) dH " (2).

0*ENA

For a Lipschitz function u : R® — R and an open set FE, the anisotropic coarea

formula states that

/Ef(—Vu(x)) dz = /Ooo F({u > r}: E)dr.

The anisotropic coarea formula is proved in the same way as the coarea formula (see,
for instance, [Magl2, Theorem 13.1|), replacing the Euclidean norm with f and f.
and using (4.2.11). When w is bounded by a constant C' on E, then applying the

anisotropic coarea formula to w = C' — u yields
c
/ F(Vu(z)) de = / F(—Vw(x)) de / FUC —u>r}: B)dt
E E 0
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c C
:/0 ]:({u<C'—r};E)dT:/O F{u<r} E)dr

Moreover, approximating by simple functions, we may produce a weighted ver-
sion:

[ 5Vutang(sende = [ Fu <y B
whenever g : R — [0, 00] is a Borel function. We will frequently use this weighted
version with u(z) = f.(z), E a bounded set, and g(r) = 1, which, using (4.2.4),

gives

de__ [®F({fula) <ryE) [ FUKGE)
[Ef*(x) _/0 r d —/O —, (4.2.13)

We conclude this section with the following Poincaré-type inequality, which shows
that 8;(E) controls ay(E) for all sets of finite perimeter E.
Proposition 4.2.4. There exists a constant C(n) such that if E is a set of finite

perimeter with 0 < |E| < oo, then
ap(E) 4 0;(E)? < C(n)Bs(E). (4.2.14)

Proof. We follow the proof of the analogous result for the perimeter in [FJ14]|. Due
to the scaling and translation invariance of ay, 3y, and 0, we may assume that

|E| = |K| =1 and that E has center zero. We have

dx dx dx dx
) =B = [ - L im= Lt bt

Therefore, adding and subtracting F(K)/n = (n — 1)y;(K)/n in (4.2.8), we have

Br(E)” = 54(B) + - . : (/K\E fifv) - /E\K ff(z)) |
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We want to bound the final two integrals from below by a(E)?. To this end, we let
a:=|E\ K| = |K\ E| and define the K-annuli Ag; = Kg\ K and A;, = K\ K,,
where R > 1 > r are chosen such that |Ag | = |4;,| = a. In particular, R = (14+a)'/"

and r = (1 — a)¥/™. By (4.2.10) and (4.2.13),

dx dx /1 F(sK) /1 9 n .
> =[] Y——ds= | ns"’ds= 1—7r"
/K\E fo(@) = Ja,, fu(@) r s r n—l[ |

d d R K R
dr _x:/ Mds:/ ns2ds — (g1,
o fo@) T Jag, F@) s 1 n—1

Subtracting the second from the first, we have

n-1 B B Ty
n (/K\Ef*m fE\Kf*@:))ZQ o

The function g(t) = (1 +¢)"/" is function is strictly concave, with 1(g(t) + g(s)) <

and

g(3+ %) — C|t — s|*, and therefore 2 — [(1 4+ a)"/" + (1 — a)"/"'] > 8Ca|*. Thus

Br(E)’ > 6;(E) +[2 = (1 —a)/" — (1+a)"/"]
> 64(E) +8Caf® = §; + 2C (|E\ K| + |K \ E|)?

= 07(E) + 2C|KAE|? > 6;(E) + 2Ca;(E)*.

4.3 General surface tensions

In this section, we prove Theorem 4.1.1. We begin by introducing a few lemmas that
are needed the proof. The first allows us to reduce the problem to sets contained in

some fixed ball.
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Lemma 4.3.1. There exist constants Ry > 0 and C' > 0 depending only on n and
My such that, given a set of finite perimeter E with |E| = |K|, we may find a set £’
such that |E'| = |K|, E' C Bg,, and

Bi(E)? < By(E')? 4+ C;(E), d¢(E") < Cép(E). (4.3.1)

Proof. A simple adaptation of the proof of [Mag08, Theorem 4.1| ensures that we may
find constants 8y, Cy, C;, and Ry depending on n and My such that Cydy < 1/2 and
the following holds: if §;(F) < dy, then there exists a set £ C F such that E C Bz,

and

|E| > |K|(1 - C104(E)), F(E) < F(E) + Cods(E)|EIV™. (4.3.2)

If 5f(E) > (50, then

F(E) 5,(2) +1< 1+

Bi(E) < Tigp = 5

o7 (E).

Simply taking F' = K, we have §;(E') < §;(F) and §;(F)* < ng—O‘sO(Sf(E), proving
(4.3.1).

On the other hand, if 6;(E) < &y, let E' = rE with r > 1 such that |E'| = [rE| = |E|.
By (4.2.8),

FE) -FE) n-1,

g () - ().

Since E C E, v4(E) < ~4(E), which implies that

Bi(E)? — Bp(E')? =
(4.3.3)
< 6p(E) +

B) = 14(E)) € S et = 1)1 ()

n—1
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By (4.2.10) and the fact that v;(K) = n|K|/(n — 1),

n—1 ., n—1, 4 1
L | EY< — (""" -1 K)= -1
myd (r )75 (E) < i (r )7 (K) =7 ,
and since r > 1,
FE| - |E
r"_1—1§T”—1—| |~| |
B

The first part of (4.3.2) implies that

|E|— |E| _ Ci04(E) C)
_ < f <
E] T 1-=Ci6s(E) ~ 1= Cido

or(E).

We have therefore shown that

n—1 1 Cy
T (7 (B) = (B)) < i ()

this together with (4.3.3) concludes the proof of the first claim in (4.3.1).

In the direction of the second claim in (4.3.1), the first and second parts of (4.3.2)

respectively imply that

N F(E) F(B) + Cody(E) E['"
F(E)=r""1F(E) < = Cuop( BN = (1—015ff(E))1/”’

A Taylor expansion in §7(E) of the right hand side shows that

n—1

F(E") < F(E) + Cods(E)| EIV™ + Ci0s(E)F(E) + O(0;(E)?)

< F(E) + Cop(E)F(E)

for 9y chosen sufficiently small. Thus

F(B') - F(K) _ F(E')— F(E) _ CF(E)S;(E)
K] WK S n|K|f < Cos(E),

op(E') = <

since F(E) < F(K) 4 n|K|d. Finally, since E C Bp, and B = rE with r <

1/(1 — 01(50)1/", we have E' C BRO for Ry = T’R().
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Let us now consider the functional

|[K|my

QB) = F(E) + Gt

|B(E)? — | + A||E| - |K]], (4.3.4)

with 0 <e<1and A > 0.

Lemma 4.3.2. A minimizer exists for the problem
min{Q(EF) : E C Bg,}

for A > 4n and € > 0 sufficiently small. Moreover, any minimizer F satisfies

K
F| > % F(F) < 2n|K]|. (4.3.5)

Proof. Let Q = inf{Q(E) : E C Bg,}, and let {F}} be a sequence such that Q(F};) —
Q. Since F; C Bg, and F(F}) < 2Q for j large enough, up to a subsequence, F; — F
in L! for some F' C Bpg,. The lower semicontinuity of F (Proposition 4.2.1(1)) ensures

that F(F) < occ.

We first show that |F| > % For any 7 > 0, Q(F;) < Q + |K|n for j sufficiently

large. Furthermore, Q < Q(K) = F(K) + 52!5/1‘:%’ 5o
K Loy i e?|K|my | K| e2my K|
|1F5] — | H—A( (K) + [K|n+ SN, A n+n+8Mf <3

for ¢ and n sufficiently small. Therefore |F};| > |£2‘, implying that |F| > @ as well.
We now show that liminf Q(F;) > Q(F), so F' is a minimizer. Recalling (4.2.8), we
have

|[K|my | F(F;) — (n— 1)v;(F})
8My n| K|V Fytm

— 2|+ A|IF| - ||
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|Klmy | F(F) = (n = Dy (F))

> F(F; B
| K |my | F(Fy) — F(F)

- A||F;| = K]
8My | n|K |V E;|1V™ + || il =1 H

Let a = liminf F(F}). Up to a subsequence, we may take this limit infimum to be a
limit. By the lower semicontinuity of F, a > F(F'). Furthermore, v; is continuous

by Proposition 4.2.1(2), so

K 1/n’/
liminf Q(F) > Q(F) + (o = F(F)) = gt = F(F)
3 K| my
=Q(F) + (a — F(F)) (1—m>
21/”/mf
> QF) + (a = F(F) (1= " 70t) 2 Q)
Finally, ¢ < 1 and therefore F(F) < Q(F) < Q(K) < 2n|K]. O

The following lemma shows that a minimizer of (4.3.4) satisfies uniform density esti-
mates.

Lemma 4.3.3 (Density Estimates). Suppose F' is a minimizer of Q(E) as defined
in (4.3.4) among all sets E C Bg,. Then there ezist ro > 0 depending on n, A, and

|K| and 0 < ¢y < 1/2 depending on n and A such that for any x € O*F and for any

r<To,
com;% " com? "
nr < |B, NF|<|(1-— . 4.3.6
. wpr™ < | By (x) |_< }L>wr ( )

Proof. We follow the standard argument for proving uniform density estimates for
minimizers of perimeter functionals; see, for example, [Magl2, Theorem 16.14|. The
only difficulty arises when handling the term ‘SK‘Tmff\ﬁ 1(E)? — &% in Q(E), as it scales

like the surface energy.
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For any xy € 0*F, let r < rg, where rq is to be chosen later in the proof and r is
chosen such that

H"1(9*F N DB, (x)) = 0. (4.3.7)

This holds for almost every r > 0. Note that if (4.3.6) holds for almost every r < 7y,
then it must hold for all » < rg by continuity; it is therefore enough to consider r
such that (4.3.7) holds. Let G = F'\ B,.(zo). For simplicity, we will use the notation
B, for B,.(zg). Because F' minimizes @),

F(F) + — 2|+ A||F| - | K|

52| +A‘|G| — |K|},
and so rearranging and using the triangle inequality, we have

F(F) < F(O) + ‘K'mf 18,(F

G)?| + A|F N B,

We subtract F(F;R™\ B,) from both sides; this is the portion of the surface energy
where 0*F' and 0*G agree. We obtain
F(F:B,) < / Fom) dHm + 5 (B B (GR| 4 AN B, (43.8)
0B,NF
Indeed, this holds because (4.3.7) implies that

F(G)=F(F;R"\ B,) + /83 . f(vg,)dH™ .

