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Abstract. A compactness theorem for volume-constrained almost-critical points of elliptic inte-
grands is proven. The result is new even for the area functional, as almost-criticality is measured
in an integral rather than in a uniform sense. Two main applications of the compactness theorem
are discussed. First, we obtain a description of critical points/local minimizers of elliptic ener-
gies interacting with a confinement potential. Second, we prove an Alexandrov-type theorem for
crystalline isoperimetric problems.

1. Introduction

1.1. Overview. The study of critical points in geometric variational problems often calls for the
understanding of bubbling/concentration phenomena. Classical examples are discussed in the
seminal papers of Brezis-Coron [BC84] and Struwe [Str84], where the authors investigate immersed
disks with almost-constant mean curvature and conformally flat metrics with almost-constant scalar
curvature. As illustrated by the monographs [Str00, Heb14], this kind of result plays an important
role in various contexts.

Here we are interested in sets with almost-constant mean curvature, that is to say, in sets that
are close to being critical in isoperimetric problems. Such sets arise in various contexts of physical
and geometric importance, like capillarity theory and mean curvature flows. Depending on the
application one has in mind, different ways of measuring almost-criticality are appropriate. For
example, in the study of capillarity problems, one is naturally led to consider surfaces whose mean
curvature is uniformly close to a constant. In geometric applications, we have a more complicated
situation, as uniform proximity to constant mean curvature should be replaced by L2-proximity.

Our starting point is the paper [CM17], where, as illustrated in more detail below (Section 1.2),
Ciraolo and the second author obtained a compactness result for boundaries whose mean curvature
is uniformly close to a constant. In our main result, Theorem 1.1 below, we obtain two critical
improvements of the compactness theorem from [CM17], which require a substantial rethinking of
many technical aspects of the original argument.

A first improvement consists of replacing uniform proximity with L2-proximity. The main dif-
ficulty here is of course that uniform proximity to constant mean curvature, unlike L2-proximity,
carries information on the size of the mean curvature oscillation at every boundary point, and thus
allows one to exploit powerful sliding/maximum principle arguments.

A second major improvement consists of replacing the area functional with a surface energy for
a generic elliptic integrand. Elliptic integrands model anisotropic surface tensions and are thus of
importance in numerous applications. From the mathematical viewpoint, the area functional is
quite exceptional among elliptic integrands, and there are various steps in the argument of [CM17]
where this fact was exploited.
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Referring to Section 1.3 for more comments on the proof of Theorem 1.1, we now discuss some
applications of physical and geometric interest.

We start with Theorem 1.3, where we obtain a description of critical points and local minimizers
in elliptic capillarity problems. This theorem is stated in Section 1.4, where we also provide
additional context on this type of problem.

In Section 1.5, we state Theorem 1.4, an extension of Theorem 1.1 to sequences of almost-critical
points corresponding to elliptic integrands with degenerating ellipticity. The latter property allows
these elliptic integrands to converge to an arbitrary (i.e., possibly non-smooth and non-elliptic)
convex integrand, and our result proves convergence of almost-critical points (with sufficiently
fast convergence of the first variation to a constant) to (possibly multiple copies of) the Wulff
shape of the limit integrand. We propose an interpretation of this result as a suitable formulation
of Alexandrov’s theorem for generic anisotropic energies. Let us recall that for smooth, elliptic
anisotropic energies one has a pointwise notion of mean curvature for which an exact analog of
the classical Alexandrov’s theorem holds [HLMG09]. The situation is quite different for generic
anisotropic energies, like crystalline energies, as in those cases the first variation of the energy
does not even define a linear functional on the space of variations. In the proposed interpretation,
we circumvent these difficulties by defining critical points of generic anisotropic problems as the
accumulation points of almost-critical points of smooth elliptic anisotropic problems.

1.2. Compactness in the Euclidean case. We start by recalling the situation in the basic
Euclidean case. The starting point is Alexandrov’s theorem: if Ω is a smooth bounded connected
open set with constant mean curvature, then Ω is a ball of radius (n+1)|Ω|/P (Ω) = n/HΩ. Here, |Ω|
and P (Ω) = Hn(∂Ω) are the volume and the perimeter of Ω, while HΩ is the scalar mean curvature
of Ω with respect to the outer unit normal νΩ to Ω, with the convention that HBr(x) = n/r if Br(x)

is the ball of radius r in Rn+1 centered at a point x. In [CM17] the Alexandrov’s deficit δ∗(Ω) of Ω

δ∗(Ω) =
∥∥∥HΩ

H0
Ω

− 1
∥∥∥
C0(∂Ω)

H0
Ω =

nP (Ω)

(n+ 1)|Ω|
. (1.1)

is introduced as a measure of how far Ω is from being a critical point in the Euclidean isoperimetric
problem. It is then proven that, if {Ωh}h∈N is a sequence of smooth bounded open sets in Rn+1

normalized to have H0
Ω = n and satisfying, for some L ∈ N and σ ∈ (0, 1),

P (Ωh) ≤ (L+ σ)P (B1) ∀h ∈ N

and if

lim
h→∞

δ∗(Ωh) = 0 , (1.2)

then there exists an open set Ω consisting of the union of at most L disjoint balls of radius one
such that

lim
h→∞

∣∣P (Ωh)− P (Ω)
∣∣+ |Ωh∆Ω| = 0 . (1.3)

Allard’s monotonicity formula [Sim83, Section 17] can then be exploited to deduce Hausdorff con-
vergence (therefore, if the sets Ωh are connected, then the balls in Ω are mutually tangent). Then,
by exploiting Allard’s regularity theorem [Sim83, Section 23] and a calibration-type argument, one
obtains the C1,α-convergence of ∂Ωh to ∂Ω away from the tangency points of the limit balls. A
quantitative analysis is also possible, both in the bubbling case (with non-sharp decay rates, see
[CM17]) and in the one-bubble case L = 1 (with sharp decay rates, see [KM17]).
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This type of compactness result is crucial for addressing the shape of critical points in capillarity
problems. To illustrate this point, consider the capillarity energy

P (Ω) +

∫
Ω
g(x) dx , |Ω| = v , (1.4)

of a liquid droplet occupying a region Ω ⊂ Rn+1 of fixed volume v under the action of a confinement
potential g. If v is suitably small with respect to g, then the surface energy P (Ω) = O(vn/(n+1))
dominates over the potential energy term (of order O(v)). By direct comparison with balls and
by quantitative isoperimetry [FMP08, FMP10, CL12] global minimizers are seen to be L1-close
to balls (quantitatively in terms of the size of v), and then a variational analysis proves they are
actually C2-close and thus convex [FM11]. But direct comparison with balls is not available for
addressing the shape of critical points, or even of local minimizers, and this is why a compactness
theorem like the one proved in [CM17] is needed to get this analysis started. And indeed, in [CM17,
Corollary 1.4] it is shown that critical points of (1.4) are quantitatively close close to compounds
of mutually tangent balls with same radii, and that local minimizers are close to single balls, for
m small.

1.3. The anisotropic setting and the elliptic compactness theorem. In various situations
of physical and geometric interest (see, e.g., the survey paper [Tay78]) one is led to consider energies
like (1.4) with P (Ω) replaced by an anisotropic surface energy of the form

F(Ω) =

∫
∂Ω
F (νΩ) dHn .

Here F : Sn → (0,∞) is a convex integrand: namely, the one-homogenous extension of F is convex
on Rn+1. As was proven in [Tay74, Tay75, Fon91, FM91, BM94], the isoperimetric problem for F
is uniquely solved by translations and scalings of the Wulff shape KF of F .

KF =
∩
ν∈Sn

{
x ∈ Rn+1 : x · ν < F (ν)

}
. (1.5)

This translates into the Wulff inequality,

F(Ω) ≥ (n+ 1) |KF |1/(n+1) |Ω|n/(n+1) 0 < |Ω| <∞ , (1.6)

where the right-hand side equals F(rKF ) for r = (|Ω|/|KF |)1/(n+1) and where equality holds if
and only if Ω = x + rKF for some x ∈ Rn+1. The Wulff shape is always a bounded open convex
set containing the origin; and, conversely, every bounded open convex set containing the origin is
the Wulff shape of some F . Of particular interest is the case when F is a smooth elliptic integrand,
that is, F ∈ C∞(Sn; (0,∞)), and there exist constants 0 < λ ≤ Λ <∞ such that, for every ν ∈ Sn,

λ Id ≤ ∇2F (ν) ≤ Λ Id on ν⊥ = TνSn . (1.7)

In this setting one has a natural anisotropic extension of the notion of mean curvature. More
precisely, the anisotropic mean curvature HF

Ω : ∂Ω → R of a set Ω ⊂ Rn+1 with boundary of class
C2 is defined by

HF
Ω = div∂Ω

(
∇F ◦ νΩ

)
= tr(∇2F (νΩ)∇νΩ) , (1.8)

where div ∂Ω denotes the tangential divergence along ∂Ω, and ∇νΩ is the second fundamental form
of ∂Ω with respect to νΩ. For the Wulff shape, KF one has

HF
KF

= n .
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An anisotropic version of Alexandrov’s theorem was shown in [HLMG09]: if Ω is a bounded smooth
connected open set in Rn+1 with constant anisotropic mean curvature, then Ω = x+rKF for some
x ∈ Rn+1 and r > 0. In order to formulate a compactness theorem in this setting we introduce the
scale invariant quantity

δF (Ω) =
( 1

F(Ω)

∫
∂Ω

∣∣∣ HF
Ω

HF,0
Ω

− 1
∣∣∣2 F (νΩ) dHn

)1/2
HF,0

Ω =
nF(Ω)

(n+ 1)|Ω|
(1.9)

as an anisotropic generalization of (1.1), and then state the following theorem.

Theorem 1.1. Let F be a smooth elliptic integrand; see (1.7), and let {Ωh}h∈N be a sequence of
bounded open sets with smooth boundary normalized to have

HF,0
Ωh

= n .

If, for some L ∈ N, σ ∈ (0, 1), and κ ∈ (0, 1)

sup
h∈N

diam(Ωh) <∞ , sup
h∈N

F(Ωh) ≤ (L+ σ)F(KF ) , HF
Ωh

≥ κn on ∂Ωh ,

and if

lim
h→∞

δF (Ωh) = 0 , (1.10)

then there exists an open set Ω consisting of the union of at most L-many disjoint translations of
KF , such that, up to translations and up to extracting subsequences,

lim
h→∞

∣∣F(Ωh)−F(Ω)
∣∣+ |Ωh∆Ω| = 0 . (1.11)

Remark 1.2. Setting δ(Ω) = δF (Ω) for F ≡ 1, and recalling the definition (1.1) of δ∗(Ω), we
obviously have that δ(Ω) ≤ δ∗(Ω), with HΩ ≥ κH0

Ω provided δ∗(Ω) ≤ 1 − κ. In particular,
Theorem 1.1 contains the fact that (1.2) implies (1.3), i.e., the key conclusion of [CM17, Theorem
2.4]. As explained in Section 1.1, passing from the C0 to the L2 deficit is non-trivial because a
key argument in the proof of [CM17, Theorem 2.4] is a sliding argument based on the maximum
principle for the mean curvature operator (see the argument right after [CM17, Equation (2.48)]).
For this kind of argument to work, it is crucial that whichever the contact point produced in the
sliding argument is, the constant mean curvature deficit contains information at that point. This
works naturally when using the C0-deficit δ∗(Ω), but it is clearly more delicate for the L2-deficit
δ(Ω). We bypass this problem by exploiting the vanishing deficit assumption for obtaining a family
of Pohozaev’s-type identities of different homogeneities; see in particular step six in the proof of
Theorem 1.4, Section 3.6. We also notice that considering the L2-deficit in this kind of problem
is not merely done for the sake of generality, but is particularly significant in view of possible
applications to the analysis of mean curvature flows.

We now describe some additional aspects of the proof of Theorem 1.1. As we are going to see, a
key tool will be a new potential theoretic proof of the anisotropic Heintze-Karcher inequality, done
in the spirit of [Ros87].

