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Abstract Anisotropic surface energies are a natural generalization of the perimeter
functional that arise, for instance, in scaling limits for certain probabilistic models
on lattices. We survey two recent results concerning isoperimetric problems with
anisotropic surface energies. The first is joint work with Delgadino, Maggi, and
Mihaila and provides a weak characterization of critical points in the anisotropic
isoperimetric problem. The second is joint work with Choksi and Topaloglu and
describes energy minimizers in an anisotropic variant of a model for atomic nuclei.

1 Introduction

The Euclidean isoperimetric problem, in which one minimizes the perimeter among
sets of a fixed volume, is one of the most classical problems in mathematics and its
study dates back over two millennia. In the language of modern calculus of varia-
tions, it is the minimization problem

inf{P(E) : |E|= 1}, (1)

where E ⊂ Rn is a set of finite perimeter and P(E) is the distributional perimeter;
see [27]. Modulo translations, the unique minimizer of (1) is the ball of volume one.
Rephrased in a scaling invariant way, this fact gives the isoperimetric inequality:

P(E)≥ n|B|1/n|E|(n−1)/n,

with equality if and only if E is a translation or dilation of the unit ball B.
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Anisotropic surface energies are a natural generalization of the perimeter func-
tional, which frequently arise in models for equilibrium shapes of crystalline ma-
terials and in scaling limits of probabilistic models on lattices [5, 2]. Given a sur-
face tension f : Rn → R, i.e. a convex, positively one-homogeneous function with
f |Sn−1 > 0, the anisotropic surface energy of a smooth open set E ⊂ Rn is given by

F (E) =
ˆ

∂E
f (νE)dH n−1

where νE is the outer unit normal to E. The definition extends to sets of finite
perimeter by integrating over the reduced boundary ∂ ∗E and taking νE to be the
measure theoretic outer unit normal. One can then study the corresponding mini-
mization problem

inf{F (E) : |E|= 1}. (2)

This problem is known as the Wulff problem, so named for the Russian crystallog-
rapher George Wulff who in 1901 conjectured the form of energy minimizers [32].
The unique minimizer, modulo translations, is given by the Wulff shape

K =
⋂

ν∈Sn−1

{x ·ν < f (ν)};

see [4, 15, 16, 30, 31]. This bounded convex set K plays the role of the ball in the
anisotropic setting. As with the Euclidean isoperimetric problem, one can express
this minimality in the scaling invariant form

F (E)≥ n|K|1/n|E|(n−1)/n, (3)

with equality if and only if E = rK + x for some r > 0 and x ∈ Rn.
Of course, the case when f is the Euclidean norm corresponds to the classical

notion of perimeter, in which case the Wulff shape is a ball. A less trivial example
comes from the class of smooth, elliptic surface tensions: those that are smooth on
Rn \{0} and are (λ -)elliptic in the sense that

λ Id≤ ∇
2 f (ν)≤ λ

−1 Id on ν⊥ ∀ν ∈ Sn−1.

The Wulff shapes for such norms are smooth and uniformly convex. From an an-
alytic perspective, the surface energies arising from smooth elliptic norms share
many desirable properties with the perimeter functional. However, many examples
of surface tensions are not smooth nor elliptic; in fact, every bounded convex set is
the Wulff shape for some surface energy. In typical applications, the physically rel-
evant surface tensions are crystalline surface tensions, those that are the maximum
of finitely many linear functions. Wulff shapes corresponding to crystalline norms
are convex polyhedra.

So, from both applied and theoretical perspectives, an important question is to
understand which structural aspects of anisotropic isoperimetric problems are dic-
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tated by the smoothness and ellipticity of the surface tension, and which are pre-
served when these assumptions are relaxed.

One example of a property that is independent of smoothness and ellipticity as-
sumptions is seen through the work of [14]. The main result there states that the
deviation of a set from achieving equality in (3) quadratically controls the distance
of a set to a homothety of the Wulff shape. More specifically,

F (E)−n|K|1/n|E|(n−1)/n

n|K|1/n|E|(n−1)/n
≥ c inf

x∈Rn

{
|E∆(rK + x)|

|E|
: |rK|= |E|

}2

.

Remarkably, the constant c depends only on the dimension. This can been seen as
a uniform convexity property of the energy profile of F (E) near the global min-
imizer: after modding out by translations and dilations, the energy F (E) grows
from its global minimum quadratically in the symmetric difference, with a modulus
of convexity is independent of the surface energy.