We must control the term ‘K‘mf |B¢(F)* — B¢(G)?| and require a sharper bound than

the one obtained using Holder contmulty of v¢ shown in Proposition 4.2.1(2). Indeed,

we must show that the only contributions of this term are perimeter terms that match
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those in (4.3.8) and terms that scale like the volume and thus behave as higher order

perturbations. We have
2 o L JFE) (=D (F)  F(G) = (n—1)7(G)
|B¢(F) Bf(G) | = n|K|[\/n |F| 1/ |G|/

2F(F [F(F) = F(G)| + (n = 1) |74 (F) = 9(G))
n|K/n n| K[| G|/ '

“F| 1/n' |G|—1/n’| +

The function v(z) = 1 — (1 — 2)"/™ is convex and increasing with v(1) = 1, hence

v(z) < z for 2 € [0,1]. Thus, as |G| = |F| — |F N B,|,

1/n’
({1 IFOB, IFA B,
e (1 <1 T < gmE (439)

Since 2|F| > |K| by (4.3.5), 4|G| > |K]| for ry sufficiently small depending on n,

1B — |G

so the right hand side of (4.3.9) is bounded by 8|K|~'~"Y/"|F N B,|. The coefficient

2;('5)" is bounded by 4|K|"/™" thanks to (4.3.5), so

Q‘F(F) —-1/n’ —1/n’

(4.3.10)

Therefore, by (4.3.10) and again using the facts that 4|G| > |K|, 2|F| > |K|, and

my/Myp < 1, we have shown that

LEL B = (G
(4.3.11)
[F(F) - F(G)| , myn—1
AP0 B+ S T ()~ 346
For the term |F(F) — F(G)|, using (4.3.7), we have
[F(F) = F(G)| = flop)dH"™ = [ f(vg) dH"™
or ora (4.3.12)

< F(F;B,) + / F(vs,) dH",
OB, NF
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using (4.3.7) and the fact that 0*F and 0*G agree outside of B,. Similarly, for the
term |v¢(F) — v¢(G)|, when v¢(F) > v¢(G), thanks to (4.3.7) we have
(z —yp) - vr(x) 0 (* —yr) - va(T) 0 mo
fyF—fng/ dH" " — dH"™
() (€) oor  fo(@—yr) oa  fol@—yp)
M
< —f<.7:(F; B,) +/ f(vs,) d%"ﬂ).
OB,NF

mpy

The analogous inequality holds when v¢(G) > v¢(F), so

() = (@) < L (FBY + [ o) dne ). (43.13)
mpy

0B.NF

Combining (4.3.11), (4.3.12), and (4.3.13), we have shown

| K|my
SM;

5/(F = 5GP AP O Bl 4 5 (FP B + [ lom)aw ).
OB,.NF
(4.3.14)

Combining (4.3.8) and (4.3.14) and rearranging, we have

1 3
LF(FiB) <2 / F(vs,) dH™™ + (4+ M) [F O B,
2 2 JoaB,nF

Proceeding in the standard way, we add the term % faBmF f(vg,) dH™ ! to both sides,
which gives

%]-"(F NB,) <2 /f)BmF fvg,)dH" ™ + (4+AN)|FN B,
By the Wulff inequality, F(F N B,) > n|K|""|F N B.|"", and for ry small enough
depending on n, A, and |K|, we may absorb the last term on the right hand side to

obtain

K 1/n FNB, 1/n’
LSS " 2/ Flup,)dH" 1. (4.3.15)
4 OB,F
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Let u(r) = |F N B,|, and thus u/(r) = H" (0B, N F), so the right hand side above is
bounded by 2Mu/(r). Furthermore, |K|Y™ > my, so (4.3.15) yields the differential
inequality

§i1 < V) =

Integrating these quantities over the interval [0, 7], we get

mgr 1/n 1/n
e — |B, N F'/",
8M; — ulr) | |

and taking the power n of both sides yields the lower density estimate. The upper
density estimate is obtained by applying an analogous argument, using G = FUB,.(z)

as a comparison set for xy € 0*F and r < ry satisfying (4.3.7). O

The following lemma is a classical argument showing that a set that is close to K in
L' and satisfies uniform density estimates is close to K in an L sense.
Lemma 4.3.4. Suppose that F' satisfies uniform density estimates as in (4.3.6). Then

there exists C' depending on my¢/My, n, and A such that
hd(0F,0K)" < C|FAK],

where hd(-,-) is the Hausdorff distance between sets. In particular, for any n > 0,

there exists € > 0 such that if |[FAK| < e, then Ky_,, C F C Ki4,, where K, = aK.

Proof. Let d = hd(0F,0K). Then there is some x € OF such that either By(z) is
contained entirely in the complement of K or By(x) is entirely contained in K. If the

first holds, then the lower density estimate in (4.3.6) implies that

com?
mn
—d",

[FAK| > |F 0 Ba(a)| >
Mj
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while if the second holds, then the upper density estimate in (4.3.6) implies that

com? .
[FAK| > |By(a)\ F| > “Ld".
My

[]

We will make use of the following form of the Wulff inequality without a volume
constraint.
Lemma 4.3.5. Let Ry > diam(K) and A > n. Up to translation, the Wulff shape K

1s the unique minimizer of the functional
F(F) +A|[F| — |K]]
among all sets F' C Bp,.

Proof. Let E be a minimizer of F(F)+A||F|—|K|| among all sets of finite perimeter
F' C Bg,; this functional is lower semicontinuous so such a set exists. Comparing

with K, we find that
F(E)+A||E| - |K|| < F(K) =n|K]|. (4.3.16)

The Wulff inequality implies that |F| < |K|, and so F(E) > n|E|"/"|K|'/" > n|E)|.
Thus (4.3.16) implies that A (|K|—|E]) < n(|K|—|E]). Since A > n, it follows
that |E| = |K|. It follows that £ must be a translation of K, the unique (up to

translation) equality case in the Wulff inequality. ]

We are now ready to prove Theorem 4.1.1.
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Proof of Theorem 4.1.1. By (1.2.4), we need only to show that there exists a constant
C' = C(n) such that
BB < 064(E), (4.3.17)

for any set of finite perimeter F with 0 < |E| < oo. By Lemma 4.3.1, it suffices to

consider sets contained in Bg,. Let us introduce the set

XN:{f : Aﬂf—;gjv}

for N > 1, recalling My and my defined in (4.2.2). In Steps 1-4, we prove that, for
every N > 1, there exists a constant C' = C'(n, N) such that (4.3.17) holds for any
surface energy F corresponding to a surface tension f € Xy. In Step 5, we remove

the dependence of the constant on N.

Step 1: Set-up.

Suppose for the sake of contradiction that (4.3.17) is false for some N. We may then
find a sequence of sets {E;} with E; C Bpg, and a sequence of surface energies {F;},
each F; with corresponding surface tension f/ € Xy, Wulff shape Kj, and support

function f7, such that the following holds:

B = K] = 1,
Fi(E)) = Fi(K) =0

Fi(Ey) < Fj(Kj) + Clﬁfj(Ej)4n/("+1), (4.3.18)

where ¢; = ¢;(IN,n) is a constant to be chosen later in the proof.

135



Each f7 is in Xy and is normalized to make |K;| = 1 implying that {7} is locally
uniformly bounded above, and hence, by convexity, locally uniformly Lipschitz. By
the Arzela-Ascoli theorem, up to a subsequence, f/ — f* locally uniformly. The
uniform convergence ensures that this limit function f* is a surface tension in Xy.
We denote the corresponding surface energy by F.,, Wulff shape by K, and support

function by f2°. Note that |K.| = 1.

There exists ¢(NN) such that F;(E) > ¢(N)P(E) for any set of finite perimeter £,
again thanks to f/ € Xy and |K;| = 1. Then, since F;(E;) — n (as F;(K;) = n), the
perimeters are uniformly bounded. Furthermore, E; C Bpg,, so up to a subsequence,

E; = Ey in L' with |Ey| = 1.

Proposition 4.2.1(1) implies that F (Es) < lim F;(E;) = n, so by the Wulff inequal-
ity, Foo = K up to translation. Furthermore, Proposition 4.2.1(2) then ensures that
lim v (E;) = v~ (Ks) = -5, and therefore, by (4.2.8),
. ) 1
Jlim Bri(Ej)? = Jim > (Fi(Ej) — (n = 1)y (E;)) = 0.
Step 2: Replace each E; with a minimizer Fj.

As in [FJ14], the idea is to replace each E; with a set F}; for which we can say more

about the regularity. We let €; = 34;(E;) and let Fj be a minimizer to the problem

min { Qy(F) = F(F) + gy |3 (7 =+ AlIFI 1] = F € B, }

for a fixed A > 4n. Lemma 4.3.2 ensures that such a minimizer exists. As before,
F;(F;) > ¢(N)P(F;). Pairing this with (4.3.5) provides a uniform bound on P(Fj),

so by compactness, F; — F, in L' up to a subsequence for some F., C Bg,.
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For each j, we use the fact that F; minimizes ();, choosing E; as a comparison set.

This, combined with (4.3.18) and Lemma 4.3.5, yields

1
Fi(Fy) + 8—N|5ff(Fj)2 — 5|+ A|E| = 1| < Qi(F)) < Fy(E;)

< Fi(K) + e < FL(F) + A||Fy| = 1] + e (43.19)

It follows that SLNWJ«J-(Fj)Q—sJZ‘ < clej‘n/(nﬂ), immediately implying that 5 (F;) — 0.

Moreover, rearranging and using the fact that ¢, = 0 and f—fl > 2, we have

g2

J 2 dn/(n+1) . 2
2(n+1)/2n < & 8Ncl€j < /Bf] (F'J) )

where the exponent (n + 1)/2n is chosen so that, taking the power 2n/(n + 1), we

obtain

6?71/(714—1) < Qij(Fj)%/(nH). (4320)

In the last inequality in (4.3.19), if we replace F; with arbitrary set of finite perimeter

E C Bg,, then we obtain
Fi(Fy) + A[[E| = 1] < Fi(B) + A|| B = 1] + 1Y,

again using Lemma 4.3.5. Taking the limit inferior as 7 — oo, this implies that F,

is a minimizer of the problem
min{F(F)+ A||F|—1| : F C Bg,},

and so F,, = K, up to a translation by Lemma 4.3.5. With no loss of generality, we

translate each F; such that inf{|(F; + 2)AKy|: 2 € R"} = [F;AK|.

Step 3: For j sufficiently large, %Kj C F; C 2K, and |F;| = 1.

Lemma 4.3.3 implies that each Fj satisfies uniform density estimates, and thus for
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j sufficiently large, Lemma 4.3.4 ensures that %Kj C F; C 2Kj, as |K;AF;| <
|K;AK | + | Koo AFj| and both terms on the right hand side go to zero.

Let r; > 0 be such that |r;F;| = 1. We may take r;F; as a comparison set for
Fj; r; < 2 by Lemma 4.3.2, so r;F; C 4K; C Bpg, as long as Ry > 4M; > CN,
the second inequality following from |K;| = 1. Since f; is invariant under scaling,

Q;(F}) £ Q;(r;F;) yields
Fi(Fj) + AL = Bl < rf 7 F5(E). (4.3.21)

This immediately implies that r; > 1 for all j, in other words, |F};| < 1. Furthermore,
r; — 1 because F; — K in L' and |K| = 1. Suppose that, for some subsequence,

r; > 1. Then, using |Fj| = 1/r%, (4.3.21) implies

A< (77(2_—:1))@(@). (4.3.22)

For any 0 < n < % and for j sufficiently large, the right hand side is bounded
by (1 —n)F;(Fy), as lim % = =L Furthermore, F;(F;) < n + &7 since
r—1

Q;(F;) < Qj(K;), so (4.3.22) implies that
A<A-—nFiF)<(1-n)(n+e)<n

for j sufficiently large. Since n < A, we reach a contradiction, concluding that |F;| =1

for j sufficiently large.

Step 4: Derive a contradiction to (4.3.18).

We will show that 8, (F;)*/ 1) < C§,(F;), which in turn will be used to contradict
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(4.3.18). Adding and subtracting the term F;(K;)/n = (n — 1)y (K;)/n to (4.2.8),

n e fi() f;z(g;) - /Fj fd(g;))

n—1 1
= 55(F 1——d - 1dz).
pEN+ = (/\K ) +/K\ ) 9

We now control the last term in terms of d; (F}). Note the following: since %Kj C

we have

Fi(F; n—1 dx n—1
Bri(F3)? < J;»— =07 (£y) + — (/
K;
1

F; C 2Kj, the last term above is bounded by C|F;AK;| < §;(F;)Y2. This could
establish (4.3.17) with the exponent 4. However, with the following argument, we

obtain the improved exponent 4n/(n + 1).