Let us first recall that the classical Heintze-Karcher inequality states that if Ω is an open bounded
connected set with smooth boundary and positive mean curvature, then∫

∂Ω

n

HΩ
dHn ≥ (n+ 1)|Ω| , (1.12)



L2-BUBBLING INTO WULFF SHAPES 5

with equality if and only if Ω is a ball. This inequality has been exploited by many authors
[Ros87, MR91, Bre13] as an effective starting point for proving the classical Alexandrov’s theorem
and its generalizations to higher order curvatures and to non-Euclidean ambient spaces. The
relation is seen, also in the context compactness problems, if one considers the simple inequality

η(Ω) ≤ δ∗(Ω) (1.13)

between the Alexandrov’s deficit (1.1) and the Heintze-Karcher deficit

η(Ω) = 1− (n+ 1)|Ω|∫
∂Ω(n/HΩ) dHn

.

In particular, (1.13) says that if Ω has constant mean curvature, then Ω is an equality case in (1.12)
(and thus a ball).

The compactness result obtained in [CM17] starts from Ros’ proof [Ros87] of (1.12), which
exploits the celebrated Reilly’s identity [Rei77] in order to relate the Heintze-Karcher deficit and
the torsion potential u of Ω, i.e., the unique solution of{

∆u = 1 in Ω ,

u = 0 on ∂Ω .

For instance, a key estimate on u in terms of η(Ω) implied by Ros’ argument takes the form

C(n) |Ω| η(Ω) ≥
∫
Ω

∣∣∣∇2u− Id

n+ 1

∣∣∣2 (1.14)

where |T | = (
∑

ij T
2
ij)

1/2 for a matrix T . This inequality expresses, in a rather direct way, the

proximity of the torsion potential of Ω to the torsion potential (|x − x0|2 − r2)/2(n + 1) of a
suitable ball Br(x0). The other known proofs of (1.12), namely [MR91, Bre13], provide control
of the almost-umbilicality of ∂Ω in terms of η(Ω). As explained in detail in [CM17, Appendix],
almost-umbilicality is more difficult to exploit than direct information on the torsion potential
to get compactness results in this setting. This is reflected in the fact that the current results
concerning almost-umbilicality do not describe bubbling phenomena; see [DLM05, DLM06, Per11].

The proof of Alexandrov’s theorem for elliptic integrands in [HLMG09] is based on an anisotropic
version of (1.12), which states that if F is smooth and elliptic and Ω is an open bounded connected
set with smooth boundary and positive HF

Ω , then∫
∂Ω

n

HF
Ω

F (νΩ) dHn ≥ (n+ 1)|Ω| , (1.15)

with equality if and only if Ω = x + rKF for some x ∈ Rn+1 and r > 0. Alternative proofs of
(1.15) are obtained in [MX13] and [XZ]. These arguments provide a control on the anisotropic
almost-umbilicality of ∂Ω in terms of an anisotropic Heintze-Karcher deficit. Anisotropic almost-
umbilicality has been recently addressed in [DRG17] under a convexity assumption, which of course
prevents the possibility of bubbling into multiple Wulff shapes.

Our approach to Theorem 1.4 will pass through a new proof of (1.15), based on an adaptation
of Ros’ argument that allows us to control the suitable anisotropic variant of the torsion potential
in terms of the anisotropic Heintze-Karcher deficit ηF of Ω,

ηF (Ω) = 1− (n+ 1)|Ω|∫
∂Ω(nF (νΩ)/H

F
Ω )

.
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(We consider ηF (Ω) only for sets with HF
Ω > 0 on ∂Ω, and we also notice that ηF (Ω) ≤ δF (Ω)/κ

provided HF
Ω ≥ κHF,0

Ω ; see Lemma 3.6 below.) The right notion of anisotropic torsion potential is
found by solving {

∆Fu = 1 in Ω ,

u = 0 on ∂Ω .

where ∆F denotes the Finslerian Laplace operator, defined by

∆Fu = div (∇(F 2/2)(∇u)) .

The operator is non-smooth at {∇u = 0}, and particular attention must be paid in many parts of
the argument in managing the critical set of u.

We now make some more technical comments on the proof, which should also be interesting in
connection with our subsequent discussion of the role of ellipticity in the compactness theorem (see
Section 1.5 below). As already mentioned, Ros’ proof of (1.14) crucially exploits Reilly’s identity
[Rei77]. Similarly, in Proposition 3.3 below, we prove the following anisotropic version of Reilly’s
identity (which, apparently, has not been previously stated in the literature):∫

Ω
(∆Fu)

2 − tr
(
(∇(∇Fu))

2
)
=

∫
∂Ω
HF

Ω F (∇u)2F (νΩ) dHn , (1.16)

where ∇Fu = ∇(F 2/2)(∇u). Armed with (1.16) and with a global Lipschitz estimate for u inde-
pendent of the ellipticity constants of F (see Proposition 3.5), we generalize (1.14) to

C(n) |Ω| ηF (Ω) ≥
∫
Ω

∥∥∥∇(∇Fu)−
Id

n+ 1

∥∥∥2 . (1.17)

Here we set ∥A∥2 =
∑n+1

i=1 µ
2
i where µi are the eigenvalues of and A. Unless we are in the isotropic

case, the matrix A = ∇(∇Fu) (which satisfies A = ∇2F (∇u)∇2u on {∇u ̸= 0}) is not symmetric,
but is real diagonalizable. In particular (1.17) does not provide direct control on the norm of A.
However, such an estimate can be expressed if one allows the ellipticity constants of F to appear
in the estimate, which then takes the form

C(n) |Ω| Λ
λ
ηF (Ω) ≥

∫
Ω

∣∣∣∇(∇Fu)−
Id

n+ 1

∣∣∣2 . (1.18)

This simple but delicate point is the only step of the proof of Theorem 1.1 where the ellipticity
assumption is used.

1.4. Critical points and local minimizers of anisotropic energies. A natural and important
application of Theorem 1.1 is the quantitative characterization of critical points and local mini-
mizers of anisotropic surface energies under the action of a confining potential and with a small
volume constraint. More precisely, the kind of energy we consider takes the form

E(Ω) = F(Ω) +

∫
Ω
g ,

for a convex integrand F and a smooth potential g : Rn+1 → R. When g(x) → ∞ as |x| → ∞
volume-constrained minimizers of E exist for every volume v. Of particular relevance in capillarity
and phase transition models is the case when v is small, and thus the surface energy F dominates
the minimization.
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We say that a bounded set of finite perimeter Ω is a volume-constrained critical point of E if

d

dt

∣∣∣∣
t=0

E(ft(Ω)) = 0 (1.19)

whenever ft is a curve of diffeomorphisms such that f0 = Id and |ft(Ω)| = |Ω| for every t in a
neighborhood of t = 0. We say that Ω is a volume-constrained r0-local minimizer of E if there
exists r0 > 0 such that

E(Ω) ≤ E(Ω′) whenever |Ω′| = |Ω| and Ω∆Ω′ ⊂⊂ I|Ω|1/(n+1) r0
(∂Ω) . (1.20)

Here, Ir(E) = {x ∈ Rn+1 : dist(x,E) < r} denotes the r-neighborhood of a set E ⊂ Rn+1.
Obviously, local minimizers are critical points.

As an application of Theorem 1.1, we analyze volume-constrained local minimizers and critical
points of E .

Theorem 1.3. Let F be a smooth elliptic integrand, g : Rn+1 → R be a smooth function, M > 0,
and let Ω ⊂ BM be an open connected set with smooth boundary such that

F(Ω)n+1

|Ω|n
≤M ,

diam(Ω)

|Ω|1/(n+1)
≤M .

Then the following holds:

(i) for every ε > 0 there exists vε = vε(ε, n,M,F, g) > 0 such that if Ω is a volume-constrained
critical point of E with

|Ω| < vε ,

then ∣∣∣Ω∗∆
L∪
i=1

(xi +KF )
∣∣∣ ≤ ε where Ω∗ =

HF,0
Ω

n
Ω ,

for some L ≥ 1 (which is a priori bounded from above in terms of F and M) and {xi}Li=1 ⊂ Rn+1

such that the sets {xi +KF }Li=1 are mutually disjoint.

(ii) given r0 > 0, there exists v0 = v0(r0, n,M,F, g) > 0 such that, if Ω is a volume-constrained
r0-local minimizer of E with

|Ω| < v0 ,

then there exists x0 ∈ Rn+1 such that, setting K = x+ sKF with s = (|Ω|/|KF |)1/(n+1), one has

|Ω∆K|
|Ω|

≤ C(n, F, g,M) |Ω|1/(n+1) , (1.21)

hd(∂Ω, ∂K)

|Ω|1/(n+1)
≤ C(n, F, g,M) |Ω|1/(n+1)2 . (1.22)

This result was shown for volume-constrained global minimizers of E in [FM11, Theorem 1]. The
key difference between the case of global minimizers and the case of critical points/local minimizers
addressed here is that (1.19) and (1.20) do not immediately allow the comparison of the energy
of Ω with that of a Wulff shape with same volume. This direct comparison was the key step in
[FM11] to exploit the quantitative Wulff inequality from [FMP10] and to deduce the L1-proximity
of any global minimizer to a Wulff shape.
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Volume-constrained critical points of E turn out be volume-constrained almost-critical points of
F thanks to a variational argument, so Theorem 1.1 allows one to deduce that Ω is close in volume
to a finite family of Wulff shapes. In the case of local minimizers, using volume density estimates
we can show this family consists of a single Wulff shape, and then ∂Ω is close to the boundary
of this Wulff shape in Hausdorff distance. But this implies that a Wulff shape of the appropriate
volume is an admissible competitor in (1.20), which in turn enables us to exploit the quantitative
Wulff inequality and obtain (1.21) and (1.22); see Section 4.

In [FM11, Theorem 2] it was proven that a volume-constrained global minimizer Ω of E is
actually convex with ∥∥∥∇2F (νΩ∗)∇νΩ∗ − Id

∥∥∥
C0(∂Ω∗)

≤ C(n, F, g) |Ω|2/(n+3) . (1.23)

(Let us recall here that ∇2F (νKF
)∇νKF

= Id on ∂KF .) In our setting of connected volume-
constrained local minimizers, once (1.22) is proven, one can also repeat all the remaining analysis
from [FM11]. In particular, arguing as in [FM11, Appendix C], one can show that ∂Ω is a C1-small
normal deformation of ∂K with quantitative bounds on the C1-norm of the normal deformation
in terms of explicit powers of |Ω|. Then, one can also repeat the argument from [FM11, Theorem
13] to show that (1.23) holds and thus that Ω is convex. As this part of the argument would be
identical to that of [FM11], we omit it and simply remark that, thanks to Theorem 1.1, all the
small-volume regime properties of volume-constrained global minimizers of E proved in [FM11]
hold for connected local minimizers as well.

1.5. Weak Alexandrov’s theorem for convex integrands. A way to look at the classical
Alexandrov’s theorem is to consider it as a convexity property of the volume-constrained perime-
ter functional; Alexandrov’s theorem says that the only critical points of the volume-constrained
perimeter are its global minimizers. The property that global minimizers are the only critical
points is a characteristic consequence of convexity.

The same can be said about the anisotropic Alexandrov’s theorem for smooth elliptic integrands
[HLMG09]. Once again, we have an energy functional whose only critical points are its global
minimizers. A natural question is whether this property depends on the assumption that the
anisotropy is smooth and elliptic. Indeed, anisotropic energies that fail to be either smooth or
elliptic (or both) are of great interest in applications, and the anisotropic isoperimetric problem
is totally unaffected by the lack of smoothness or of ellipticity (recall that Wulff shapes are the
unique isoperimetric sets of every convex integrand). Therefore one conjectures that Alexandrov’s
theorem should hold, in some proper formulation, for every anisotropic energy. This conjecture
seems open in ambient space dimension n+ 1 ≥ 3. A result of Morgan [Mor94], which proves that
Wulff shapes are the only anisotropic critical immersion of a curve in the plane, is an indication
in favor of this conjecture. Of course, there is a substantial difference between the planar case
and higher dimensions, because in the planar case criticality implies convexity of the connected
components.