On the other hand, the following example provides a property that is dependent
on ellipticity. If f is an elliptic surface tension1, then for any set of finite perimeter
E and any half-space H intersecting E nontrivially (i.e. |E∩H|> 0 and |E \H|> 0),
one has

F (E)> F (E ∩H). (4)

In particular, if one considers the Plateau problem with respect to F (E) and with
boundary data, say, a copy of Sn−2 that is contained in a hyperplane, then the unique
solution is given by the (n−1)-dimensional ball contained in this hyperplane. One
sees (4) from the following simple calibration argument. For simplicity, say that E
is smooth. Let νH be the outer unit normal to H and let −x0 ∈ Rn be the slope of a
supporting hyperplane to the convex function f at νH . The ellipticity of f ensures
that the hyperplane with slope x0 is a supporting hyperplane to f at exactly one
ν0 ∈ Sn−1, and that f (ν)> ν · x0 for every other ν ∈ Sn−1. So

F (E)−F(E ∩H) =

ˆ
∂E\H

f (νE)−
ˆ

∂H∩E
f (νH) (5)

>

ˆ
∂E\H

x0 ·νE −
ˆ

∂H∩E
(−x0) ·νH =

ˆ
∂R

x0 ·νR, (6)

where we let R = E \H. Now, by the divergence theorem we see that the right-
hand side is equal to zero, which establishes (4). In contrast, in the absence of el-
lipticity assumptions on f , one can construct examples of quite dramatic failure of
uniqueness for Plateau’s problem. For instance, considering f (ν)= ‖ν‖`∞ in R2, the
line segment joining (−1,0) and (1,0) has the same energy as the segment joining
(−1,0) and (0,1) union the segment joining (0,1) and (1,0).

Here, we survey two results concerning minimizers and critical points of anisotropic
isoperimetric problems. The first, which is joint work with Delgadino, Maggi, and

1 One can actually assume slightly less; f needs only to be strictly convex is directions orthogonal
in tangential directions to its level sets.
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Mihaila [11], points toward a further properties of the energy profile of F (E) that
are independent of smoothness and ellipticity. The second, which is joint work with
Choksi and Topaloglu [7], demonstrates a variational problem in which the character
of energy minimizers depends crucially on smoothness and ellipticity assumptions
on the surface tension.

2 Critical points in the Wulff problem

Suppose f is a smooth elliptic surface tension. Then the first variation of the surface
energy F (E) for a variation with initial velocity X ∈C1

c (Rn,Rn) is given by

δF (E)[X ] =

ˆ
∂ ∗E

divτ(∇ f (νE))X ·νE .

Here divτ X denotes the tangential divergence. Notice that when f is the Euclidean
norm, this is the usual first variation of perimeter, and we call

H f
E := divτ(∇ f (νE))

the anisotropic mean curvature of E in analogy with the isotropic case. If E is a
critical point of F (E) with respect to variations that preserve area, then

H f
E = const on ∂

∗E.

In such a case, this constant is given by

H0 :=
(n−1)F (E)

n|E|
.

A celebrated theorem of Aleksandrov [1] says that the only smooth, bounded,
connected, embedded hypersurfaces in Rn of constant mean curvature are spheres.
Or, in the language of the present setting, if a smooth, bounded, connected set is a
critical point of the perimeter among variations that preserve volume, then E is a
ball. For smooth elliptic norms, the analogous result was shown in [20]: a smooth
bounded connected set E with constant anisotropic mean curvature H f

E is a transla-
tion or dilation of the Wulff shape.

For a generic surface tension, the interpretation of what constant anisotropic
mean curvature means is a subtle issue in itself; if a surface tension is not C1, then
the first variation is not even a linear functional. Following the common theme in
analysis, one may interpret “constant anisotropic mean curvature” via approxima-
tion by smooth objects. Given any surface tension f , we approximate f point-wise
by a sequence of smooth λh-elliptic norms { fh}. (Note that necessarily λh→ 0 if f
fails to be smooth or elliptic.) We quantify the L2 deficit of a smooth set from having
constant H fh

E with the scaling invariant quantity
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δ fh(E) =

 
∂E

∣∣∣∣∣H fh
E

H0
−1

∣∣∣∣∣
2
1/2

.

A natural definition for a set E to have constant f -mean curvature is for E to be
approximated in L1 by smooth, bounded sets Eh with δ fh(Eh)→ 0. The following
theorem, proven in [11], roughly says that such a set must be the union of Wulff
shapes.