As noted before, Lemma 4.3.3 implies that each Fj satisfies uniform density estimates
(4.3.6) with mg; /My > 1/N. The lower density estimate provides information about
how far f7(x) can deviate from 1 for x € F; \ K, thus bounding the first integrand.
Indeed, arguing as in the proof of Lemma 4.3.4, for any = € F;\ K;, let d = f7(x) —1.
The intersection K; N By(x) is empty by the definition of f7, and thus F; N By(z) C
F; \ K;. Therefore, for z € 0*F; \ Kj,

cod™
N < 1Bal@) 0 F| < |FAK;| < Copi(Fy)Y?

by the lower density estimate in (4.3.6) and the quantitative Wulff inequality as in
(1.2.4). In fact, this bound holds for any = € F; \ K;; since Fj is bounded, for
any © € F; \ Kj, there is some y € 0*F; \ K; such that f/(z) < f7(y). Therefore,
fi(x) =1 < C8p(Fy)/? for all x € Fy \ Kj, and so

1
1 — — dxg/ f*x—ldxg/ C6 (F)Y* da
/Fj\Kj fi(x) Fj\K; (@) Fj\K; # ) (4.3.23)

= C|FJAK |85 (Fy)/" < Cogs (Fy) 2072,
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where C' = C'(N,n) and the final inequality uses (1.2.4) once more. The analogous
argument using the upper density estimate in (4.3.6), paired with the fact that even-
tually %Kj C Fj, provides an upper bound for the size of 1 — fi(z) for z € K; \ F},

giving

1 .
/ ~_ _ldx< 2/ 1— fi(x) du < Cop (Fy) /212, (4.3.24)
K\F; fi(T) Ki\F;

Combining (4.3.23) and (4.3.24), we conclude that
By (F5) D) < Gy s (F) (4.3.25)
where C; = C1(N,n).

We now use the minimality of Fj, comparing against F;, along with (4.3.18) and

(4.3.20) to obtain

Fi(Fy) < Fi(Ey) < Fy(IG) + eae™ " < Fy(IG) + 201y (F) /04,

By (4.3.20), ;i (Fj) is positive, so by choosing ¢; < n/2C4, this contradicts (4.3.25),

thus proving (4.3.17) for the class X with the constant C' depending on n and N.

Step 5: Remove the dependence on N of the constant in (4.3.17).
We argue as in [FMP10|. We will use the following notation: F is the surface energy
with Wulff shape K, surface tension f¥, and support function fX. We use dx, Sk,

and v to denote dsx, Bpx, and 7k respectively.

By John’s Lemma (|Joh48, Theorem III]), for any convex set K C R"™, there exists

an affine transformation L such that det L > 0 and By C L(K) C B,. This implies
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that Mrx)/mry < nand so fEE) € X, Our goal is therefore to show that S (E)

and dg(F) are invariant under affine transformations. Indeed, once we verify that

Br(E) = Bru(L(E)) and dx(E) = 0 (L(E)), we have

Bic(B)™ 0D = By ey (L(B)) ™ < O(n)dn ) (L(E)) = C(n)dk (B),
and (4.3.17) is proven with a constant depending only on 7.
Suppose F is a smooth, open, bounded set. Then

F(E) = lim (E TR 1B

e—0 £
this is shown by applying the anisotropic coarea formula to the function

0K (2, OF) = inf:{f*(x—y):yeé?E} ?foEC
—inf{fi(x —y):y € OFE} ifxekFE

and noting that (F +eK)\ E = {z: 0 < d¥(z,0F) < ¢}.

Since L is affine, |L(E 4+ e¢K)| — |L(E)| = det L (|[E 4+ K| — |E|), and so

 |L(E+¢K)| = |L(E)|  Fuuo(L(E))
E pr— 1 p— .
Fi(B) = lim cdet L det L

Since |E| = |L(E)|/ det L, we have

B FuoL(B)
n| K[V B[V n| LK)V L(E)[V

Sk (E) —1 =) (L(E)),

and thus dx (FE) is invariant. Similarly,

(L2 —y) =inf {)\ : —Lil(z) —Y

:inf{)\ ;

€K}

A
F2 MW ¢ ) = 10 (- L)),
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and thus

/ dz B / dz B / dz
e [E(@—y) ey JE(L7H(z) —y) det L L) fHE (z — L(y)) det L
Taking the supremum over y € R” of both sides, we have

_ e (L(E))

1 (E) det L

From (4.2.8),

_ (Fx(B) = (n = Dyx(B)\ "
o) = (P )

We have just shown that, for the denominator,

1 2 det L 2
(H\Kl””IEIV”’> :(n!L(K)W”IL(E)I”"') ’

and for the numerator,

1/2 i D 12
(J%«(E)—(n—lm(m) - (f cg(HAE)) = (2 — L ><L<E>>> |

The term det L cancels, yielding

Fraey(L(E)) — (n — Dypiey )7
6K<E>=( ORI ET )) = B (L(E)),

showing that Sk (FE) too is invariant. O

4.4 Elliptic surface tensions

In this section, we prove Theorem 4.1.3. This proof closely follows the proof of (1.2.6)
in [FJ14]. Using a selection principle argument and the regularity theory for (A, r)-

minimizers of F, we reduce to the case of sets that are small C'* perturbations of the
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Wulff shape K. In [FJ14], this argument brings Fusco and Julin to the case of nearly
spherical sets, at which point they call upon (4.1.9), where Fuglede proved precisely
this case in |[Fug89.

We therefore prove in Proposition 4.1.9 an analogue of (4.1.9) in the case of the
anisotropic surface energy F when f is a A-elliptic surface tension. The following
lemma shows that if £ is a small C'! perturbation of the Wulff shape K with |E| = |K],
then the Taylor expansion of the surface energy vanishes at first order and takes the
form (4.4.1). We then use the quantitative Wulff inequality as in (1.2.4) and the
barycenter constraint along with (4.4.1) to prove Proposition 4.1.9.

Lemma 4.4.1. Suppose that F is a surface energy corresponding to a \-elliptic sur-

face tension f, and E is a set such that |E| = |K| and
OF = {z +u(x)vg(z) : = € 0K}

where u : 0K — R and ||ul|c1ox) = €. There exists ¢g > 0 depending on A and n

such that if € < e,
F(E) = F(K)+5 / (Vu) "V f(vi)Vu — Hiu? dH" + & O(||ull3pox), (4.4.1)
oK

where Hg is the mean curvature of K and all derivatives are restricted to the tan-
gential directions.

Remark 4.4.2. The second fundamental form Ay of K satisfies
V2 f(vi(2))Ag(z) = Idp, sk for all x € OK.

Therefore, Hr = tr(Ag) is equal to tr(V2f A%) and thus (4.4.1) agrees with, for
example, [CVDMO04, Corollary 4.2].
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Proof of Lemma 4.4.1. For a point x € 0K, let {m,...,7T,—1} be normalized eigen-
vectors of Vg, where each 7; corresponds to the eigenvalue )\;. This set is an or-
thonormal basis for T, K, and thus {7, ..., 7,_1, vk} is an orthonormal basis for R".
A basis for T4, E is given by the set {g1,..., gn_1}, where, adopting the notation
u; = Oru,

g, = 87—1[1’ + UVK] = (1 + /\zu)Tz + UiV .

We make the standard identification of an (n — 1)-vector with a vector in R™ in the
following way. The norm of an (n—1)-vector vy A+ - -Av,_1 is given by |v1A. .. Av,_1| =
| det(v1, ..., vn—1)|. If Joy Ao Awvp_q] # 0, then the vectors vy, ..., v, are linearly
independent and we may consider the n — 1 dimensional hyperplane II spanned by

vy, ,Up_1. Letting v be a normal vector to I, we make the identification
VIA . AV =E|og Ao Ay,

where the sign is chosen such that det(vy,...,v,-1,£r) > 0. In particular, we make

the identifications

g\ N Gnoa
’91/\/\971—1’

TN NATp_1 = Vg, =vg, and TIA...AUKA...ATp_1 = —T;.

The sign is negative in the third identification because

det(ﬁ, e VKoo Tp—1, —Ti> = —det<7'1, ey T Ty ooy Tn—1, I/K)

= det(ﬁ, ey Ty e ooy Tn—1, VK) =1.
We let w:=g; A... A\ gn_1, and so
w=[(14+Mu)r+uvg] A.. . A[(1+ A1) Tt + Un_1Vk]
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n—1

n—1
(14 Nu)vg ZUZH1+>‘U

1 i=1 1#£]

<.
Il

[y

n—

= |:1 + HKU + Z )\i)\juﬂ VK — U; |:1 + Z /\]u] T; + €O(|U‘2 + |VU|2) (442)
1 J#i

i<j i
In order to show (4.4.1), the volume constraint is used to show that the first order
terms in the Taylor expansion of the surface tension vanish. We achieve this by

expanding the volume in two different ways. First, the divergence theorem implies

that

ol [ st = [ ) ol = [ (o) war
OE 0K |w| 0K

Adding and subtracting vx = 7 A ... A T,,_1, and using (4.4.2) and the fact that

vk - 7; = 0, we have
n|E| = / T v dHY + / u+az-(w—rvg)+ Hgu? dH" " + 8O(||u||§{1(8K)).
oK oK
Since [, - vk dH" "' = n|K]|, the volume constraint |E| = |K| implies that

/ r-(w—vg)dH" ' = —/ u+ Hgu* dH™ ' + eO(HuH?{l(aK)). (4.4.3)
oK oK

Now we expand the volume in a different way. Because f is a A-elliptic surface tension,
the Wulff shape K is C? with mean curvature depending on A and n. Therefore, there

exists to = to(A,n) > 0 such that the neighborhood
D ={z+tvg(z):z € 0K, t € (—ty,to)}

satisfies the following property: for each y € D, there is a unique projection 7 : D —

0K such that 7(y) = z if and only if y = = + tvg(x) for some t € (—to,tp). In this
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way, we extend the normal vector field vk to a vector field Ng defined on D by letting
Ngk : D — R" be defined by Nk (y) = vg(m(y)). We also extend u to be defined on
D by letting u(y) = u(n(y)) for all y € D. Therefore, if ey < ¢y, OE may be realized

as the time t = 1 image of 0K under the flow defined by

d
(@) = ulNk(U(2)),  o(z) = 2.

Such a flow is given by ¥(x) = x + tulNg, and so Vi (z) = Id + tA where A =
V(uNg). An adaptation of the proof of [Magl2, Lemma 17.4| gives

2

t
Jipy =1+t tr(A) + E(tr(A)Q —tr(A4%) + e O(Ju* + |Vul?). (4.4.4)
Integrating by parts, it is easily verified that
/ tr(A)? — tr(A%) dax
K

= / div (uNg div (uNg)) dz — / > (uNg) D0, (uNg) D vl dmr—
K oK ;

ij=1

= / div(uNg div (uNg)) dx — / uVu - v dH" "
K oK

The second equality is clear by choosing the basis 7q,...,7,_1,7,, Where 7,, = vk.

Furthermore, the divergence theorem implies that

/K div (uNg div (uNg)) dz = /

u div (uNg) dH" ™ = / uVu-vi + Hu? dH™ 1,
oK

0K

so that
/ tr(A)? — tr(A?) dx = Hyu® dH™ .
K oK

With this and (4.4.4) in hand, we have the following expansion of the volume:

2

t
iy (K)| = /Kjlpt dr = |K| +t/aKud”H”1 +3 Hyu? dH"™ + % O(|Jull3 o)) -

oK

146



Therefore, the volume constraint |K| = |E| = |1 (K)| implies that
1
/ wdi = —= [ H dH 4 e Ol o) (4.4.5)
oK 2 Jox
Combining (4.4.3) and (4.4.5), we conclude that

1
/ z-(w—vg)dH" = __/ w?Hi dH" ' + € O(|Jull7n o)) (4.4.6)
oK 2 Jox

We now proceed with a Taylor expansion of the surface energy of E:

w

Ao = [ swoawr = [ ()l = [ p)are

O*E 0

- (vi) dH™ + / V() - (w— i) dH™!