With this premise in mind, we now discuss a generalization of Theorem 1.1, namely Theorem
1.4 below, which serves as a sort of weak version of Alexandrov’s theorem valid for arbitrary convex
integrands.

Theorem 1.4 (Weak anisotropic Alexandrov theorem). Let {Fh}h∈N be a sequence of smooth
elliptic integrands that converges pointwise to a limit function F, and assume that, for some positive
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constants m, M , λh and Λh (m and M independent of h)

m ≤ Fh ≤M on Sn ,
λh Id ≤ ∇2Fh(ν) ≤ Λh Id on ν⊥, ∀ν ∈ Sn .

(1.24)

Then the following holds: If {Ωh}h∈N is a sequence of bounded open sets with smooth boundary,

normalized so that HFh,0
Ωh

= n with

HFh
Ωh

≥ κn on ∂Ωh , sup
h∈N

diam(Ωh) <∞ , sup
h∈N

Fh(Ωh)

Fh(KFh
)
≤ L+ σ (1.25)

for some κ > 0, L ∈ N and σ ∈ (0, 1), and if

lim
h→∞

max
{ 1

λ2h
,
Λh

λh

}
ηFh

(Ωh) + δFh
(Ωh) = 0 , (1.26)

then there exists an open set Ω, which is the disjoint union of at most L-many translations of KF

such that, up to translations and up to extracting subsequences,

lim
h→∞

∣∣Fh(Ωh)−F(Ω)
∣∣+ |Ωh∆Ω| = 0 . (1.27)

Remark 1.5. The assumption (1.26) is implied by max{1/λ2h,Λh/λh} δFh
(Ωh) → 0 because ηF ≤

δF /κ (see Lemma 3.6 below). In particular, Theorem 1.1 is a corollary of Theorem 1.4 if one takes
F to be smooth and elliptic and Fh ≡ F .

The interpretation of Theorem 1.4 as a weak version of Alexandrov’s theorem for general convex
integrands is the following. Clearly, every convex integrand F can be approximated by smooth
elliptic integrands Fh as in (1.24), as the ratio max{1/λ2h, λh/Λh} is allowed to vanish in the
limit as h → ∞. Theorem 1.4 thus asserts that (unions of) Wulff shapes of F are the only
possible accumulation points of sequences of almost-critical points of the approximating Fh with
anisotropic Heintze-Karcher deficit vanishing faster than the rate of degeneracy of the ellipticity
constants. This fast convergence assumption may be purely technical in nature. In our argument,
it arises exactly in the derivation of (1.18) from (1.17), as previously explained.

Theorem 1.4 immediately leads to the following delicate question: given a convex integrand F and
a bounded open set Ω with Lipschitz boundary that is a critical point for the volume-constrained
anisotropic energy F , is it possible to construct a sequence of smooth elliptic integrands Fh and
smooth open sets Ωh such that Fh converges to F as in (1.24) and Ωh satisfies (1.25), (1.26) and
|Ωh∆Ω| → 0? Whenever this is possible, of course, Theorem 1.4 implies that finite unions of Wulff
shapes are the only critical points for the convex integrand F .

2. Basic facts on integrands

We recall without proof some standard facts about convex integrands and their gauge functions.
By convex integrand we refer to a positive function F on Sn with a convex one-homogeneous
extension to Rn+1. The gauge function of F is defined by

F∗(x) = sup
{
x · ν : F (ν) < 1

}
x ∈ Rn+1 (2.1)

and is itself a convex integrand. By convexity of F , one has (F∗)∗ = F . Moreover, the Fenchel
inequality holds:

x · ν ≤ F∗(x)F (ν) ∀x, ν ∈ Rn+1 . (2.2)
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If we denote the minimum and the maximum values of F on Sn by

mF = min
Sn

F, MF = max
Sn

F , (2.3)

then we have

mF ≤ |∇F (ν)| ≤MF (2.4)

whenever F is differentiable at ν (that is to say, at almost every ν ∈ Rn+1), and moreover

mF∗ =
1

MF
MF∗ =

1

mF
. (2.5)

By (1.5), (2.1) and since (F∗)∗ = F ,

KF = {F∗ < 1} KF∗ = {F < 1} . (2.6)

Recall that the subdifferential of F at ν ∈ Rn+1 is defined by

∂F (ν) =
{
x ∈ Rn+1 : F (w) ≥ F (ν) + x · (w − ν) ∀w ∈ Rn+1

}
,

so ∂F (ν) = {∇F (ν)} if F is differentiable at ν. We immediately see from (1.5) that

KF = ∂F (0) , KF∗ = ∂F∗(0)

and hence, by one-homogeneity of F ,

∂KF = {F∗ = 1} =
∪
ν ̸=0

∂F (ν) , ∂KF∗ = {F = 1} =
∪
x̸=0

∂F∗(x) . (2.7)

(Notice that we use the same symbol ∂ both for topological boundaries and for subdifferentials.)
If F ∈ C1(Sn) and is strictly convex, then F∗ ∈ C1(Sn) and is strictly convex, and therefore

∂F (ν) = {∇F (ν)} and ∂F∗(x) = {∇F∗(x)} for every ν, x ̸= 0. Under these assumptions, using
(2.7), one deduces the useful properties

F (∇F∗(x)) = 1 , F∗(x)∇F (∇F∗(x)) = x ∀x ̸= 0 ,

F∗(∇F (ν)) = 1 , F (ν)∇F∗(∇F (ν)) = ν ∀ν ̸= 0 .
(2.8)

A short explanation of the vector identities in (2.8) is as follows. By {F∗ < 1}, the normal to KF

at ∇F (ν) ∈ ∂KF (for ν ̸= 0) is parallel to ∇F∗(∇F (ν)). At the same time, by exploiting (1.5) and
the one-homogeneity of F , we see that the normal to KF at ∇F (ν) is parallel to ν itself. Thus
∇F∗(∇F (ν)) = αν and then one finds α = 1/F (ν) thanks to F (∇F∗(x)) = 1 for x ̸= 0.

We conclude with some remarks about the functions F 2/2 and F 2
∗ /2. First, an important

consequence of (2.8) is that

∇(F 2
∗ /2) = [∇(F 2/2)]−1 on Rn+1 \ {0} . (2.9)

Indeed, for every z ∈ Rn+1,

∇(F 2
∗ /2)(∇(F 2/2)(z)) = F∗

(
F (z)∇F (z)

)
∇F∗

(
F (z)∇F (z)

)
= F (z)F∗(∇F (z))∇F∗(∇F (z)) = F (z)

z

F (z)
= z .

Moreover, (2.9) holds for generic convex integrands in the sense that

z ∈ ∂(F 2/2)(x) ⇐⇒ x ∈ ∂(F 2
∗ /2)(z) . (2.10)
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When F ∈ C∞(Sn) is an elliptic integrand (so that (1.7) holds with constants λ and Λ), one has
that F 2/2 ∈ C1,1(Rn+1) ∩ C∞(Rn+1 \ {0}) with

∇(F 2/2)(ν) =

{
F (ν)∇F (ν) , if ν ̸= 0 ,

0 , if ν = 0 ,
(2.11)

∇2(F 2/2)(ν) = ∇F (ν)⊗∇F (ν) + F (ν)∇2F (ν) if ν ̸= 0 ,

and
λ∗ Id ≤ ∇2(F 2/2)(ν) ≤ Λ∗ Id on Rn+1 \ {0} (2.12)

for positive constants λ∗ and Λ∗. By (2.11), we see that we can take

λ∗ = mF min{λ,mF } Λ∗ = 2MF max{MF ,Λ} .
We have the identity

∇2(F 2/2)(ν) ◦ ∇2(F 2
∗ /2)(∇F (ν)) = Id ∀ν ∈ Sn . (2.13)

To conclude this section, we note that will sometimes use the shorthand

∇Fu(x) = ∇(F 2/2)(∇u(x)) (2.14)

3. Proof of the main theorem

This section contains the proof of Theorem 1.4. Section 3.1 and Section 3.2 serve to introduce,
the anisotropic signed distance function and the anisotropic torsion potential on a smooth bounded
open set respectively. In Section 3.3 we prove an anisotropic version of Reilly’s identity, while in
Section 3.4 we obtain a Lipschitz estimate on the anisotropic torsion potential that is interestingly
independent of ellipticity. In Section 3.5 we exploit the torsion potential to give a proof of the
anisotropic Heintze-Karcher inequality of [HLMG09] in the spirit of Ros’ argument. The key
result is identity (3.23), which relates the gap in the anisotropic Heintze-Karcher inequality to the
properties of the torsion potential. Together with the Lipschitz estimate, this is a key fact to obtain
compactness. This is finally done in Section 3.6, where we prove Theorem 1.4.

3.1. The anisotropic signed distance function. In the next proposition we collect some useful
facts on the anisotropic signed distance function from a bounded open smooth set.

Proposition 3.1. Let F be an elliptic integrand, let Ω be a bounded open smooth set, and define
the F -anisotropic signed distance function of Ω by

γ(x) = inf
{
F∗(x− y) : y ∈ Ω

}
− inf

{
F∗(y − x) : y ∈ Ωc

}
, x ∈ Rn+1 . (3.1)

Then there exists an open neighborhood N of ∂Ω such that γ is smooth in N and

∇γ(y) = νΩ(y)

F (νΩ(y))
∀y ∈ ∂Ω . (3.2)

Proof. Note that γ < 0 in Ω, γ > 0 in Ωc. Since Ω has smooth boundary, it satisfies uniform
exterior and interior balls conditions. Since F is a smooth elliptic integrand, the Wulff shape
KF = {F∗ < 1} is uniformly convex, and K−

F = {x ∈ Rn+1 : F∗(−x) < 1} is uniformly convex as
well. Combining these facts, we see that there exists r > 0 with the following property: for every
y ∈ ∂Ω, there exist xy ∈ Ω and zy ∈ Ωc such that{

w ∈ Rn+1 : F∗(w − xy) < r
}
⊂ Ω , F∗(y − xy) = r , (3.3){

w ∈ Rn+1 : F∗(−(w − zy)) < r
}
⊂ Ωc , F∗(−(y − zy)) = r ; (3.4)
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∂Ω

∇F (νΩ(y))

y

zy

xy

K1

K2

νΩ(y)

Figure 1. The uniformly convex sets K1 = {F∗(· − xy) < r} and K2 = {F∗(zy − ·) < r}
touch Ω at y, respectively, from inside and from outside. The point y lies on the segment

joining centers xy and zy, which is parallel to ∇F (νΩ(y)).

see Figure 1. We claim that y−xy and zy−y are parallel to ∇F (νΩ(y)). Indeed, by (3.3), ∇F∗(y−
xy) = ανΩ(y) with α > 0; applying F to both sides and exploiting (2.8), we find αF (νΩ(y)) = 1
and so

∇F∗(y − xy) =
νΩ(y)

F (νΩ(y))
. (3.5)

An analogous argument shows that −∇F∗(zy − y) = −β νΩ(y) for some β > 0, which satisfies
β = 1/F (νΩ(y)) thanks again to (2.8). Thus

∇F∗(zy − y) =
νΩ(y)

F (νΩ(y))
.

Applying ∇F to both sides of (3.5) and (3.1) and taking (2.8) into account, we find

y − xy
F∗(y − xy)

= ∇F (νΩ(y)) =
zy − y

F∗(zy − y)
, (3.6)

as claimed. Now consider the projection map p : Rn+1 → ∂Ω defined by

p(x) =

{{
y ∈ ∂Ω : F∗(y − x) = −γ(x)

}
if x ∈ Ω ,{

y ∈ ∂Ω : F∗(x− y) = γ(x)
}

if x ∈ Ωc .
(3.7)

Fix y ∈ ∂Ω. By the first claim, if x ∈ [xy, y] or x ∈ [y, zy], then p(x) = {y}.So there exists a
constant c > 0, depending only on mF , MF and the C2 norm of F , such that

c ≤ min
{
|xy − y|, |zy − y|

}
.