Theorem 1. Let f be any surface tension and let K be the corresponding Wulff
shape. Let { fh} to be a sequence of smooth λh-elliptic norms approximating f
in a point-wise sense. Suppose {Eh} is a sequence of smooth, bounded open sets
normalized to have H0 = n that satisfy H fh

Eh
≥ ε on ∂Eh, supdiam(Eh) < ∞, and

Fh(Eh)≤ LFh(K). If
λ
−2
h δh(Eh)→ 0

and Eh→ E in L1, then

E =
M⋃

i=1

(K + xi), (7)

where M ≤ L and the K + xi are pairwise disjoint.

The fact that E is a finite union of Wulff shapes, instead of just one, is an instance
of the type of bubbling phenomenon exhibited in many geometric variational prob-
lems, and is an artifact of only using first order information. On the other hand,
while our proof requires δh(Eh) to converge to zero faster than the loss of ellipticity
of fh, we expect that this assumption is purely technical and the result should likely
hold if one simply assumes that δh(Eh)→ 0.

We refer the reader to [11] for the proof of Theorem 1, and here we attempt
only indicate some of the key ideas. The starting point for proving Theorem 1 is
an anisotropic version of the Heintze-Karcher inequality, which states the follow-
ing. Let f be a smooth, elliptic surface tension and let E be a smooth, bounded,
connected set with H f

E > 0. Then
ˆ

∂E

n−1

H f
E

f (νE)dH n−1 ≥ n|E|, (8)

with equality if and only if E = rK + x. Notice that (8) implies the result of [20]
(indeed, this is the method of proof in [20]). Indeed, if HE

f is constant, then it is not
difficult to show that this constant must be

HE
f =

(n−1)F (E)
n|E|

.

Plugging this into the left-hand side of (8), we immediately see that such a set
achieves equality in (8) and thus is a homothety of the Wulff shape. A further key
point is that, provided H f

E ≥ ε , the scale-invariant deficit δ (E) from having con-
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stant anisotropic mean curvature controls the deficit from equality in (8). As such, a
crucial part of the proof of Theorem 1 is a quantitative analysis of (8).

To derive quantitative estimates for sets almost achieving equality in (8), it is
fruitful to trace through a PDE proof of the inequality, which is due to Ros in the
isotropic case [29]. In this proof, we consider the solution to the equation{

L f u = 1 in E
u = 0 on ∂E

(9)

where the elliptic operator L f is given by

L f u = div
(
∇ f 2/2(∇u)

)
.

When E = K, the solution is given by

uK(x) =
f∗(x)2

2n
.

where f∗(x) = sup{x ·ν : f (ν)< 1} is the dual norm to f .
The above discussion holds only for smooth and elliptic surface tensions. In the

proof of Theorem 1, we solve the equation (9) with f = fh and E = Eh. The main
idea of the proof is to show that these solutions uh this function converge to a sum
of (translations of) the model function uK corresponding to the limit surface energy,
and from there deduce that the support of this limit function is the L1 limit of Eh and
takes the form (7). To this end, we first establish Lipschitz estimates allowing us to
produce a C0 limit u of the sequence {uh}. We then prove quantitative estimates from
(8) that allow us to show that u is supported on a countable union of disjoint Wulff
shapes riK + xi, possibly of different radii ri. Some of the more difficult analysis
comes into showing that all the radii are equal to one. In this step, we establish
a family of Pohozaev-type identities involving integral quantities of ∇uh. With a
somewhat delicate Young measure argument, we can pass these identities to the
limit function ∇u, despite having only weak-∗ convergence in L∞ for the gradients.
Then, pairing these identities with a scaling argument allows us to conclude the
ri = 1 for all i.

3 Minimizers in the anisotropic liquid drop model

Gamow’s liquid drop model [19] is among the principal models, along with the shell
and cluster models, used to describe atomic nuclei [10]. (None of these models come
from first principles, and none individually can be used to describe all observed
phenomena.) In its simplest form, the liquid drop model assumes that the nucleus
of an atom minimizes an energy comprising the sum of a perimeter term and a
Coulombic self-interaction term:
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inf{P(E)+V (E) : |E|= m}. (10)

Here, for a fixed parameter α ∈ (0,n), V (E) is a nonlocal repulsion term defined by

V (E) =
ˆ

E

ˆ
E

dxdy
|x− y|α

.

The physical case is n = 3 and α = 1, corresponding to a Coulombic potential in
three dimensional space. This model predicts that nuclei of small mass are spherical
and nuclei of sufficiently large mass do not exist.