0K 0K

f
oK

1
5 | o= VRl = v a1+ Ol ).

so, recalling that V f(vk(z)) = = by (4.2.6),

F(B) = F(K) + /8 e )

1 n—1 -
3 | 3wl ) e+ <Ol alfane)-

K j=1

Applying (4.4.6) yields (4.4.1), completing the proof. ]
We now prove Proposition 4.1.9, using (4.4.1) as a major tool.

Proof of Proposition 4.1.9. Suppose F is a set as in the hypothesis of the proposition,
i.e., |E| = |K]|, bar E = bar K, and

OF = {x +u(zx)vg(z) : v € 0K},
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where u : 9K — R is a function such that u € C*(0K) and ||ul|c1ox) = € < &1 with
€1 to be fixed during the proof. Up to multiplying f by a constant, which changes A

by the same factor and leaves my/M; unchanged, we may assume that |K| = 1. Let

1 1
B(u) = 5 /8 (VuTVE ) Vudk = 5 | Hi? e

so that, by (4.4.1),

54(E) = ~B(u) + = Olullis orc) (.47)

as long as g1 < gq for gy from Lemma 4.4.1.

Step 1: There exists C = C(n,\,ms/My) such that, for e; small enough depending
on mg/My and X,

( /8 ul aH )’ < Ciy(B) (4.4.8)

Step 1(a): There exists C = C(n,ms/My) such that, for ey = e1(mys/My) small
enough,

|EAK| < C6;(E)Y2 (4.4.9)

The quantitative Wulff inequality in the form (1.2.4) states that |[EA(K + z)| <

C(n)ds(E)'? for some x5 € R™, so by the triangle inequality,
|IEAK| < C(n)dp(E)'? 4 |(K + x0) AK]. (4.4.10)

It therefore suffices to show that |(K + z9)AK| < C§;(E)Y%. By [Magl2, Lemma
17.9],
| KA(K + 20)| < 2|z0|P(K) < m—|m0|. (4.4.11)
f
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Furthermore, the barycenter constraint bar £ = bar K implies that

moz/xoda::/xdx—/x—xodx:/xdx—/ rdz.
K E K E K+

For €, small enough depending on My /my;, E, K + 2o C Bayy,, a fact that is verified
geometrically since |zg| — 0 as ¢ — 0 and thus |zo| may be taken as small as needed.

Therefore,

|x0|:‘/xdac—/ xdz
E K+xo

where the second inequality comes from (1.2.4). This, (4.4.11), and (4.4.10) prove

< 2M{|EA(K + x0)| < M;C(n)5(E)Y/?,

(4.4.9).
Step 1(b): For e sufficiently small depending on A and n,
/ lu| dH" ! < 2| EAK]. (4.4.12)
oK

Let di(z) = dist(z, 0K). As in the proof of Lemma 4.4.1, there exists to = to(\,n)
such that for all t < tg, {dx =t} = {x + tvk(z)}. Take €1 <ty and let G; = {dx =
t}y N (E\ K). Then

E\K = {x+tvg : x€{x € 0K :u(x)>0},te(0,u(x))},

Gy = {ox+tvg: ve{recdK uz)>t}}

The coarea formula and the area formula imply that

|E\K|:/ |VdK|d:p:/ dt/ d%”*:/ dt/ J(Ad + tvg ) dH 1,
E\K 0 Gt 0 {u>t}
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SO

1 [ I 1
|E\ K| z—/ dt/ d?{”‘lz—/ |{u>t}|dt:—/ ut dH™
2 Jo {u>t} 2 Jo 2 Jox

The analogous argument yields |K \ E| > 3 [, u” dH"', and (4.4.12) is shown.

Combining (4.4.9) and (4.4.12) implies (4.4.8).

Step 2: There exists C = C(n,\,mys/My) such that, for e, = e1(n, A\, ms/My) small

enough,
[l oy < (). (1.4.13)
The A-ellipticity of f implies
/ |Vul?dH" ! < . / (V)" V2 f (v ) (V) dH™
oK A 0K
_ ;(23(@ o Hiclul? dH').

The Wulff shape K is bounded and C?, so Hy is bounded by a constant C' = C(n, \).

Therefore,

2
/ |Vul?dH" ! < XB(u) +0/ |lu|® dH" . (4.4.14)
oK oK

As pointed out in [DPM14, proof of Theorem 4], from the Sobolev inequality on 0K
([Sim83, Section 18|), one may produce a version of Nash’s inequality on 0K that

takes the form

n— n n n— c n— 2
/8K|u|2d7-[ L o) /8K|vu|2d% l—I—W(/aKMdH )" (as)

for all n > 0, Here, ¢ is a constant depending on Hy (and therefore on A and n) and
My /my. We pair (4.4.15) with (4.4.14) and (4.4.8) to obtain

C

7201 (E):

2
/ IVu|? dH" ™ < ZB(u) + Cpn+d/m / IVul|? dH" ! +
0K A oK
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For n small enough, we absorb the middle term into the left hand side. Then, recalling

(4.4.7), we have

1

5 /BK |Vul? dH™' < C8§;(E) + 5O(||u||%,1(aK)).

Combining this estimate with (4.4.15) and (4.4.8), we find that [, [u|*dH""" is also
bounded by Cds(E) + 80(||u||Hl oK) ). Therefore,

[ullzor) < COr(E) + e O(lullf o)) -

Finally, taking ¢; small enough, we absorb the second term on the right, proving

(4.4.13). O

We now show that if OF = {x + uvk : € 0K} with ||ul|c1(9x) small, then §;(F) is

controlled by ||u|| g1 (o). With the notation from the proof of Lemma 4.4.1,
n|K|B;(E / f(ve) ) cvpdHT = fw) —z-wdH™ .
oK

From the expansion of F in the proof of Lemma 4.4.1 and the fact that z-vx = f(vg)
by (4.2.3), the right hand side is equal to

1 .
5/8K(W)TV2f(VK)Vud’H e O(llullinon) < Cllulliner) + e OUlullinor)),

where C' = ||V f[|co(ax). For e sufficiently small, we absorb the term & O(||ul[7;1 )

and have
3B < — |l (1.4.16)
f = n|K] u H1(0K)" Sk
Remark 4.4.3. This is the first point at which we use the upper bound on the

Hessian of f. In other words, Proposition 4.1.9 still holds for surface tensions f &€
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CLHHR™ \ {0}) that satisfy the lower bound on the Hessian in the definition of M-

ellipticity.

Next, we prove Theorem 4.1.3, for which we need the following definition.
Definition 4.4.4. A set of finite perimeter E is a (A, ro)-minimizer of F, for some

0<A<ooandryg >0, if
F(E;B(z,r)) < F(F;B(z,1)) + A|[EAF|

for EAF CC B(x,r) and r < 9.

Proof of Theorem 4.1.3. Proposition 4.2.4 implies that the proof reduces to showing
Bi(E)? < Cos(E). (4.4.17)

where C' = C(n, A, | V2f]|coor), my/M;y). Suppose for contradiction that (4.4.17)
fails. There exists a sequence {E;} such that |E;| = |K| for all j, 6;(E;) — 0, and

for ¢y to be chosen at the end of this proof. Arguing as in the proof of Theorem 4.1.1,
we determine that, up to a subsequence, {E;} converges in L' to a translation of K.
As in the proof of Theorem 4.1.1 (and as in [FJ14]), we replace the sequence {E;}
with a new sequence {F}}, where each F} is a minimizer of the problem

| K|my

min{Qj(E):F(E)+ SM, 187 (E)? — 3| + A||E| - |K|| :ECBRO}

with €; = B;(E;); existence for this problem is shown in Lemma 4.3.2. Continuing as

in the proof of Theorem 4.1.1, we determine that

3 < 285(Fy)?, (4.4.19)
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that up to a subsequence and translation, F; — K in L', and that |F;| = |K| for
J sufficiently large. By Lemma 4.3.3, each Fj satisfies uniform density estimates,
and so by Lemma 4.3.4, for any n > 0, we may choose j sufficiently large such that
K, CF; C Kiyy.

Arguing as in [FJ14|, we show that F} is a (A, ro)-minimizer of F for j large enough,
where A and r( are uniform in j. Let G such that GAF; CC B, (xy) for zy € F; and for
r < ro, where 7 is to be fixed during the proof. For any n > 0, if B,(z) C K;_,, then
trivially F(G) > F(F}). If B.(xo) ¢ Ki_,, then for n sufficiently small, Lemma 4.2.3
implies that |yg,| < 1/4 and |yg| < 1/4. Furthermore, by choosing ) and ry sufficiently
small, we may take B, (zo) N K2 = (). The minimality of F; implies Q(F;) < Q(G);

after rearranging and applying the triangle inequality, this implies that
K m
F(F) < F(G) + AF;AG| + ——+ | | = |ﬁf — Br(F})?| . (4.4.20)

As in (4.3.11) in the proof of Lemma 4.3.3,
K F) — Fy) —
L F(5) = F©@ | 1uB) =%(G)] | 1 agy

6f(G)2‘ < 2 9

for 7y small enough depending on n. If F(F;) < F(G), then the (A, rp)-minimizer
condition is automatically satisfied. Otherwise, subtracting 3 1 F(F;) from both sides

of (4.4.20) and renormalizing, we have
F () S F(G) + g (G) = v (Fy)[ + (8 + 20)[FAG]. (4.4.21)

To control |v¢(G) — v¢(F})|, we need something sharper than the Hélder modulus of

continuity of ; given in Proposition 4.2.1(2). Indeed, v is Lipschitz continuous for
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sets whose intersection contains a ball around their centers:

dx dx dz
KGRI R ey il By B W ey

and analogously,

1 (G) = 7(F)) < /MG ﬁ'

Since B, N K1) =0, |yr,| < 1/4, and |ya| < 1/4, we know that 1/ f.(z —yr,) > 4/my

and 1/f.(x —yg) > 4/my for any x € F;AG, implying that
4
h(F) ~ (@) < —-IFAG)
f
Therefore, (4.4.21) becomes
F(F;) < F(G)+ Ao | F;AG] (4.4.22)

where Ag = 8 + 2A + 4/my, and so F} is a (A, 79)-minimizer for j large enough.

We now exploit some regularity theorems for sets F; that are (A, ro)-minimizers that
converge in L' to a C? set. First, let us introduce a bit of notation. For z € R",

r >0, and v € S" !, we define

Colo,r)={yeR": |p,(y —2)| <7 gy —z) <r},

Du<x>T) = {y eR™: |pu(y - J})| <7, |qu(y - CC)| = O}a

where ¢,(y) =y -v and p,(y) =y — (y - v)y. We then define the cylindrical excess of

FE at z in direction v at scale r to be

1 _ 2
exc(E,x,rv) = — / v — v dH" !
r C.(z,r)NO*E 2
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The following regularity theorem for almost minimizers of an elliptic integrand is the
translation in the language of sets of finite perimeter of a classical result in the theory
of currents, see |[Alm66, SSA77, Bom82, DS02|. For a closer statement to ours, see

Lemma 3.1 in [DPM15].