Hence there exists r0 such that if we set

N =
∪

y∈∂Ω

{
y + t∇F (νΩ(y)) : |t| < r0

}
then for every x ∈ N there exists a unique y ∈ ∂Ω such that p(x) = {y}, with

x = y + γ(x)∇F (νΩ(y)) .
Exploiting the implicit function theorem as in [GT83, Lemma 14.16], we find that γ is smooth on
N . Now, if x0 ∈ Ω, then

γ(x) ≥ −F∗(p(x0)− x) ∀x ∈ Ω , γ(x0) = −F∗(p(x0)− x0) ,



L2-BUBBLING INTO WULFF SHAPES 13

so that ∇γ(x0) = ∇F∗(p(x0)− x0) for every x0 ∈ Ω. By (3.5),

∇γ(x0) =
νΩ(p(x0))

F (νΩ(p(x0)))
.

Letting x0 → y ∈ ∂Ω, we obtain (3.2). �

3.2. The anisotropic torsion potential. Let F be an elliptic functional and Ω a bounded open
set with smooth boundary. The F -anisotropic torsion potential of Ω is the unique minimizer
u ∈ H1

0 (Ω) of the strictly convex functional∫
Ω

F 2(∇u)
2

+ u .

The Euler-Lagrange equation∫
Ω
∇(F 2/2)(∇u) · ∇φ = −

∫
Ω
φ ∀φ ∈ C1

c (Ω) (3.8)

holds, that is to say, u is a distributional solution of{
∆Fu = 1 , on Ω

u = 0 , on ∂Ω .

Here, we have introduced the Finslerian Laplace operator

∆Fu = div (∇(F 2/2)(∇u)) .

Notice that the Finslerian Laplace operator satisfies the classical comparison principle:
v1, v2 ∈ H1

0 (Ω)

−∆F v1 ≥ −∆F v2 on Ω

v1 ≥ v2 on ∂Ω

⇒ v1 ≥ v2 on Ω. (3.9)

Indeed, setting w = max{v2 − v1, 0} we find

0 ≥
∫
Ω
w (−∆F v2 +∆F v1) =

∫
Ω
∇w ·

(
∇(F 2/2)(∇v2)−∇(F 2/2)(∇v1)

)
≥ λ∗

∫
{v2>v1}

|∇v2 −∇v1|2

thanks to (2.12). Based on classical regularity arguments, one can prove that u ∈ C1,α(Ω)∩H2(Ω)
for some α ∈ (0, 1), see, e.g. [CS09, Proposition 2.3]. The critical set

C =
{
x ∈ Ω : ∇u(x) = 0

}
is thus closed in Ω and, since F 2/2 ∈ C∞(Rn+1 \ {0}), u is smooth in a neighborhood of each
x ∈ Ω \ C. The following proposition collects some further properties of u.

Proposition 3.2. The critical set C of the anisotropic torsion potential has Lebesgue measure
zero. The torsion potential u is negative in Ω with positive outer normal derivative along ∂Ω. In
particular, u is smooth in a neighborhood of ∂Ω.
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Proof. Step one: The function f : Rn+1 → Rn+1 defined by f(ν) = ∇(F 2/2)(ν) is Lipschitz with
f(0) = 0. Setting v = ∇u ∈ H1(Ω;Rn+1), we have f ◦v ∈ H1(Ω;Rn+1). In particular, (3.8) implies
that

tr
(
∇(f ◦ v)

)
= 1 a.e. on Ω . (3.10)

Let us denote by Lx the affine n-dimensional space Lx = v(x)+∇v(x)[Rn+1]. By the Sobolev chain
rule for vector valued Lipschitz functions [ADM90] (see also [LM07, Theorem 1.1]), for almost every
x ∈ Ω we have that (f ◦ v)|Lx is differentiable at v(x), with

∇(f ◦ v)(x) = ∇
(
(f ◦ v)|Lx

)
(v(x)) ◦ ∇v(x) .

Since ∇v = 0 almost everywhere on C, we conclude that ∇(f ◦ v) = 0 almost everywhere on C.
This fact, combined with (3.10), implies that |C| = 0.

Step two: We show that

h(x) =
F∗(x)

2

2(n+ 1)
x ∈ Rn+1 ,

satisfies ∆Fh = 1 on Rn+1. Indeed ∇h(x) = F∗(x)∇F∗(x)/(n + 1), so, by one-homogeneity of F
and by (2.8), we have

F (∇h(x)) =
F
(
F∗(x)∇F∗(x)

)
n+ 1

=
F∗(x)

n+ 1
F (∇F∗(x)) =

F∗(x)

n+ 1
.

At the same time, by zero-homogeneity of ∇F and again by (2.8),

∇F (∇h(x)) = ∇F (∇F∗(x)) =
x

F∗(x)
∀x ̸= 0 .

Thus ∇(F 2/2)(∇h(x)) = x/(n+ 1) for x ∈ Rn+1 \ {0}, and the desired result follows.

Step three: We use translations of h as barriers to prove Hopf’s lemma and the negativity of u in
Ω. As seen in Proposition 3.1, for every y0 ∈ ∂Ω we can find x0 ∈ Ω such that

inf
y∈Ωc

F∗(y − x0) = F∗(y0 − x0) , ∇F∗(y0 − x0) =
νΩ(y0)

F (νΩ(y0))
.

Corresponding to this choice of x0, we have that

β = inf
{
h(y − x0) : y ∈ Ωc

}
= h(y0 − x0) , ∇h(y0 − x0) · νΩ(y0) > 0 .

If we set v(x) = h(x−x0)−β for x ∈ Ω, then v ≥ 0 on ∂Ω, and ∆F v = 1 in Ω. By the comparison
principle (3.9), we find v ≥ u in Ω, and since v(y0) = u(y0) = 0 with ∇v(y0) · νΩ(y0) > 0 we
conclude that

−νΩ(y0) · ∇u(y0) = lim
t→0+

u(y0 − tνΩ(y0))− u(y0)

t
≤ lim

t→0+

v(y0 − tνΩ(y0))− v(y0)

t
< 0 .

This proves that νΩ ·∇u > 0 on ∂Ω. Since ∂Ω = {u = 0}, we have that |∇u| > 0 on ∂Ω. Therefore,
because u ∈ C1,α(Ω), we find dist(C, ∂Ω) > 0. Since u is smooth on Ω \ C, we conclude that u
is smooth in a neighborhood of ∂Ω. Thus, u is strictly negative in a neighborhood of ∂Ω, and
therefore on the rest of Ω by the comparison principle. �
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3.3. The anisotropic Reilly’s identity. The goal of this section is to prove an anisotropic
variant of Reilly’s identity. Let us recall that if Ω is an open set with smooth boundary and F is
an elliptic integrand, then the F -anisotropic mean curvature of Ω (with respect to the outer unit
normal νΩ) is defined as

HF
Ω = div ∂Ω(∇F (νΩ)) on ∂Ω .

The anisotropic mean curvature shares many basic properties of its isotropic counterpart. Of
particular importance to us will be the anisotropic variant of the classical identity

∆u−∇2u[νΩ, νΩ] = |∇u|HΩ on ∂Ω ,

which holds when ∂Ω is the level set of a smooth function u with non-vanishing gradient on ∂Ω.
The anisotropic counterpart of this formula involves the Finslerian Laplace operator and takes the
form

∆Fu−∇2u[∇F (∇u),∇F (∇u)] = F (∇u)HF
Ω on ∂Ω . (3.11)

This formula is derived, under different conventions, in [WX11, Theorem 3]. For the sake of clarity
we recall the short proof. First, we claim that

HF
Ω = div (∇F (∇u)) . (3.12)

Indeed by νΩ = ∇u/|∇u| and the zero-homogeneity of ∇F , we have

HF
Ω = div ∂Ω(∇F (νΩ)) = div ∂Ω(∇F (∇u)) = div (∇F (∇u)) ,

provided that

∇u · ∇
(
∇F (∇u)

)
[∇u] = 0 .

To prove this last identity, we denote by superscripts components and by subscripts partial deriva-
tives, and compute (

∇(∇F (∇u))
)ij

= (Fξj (∇u))xi =
∑
k

Fξjξk(∇u)uxkxi ,(
∇
(
∇F (∇u)

)
[∇u]

)j
=

∑
ik

Fξjξk(∇u)uxkxiuxi ,

∇u · ∇
(
∇F (∇u)

)
[∇u] =

∑
ijk

Fξjξk(∇u)uxkxiuxiuxj

=
∑
ik

uxkxiuxi

∑
j

Fξjξk(∇u)uxj .

The last sum over j is equal to zero because ∇2F (ν)[ν] = 0 for every ν ∈ Sn. Indeed, Fξk(t ν) =
Fξk(ν) for every t > 0 and ν ∈ Sn. This proves (3.12). Then,

∆Fu = div (F (∇u)∇F (∇u)) =
∑
i

(
F (∇u)Fξi(∇u)

)
xi

=
∑
ij

Fξj (∇u)Fξi(∇u)uxjxi + F (∇u)Fξiξj (∇u)uxjxi

= ∇2u[∇F (∇u),∇F (∇u)] + F (∇u)div (∇F (∇u)) ,

and thus (3.11) holds thanks to (3.12). We now exploit (3.11) in the proof of the following
anisotropic version of Reilly’s identity.
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Proposition 3.3 (Anisotropic Reilly’s identity). If Ω is a bounded open set with smooth boundary,
F is an elliptic integrand and u is the F -anisotropic torsion potential of Ω, then∫

Ω
(∆Fu)

2 − tr
(
(∇(∇Fu))

2
)
=

∫
∂Ω
HF

Ω F (∇u)2F (νΩ) dHn , (3.13)

In (3.13) we use notation introduced in (2.14). Notice there are no regularity issues in (3.13) as
u ∈ H2(Ω) and is smooth in a neighborhood of ∂Ω (Proposition 3.2). We first prove the following
lemma:

Lemma 3.4. If V ∈ H1(Ω;Rn+1) is such that div V = c0, then S = (div V )V − ∇V [V ] ∈
L1(Ω;Rn+1) with divS ∈ L1(Ω) given by

div S = (div V )2 − tr((∇V )2) . (3.14)

Proof of Lemma 3.4. Since div V is constant we immediately find div ((div V )V ) = (div V )2. First,
we assume that V is smooth. If φ ∈ C∞

c (Ω), then∫
Ω
∇V [V ] · ∇φ =

∑
ij

∫
Ω
V i
xj
V jφxi =

∑
ij

∫
Ω
V i
xj

(V jφ)xi −
∫
Ω
φ tr((∇V )2) ,

where ∑
ij

∫
Ω
V i
xj

(V jφ)xi = −
∑
ij

∫
Ω
V i (V jφ)xixj =

∑
ij

∫
Ω
V i
xi
(V jφ)xj

= c0
∑
j

∫
Ω
(V jφ)xj = 0

as V jφ = 0 on ∂Ω. This proves that if V ∈ H1(Ω) ∩ C∞(Ω), and div V is constant, then∫
Ω
∇V [V ] · ∇φ = −

∫
Ω
φ tr((∇V )2) , ∀φ ∈ C∞

c (Ω) . (3.15)

Now let V ∈ H1(Ω) with div V = c0. Fix φ ∈ C∞
c (Ω) and consider an ε-regularization Vε = V ⋆ ρε

of V , so that Vε is smooth on Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}. Since div Vε = (div V )⋆ρε is constant
on Ωε, we can apply (3.15) to Vε if ε is small enough to have sptφ ⊂⊂ Ωε. Since Vε → V in H1

on an open neighborhood of sptφ, we can pass to the limit as ε→ 0 and deduce that (3.15) holds
without the smoothness assumption on V . �
Proof of Proposition 3.3. Since u ∈ H2(Ω), we apply Lemma 3.4 with V = ∇Fu to find∫

Ω
(∆Fu)

2 − tr
(
(∇(∇Fu))

2
)
=

∫
Ω
div

(
∆Fu∇Fu−∇(∇Fu)[∇Fu]

)
.