While the liquid drop model was introduced in the 1930s, the variational problem
(10), its study in the calculus of variations community has mostly been concentrated
in the past decade. Due primarily in large part to the work of Knüpfer and Muratov
in [22, 23], along with important contributions [3, 8, 18, 21, 25, 12], the state of the
art for global minimizers of (10) is as follows: For any n≥ 2, we have:

1. for all α ∈ (0,n) there exists m1 > 0 such that if m≤m1, then the problem admits
a minimizer;

2. for all α ∈ (0,n) there exists m0 > 0 such that if m ≤ m0, then the minimizer is
uniquely (modulo translations) given by the ball of mass m; and

3. for all α ∈ (0,2) there exists m2 > 0 such that if m > m2, then no minimizer
exists.

It is conjectured in [9] that m0 = m1 = m2 when n = 3 and α = 1. While the
conjecture remains open, it was shown in [3] that m0 = m1 = m2 in any dimension
for α sufficiently small. It also remains open whether the nonexistence result (iii)
can be extended to α ∈ [2,n).

Nuclei can exhibit distortions from a spherical shape, and some of the physics
literature [26] suggests that instead this is due to the fact that “nuclei may possess
anisotropic surface tension.” This motivates the replacement of the perimeter func-
tional by an anisotropic surface energy in [7], leading to the minimization problem

inf{F (E)+V (E) : |E|= m}. (11)

The properties (i) and (iii) for (10) are, at their core, consequences of the inho-
mogeneous scaling of the energy P(E) +V (E) with respect to dilations. As the
anisotropic surface energy scales in the same way as perimeter, it comes as no sur-
prise that in [7] we readily establish analogous existence and nonexistence prop-
erties for (11). More interesting is the question of what form property (ii) should
take in the setting of (11). Given that the Wulff shape plays the role of the ball for
the anisotropic surface energy, is natural to wonder whether if it is a minimizer of
(11). We show in [7] that the answer depends in a crucial way on the regularity and
ellipticity of the surface tension:

Theorem 2. Fix n ≥ 2 and α ∈ (0,n− 1/3), and m > 0. Suppose f is a smooth
elliptic surface tension with Wulff shape K. Then K is a critical point of (11) if and
only if f is the Euclidean norm.
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Theorem 3. Let n = 2 and f (ν) = ‖ν‖`1 . There exists m2 such that if m≤ m2 then
the Wulff shape is the unique minimizer of (11).

This result is an instance where, for smooth, elliptic nature of the problem is notably
different than the isotropic case, and the character of minimizers depends crucially
on the regularity and ellipticity of the surface tension.

The proof of of Theorem 2 makes use of a first variation argument, and in fact
we prove a stronger statement: if the Wulff shape is a critical point of (11) for any
mass m, then f is the Euclidean norm. Indeed, a critical point satisfies

H f
E + vE = const on ∂

∗E (12)

where vE(x) =
´

E |x− y|−α dx is the first variation of V (E). One directly computes
that H f

K = n−1. So, if K satisfies (12), then

vK = const on ∂K

Theorem 2 then follows from the following characterization:

Proposition 1. Fix n≥ 2 and α ∈ (0,n−1/3). Let K be a smooth set with vK =const
on ∂K. Then K is a ball.

Proposition 1 was established for the Coulombic case α = n− 2 in [17] and was
extended to α ∈ (0,n− 1) in [24]. Both proofs use the method of moving planes;
see also [28]. The case when α ≥ n− 1 is significantly more delicate, principally
due to the fact that the Riesz potential vK is merely Hölder continuous in this case.
Our proof of Proposition 1 in the subtler case α ∈ [n−1,n−1/3) pairs the method
of moving planes on integral forms in the spirit of [24, 6] with some new reflec-
tion arguments and estimates on how the Riesz potential vK grows compared to its
reflection across a hyperplane.

In the setting of Theorem 3, the Wulff shape is a square in R2 with sides aligning
with the coordinate axes. The proof of Theorem 3 makes use of a structure theorem
proven in [13] for crystalline surface energies in R2. This result says that suitably
defined quasi-minimizers of such a crystalline surface energy must be convex poly-
hedra with whose set of normal vectors is contained in the set of normal vectors of
the Wulff shape. Pairing this result with a compactness argument, we are able to de-
duce that any minimizer of (11) for small enough mass in the setting of Theorem 3
is a rectangle with side aligning with the coordinate axes. From here, the study of
minimizers of (11) essentially reduces to a one-dimensional variational problem,
and the analysis can be done in a quite explicit way.
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