Theorem 4.4.5. Let f be a A-elliptic surface tension with corresponding surface
energy F. Suppose E is a (A, rq)-minimizer of F. For all o < 1 there exist constants

e and Cy depending on n, A and « such that if
exc(E,z,r,v)+ Ar <e
then there exists u € CY(D,(x,7)) with u(x) = 0 such that

C,(x,r/2)NO"E = (Id + uv)(D,(x,r/2)),
||u||CO(DU(xO,T/2)) < Cyr EXC(E, x,r, V)l/(2n_2),

||Vu||CO(DU($O,T/2)) <y exc(E, x,T, I/)l/(Zn_Q),

and  1°[VUlcoa, (@2 < C1exc(B,z,r,v)"/2

Applying Theorem 4.4.5 as in [CL12|, we come to prove the following statement.

Theorem 4.4.6. Let f be A-elliptic with corresponding surface energy F and let {E;}
be a sequence of (A, ry)-minimizers such that E; — E in L', with OF € C*. Then

there exist functions 1; € CY(OE) such that
OF, — (1 + yv)(OF).

and ij”ol(aE) — 0.
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Theorem 4.4.6 implies that we may express 0Fj as
817] = {.T—ijVK T E 8K},

where ||1);]|c1ak) — 0. Moreover, bar F; = bar K and |F}| = | K|, so Proposition 4.1.9
and (4.4.16) imply that

Cor(Fy) 2> 103l o) = B (F)*. (4.4.23)

On the other hand, F; minimizes ();, so choosing £ as a comparison set and using

(4.4.18) and (4.4.19), we have
F(F)) < F(E)) < F(K) + c2e5 < F(K) + 2c28(F)*.

By (4.4.19), B(F};) > 0,. Then, using (4.4.23) and choosing ¢, sufficiently small, we

reach a contradiction. O

4.5 Crystalline surface tensions in dimension 2

In this section, we prove Theorem 4.1.5. As in the previous section, we begin by
showing the result in a special case, and then use a selection principle argument

paired with specific regularity properties to reduce to this case.

Let n = 2 and suppose that f is a crystalline surface tension as defined in Defini-
tion 4.1.4, with F the corresponding anisotropic surface energy. The corresponding
Wulff shape K C R? is a convex polygon with normal vectors {r;}Y ;. Let us fix
some notation to describe K, illustrated in Figure 1. Denote by s; the side of K with

normal vector v;, choosing the indices such that s; is adjacent to s;;; and s;_1. Let
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0; € (0,7) be the angle between s; and s;41, adopting the convention that s,.; = 1.

Let H; be the distance from the origin to the side s;. By construction,

fv) = H,. (4.5.1)

We say that a set £ C R? is parallel to K if E is an open convex polygon with
{vp} = {v}Y,, that is, vg(z) € {v;}¥, for all z € O*E, and for each i € {1,..., N},
there exists v € 0*E with vg(x) = v;. For a set E that is parallel to K, we denote
by o; the side of F with normal vector v;, and h; the distance between the origin and
0;; again see Figure 1. We define ¢; = h; — H;. Notice that ¢; has a sign, with ¢; > 0
when dist(0, s;) < dist(0,0;) and ¢; < 0 when dist(0, s;) > dist(0, ;). For simplicity

of notation, we let |s| = H'(s) for any line segment s.

The following proposition proves strong form stability for sets E that are parallel to
K such that |E| = |K| and |FAK| = inf{|EA(K +y)| : y € R?}. Then, by a selection
principle-type argument and a rigidity result, we will reduce to this case.

Proposition 4.5.1. Let E C R? be parallel to K such that |E| = |K| and |[EAK| =

inf{|EA(K +vy)| : y € R*}. Then there exists a constant C" depending on f such that
Bi(E)* < Coy(E).

Proof. Let E be as in the hypothesis of the proposition. By (4.5.1), we have

N N N haloi] N Hilsi|
FB) =) Hioil,  F() = Hilsl  |E[=) =55 K=Y ==
=1 =1 i=1 i=1

Recalling that ¢; = h; — H;, we may express the volume constraint |E| = |K]| as
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Figure 4.1: Notation used for K and a parallel set F.

€i|0'i’

N
H,
; S

I
i
=

Furthermore,

2|K|6;(E) = F(E) — F(K) = ZH,UUZ Is]) Zem (4.5.2)

Note that 3. | |e;| < C|EAK]| for some constant C' = C(f), and so by (1.2.4),

(i \52'|>2 < Co(E), (4.5.3)

i=1

and in particular, |&;|* < Cd;(F) for each .

Step 1: We use (4.2.8) and add and subtract ﬁ = Wg‘([f‘) to obtain

) dx 1 dx dx
6f(E) S2|}(| /f f ) m</}<\Em_/E\Km>

Thus we need only to control the term A — B linearly by the deficit, where

dx dx
A= S = .
/K\E AG) b /E\K A
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Figure 4.2: The surface energy of rK relative to K \ E is bounded by the right hand side of
(4.5.5).

To bound the term A — B from above, we bound A from above and bound B from

below. Our main tool is the anisotropic coarea formula in the form given in (4.2.13).

First, we consider the term A, where (4.2.13) yields

B de _ [YFrK;K\E) 1]—"(7"K;K\E)r
de [l [T, [PIUREAR s

We introduce the notation

["={ie{l,...N}:e; <0}, IT={l.. . N}\I.

From (4.5.4), we obtain an upper bound on A by integrating over r, for each i € I,
the part of the perimeter of r K that lies between o; and s;. This means that for each
r, we pick up the part of 0*(rK) that is parallel to o; and s;, as well as part of the

adjacent sides:

KK\ E)< Hr|si| + Hi 1\ ——F—F+ Hjy1—————— | ; 4.5.
F<T ; \ )— IZ|: ZT‘S’L‘+ i—1 sin(@i,l) + i+1 sm(@l) ) ( 55)
see Figure 2 and recall (4.5.1). This and (4.5.4) imply that
1
A< Hirlsi| + Hy i) gy (AT~ i) 47 15.6
- IZ/h/H { rlsil + ! sin(6;_1) + Hin sin(6;) r ( )
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Now we add and subtract the term fhli/Hi Hilo;|%. The idea is that H;|o;| gives a
rough estimate of the term in brackets on the right hand side of (4.5.6). Indeed, for
each r, the part of 9*(rK) between o; and s; has length roughly equal to H;|o;|. We
will see that this estimate is not too rough; the error can be controlled by the deficit.

Thus we rewrite (4.5.6) as
1

ASZ Mdr

+Z Hz|81|+ [Hz——:| < ! + 1 > - |U|dT.

S Jhiym, r sin(f;_1)  sin(6;) r

Noting that H;/sin(6;) < C = C(f) for each 4, j, the right hand side is bounded by
Ay + Ay, where

1 H:lo: 1 I Hlo
Al = Z Z|Uz|dr7 A2 = Z Hz|81| +C |:Hz . 7l:| . z|0_l|d7”.

hi/H; T hi/H; r

i€l i€l

The term A, is the error term that we will show is controlled by the deficit in Step 2.
First, we perform an analogous computation for B, and show how, once the error

terms are taken care of, the proof is complete. Again, by (4.2.13), we have
B:/ dx :/ }—<TK;E\K)d7“:/ }_(TK;E\[Odr.
E\K fu(@) 0 r 1 r
To bound B from below, we integrate, for each i € I, only the part of 9*(rK)

that is parallel to s; and o; and lies between s; and o; . We call this segment ¢ :=
E\ K n{e; + ra;}, where e; is the vector parallel to the sides o; and s;, z; € s;, and

Thus, letting s! be the side of 7K parallel to s; and recalling (4.5.1), we have

00 . hi/Hi 17 |7 T
/ F<TK7E\K)dT22/ H’L|S7,m£7,‘d/r'
1 r 1 r

ielt
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Once again, a rough estimate for H;|s] N ¢f| is given by H;|o;|. We will again show
that this estimate is not too rough, specifically, that the error between these integrals
is controlled by the deficit. So we continue:

rilHs H I st H,
B> Z/ ‘02 dr +Z/ |S = ’Ul‘ = B1 + Bs,

el + iel+

where

hi/H; H:lo: hi/H; H. rﬂgr H: o
B1 = Z/ Z|O-Z| d’f’, B2 = Z/ Z|Sl z| — Z|O_Z| d
1 1

r r r
iel+ ielt

Like Aj, By is an error term that we will show is controlled by the deficit in Step 2.

Before bounding |As| and |Bs| by the deficit, let us see how this will conclude the

proof. As we saw, 3;(E)? < 0;(E) + 57=(A — B). Recalling that h; = H; + &,

Q\K\
1 hi/Hi fp
H|0
A-B=Y -y [ - B
ier- 7 hi/Hi ielt
:_ZH\Jl]log( ) ZH!ol\log< >+A2 By
iel—

:_ZHi|ai|<%+O(5?)>+A2— ZWHZO ) 4+ Ay —
i=1 ¢

The first term is precisely equal to 2|K|d;(E) by (4.5.2), while >, O(e?) < Cds(E)
by (4.5.3). Therefore, once we show that |Ay| and |Bsy| are controlled linearly by the

deficit, our proof is complete.

Step 2: In this step we bound the error terms. We show that |As| < Cd¢(E); the

proof that |By| < Cd¢(FE) is analogous. The main idea for estimating the integral A,
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is to show that the contribution of the adjacent sides is small, and then estimate the

rest of integrand slice by slice. Recalling A,, the triangle inequality gives

Z/ H (rls:| — |oi| dr—i—CZ‘/ H——dr
h

iel— iel—

|Ay| < : (4.5.7)

The second term in (4.5.7) corresponds to the contribution of adjacent sides. By

h; = H; + &,
h;
C ’/ {H——} ‘ C ‘ ; — hi) + hilog ’
> > (&)
=OY | ~athigp + 06 OZO ) < C54(E).
i€l— iel~

To bound the first term in (4.5.7), we will show that |r|s;| — |o|| < C max{|e;_1|}
for r € [h;/H;, 1], where the constant C' depends on f, and then obtain our bound by
integrating. To this end, we rotate our coordinates such that v; = es, so the side s;
has endpoints (a, H;) and (b, H;) for some a < b. We compute explicitly the endpoints

of o;; it has, respectively, left and right endpoints

€i_1 Cit+1
o —1/Ne—————m h, 2 —, ;).
<a—|—tan (0;1 —7/2) & S0 hl> and <b tan (6; — 7/2) ei+ Sin(0,)’ hz)

Thus

Eit1 Ci—1
= |b— 2 - = 7)2) e — ——L ).
o] = ‘b tan (6, — w/2) i+ 4o (a—i—tan (051 — 7/2) & sin(@i_1)>’

and so

loil =16 = al| < Cleil + leial + leial),

where C' depends on f. Therefore, recalling that |b — a| = |s,],

'Z' jsil + Cmax{|e; [} < Cmax{|e;]}.

| — ol | < (1 —7)]si| + C(lei| + leia] + [eia]) <
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Given this estimate on slices, we integrate over r:

1 H. 1 H.
= (r]s;| = |ou]) dr < C' max{|e; / —dr
> s DI

iel~ iel~
= C'max{|e;|} EZI H;|log (%)’
= Cmax{le;|} Y (ei + O(e})) = O(max{le,*}) < C(F)o(B),
iel~
where the last inequality follows from (4.5.3). O

We prove Theorem 4.1.5 after introducing the following definition that we will need
in the proof.

Definition 4.5.2. A set E is a volume constrained (e, no)-minimizer of F if
F(E) < F(F)+¢|EAF)|
for all F' such that |E| = |F| and (1 —ng)E C F C (1+no)E.