Since u is smooth in a neighborhood of ∂Ω with νΩ = ∇u/|∇u| we can apply the divergence
theorem to get∫

Ω
(∆Fu)

2 − tr
(
(∇(∇Fu))

2
)
=

∫
∂Ω

(
∇(∇Fu)[∇Fu]−∆Fu∇Fu

)
· ∇u
|∇u|

.

By ∇F 2

2 (∇u) · ∇u = F (∇u)2 and (3.11), we have

−
∫
∂Ω

∆Fu∇Fu · ∇u
|∇u|

=

∫
∂Ω
HF

Ω F (∇u)2F (νΩ)−∇2u[∇F (∇u),∇F (∇u)] F (∇u)
2

|∇u|
.
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Thus, in order to complete the proof, it suffices to show that

∇(∇Fu)[∇Fu] · ∇u = F (∇u)2∇2u[∇F (∇u),∇F (∇u)] . (3.16)

We have that

[∇(∇Fu)]
ij = (F (∇u)Fξi(∇u))xj =

∑
k

F (∇u)Fξiξk(∇u)uxkxj + Fξi(∇u)Fξk(∇u)uxjxk
.

Hence

∇(∇Fu)[∇Fu] · ∇u =
∑
i

(
∇(∇Fu)[∇Fu]

)i
uxi

= F (∇u)
∑
ij

[∇(∇Fu)]
ijFξj (∇u)uxi

= F (∇u)2
∑
kj

Fξj (∇u)uxkxj

∑
i

Fξiξk(∇u)uxi

+F (∇u)
∑
kj

Fξk(∇u)Fξj (∇u)uxjxk

∑
i

Fξi(∇u)uxi .

Again, ∇F (ν)[ν] = 0 by homogeneity, so∑
i

Fξiξk(∇u)uxi = ∇2F (∇u)[∇u, ek] = 0 .

At the same time,
∑

i Fξi(∇u)uxi = ∇F (∇u) · ∇u = F (∇u), so (3.16) is proven. �

3.4. Universal Lipschitz estimate. We now turn to the proof of the following gradient bound
for u, which is notably independent of the ellipticity constants of F .

Proposition 3.5. If F is an elliptic integrand, Ω is a bounded open smooth set with HF
Ω > 0 on

∂Ω and u is the F -anisotropic torsion potential of Ω, then

sup
Ω

|∇u| ≤ 1

mF HF
Ω,inf

(3.17)

where HF
Ω,inf denotes the infimum of HF

Ω over ∂Ω.

Proof. Recall from Proposition 3.1 that the F -anisotropic signed distance function γ of Ω, defined
in (3.1), is smooth in a neighborhood of ∂Ω with γ < 0 in Ω and

∇γ(y) = νΩ(y)

F (νΩ(y))
∀y ∈ ∂Ω .

Hence, F (∇γ) = 1 on ∂Ω, and so

∆Fγ = div (F (∇γ)∇F (∇γ)) = div (∇F (νΩ)) = HF
Ω on ∂Ω

by the zero-homogeneity of ∇F and (3.12).

Step one: We show that γ satisfies ∆Fγ ≥ HF
Ω,inf in the viscosity sense in Ω. Indeed, let P denote

a second order polynomial touching γ from above at some x ∈ Ω, i.e., for some r > 0, P ≥ γ on
Br(x) ⊂ Ω with P (x) = γ(x). We want to prove that

∆FP (x) ≥ HF
Ω,inf .
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Let y ∈ p(x), where p is the projection map as defined in (3.7), and note that xt = x+ t (y−x) ∈ Ω
for all t ∈ (0, 1). In particular, let rt ∈ (0, r) be such that Brt(xt) ⊂ Ω. We claim that the second
order polynomial Qt defined by

Qt(z) = P (z − xt + x) + F∗(xt − x) , z ∈ Rn+1

is such that

Qt(xt) = γ(xt) , Qt(z) ≥ γ(z) ∀z ∈ Brt(xt) . (3.18)

Indeed,

Qt(xt) = P (x) + F∗(xt − x) = γ(x) + t F∗(y − x) = (1− t)γ(x) = γ(xt) ,

while if z ∈ Brt(xt) then z − xt + x ∈ Br(x) ⊂ Ω, and thus

Qt(z) ≥ γ(z − xt + x) + F∗(xt − x) = − inf
{
F∗(w − (z − xt + x)) : w ∈ Ωc

}
+ F∗(xt − x)

≥ − inf
{
F∗(w − z) : w ∈ Ωc

}
− F∗(xt − x) + F∗(xt − x) = γ(z)

as z ∈ Ω. Now, if t is close enough to 1, then xt lies in the neighborhood N of ∂Ω in which γ is
smooth. Hence, for t close enough to 1, (3.18) implies that

∆FP (x) = ∆FQt(xt) ≥ ∆Fγ(xt) .

Letting t→ 1−, we find ∆FP (x) ≥ ∆Fγ(y) = HΩ
F (y) ≥ HΩ

F,inf , as required.

Step two: We claim that

γ(x) ≤ HF
Ω,inf u(x) ∀x ∈ Ω . (3.19)

Both functions are equal to zero on ∂Ω and are strictly negative in Ω, so the claim follows by
showing that, for every α > 0,

v(x) = (HF
Ω,inf − α)u(x)− γ(x) ≥ 0 ∀x ∈ Ω .

In turn, since v is continuous in Ω and v = 0 on ∂Ω, it suffices to show that v has no interior
minimum points in Ω.

Arguing by contradiction, let x0 ∈ Ω be a local minimum point of v in Ω. If ∇u(x0) ̸= 0, then
u is smooth nearby x0. Moreover, since x0 is a local minimum of v, we have that

(HF
Ω,inf − α)u− [(HF

Ω,inf − α)u(x0)− γ(x0)]

touches γ from above at x0, and thus, by Step one,

HF
Ω,inf ≤ ∆F [(H

F
Ω,inf − α)u](x0) = (HF

Ω,inf − α)∆Fu(x0) = HF
Ω,inf − α ,

a contradiction to α > 0. This implies that ∇u(x0) = 0. Hence γ cannot be differentiable at x0:
otherwise ∇v(x0) = 0 would imply ∇γ(x0) = 0, whereas ∇γ = (νΩ ◦ p)/F (νΩ ◦ p) ̸= 0 at every
differentiability point of γ.

We are thus left to consider the possibility of a local minimum point x0 ∈ Ω of v, where
∇u(x0) = 0 and γ is not differentiable at x0. By local minimality, for every ν ∈ Sn and t > 0 small
enough, we have

(HF
Ω,inf − α)

u(x0 + t ν)− u(x0)

t
− γ(x0 + t ν)− γ(x0)

t
≥ 0 .

So ∇u(x0) = 0 implies

lim inf
t→0+

γ(x0 + t ν)− γ(x0)

t
≤ 0 .
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Since γ is not differentiable at x0, there exists ν0 ∈ Sn such that

lim inf
t→0+

γ(x0 + t ν0)− γ(x0)

t
< 0 ,

which in turn implies

lim inf
t→0+

γ(x0 + t ν0) + γ(x0 − tν0)− 2γ(x0)

t2
= −∞ . (3.20)

We will now obtain a contradiction to (3.20) by proving that for every x ∈ Ω there exists a second
order polynomial P touching γ from below at x.

Indeed, since γ is smooth in a neighborhood N of ∂Ω, there exists C > 0 such that for every
z ∈ N there exists a second order polynomial Pz with the properties

Pz(z) = γ(z) , ∇2Pz ≥ −C Id , γ(w) ≥ Pz(w) for every w near z .

Choose x ∈ Ω with Br(x) ⊂ Ω, let y ∈ p(x), and set xt = x+ t(y− x). For t sufficiently close to 1,
xt ∈ N and we can find rt ∈ (0, r) such that Brt(xt) ⊂ Ω and, setting Pt = Pxt ,

Pt(xt) = γ(xt) , ∇2Pt ≥ −C Id , γ(w) ≥ Pt(w) for every w ∈ Brt(xt) .

Set

P (w) = Pt(w − (x− xt)) + γ(x)− γ(xt) .

Clearly P (x) = γ(x). If w ∈ Brt(x) ⊂ Ω, then w − (x− xt) ∈ Brt(xt) and thus

P (w) ≤ γ(w − (x− xt)) + γ(x)− γ(xt)

= γ(w − (x− xt))− tγ(x) = γ(w − (x− xt))− t F∗(y − x) .

Now, since w − (x− xt) ∈ Brt(xt) ⊂ Ω, by definition of γ there exists w̄ ∈ ∂Ω such that

γ(w − (x− xt)) = −F∗(w̄ − (w − (x− xt)))

so that, by the subadditivity of F∗,

P (w) ≤ −F∗(w̄ − (w − (x− xt)))− F∗(t(y − x))

= −F∗(w̄ − (w + t(y − x)))− F∗(t(y − x))

≤ −F∗(w̄ − w) ≤ γ(w) ,

again by definition of γ in Ω, and thanks to w ∈ Ω. This completes the proof of step two.

Step three: We claim that if u is the F -anisotropic torsion potential of Ω, then

sup
Ω

|∇u| ≤ 1

mF HF
Ω,inf

. (3.21)

First, let us pick x ∈ Ω and y ∈ ∂Ω. By (3.19), −u(x) ≤ −γ(x)/HF
Ω,inf , thus

|u(x)− u(y)|
|x− y|

=
−u(x)
|x− y|

≤ 1

HF
Ω,inf

−γ(x)
|x− y|

,

so, first using |x− y|/mF ≥ F∗(y − x) = −γ(x) and then letting x→ y, we have proven

sup
∂Ω

|∇u| ≤ 1

mF HF
Ω,inf

. (3.22)
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We now prove that |∇u| (which is a Hölder continuous function on Ω) achieves its maximum on
∂Ω. Recall that u is smooth and solves 1 = ∆Fu pointwise on Ω \ C, with

∆Fu =
∑
ij

(
F (∇u)Fξiξj (∇u) + Fξi(∇u)Fξj (∇u)

)
uxixj .

Since the operator ∆F is smooth on Ω \ C, by [GT83, Theorem 15.1], the maximum of |∇u| is
attained on ∂(Ω \ C). Then, since |∇u| = 0 on C,

sup
Ω

|∇u| ≤ sup
∂Ω

|∇u| ≤ 1

mF HF
Ω,inf

.

�

3.5. The anisotropic Heintze-Karcher and bounds on the torsion potential. In this sec-
tion we give a proof of the anisotropic Heintze-Karcher inequality (1.15) that uses the properties of
the anisotropic torsion potential, in the spirit of Ros’ argument [Ros87]; see Proposition 3.7 below.
We recall from the introduction the definitions, for an open set with smooth boundary Ω,

ηF (Ω) = 1− (n+ 1)|Ω|∫
∂Ω

(
nF (νΩ)/HF

Ω

) , if HF
Ω > 0 ,

δF (Ω) =
( 1

F(Ω)

∫
∂Ω

∣∣∣ HF
Ω

HF,0
Ω

− 1
∣∣∣2F (νΩ))1/2

,

where HF,0
Ω = nF(Ω)/(n+ 1)|Ω|. We have the following relation between ηF and δF :

Lemma 3.6. If κ > 0 and Ω is a smooth bounded open set with HF
Ω ≥ κHF,0

Ω on ∂Ω, then

ηF (Ω) ≤
1

κF(Ω)

∫
∂Ω

∣∣∣ HF
Ω

HF,0
Ω

− 1
∣∣∣F (νΩ) .

In particular,

ηF (Ω) ≤ δF (Ω)/κ.