Proof of Theorem 4.1.5. By Proposition 4.2.4, we need only to show that there exists

some C' depending on f such that
Bi(E)? < Cos(E). (4.5.8)

for all sets F of finite perimeter with 0 < |E| < oco. Suppose for contradiction that
(4.5.8) does not hold. There exists a sequence {E; } such that |E;| = | K|, §¢(E;) — 0,

and
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for c3 to be chosen at the end of this proof. By an argument identical to the one
given in the proof of Theorem 4.1.3, we obtain a new sequence {F;} with F; C Bp,

for all 7 such that the following properties hold:

e cach F} is a minimizer of Q;(F) = F(E) + |8K|Tmff|ﬁf(E)2 — &2+ A||E| — |K]|
among all sets E C Bg,, where ¢; = ;(E};);

e F; converges in L' to a translation of K;

o |Fj| = |K| for j sufficiently large;

e the following lower bound holds for 5¢(Fj) :

3 < 2B5(Fy)%. (4.5.10)

Translate each Fj such that |F;AK| = inf{|F;A(K +v)| : y € R*}. We claim that for
all ¢ > 0, there exists 1y > 0 such that F} is a volume constrained (e, 7y)-minimizer
of F (Definition 4.5.2) for j large enough. Indeed, fix ¢ > 0 and let 7, = ¢¢,
where ¢; = ¢;(f) will be chosen later. By Lemma 4.2.3, there exists 7y such that if

(1—=m)K C EC (1+mn)K, then |yg| < m. Let ng = min{n,n2}/2.

By Lemma 4.3.3, each Fj satisfies uniform density estimates, and so Lemma 4.3.4
implies that, for j large, (1 — 1)K C F; C (1 +m)K and thus |yr| < n1. Let E be
such that |E| = |F};| and (1 —n9)F; C E C (14 n9)F;. Then |yg| < m and
(1-—m)KCF,C(1+m)K, (I1—-m)KCEC(1+m)K.
Because [; minimizes @);,
K K

[y Iy
F(Fy) + 4—Mf!5f(F}')2 —el < F(B) + 4—]\/[f’ﬁf(lﬁj)2 ~<l
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and so by the triangle inequality and since my < My,

K]

F(Fy) < F(B) + =18 (E)* = B;(Fy)*|.

If 7(F;) < F(E), then the volume constrained minimality condition holds trivially.
Otherwise, with a bound as in (4.3.11), we have

) = F(B) | hy(E) =y ()

FE) < Py + T .

and so

F(Fy) < F(E) + |y (E) = 77 (F)].

As in the proof of Theorem 4.1.3, the Hélder modulus of continuity for v¢ shown in
Proposition 4.2.1(2) does not provide a sharp enough bound on the term |v;(E) —
v¢(Fj)|; we must show that ¢ is Lipschitz when the centers of E and F; are bounded
away from their symmetric difference. In this case, we must be more careful and show
that the Lipschitz constant is small when |E| = |F| and E and F} are L™ close. If

v¢(E) > v¢(F;), then using (4.2.9), we have

dx dx
Y (E) =5 (F;) < /Em B /FJ. folz —yp)
dx dx

/E\Fj filz = yE) - /Fj\E flr —yp)
One easily shows from the definition that for any =,y € R",
1 1
folw) = m—f!y\ < fulz —y) < fulz) + m—f!y\-
Therefore, since (1 —m)K C EAF; C (14+m)K and |yg| < n,

L—m(+1/my) < fulr —ye) < 1T+m1+1/my)

165



for v € EAFj, implying that

dx dx
w(B) = (F) < < Cm|EAE).

gy L—m(l+1/my) /Fj\E L4+m(1+1/my)

where C' =1+ 1/my. The analogous argument holds if v¢(E) < v¢(Fj}), and so
F(F;) < F(E) + Cm|EAF;|.

Letting ¢; = 1/C, we conclude that F; is a volume constrained (e, 1o)-minimizer
of surface energy, and for j large enough, (1 —n9/2)K C F; C (1 +n9/2)K by
Lemma 4.3.4. Therefore, Theorem 4.5.3 below implies that, for j sufficiently large,
F}; is a convex polygon with vp (z) € {v;}X, for H'-a.e. © € OF;. Moreover, for
any 1, (1 —n)K C F; C (1+n)K for j large enough, so actually {vp,} = {v;}X,
for j sufficiently large. In other words, for j large enough, Fj is parallel to K, so

Proposition 4.5.1 implies that
Br(Fy)? < Cuoy(F), (45.11)

where C depends on f. On the other hand, F; minimizes ();, so comparing against

E; and using (4.5.9) and (4.5.10) implies
F(Fy) < F(E)) < F(K) + ese5 < F(IK) + 236 (F))*.

By (4.5.10), B¢(F};) > 0, so choosing c3 small enough such that ¢; < |K|/Cy, we reach

a contradiction. O

Theorem 4.5.3 (Figalli, Maggi, Theorem 7 of [FM11]). Let n = 2 and let f be a

crystalline surface tension. There exists a constant €y such that if, for some n > 0
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and some 0 < e <gy, (1—=n/2)K C EC (1+n/2)K and E is a volume constrained

(e,m)-minimizer, then E is a convex polygon with
ve(z) € {v}Y, for H'-a.e. x € OF.

Remark 4.5.4. In [FM11, Theorem 7|, Figalli and Maggi assume that E is a volume
constrained (g, 3)-minimizer (and actually, their notion of (¢, 3)-minimality is slightly
stronger than ours). However, by adding the additional assumption that (1—7/2)K C
E C (14 n/2)K, it suffices to take E to be a volume constrained-(e,n) minimizer
(with the definition given here) with n as small as needed. Indeed, if (1 —n/2)K C
E C (1+n/2)K, then (1 —n)E C co(E) C (1 +n)E where co(E) is the convex hull
of E. Then, in the proof of [FM11, Theorem 7|, the only sets F' used as comparison
sets are such that |E| = |F|and (1—n)E C F C (1+n)E.

4.6 An alternative definition of the oscillation index

The oscillation index [;(E) is the natural way to quantify the oscillation of the
boundary of a set E relative to the Wulff shape K for a given surface energy F,
as it admits the stability inequality (4.1.3) with a power that is independent of f.
One may wonder if it would be suitable to quantify the oscillation of E by looking
at the Euclidean distance between normal vectors of E and corresponding normal
vectors of K. While such a quantity may be useful in some settings, in this section
we show that it does not admit a stability result with a power independent of f. This
section examines the term (7(F) defined in (4.1.6) and gives two examples showing a

failure of stability. We then give a relation between Sy and §} for 7-A convex surface
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tensions. As a consequence of Theorem 4.1.1, this implies a stability result for 5%,

though, as the examples show, there is a necessary dependence on the v-\ convexity

of f.

The following example illustrates that there does not exist a power ¢ such that
B3(E)” < C(n, [)és(E) (4.6.1)

for all sets F of finite perimeter with 0 < |E| < oo and for all surface energies F.
Example 4.6.1. In dimension n = 2, we construct a sequence of Wulff shapes Ky
(equivalently, a sequence of surface tensions fy and surface energies Fy) and a sequence

of sets Ey such that dp(Ep) — 0 but 5;(Ey) — oo as § — 0. We use the notation
0p = 0y, and By = B},

We let Ky be a unit area rhombus where one pair of opposing vertices has angle 6 < 7§
and the other has angle 7 — 6. The length of each side of Kj is proportional to 6-1/2,
Let L = §~'/*. We then construct the sets Ey by cutting away a triangle with a zigzag
base and with height L from both corners of Ky with vertex of angle 6 (see Figure 3).
We choose the zigzag so that each edge in the zigzag is parallel to one of the adjacent
edges of Ky. By taking each segment in the zigzag to be as small as we wish, we may

make the area of each of the two zigzag triangles arbitrarily close to the area of the

triangle with a straight base, which is
A= L*tan(0/2) = 6~ tan(9/2) ~ 62,

as this triangle has base 2L tan(6/2). Both of the other two sides of the triangle have
length m = L/ cos(0/2).
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/N

Ky “
V S

Figure 4.3: The sets Fy are formed by cutting away a zigzag triangle from the top and
bottom of Ky and have dp(Ep) — 0 but 5;(Ep) — oo as § — 0.

Let us now compute the deficit dy and the Euclidean oscillation index f3; of Ey. By

construction, Fy(Ep) = Fy(Ky) = 2, and therefore

2 1 1/2 1/2

To compute 3;(FEy)?, we cannot characterize the point y for which the minimum in
(4.1.6) is attained in general. However, something may be said for an n-symmetric
set, i.e., a set E that for which there exist n orthogonal hyperplanes such that E is
invariant under reflection with respect to each of them. The intersection of these or-
thogonal hyperplanes is called the center of symmetry of E. Indeed, a slight variation
in the proof of [Mag08, Lemma 5.2| shows that

1 Tr—z

36;(E) > <W /M 1 —vp(x) - VK(m> d?—["l(q:)>1/2. (4.6.2)

where z is the center of symmetry of F. By construction, Fjy is a 2-symmetric set
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with center of symmetry 0, so

98;(Eg)? > m /Z 1 —vg, () vk, (%) dH!

> %/Zl —vg, () - vk, (%) dH',

where Z denotes the union of the two zigzags. By construction, H'(Z) is exactly
equal to H'(0Ky \ 0F,) = 4m. Moreover, because the edges of Ey are parallel to
those of Ky, we find that
]_—VEQ(CL')'VK9<L> = {O vE€ L
fe(2) 1 —cos(m—0) x€Zy
where Z; is the set of © € Z where vg,(z) is equal to I/Ke(ﬁ) and Z, is the set of

x € Z where vg,(x) is equal to the normal vector to the other side of Kj. Moreover,

we have constructed Ey so that H'(Z;) = H'(Z5) = 2m. Thus, as 0 < I,

By (Eg)* > %/ 1 —cos(m — 6) dH' > HI(QZQ) = m = 1/(0"* cos(6/2)) — oo

Za

as § — 0. Therefore, for any exponent o, the inequality (4.6.1) fails to hold; we may

choose 6 sufficiently small such that Ej is a counterexample.

The next example shows that, even if we restrict our attention to surface energies that
are 7-A convex (Definition 4.1.6), an inequality of the form in (4.6.1) cannot hold with
an exponent smaller than ¢ = 4. The example is presented in dimension n = 2 for
convenience, though the analogous example in higher dimension also holds.

Example 4.6.2. Fix p > 2 and define the surface tension f,(z) = (Jz1|? + |22[P)"? to
be the /7 norm in R%. We show below that f, is a 7-A convex surface tension. Holder’s

inequality ensures that the support function f, is given by f,, in the notation above,
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Figure 4.4: The sets F, formed by replacing the top and bottom of the ¢¢ unit ball with a
cone show that (4.6.1) cannot hold for o < 4.

where ¢ is the Holder conjugate of p. The Wulff shape K = {f,(z) < 1} is therefore
the ¢9 unit ball. We let F, denote the surface energy corresponding to the surface

tension f.