Proof. Since (n+ 1)|Ω| =
∫
Ω nF (νΩ)/H

F,0
Ω , we find

η(Ω) =
1∫

∂Ω(nF (νΩ)/H
F
Ω )

(∫
∂Ω

nF (νΩ)

HF
Ω

−
∫
∂Ω

nF (νΩ)

HF,0
Ω

)
=

1∫
∂Ω(F (νΩ)/H

F
Ω )

∫
∂Ω

(
1−

HF
Ω

HF,0
Ω

) F (νΩ)
HF

Ω

≤ 1

κHF,0
Ω

∫
∂Ω(F (νΩ)/H

F
Ω )

∫
∂Ω

∣∣∣1− HF
Ω

HF,0
Ω

∣∣∣F (νΩ)
=

(n+ 1)|Ω|∫
∂Ω(nF (νΩ)/H

F
Ω )

1

κF(Ω)

∫
∂Ω

∣∣∣1− HF
Ω

HF,0
Ω

∣∣∣F (νΩ)
where the first factor is less than 1 exactly by the anisotropic Heintze-Karcher inequality. The
proposition now follows from Hölder’s inequality. �
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Proposition 3.7. If F ∈ C∞(Sn) is an elliptic integrand, Ω is a bounded open smooth set with
HF

Ω > 0, and u is the F -torsion potential of Ω, then

|Ω|
n+ 1

(∫
∂Ω

nF (νΩ)

HF
Ω

− (n+ 1)|Ω|
)

=

∫
∂Ω

F (νΩ)

HF
Ω

(∫
Ω
tr((∇(∇Fu))

2)− (∆Fu)
2

n+ 1

)
(3.23)

+

∫
∂Ω

F (νΩ)

HF
Ω

∫
∂Ω
HF

ΩF (∇u)2F (νΩ)−
(∫

∂Ω
F (∇u)F (νΩ)

)2
.

Moreover:

(a) The right-hand side of (3.23) is non-negative, so (3.23) implies the anisotropic Heintze-
Karcher inequality (1.15);

(b) If the right-hand side is equal to zero and Ω is connected, then Ω = x + rKF for some
r > 0;

(c) We have

C(n)
Λ∗
λ∗

|Ω| ηF (Ω) ≥
∫
Ω

∣∣∣∇(∇Fu)−
Id

n+ 1

∣∣∣2 , (3.24)

C(n)

λ2∗
|Ω| ηF (Ω) ≥

∫
Ω

∣∣∣∇2u− ∇2(F 2
∗ /2)(∇F (∇u))
n+ 1

∣∣∣2 , (3.25)

and, if δF (Ω) < 1/2 and HF
Ω ≥ κHF,0

Ω for some κ > 0 on ∂Ω, then

C(n)

κ

|Ω|(n+2)/(n+1)

|KF |1/(n+1)

{
ηF (Ω) +

δF (Ω)
2

κ

}
≥

∫
∂Ω

∣∣∣(n/HF,0
Ω )

n+ 1
− F (∇u)

∣∣∣2 F (νΩ) . (3.26)

Proof. Step one: We prove (3.23), following Ros’ argument in [Ros87]. By the divergence theorem,
since νΩ = ∇u/|∇u| on ∂Ω, we have

|Ω|2 =
(∫

Ω
∆Fu

)2
=

(∫
∂Ω
F (∇u)∇F (∇u) · νΩ

)2
=

(∫
∂Ω

F (∇u)2

|∇u|

)2
=

(∫
∂Ω
F (∇u)F (νΩ)

)2

≤
∫
∂Ω
HF

Ω F (∇u)2 F (νΩ)
∫
∂Ω

F (νΩ)

HF
Ω

.

By the anisotropic Reilly’s identity,∫
∂Ω
HF

Ω F (∇u)2F (νΩ) dHn =

∫
Ω
(∆Fu)

2 − tr
(
(∇(∇Fu))

2
)

=
n

n+ 1

∫
Ω
(∆Fu)

2 +

∫
Ω

(∆Fu)
2

n+ 1
− tr

(
(∇(∇Fu))

2
)

≤ n

n+ 1

∫
Ω
(∆Fu)

2 =
n|Ω|
n+ 1

,

where the last inequality follows from the following linear algebra consideration. SetA = ∇2(F 2/2)(∇u)
and B = ∇2u, so ∇(∇Fu) = AB and therefore

tr((∇(∇Fu))
2) = tr((AB)2) .

Since A is positive definite and symmetric on Ω \ C, A1/2 and A−1/2 exist and

A1/2BA1/2 = A−1/2(AB)A1/2
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is symmetric. Hence, there exist an orthogonal matrix O and a diagonal matrix L such that

A1/2BA1/2 = O−1LO . (3.27)

So,

AB = A1/2O−1LOA−1/2 , (AB)2 = A1/2O−1L2OA−1/2 (3.28)

and

B −A−1 = A−1/2O−1(L− Id)OA−1/2 . (3.29)

Because the trace operator is invariant under conjugation,

tr(AB) = tr(L) , tr((AB)2) = tr(L2) .

By Hölder’s inequality, (n+ 1) tr(L2) ≥ tr(L)2 so that

tr((∇(∇Fu))
2)− (∆Fu)

2

n+ 1
= tr(L2)− (trL)2

n+ 1
≥ 0 ,

We have now shown the anisotropic Heintze-Karcher inequality and the identity (3.23) for the
anisotropic torsion potential u.

Step two: We prove (3.24), (3.25), and (3.26). Let us first notice that if v and w belong to a Hilbert
space with norm | · | and v · w ≥ 0 then

|v|2|w|2 − (v · w)2 ≥ |v| |w|
(
|v||w| − (v · w)

)
=

|v| |w|
2

∣∣∣∣
√

|w|
|v|
v −

√
|v|
|w|

w

∣∣∣∣2
=

|v|2

2

∣∣∣∣ |w||v|
v − w

∣∣∣∣2 . (3.30)

Given (λi)
N
i=1 such that

∑
i λi = 1, we can apply (3.30) to w =

∑
i λi ei and v =

∑
i ei to obtain

N
∑
i

λ2i − (
∑
i

λi)
2 ≥ N

2

∣∣∣(∑i λ
2
i )

1/2

N

∑
i

ei −
∑
i

λiei

∣∣∣2
≥ N

2
inf
c∈R

∑
i

(c− λi)
2 =

N

2

∑
i

(∑
j λj

N
− λi

)2
=
N

2

∑
i

( 1

N
− λi

)2
.

Thanks to (2.12),

|A1/2| ≤
√

(n+ 1)Λ∗ |A−1/2| ≤
√
n+ 1

λ∗
.

By (3.28), if we set N = n+ 1 and denote by λi the eigenvalues of L, then∣∣∣∇(∇Fu)−
Id

n+ 1

∣∣∣2 ≤ C(n)
Λ∗
λ∗

∣∣∣L− Id

n+ 1

∣∣∣2
≤ C(n)

Λ∗
λ∗

∑
i

( 1

n+ 1
− λi

)2
≤ C(n)

Λ∗
λ∗

(
tr(L2)− tr(L)2

n+ 1

)
.

Hence, by (3.23),

n |Ω|
n+ 1

ηF (Ω) ≥
∫
Ω
tr((∇(∇Fu))

2)− (∆Fu)
2

n+ 1
≥ 1

C(n)

λ∗
Λ∗

∫
Ω

∣∣∣∇(∇Fu)−
Id

n+ 1

∣∣∣2 .
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This proves (3.24). In the same way, using (3.29) and recalling (2.13) to express A−1, we have∣∣∣∇2u− ∇2(F 2
∗ /2)(∇F (∇u))
n+ 1

∣∣∣2 ≤ C(n)

λ2∗

∣∣∣L− Id

n+ 1

∣∣∣2
≤ C(n)

λ2∗

∑
i

( 1

n+ 1
− λi

)2
≤ C(n)

λ2∗

(
tr(L2)− tr(L)2

n+ 1

)
.

So, again by (3.23),

n |Ω|
n+ 1

ηF (Ω) ≥
∫
Ω
tr((∇(∇Fu))

2)− (∆Fu)
2

n+ 1
≥ λ2∗
C(n)

∫
Ω

∣∣∣∇2u− ∇2(F 2
∗ /2)(∇F (∇u))
n+ 1

∣∣∣2 ,
proving (3.25).

Similarly, (3.23) implies

|Ω|
n+ 1

ηF (Ω)

∫
∂Ω

nF (νΩ)

HF
Ω

≥ |v|2|w|2 − (v · w)2

where v = (HF
Ω )−1/2 and w = (HF

Ω )1/2F (∇u) are seen as vectors of L2(F (νΩ)Hnx∂Ω). Writing
down (3.30) we find

|Ω|
n+ 1

ηF (Ω)

∫
∂Ω

nF (νΩ)

HF
Ω

≥ 1

2

∫
∂Ω

F (νΩ)

HF
Ω

∫
∂Ω

∣∣∣ |w||v|
1

(HF
Ω )1/2

− (HF
Ω )1/2F (∇u)

∣∣∣2 F (νΩ) .
After simplifying we have,

C(n) |Ω| ηF (Ω) ≥
∫
∂Ω

∣∣∣ |w||v|
1

HF
Ω

− F (∇u)
∣∣∣2HF

Ω F (νΩ)

and hence

C(n)
{
|Ω| ηF (Ω) +

|w|2

|v|2

∫
∂Ω

∣∣∣ 1

HF,0
Ω

− 1

HF
Ω

∣∣∣2HF
Ω F (νΩ)

}
≥

∫
∂Ω

∣∣∣ |w||v|
1

HF,0
Ω

− F (∇u)
∣∣∣2HF

Ω F (νΩ) .

Thanks to (3.13) we have |w|2 ≤ |Ω|, so that by 1/HF
Ω ≤ 1/κHF,0

Ω ,

|w|2

|v|2

∫
∂Ω

∣∣∣ 1

HF,0
Ω

− 1

HF
Ω

∣∣∣2HF
Ω F (νΩ) ≤ |Ω|∫

∂Ω F (νΩ)/H
F
Ω

∫
∂Ω

∣∣∣ HF
Ω

HF,0
Ω

− 1
∣∣∣2 F (νΩ)

HF
Ω

≤ |Ω|
κHF,0

Ω

∫
∂Ω F (νΩ)/H

F
Ω

∫
∂Ω

∣∣∣ HF
Ω

HF,0
Ω

− 1
∣∣∣2 F (νΩ)

=
|Ω|
κ

(n+ 1) |Ω|∫
∂Ω nF (νΩ)/H

F
Ω

δF (Ω)
2 ≤ |Ω|

κ
δF (Ω)

2

where in the last step we have used the anisotropic Heintze-Karcher inequality. Thus,

C(n) |Ω|
{
ηF (Ω) +

δF (Ω)
2

κ

}
≥

∫
∂Ω

∣∣∣ |w||v|
1

HF,0
Ω

− F (∇u)
∣∣∣2HF

Ω F (νΩ) . (3.31)

Exploiting again HF
Ω ≥ κHF,0

Ω∫
∂Ω

∣∣∣ |w||v|
1

HF,0
Ω

− F (∇u)
∣∣∣2HF

Ω F (νΩ) ≥ κHF,0
Ω inf

c∈R

∫
∂Ω

∣∣∣c− F (∇u)
∣∣∣2 F (νΩ) . (3.32)
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By the divergence theorem, the optimal c is given by the average

c =

∫
∂Ω F (∇u)F (νΩ)∫

∂Ω F (νΩ)
=

∫
Ω∆Fu

F(Ω)
=

|Ω|
F(Ω)

=
(n/HF,0

Ω )

n+ 1
.

Thus by combining (3.31), (3.32), and the last identity, we have

C(n)
|Ω|

κHF,0
Ω

{
ηF (Ω) +

δF (Ω)
2

κ

}
≥

∫
∂Ω

∣∣∣n/HF,0
Ω

n+ 1
− F (∇u)

∣∣∣2 F (νΩ) , (3.33)

where by the Wulff inequality (1.6),

|Ω|
HF,0

Ω

≤ C(n)
|Ω|2

F(Ω)
≤ C(n)

|Ω|(n+2)/(n+1)

|KF |1/(n+1)
.