We build a sequence of sets {F,} depending on p such that, for any o < 4, we
may choose p large enough so that ,(E,)/B;(E,.)° — 0 as r — 0. Here we use
the notation 8;(E) = B} (E) and 6,(E) = d5,(E). We may locally parameterize K
near (0,1) as the subgraph of the function v,(z;) = (1 — |21]9)"9 . Thus ve(1) =

—|z1 |21 /(1 — |21]9) P and

1| 2a 1 2 2¢—1
e/’ =) (1] 2 + O(Jag]*7), 1)
Jl T T e+ O )

2/17

vi (1, vg(21)) (4.6.3)

The sets FE, are formed by replacing the top and bottom of K with cones. More
precisely, let C, = (—r,7) x R. We form E,. by replacing 0K N C, with the graphs of
w and —w, where w; : (—r,7) — R is defined by w(z;) = —r?ay|/(1 — rO)YP 4 Cyp.
Here, the constant Cy = (1 —79)Y/94-77/(1 — r9)'/P is chosen so that w(r) = v,(r) and

w(—=r) = vy(—r). For xy € (—r,r) for r < 1, we have w'(x1) = —r? tsgn(z1)/(1 —
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r?)1/P and

(o) ) (seae)e + o), 1 464
Vg ((xlv w('rl))) - r2q—2 N \/1 + 7’2q72 + O(T3Q*2> . ( - )
1+ =ray2s

Now, F,(E,) = Fp(K) + Fp(E,; C,) — Fp(K;C,), so

r

Ay -7 = [ (o) = () Tan,

_r 1—ra ]_—|ZL‘1|q

1 '
= —/ r? — |2 |74+ O(r*) dwy = Cr?™ 4 o(r?t1).
pJo,

The graph of w lies above the graph of v, for all |z1]| < r, so |E,| > |K|. This implies

that

6p(Er) < ‘FP(ET) B FP(K)

— C q+1 q+1 )
< 2K riT 4 o(r?t)

Next we compute 7 (F,) in several steps. As in Example 4.6.1, E,. is a 2-symmetric set
with center of symmetry 0, thus it is enough to compute the right hand side of (4.6.2).

First, the Taylor expansions in (4.6.3) and (4.6.4) imply that, for z € C, N 0*E,
ve(x) - I/K<f*L($)) is given by
(lz1)* 221 + O(lza 1), 1) (sgn(z)ri '+ O(r* ), 1)
VIt P2+ O Pr2) /142724 O3
1+ |z |77 + O(r3972)
V(14 |21[2772 4+ r2a-2 + O(r1a—1))
1
S L ) 4 O
1
= 1= 5l = 06,

For x € 0'E'\ C,, vg(z) - l/K(fjx)) = 0. Hence,
),
2 Jorr

2 dHl) " - <A*EQCT b VK(%) dHl)
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w-n(75)




" 1/2
= (/ %(Wl’q_l — 702/ 1 4 12072 4 O(r3e-1) 4+ O(r3172) dxl)

-

"1 -1 —1\2 3q—2 1/2 -1/2 -1/2
= B9g([ Sml™ =1 R+ 0GR day ) = O o),

-Tr

Furthermore, |E| = |K| + o(1), so V2|K| V4| E|~Y* = \/2|K|~'/2 + o(1), and so

Bi(E,) = W(/QE ’VE<5U> - uK(ﬁ>

Therefore,

2d7—[1)1/2 —oprl2 g o(rqflﬂ).

6o(Er) rla+1)

~ _ T,q+1—aq+a/2
BBy~ e |

This quantity goes to 0 as r goes to zero if and only if ¢ + 1 — 0q + 0/2 > 0, or,

240

equivalently, if and only if 5o > 4 For any ¢ < 4 we may find 1 < ¢ < 2t

200—1)

Therefore, for any o < 4, there exists a 7-A convex surface tension f such that a

bound of the form 6;(E) > CB}(E)? fails.

When f is 7-A convex (recall Definition 4.1.6), we can control 8(E) by 8;(FE). As one
expects after the previous example, the exponent in this bound depends on the -\
convexity of F. Indeed, this is the content of Theorem 4.1.7. First, we show that the ¢,
norms f, as defined in the previous example are -\ convex for each p € (1,00). In the
case where 1 < p <2, f, is actually uniformly convex in tangential directions, so it is
v-A convex with v = 0. Indeed, f,(v+7) = f,(v)+V fo(v)7+1 fol V2 [ (v+s7)[T, T]ds,

and thus

fL(v+7)+ flv—1)—2f,(v) = %/1 V2fp(y + s7)[7, T]ds.

We can bound the integrand from below pointwise. We compute

|v; |2 |y [P2 |vi P2 v vy P2y

S e fr ) M it e
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Therefore, if f,(v) = 1, then

n n

VW) =@-1)) [l Pa®e—(p—1) Y [l vl ve @ e

i=1 ij=1
and so

n

VL)) = 0= )Y P2 = (0= (3 Il )

i=1 i=1
It is enough to consider 7 such that 7 is tangent to K, = {f, < 1} at v, as f,
is positive 1-homogeneous and the span of v and T, K, is all of R". Observe that
V() = >0 |vilP~2ve;; this is verified by the fact that the support function of f,
is f,, and that Vf,(v) = 7.6y such that & -v = fp(v) = 1. Thus 7 is tangent to K,
at v if and only if 7- Vf,(v) = 37| |vi|P" ;7 = 0. Therefore, for such 7,

VL)l )= (- 1) Z il =27 > (p = Dl

In the case where p > 2, we use Clarkson’s inequality, which states that for p >

2,

fp(x—;y)mrfp(x;y)p < fp(zw)” N fp(Qy)p.

For v such that f,(v) = 1 and 7 tangent to K, at v with f,(7) = 1, Clarkson’s

inequality with x = v 4+ e7 and y = v — e7 implies
2P < f(v+erm)P + f(v —eT) — 2.

This is almost the condition we need, except we have fI instead of f, for the terms
on the right hand side. Note that both f,(v+¢e7) and f,(v — e7) are greater than 1,

as moving in the tangent direction to K, = {f, < 1} increases f,. The function 2” is
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convex with derivative pzP=!, so 2P < 2P7lpz + (2P71p — 1) for all 2z € [1,2]. Applying

this to 21 = f,(v +e7) and 2z, = f,(v — e7) yields
2eP < 207 Ipf (v +eT)P + 207 Ipf (v — eT)? — 2(2P 7 1p).

Thus f, is y-A convex with v = p — 2 and A = 1/(2°?p).

The following lemma about -\ convexity condition will be used in the proof of
Theorem 4.1.7.

Lemma 4.6.3. Assume that f is v-A convex. Then for all v, € R"™ such that v # 0,

A
f(V+T>222+—7|V|

()T s Vs e

o)/ Jv
Proof. Note that if f is y-A convex, then f is convex. To see that (4.6.5) holds for
given vy and 79, we let f(v) = f(v) — f(v) — V(o) - (v — 1p). At the midpoint

Vo + 3, the -\ convexity condition gives us the following:

N - ~ To A | To To Yo\ Yo [Pt
_ D> == (5 )| -
f(w) + f(vo +70) — 2f (vo + 2) = |V0|‘ 2 (2 |I/o|>|V0|

Convexity implies that f(vy + 3) > 0, and f(xo) = 0 by definition of f, implying
(4.6.5). O

Finally, we prove Theorem 4.1.7.

Proof of Theorem 4.1.7. The quantity 8}(E) measures the overall size of the Cauchy-
Schwarz deficit on the boundary of E, while 5;(E) measures the overall deficit in the
Fenchel inequality. Our aim is to obtain a pointwise bound of the Cauchy-Schwarz

deficit functional by the Fenchel deficit functional, and then integrate over the reduced
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boundary of E. Without loss of generality, we may assume that |E| = |K| = 1 and

FE has center zero in the sense defined in Section 4.2.3.

We fix € 0*F and consider the Fenchel deficit functional G(v) = f(v) — v - AOL

which possesses the properties that G(v) > 0 and G(v) = 0 if and only if v = ¢ V f,(x)

for some ¢ > 0.

Let w = |§§:Eg\ = VK(f*”(”x)). Lemma 4.6.3, with v = w and 7 = vg — w, implies that

F(vE) > ol —w) = (v = w) )"+ F(aw) + ¥ faw) - (v — ).

Therefore, since V f(w) = Ty and fw) =V f(w)-w,

e _ ML= (v w2

Glop) > 53 (v — w) = (v — w) - w)ul -
M1 —vg-w)(1 4 vg - w))@/2
- 22+v '
We want to show that there exists some c¢; such that
G(vg) > (1 — vg - w)@H/2, (4.6.6)

When w - vg > —cp for some fixed 0 < ¢y < 1, then G(vg) > 22%(1 — o) EHN2(1 —

vg - w)?*)/2 and (4.6.6) holds. On the other hand, when w - vy < —cy for ¢y small,

we expect that % - vg must also be small and so G(vg) is not too small. Indeed,
x |z]
my < f(w) = cw = cos(bh) < My cos(b,),
! fola) " fulo) !

where 6, is the angle between w and fL(I) Similarly,
—co > Vg - w = cos(fs),
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where 60, is the angle between w and vg. Noting that 0 < my;/M; < 1, and so
cos Y (mys/My) € (0,7/2), we let By = 2 cos ' (my/My)+e, where € > 0 is chosen small
enough so that 6y < 7. Letting ¢g = — cos(fy), we deduce that 6; < cos™'(m;/Mjy)
and 0y > 0y. Then

x ||

RGN

for a constant ¢. > 0. Since f(vg) > my, we have G(vg) > M c., implying (4.6.6)

cos(fy — 61) < M cos (cos™ (my/My) + ) < my — Myec.,

because 1 — vg - w < 2.

Holder’s inequality and (4.6.6) imply

2/(2+7)
/ 1 — Vg W danl < Hnl(a*E)'y/(QJr’y)(/ (1 —vg - w)(2+’y)/2d7_[n71> vy
o0*E

O*E

_ 61—2/(2+7)P(E)v/(%rv)(/a i

2/(2+7)
a(l—vg- w)(2+7)/2d7-["_1>

< 61—2/(2+7)P(E)7/(2+7) < G(VE)d?"lW1

> 2/(2+47)
O*E ‘

Dividing by n|K|'/"|E|*/"" and taking the square root, we obtain

Br(E)/CH.

Bi(E) < cfl/@“)( P(E) )“//2(2+7)

n|K|1/n|E‘1/'rL’
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Appendix A

Uniqueness of minimizers of ®(7)

In this appendix, we prove Theorem 2.2.3, which aims to characterize the equality
cases in Theorem 2.2.1. The main step is to prove the validity of (2.2.10) (see the
proof of Theorem 2.2.1) without the assumption that f € C}(H). This is the content
of the following lemma, whose proof resembles [CENV04, Theorem 7].
Lemma A.0.1. If n > 2, p € [1,n), and f and g are non-negative functions in
L (H), vanishing at infinity, with

[ IV fIP < o0 and [, |z[F'g” < oo ifp>1

|IDf|(H) < 0o and sptg CC H ifp=1 (A.0.1)

Hf”LP*(H) = ”g”Lp*(H) =1
then (2.2.10) holds for every t € R, that is

n/ g < —pﬁ/ PN (T —te)+t | f7,  VteR. (A.0.2)
H H OH

Here T = Vi is the Brenier map from fP" dx and ¢* dz.

Proof. We let Q be the interior of {¢ < 0o}, and recall that T € (BV N L>),.(2; R™)

with F'dx concentrated on H N{). We notice that in the proof of Theorem 2.2.1, see

(2.2.9), the identity
/H ¢ = /H(detV2<p)1/"fpn, (A.0.3)
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was established without exploiting the additional assumption f € C}(H). Thus

(A.0.3) also holds in the present setting.

We first let p € (1,n). By a translation orthogonal to e;, we may assume that 0 € €.
For ¢ > 0 let n. € C°(Byye; [0,1]) with n. =1 on By, and 7. T 1 pointwise on R" as
e — 07, and set

T
1 —

fola) = min {f (1) f@m(0) fLu(2),  weH,

where H, = {x; > ¢}. By density of C°(H) into LP"(H) we see that fo((1—¢)~!1d) —
fin LP"(H) ase — 0%, so that f. — fin LP"(H). Analogously, V[fo((1—¢)~'1d)] —
Vfin LP(H) as € — 0. If we choose n.(z) = n(e z) for some fixed n € C}(By; [0, 1])

with 7 = 1 on Bj, then we find

A\ p/p* p/n
/ | fVn|P < </ fp> </ |V17|"> -0 ase — 0,
H R™\By /. Ba

and thus V(fn.) = Vf in L?(H). Finally, [, [Vf[P — 0 as € = 07, so that

f. — fin L”"(H) and a.e. on H
as e — 07 . (A.0.4)
1y, Vf. = Vf in LP(H)

Moreover, as 0 € 2 and f = 0 a.e. on )¢ there exists an open set {2.c{2 such that
spt(fo)c€d.. We can thus find {f. s }ren C CCI(QE N E) such that
fex — f-in LP"(H.) and a.e. on H.
as k — 0. (A.0.5)
Vfr— Vi in LP(H,)

Since f.j € C}(H.), arguing as in Theorem 2.2.1 we find that

n / (detV2p)/m f7, < —pf / AT fog - Sd 4t / faH™ (A.0.6)

OH.

€
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where S = T —te; € LS. (€;R™). Since S is bounded on (2., where the f. are

loc

uniformly supported in, and since p* — 1 = p*/p/, by (A.0.5) we find

lim [ fP V- Sde= [ [PV Sda.
He

k—o0 H.

Moreover, by the trace inequality

el oay < CCA) (IVullzoay + lullzicn )

which is valid whenever A is an open bounded Lipschitz set (see, for example, [MV05]),
and again by the uniform support property, (A.0.5) implies

lim A = | prannt

k=00 Jom, OH.

Hence, by pointwise convergence and Fatou’s lemma, (A.0.6) implies

n / (detV2p)/m (7" < —ph / P S+t / P an (A.0.7)

OH:

In order to take the limit ¢ — 07 in (A.0.7), we first notice that f. < f everywhere

on H. Hence, by (2.2.1) and (A.0.1), we find

/ s < / 7S = / ¢ e —te” < oco.
H H H

Since f. — f a.e. on H, it must be f7~1S — f¥~15 in [F'(H) as e — 0*. By
combining this last fact with the strong convergence 1y Vf. — Vf in LP(H), we

conclude that

/ ffn_1Vfa-Sd:r:/ ffﬁﬂVfa-S_)/ frvEes (A.0.8)
€ H H
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as ¢ — 07, Next, let us set ho(x) = f.(xr +eep) for z € H, so that 15 Vf. = V[ in
LP(H) and the density of C°(H) in L(H) gives us Vh. — V f in LP(H). By applying
(2.1.2) to h. — f we find that h. — f in Lpu(H), which clearly implies

lim At = | prant

e=0" JoH. oH
By combining this last fact with (A.0.8) with the fact that 15 f* — 1y % a.e. on
R"™ and with Fatou’s lemma, we deduce from (A.0.7) that

”/ (det Vi)' 7" < —pf / [P S / frant
H H OH

Combining this inequality with (A.0.3), we complete the proof of the lemma in the

case p € (1,n).

We now consider the case p = 1. We now have |Df|(H) < oo and spt g bounded.
Thanks to the latter property, by arguing as in [MV05, pg. 96| we can assume that
S =T —te € (BVipe N L®)(H;R™). Setting fr = 1p, min{f,k}, k € N, then
frS € BV(R™ R™) and by the divergence theorem

div (A S)H) = [ fes(—en) = fkT~(—61)+t/aHfSt [ 1.

o0H

If we identify f; and S with their precise representatives, we have

div(ka)(H):/kad(diVS)+/H S Dfy

where, of course,

/fkd(dIVS):/ fkd(leT)Zn/ fk(detv230)l/n'
H H H
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We have thus proved

n/ Fi (det V2p)/m < —/ S Df+t [ fedH™". (A.0.9)
H H

OH
By monotone convergence [, fr = [,,; f, while (2.2.3) and the boundedness of sptg

imply the existence of R > 0 such that |S| < R on spt(Df), and thus

’/HS.ka—/HS-ka‘§R|Df](H\(BkU{f<k}(1)>

where E( denotes the set of density points of a Borel set £ C R™ and we have used
D(1g f)(K) = Df(EW N K) for every K C R". Since |Df|(H) < oo, letting k — oo

and finally exploiting Fatou’s lemma we deduce from (A.0.9)

—/ S-Df—I—t/ de”_IZn/ f(detV2<,0)1/":n/ g,
H OH H H

where in the last inequality we have used (A.0.3). The proof is complete. O

Proof of Theorem 2.2.3. Let us consider two functions f and ¢ as in Lemma A.0.1

such that, for some t € R,

0 [ & =PIVl Vg e [ 0w [ pso0 (oo
H oOH OH

where | D f|(H) replaces ||V f||Lr(ay if p = 1. By arguing as in the proof of [CENV04,
Proposition 6] in the case p € (1,n), and as in [FMP10, Theorem A.1| if p = 1, we
find that T'(x) = Vo(x) = Az — z¢) for some A > 0 and z; € R".

We claim that zq - e; = 0. Keeping the proof of Lemma A.0.1 in mind, (A.0.10)
implies that

- P e

lim lim (T -ep) fFydH =0,

e—0t k—oo0 OH.
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where T' = Az — xg) gives

/ (T-el)fgl:)\(a—xo-el)/ fgz.
OH. OH.

Since we have proved that

lim lim framn Tt = / 7 An

=0t k—oo BHE OH
where the latter quantity is assumed positive, we conclude that xy-e; = 0, as claimed.
Up to a translation and up to apply an LP -norm preserving dilation to f, we can

now assume that xo = 0 and A = 1, that is T'(z) = «.

We first consider the case p € (1,n). By combining (A.0.2) and (A.0.10) we find that
we have an equality case in the Holder’s inequality [, A- Bdx < ||Al|recm) | Bl 1o (H)
with

A=-Vf B=f" Y a—te).
In particular, there exist Borel functions v : H — R" and a,b : H — [0,00) such

that A = av, B = bv, and a = ¢b”/®Y for some constant ¢ > 0. Hence, if we set

r=|r—te] and v = (x — tey)/r, there exists a Borel function u : [0,00) — [0, 00)

such that
-1
Sy =ulr) = V) =)k
and the above conditions hold with a = —u/(r) and b = ru(r)?~!. In particular,
—u'(r) = c(ru(r)pu_l)l/(p_l) for a.e. 7> 0,

and consequently, for some ¢; > 0 and ¢; € R
u(r) = (e’ + )" Vr>0,
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where x, = max{z,0}. In terms of f, this means that
f@) = (a|lz — ter]” + )" Ve H.

The cases where ¢; is positive, zero, and negative correspond, respectively, to f being
a dilation-translation image of Usg, U, and Ug. If t > 0, the finiteness of the L?" (H)-
norm of f excludes the possibilities that f is a dilation-translation image orthogonal

to e; of Ug and Ug.

Let us now consider the case p = 1. Recall that we have already set T'(x) = z, so

that f = g and the combination of (A.0.2) and (A.0.10) gives

= [ @=ten - Df = | ~terll~asy DA, (A011)
H
that is
-1
-Df = u]Df] as measures on H .
|z — te|

By [Magl2, Exercise 15.19|, there exists p > 0 such that f = clgnp,e,). This

completes the proof. O
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Appendix B

The operator Ly in polar coordinates

In this section we prove the polar coordinates form of the operator div (A(z)Vy)

given in (3.2.10).
Proof of (3.2.10). We will use the following classical relations:
87 =0 8.0,=0, i =0, 090, =—7, 05,0, =0 fori#j.
The chain rule implies that
div(A(z)Vp) = tr(A(z) V) + tr(VA(x) V). (B.0.1)

We compute the two terms on the right-hand side of (B.0.1) separately. For the first,

we begin by computing the Hessian of ¢ in polar coordinates, starting from

n—1
Vo =007+ - Z@g 00, (B.0.2)
We have
1 n—1 . 1 n—1 1 n—1 N
Vip =0, <8Tg0r + - Z@gj<p0j>f + Zaei (&@f +- Z@)ﬂ@')ez
=1 i=1 j=1

= rrgof@r— 289900 T + — Z@grch T+ — Z@gﬁﬂ’@&

j=1
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n—1 n—1 n—1
1 o
+ - E 87»90(9 ®0 +’l”2 899@(9 ®9 2 E 891.907”@)(91'.
=1 j=1 =1
In order to compute A(z)V?¢, we note that

~

FRMNFoM) =Fror, (Fe#)(0;o0;)=0,

Thus we have

A)Vi = (p = 2)|VUP* @ #(Vie) + [VU [ ?1d(V)

n—1 n—1
PR s 1 P
:(p—2)|VU|p—2[a”gpr®r—ﬁ E 89].g09j®r—|—; E 89jrg06’j®r}
j=1 j=1

n—1 n—1 n—1
A 1 A o1 A o1 oA
+’VU|p_2[aMQDT®7’—T—2 E 89j909j®7°+; E aejr909j®7"—|—; E Ooirp T ® 0;
=1 j=1 i=1

n—1 n—1 n—1 n—1
1 1 1 o
+ =D 0000+ DD Dol 00— > :5’9ig07"®9i],
=1 =1 j=1 =1

and the first term in (B.0.1) is

tr(A(z) V) = (p — DIVU["9,,

r90+ |VU|p22899g0

=1

(B.0.3)

Now we compute the second term in (B.0.1), starting by computing VA(z). We
reintroduce the slight abuse of notation by letting U(r) = U(x), so U’ = 0,U, U" =
0,-U. Note that 0yIld = 0,Id = 0, thus

n—1
= (-2 U U U @@ F+ (p = 2)UPU U Td @ 7

187



—

P—2
T

+ 10265 @7 @ 0 + U2 @ 6; @ 5.

1

<.
Il

Recalling (B.0.2), we then have
VA@)Ve = (p— 22U P U U" 0,0(F @ # @ #)F + (p— 2)|U' [P0 U" 8,0(1d @ 7)7
—1

(0P=20,0(6; 0 70 6,)7 + U007 @6 2 0,7

=1

[\
3

+ 2=

.

(0= 22U P 0T Oy @7 @ 1) + (p = 2|0 U 0y, p(1d @ 1) |

n—1 n—1
p—2 , R A o~ A R ~ A o~
T ZZ[!UV’ 209,00, 7 ® 0,)0; + U7 Zaeiso(r@wj@@j)@i]’

i=1 j=1

where we used that (a ® b® ¢)d = (a - d)b ® c. Writing out these terms gives

n—1

VA@)Ve = (p—1)(p—-2)|U P UU" 007 @F + —yU'|p ) 0,00, @0,
Jj=1
n—1 n—1 )
|U’|p U g0, @7+ —|U’|p 2N Oyt @0;,
Jj=1 j=1
thus the second term in (B.0.1) is
~Dp-2
H(VA@)V) = (p— 1)(p — 2)[VUP—0,U 0,0 by + )r(p ) \vup-20,0
(B.0.4)
Combining (B.0.3) and (B.0.4), (B.0.1) implies that
—Dn-1
Av(A@Ve) = (p— DIVUP20,0 + L= gy
n—1
—|VU\p 2N " Oh0,0 + (p— 1)(p = 2)|IVUP0,U 0,,U 0,0,
J=1
as desired. O
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