We thus conclude the proof of (3.26).

Step three: We finally notice that if the right-hand side of (3.23) is equal to zero and Ω is connected,
then Ω = x+ rKF for some x ∈ Rn+1 and r > 0. Indeed, in this case, (3.24) gives

∇(∇Fu) =
Id

n+ 1
on Ω

so that, for some x0 ∈ Rn+1,

∇Fu(x) =
x− x0
n+ 1

∀x ∈ Ω .

Since ∇Fu(x) = ∇(F 2/2)(∇u), by (2.9)

∇u(x) = ∇(F 2
∗ /2)

(x− x0
n+ 1

)
=

∇(F∗)
2(x− x0)

2(n+ 1)
∀x ∈ Ω .

In particular, for some c ∈ R we have

u(x) = c+
F∗(x− x0)

2

2(n+ 1)
∀x ∈ Ω ,

so that u = 0 on ∂Ω implies that ∂Ω is a level set of F∗(· − x0), as claimed. �

3.6. Proof of Theorem 1.4. Step one: We first recall our setting. We consider a convex integrand
F that is the pointwise limit of a sequence {Fh}h∈N of smooth elliptic integrands with

m ≤ Fh ≤M on Sn ,
λh Id ≤ ∇2Fh(ν) ≤ Λh Id on ν⊥, ∀ν ∈ Sn ,

(3.34)

where m, M , λh, and Λh are positive constants (m and M independent of h). Notice that, by
convexity,

Fh → F uniformly on compact subsets of Rn+1 . (3.35)

We also consider a sequence {Ωh}h∈N of bounded open sets with smooth boundary with

HFh,0
Ωh

= n , HFh
Ωh

≥ κn on ∂Ωh (3.36)

and

sup
h∈N

diam(Ωh) <∞ , Fh(Ωh) ≤ (L+ σ)Fh(KFh
) (3.37)
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for some κ > 0, L ∈ N and σ ∈ (0, 1). Moreover, we assume that

lim
h→∞

max
{ 1

λ2h
,
Λh

λh

}
ηFh

(Ωh) + δFh
(Ωh) = 0 . (3.38)

We want to prove the existence of an open set Ω, which is the disjoint union of at most L-many
translations of KF , such that, up to translations and up to extracting subsequences,

lim
h→∞

∣∣Fh(Ωh)−F(Ω)
∣∣+ |Ωh∆Ω| = 0 . (3.39)

colorblueWe now turn to the proof of (3.39).

Step two: Next colorForestGreen

Step two: We now turn to the proof of (3.39). Next we obtain some immediate compactness
properties for the sets Ωh. Since (3.34) implies Fh(E) ≥ mP (E) for any set of finite perimeter E,
(3.37) implies

sup
h∈N

|Ωh|+ P (Ωh) <∞ . (3.40)

By (3.37), up to translations, we may assume Ωh ⊂ BR for some R > 0, and since suph∈N P (Ωh) <
∞, the compactness theorem for sets of finite perimeter implies that, up to subsequences, there
exists a bounded set of finite perimeter Ω such that |Ωh∆Ω| → 0 as h→ ∞.

Step three: We show that, if uh : Rn+1 → (−∞, 0] denotes the Fh-torsion potential of Ωh extended
by zero outside of Ωh, then, up to extracting further subsequences,

uh → u uniformly on Rn+1

where |{u < 0} \ Ω| = 0 and

u(x) =
∑
j∈J

min
{F∗(x− xj)

2 − s2j
2(n+ 1)

, 0
}

x ∈ Rn+1 , (3.41)

where J is an at most countable set, xj ∈ Rn+1 and sj > 0. Indeed, by (3.24), (3.26) and (3.38)
we have that

lim
h→∞

∫
Ωh

∣∣∣∇(∇Fh
uh)−

Id

n+ 1

∣∣∣2 = 0 , (3.42)

lim
h→∞

∫
∂Ωh

∣∣∣ 1

n+ 1
− Fh(∇uh)

∣∣∣2 Fh(νΩh
) = 0 , (3.43)

lim
h→∞

∫
Ωh

∣∣∣∇2uh −
∇2((Fh)∗/2)

2(∇Fh(∇uh))
n+ 1

∣∣∣2 = 0 . (3.44)

By the universal Lipschitz estimate of Proposition 3.5 and by (3.36),

Lip(uh) ≤
1

mHFh
Ωh,inf

≤ C(n,m, κ) . (3.45)

Since {uh > 0} = Ωh ⊂ BR, it follows that uh → u uniformly on Rn+1 for a non-positive Lipschitz
function u. We notice that ∣∣{u < 0} \ Ω

∣∣ = 0 . (3.46)

Indeed, by uniform convergence, for every ε > 0 we have {u < −ε} ⊂ Ωh if h is large enough.
This last fact, combined with (3.42), implies that {∇(∇Fh

uh)}h∈N is bounded in L2({u < 0}). In
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addition, |∇Fh
uh| ≤ C on Rn+1 thanks to (2.4), (3.34), and (3.45). Since {u < −ε} is bounded

and ε > 0 is arbitrary, we find that

∇Fh
uh → v in L2({u < 0}) (3.47)

for some v ∈ H1({u < 0};Rn+1). Now, f(M) = |M − Id|2 is a convex function on Rn+1 ⊗Rn+1, so
that ∫

A
f(∇w) ≤ lim inf

h→∞

∫
A
f(∇wh)

whenever A ⊂ Rn+1 is open and wh → w in L1(A;Rn+1) for some w ∈ W 1,1(A;Rn+1). Applying
this to wh = ∇Fh

uh, and thanks to (3.42), we find that∫
{u<−ε}

∣∣∣∇v − Id

n+ 1

∣∣∣2 = 0 ∀ε > 0 ,

and thus

∇v =
Id

n+ 1
on {u < 0}.

Therefore, if {Aj}j∈J are the connected components of the open set {u < 0} (here J is an at most
countable set), then there exists xj ∈ Rn+1 such that

v(x) =
x− xj
n+ 1

∀x ∈ Aj . (3.48)

We now need to translate (3.48) in terms of u. To this end, we claim that

v(x) ∈ ∂(F 2/2)(∇u(x)) for a.e. x ∈ Rn+1 . (3.49)

Indeed, by the convexity of F 2
h and since 2∇Fh

uh(x) = ∇(F 2
h )(∇uh(x)), we have that

Fh(z)
2 ≥ Fh(∇uh(x))2 + 2∇Fh

uh(x) ·
(
z −∇uh(x)

)
∀z ∈ Rn+1 . (3.50)

By (3.35), (3.47) and the uniform Lipschitz bound on the potentials uh, (3.50) implies that, for
almost every x ∈ Rn+1 and for every z ∈ Rn+1,

F (z)2 ≥ F (∇uh(x))2 + 2 v(x) ·
(
z −∇uh(x)

)
+ o(1) as h→ ∞ (3.51)

where o(1) → 0 as h → ∞. Handling ∇uh is more delicate, because we only have ∇uh ⇀ ∇u in

L2(Rn+1). However, by Mazur’s lemma, for every h ∈ N there exist Nh ≥ h and {αh
l }

Nh
l=h ⊂ [0, 1]

with
∑Nh

l=h α
h
l = 1 such that

Nh∑
l=h

αh
l ∇ul → ∇u in L2(Rn+1) and a.e. on Rn+1 . (3.52)

In particular, thanks to (3.52), this implies that by convexity of F 2 and by (3.51), for almost every
x ∈ Rn+1 and for every z ∈ Rn+1 we have

F (z)2 =

Nh∑
l=h

αh
l F (z)

2 ≥
Nh∑
l=h

αh
l F (∇uh(x))2 + 2

Nh∑
l=h

αh
l v(x) · (z −∇uh(x)) + O(1)

≥ F
( Nh∑

l=h

αh
l ∇uh(x)

)2
+ 2 v(x) ·

(
z −

Nh∑
l=h

αh
l ∇uh(x)

)
+O(1)

= F (∇u(x))2 + 2 v(x) · (z −∇u(x)) .
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This proves (3.49). Inverting (3.49) using (2.10), we have that

∇u(x) ∈ ∂(F 2
∗ /2)(v(x)) for a.e. x ∈ Rn+1 .

By (3.48), and since F∗ is differentiable almost everywhere on Rn+1, this implies that

∇u(x) = ∇(F 2
∗ /2)(x− xj) for a.e. x ∈ Aj .

We thus conclude that there exist cj ∈ R such that

u(x) =
F∗(x− xj)

2

2(n+ 1)
+ cj for a.e. x ∈ Aj .

Since u < 0 in Aj and u = 0 on ∂Aj , we deduce that cj > 0 and Aj = xj + sj KF . Hence (3.41)
follows.

Step four: The next few steps of the argument are devoted to showing that sj = 1 for every j ∈ J .
To begin, we prove that

lim
h→∞

∫
Ωh

Fh(∇uh)2 =
∫
{u<0}

F (∇u)2 . (3.53)

First note that by the convergence of Fh to F (3.35) and the Lipschitz bound on uh (3.45), we have∫
Ωh

Fh(∇uh)2 =
∫
Ωh

F (∇uh)2 + o(1) as h→ ∞ (3.54)

where o(1) denotes a vanishing sequence. Since {u < −ε} ⊂ Ωh for h large enough, by ∇uh ⇀ ∇uh
in L2 and the convexity of F , for every ε > 0 we have

lim inf
h→∞

∫
Ωh

F (∇uh)2 ≥ lim inf
h→∞

∫
{u<−ε}

F (∇uh)2 ≥
∫
{u<−ε}

F (∇u)2 .

Letting ε→ 0 we see that, by (3.54),

lim inf
h→∞

∫
Ωh

Fh(∇uh)2 ≥
∫
{u<0}

F (∇u)2 . (3.55)

To prove the opposite inequality, we recall that uh is the unique minimizer of
∫
Ω Fh(∇v)2 among

v ∈W 1,2
0 (Ωh). Setting

εh = − inf
Rn+1\Ωh

u , vh = (u+ εh)− ∈W 1,2
0 (Ωh) ,

we find that∫
Ωh

F (∇uh)2 ≤
∫
Ωh

Fh(∇vh)2 =
∫
Ωh

F (∇vh)2 + o(1) =

∫
{u<−εh}

F (∇u)2 + o(1) (3.56)

where in the first identity we have used the convergence of Fh to F (3.35). Combining (3.56) with
(3.55), we prove (3.53).

Step five: We show that

lim
h→∞

∫
Ωh

Fh(∇uh)α =

∫
{u<0}

F (∇u)α ∀α > 0 . (3.57)

Notice that this would be obvious if we had the strong convergence of ∇uh to ∇u, and that in that
case, one could actually assert (3.57) with any non-negative locally bounded function H replacing
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Fα. However, we only have that ∇uh
∗
⇀ ∇u in L∞(Rn+1). To obtain (3.57), we will exploit the

strict convexity of t ∈ (−1,∞) 7→ F ((1 + t)ν)2 through the theory of Young measures.
Let us recall that, by the uniform Lipschitz bound (3.45) and since sptuh ⊂ BR forR independent

of h, we can apply the fundamental theorem of Young measures [Eva90, Chapter 1, Theorem 11]
to find a measurable family of probability measures {νx}x∈Rn+1 such that∫

Rn+1

φ(x)ψ(∇uh(x)) dx→
∫
Rn+1

φ(x)

∫
Rn+1

ψ(ξ) dνx(ξ) ∀φ ∈ L1(BR) , ψ ∈ C0
c (Rn+1) .

In particular, we easily deduce that

∇u(x) =
∫
Rn+1

ξ dνx(ξ) for a.e. x ∈ Rn+1 . (3.58)

By (3.53) and by convexity of F 2, if p denotes a measurable selection of ∂F 2(∇u) on Rn+1 (that
is, p : Rn+1 → Rn+1 is a measurable map with p(x) ∈ ∂F 2(∇u(x)) for almost every x ∈ Rn+1),
then∫

Rn+1

F (∇u)2 = lim
h→∞

∫
Rn+1

F (∇uh)2 dx =

∫
BR

dx

∫
Rn+1

F (ξ)2 dνx(ξ)

≥
∫
BR

dx

∫
Rn+1

F (∇u(x))2 + p(x) · (ξ −∇u(x)) dνx(ξ)

=

∫
Rn+1

F (∇u)2 +
∫
BR

dx

∫
Rn+1

p(x) · (ξ −∇u(x)) dνx(ξ) =
∫
Rn+1

F (∇u)2 ,

where in the last identity we have used (3.58). Hence, for every measurable selection p of ∂F 2(∇u),
almost every x ∈ Rn+1, and νx-almost every ξ ∈ Rn+1, we have

F (ξ)2 = F (∇u(x))2 + p(x) · (∇u(x)− ξ) for a.e. x ∈ Rn+1 and .

As t 7→ F (ν+t z)2 is strictly convex and increasing on t > 0 whenever z is an outer normal direction
to {F < F (ν)} at ν, this in turn implies that for almost every x ∈ Rn+1

spt(νx) ⊂ {F = F (∇u(x))} .

Consequently, for any g ∈ C0(Rn+1) with g(0) = 0, we have

lim
h→∞

∫
Rn+1

g(∇uh) dx =

∫
Rn+1

dx

∫
Rn+1

g(ξ) dνx(ξ) =

∫
BR

g(∇u) .

Recalling that ∫
BR

Fh(∇uh)α =

∫
BR

F (∇uh)α + o(1) as h→ ∞

and setting g = Fα, the claim follows.

Step six: We prove that if α > 0, then

n+ 1 + α

(n+ 1)2

∫
Rn+1

F (∇u)α =
n+ 2 + α

n+ 1

∫
Rn+1

F (∇u)α+1. (3.59)

Indeed, let us consider the vector field

θα,h = Fh(∇uh)α∇Fh
uh .
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Recalling that ∇Fh
uh = Fh(∇uh)∇Fh(∇uh), we have

∇
(
Fh(∇uh)α+1

)
·
(
∇Fh

uh
)
= (α+ 1)Fh(∇uh)α+1∇2uh[∇Fh(∇uh),∇Fh(∇uh)]

so that div (∇Fh
uh) = 1 yields

div θα+1,h = Fh(∇uh)α+1 + (α+ 1)Fh(∇uh)α+1∇2uh[∇Fh(∇uh),∇Fh(∇uh)]

=

(
1 +

α+ 1

n+ 1

)
Fh(∇uh)α+1

+(α+ 1)Fh(∇uh)α+1

(
∇2uh −

∇2[(Fh)∗/2]
2(∇Fh(∇uh))

n+ 1

)
[∇Fh(∇uh),∇Fh(∇uh)],

where we have used the identity

∇2[H2/2](ν)[ν, ν] = 1 with H = (Fh)∗ and ν = ∇Fh(∇uh) .
By (3.44), and taking into account the Lipschitz bound (3.45), we find∫

Ωh

div θα+1,h =
n+ 2 + α

n+ 1

∫
Ωh

Fh(∇uh)α+1 + o(1) as h→ ∞ . (3.60)

At the same time, by the divergence theorem, the Lipschitz bound, and (3.43), we find∫
Ωh

div θα+1,h =

∫
∂Ωh

Fh(∇u)α+1∇Fh
u · νΩh

=
1

n+ 1

∫
∂Ωh

Fh(∇u)α∇Fh
u · νΩh

+

∫
∂Ωh

(
Fh(∇u)−

1

n+ 1

)
Fh(∇u)α∇Fh

u · νΩh

=
1

n+ 1

∫
∂Ωh

Fh(∇u)α∇Fh
u · νΩh

+ o(1)

=
1

n+ 1

∫
Ωh

div θα,h + o(1) , as h→ ∞ .

By using (3.60) with α and α+ 1 we thus conclude that

n+ 2 + α

n+ 1

∫
Ωh

Fh(∇uh)α+1 =
n+ 1 + α

(n+ 1)2

∫
Ωh

Fh(∇uh)α + o(1) as h→ ∞ (3.61)

which implies (3.59) thanks to (3.57) if α > 0. Notice that (3.61) holds also when α = 0 and that,
in this case, it implies

n+ 2

n+ 1

∫
Rn+1

F (∇u) = |Ω|
n+ 1

≥ |{u < 0}|
n+ 1

, (3.62)

where the limit on the left-hand side is computed by (3.57), the limit on the right-hand side follows
by |Ωh∆Ω| → 0, and the inequality is a consequence of (3.46).

Step seven: We finally complete the proof. We recall from (3.41) that {u < 0} is decomposed
in at most countably many open connected components Aj = xj + sj KF , j ∈ J , with u(x) =
(F∗(x− xj)

2 − s2j )/2(n+ 1) for x ∈ Aj . Hence, by (2.8),

F (∇u(x)) = F (F∗(x− xj)∇F∗(x− xj))

n+ 1
=
F∗(x− xj)

n+ 1
∀x ∈ Aj ,
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and by scaling, we have that∫
Rn+1

F (∇u)α =
1

(n+ 1)α

∑
j∈J

sn+1+α
j

∫
KF

Fα
∗ . (3.63)

Moreover, thanks to KF = {F∗ < 1}, the coarea formula, and the zero-homogeneity of ∇F∗,∫
KF

Fα
∗ =

∫ 1

0
tα dt

∫
{F∗=t}

dHn

|∇F∗|
=

∫ 1

0
tn+α dt

∫
∂KF

dHn

|∇F∗|
=

CK

n+ 1 + α

provided we set

CK =

∫
∂KF

dHn

|∇F∗|
.

Hence, (3.63) becomes ∫
Rn+1

F (∇u)α =
CK

(n+ 1)α(n+ 1 + α)

∑
j∈J

sn+1+α
j . (3.64)

Combining (3.59) with (3.64), we find that

CK

(n+ 1)α+2

∑
j∈J

sn+1+α
j =

n+ 1 + α

(n+ 1)2

∫
Rn+1

F (∇u)α =
n+ 2 + α

n+ 1

∫
Rn+1

F (∇u)α+1

=
CK

(n+ 1)α+2

∑
j∈J

sn+2+α
j ,

that is ∑
j∈J

sn+1+α
j =

∑
j∈J

sn+2+α
j ∀α > 0 .

In particular, by the arbitrariness of α,∑
j∈J

sn+3+α
j =

∑
j∈J

sn+2+α
j =

∑
j∈J

sn+1+α
j , ∀α > 0 ,

and thus ∑
j∈J

sn+1+α
j (sj − 1)2 =

∑
j∈J

sn+3+α
j + sn+1+α

j − 2 sn+2+α
j = 0 .

This implies that sj = 1 for every j ∈ J . Using (3.62), we get

CK

(n+ 1)2

∑
j∈J

sn+2
j =

n+ 2

n+ 1

∫
Rn+1

F (∇u) = |Ω|
n+ 1

≥ |{u < 0}|
n+ 1

=
CK

(n+ 1)2

∑
j∈J

sn+1
j , (3.65)

which, combined with sj = 1 for every j ∈ J , implies the finiteness of J as well as |Ω| = |{u < 0}|.
In particular, (3.46) implies

Ω = {u < 0}
up to modifying Ω in a set of Lebesgue measure zero, which proves the conclusion that |Ωh∆Ω| → 0
for an open set Ω consisting of a union of finitely many disjoint translations of KF . In turn, from
this last property, we have (n+1)|Ω| = F(Ω), so (n+1)|Ωh| = Fh(Ωh) implies Fh(Ωh) → F(Ω) as
h→ ∞. Finally, Fh(Ωh) ≤ (L+ σ)Fh(KFh

) gives

# J F(KF ) = F(Ω) ≤ (L+ σ)F(KF )
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so # J ≤ L. This completes the proof of Theorem 1.4.

4. Proof of Theorem 1.3

We start by recalling our assumptions. We consider a smooth elliptic integrand F and a smooth
potential g. We let M > 0 and consider an open connected set with smooth boundary Ω such that

F(Ω)n+1

|Ω|n
≤M ,

diam(Ω)

|Ω|1/(n+1)
≤M , Ω ⊂ BM . (4.1)

In case (i) we assume that Ω is a volume-constrained critical point of E , so that, by smoothness
and by the area formula, there exists a constant ℓ such that

HF
Ω + g = ℓ on ∂Ω . (4.2)

Then a first variation argument allows one to compute that

ℓ = HF,0
Ω +

1

(n+ 1)|Ω|

∫
Ω
div (g(x)x) dx , (4.3)

see e.g. [FM11, Appendix A.1]. Let us now set

Ω∗ = tΩ , t =
HF,0

Ω

n
=

F(Ω)

(n+ 1)|Ω|
.

By (4.1) we easily find

HF,0
Ω∗ = n , F(Ω∗) ≤M , diam(Ω∗) ≤M (n+2)/(n+1) .

By the Wulff inequality (1.6),

1

t
=

(n+ 1)|Ω|
F(Ω)

≤ C(n, F ) |Ω|1/(n+1) (4.4)

so that Ω ⊂ BM , (4.2) and (4.3) imply∥∥∥ HF
Ω

HF,0
Ω

− 1
∥∥∥
C0(∂Ω)

≤ C(n, F )
(
∥g∥C0(BM ) +M ∥∇g∥C0(BM )

)
|Ω|1/(n+1) , (4.5)

and thus
δF (Ω

∗) = δF (Ω) ≤ C(n, F,M, g) |Ω|1/(n+1) .

By Theorem 1.1, for every ε > 0 there exists vε depending on n, F , g, M , and ε, such that if
|Ω| ≤ vε, then ∣∣∣Ω∗∆

L∪
i=1

(xi +KF )
∣∣∣ ≤ ε , (4.6)

for some L ≥ 1 (bounded from above in terms of F and M) and {xi}Li=1 ⊂ Rn+1 such that the sets
{xi +KF }Li=1 are mutually disjoint. This proves statement (i).

We now assume that Ω is a volume-constrained r0-local minimizer of E , that is
E(Ω) ≤ E(A) whenever |A| = |Ω| and Ω∆A ⊂⊂ Ir0 |Ω|1/(n+1)(∂Ω) . (4.7)

We shall apply statement (i) with a choice of ε depending on r0, n, F , g and M , and then we shall
assume |Ω| ≤ v0 for a suitable v0 depending on r0, n, F , g and M . We now divide the argument
into steps.
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Step one: We claim that there exist constants ρ0 (depending on n, F , g, M and r0) and S
(depending on n, F , and M) such that Ω∗ is a (S, ρ0)-minimizer of F in Rn+1, that is,

F(Ω∗) ≤ F(G) + S |G∆Ω∗| whenever diam(G∆Ω∗) < ρ0 . (4.8)

(This will be used in the next step to get density estimates, see (4.16) below.) In proving (4.8) we
can assume without loss of generality that

F(G) ≤ F(Ω∗) , G∆Ω∗ ⊂⊂ Bρ0(x0) for some x0 ∈ ∂Ω∗ . (4.9)

We first show that, if we let

µ =
( |Ω∗|
|G|

)1/(n+1)

then we have

|µ− 1| ≤ C(n)
|Ω∗∆G|
|Ω∗|

and |µ− 1| ≤ C(n, F ) ρn+1
0 . (4.10)

Indeed, by (4.6) and provided ε ≤ |KF |/2, we have(
L− 1

2

)
|KF | ≤ |Ω∗| ≤ (L+ 1) |KF | . (4.11)

So, if ρ0 is small enough to have |Bρ0 | ≤ |KF |/4, then (4.9) implies

|G| ≥ |Ω∗| − |Bρ0 | ≥
(
L− 3

4

)
|KF | ≥

|Ω∗|
8

, and |G| ≤ |Ω∗|+ |KF |
4

≤ 3

2
|Ω∗| ,

hence

|µ− 1| ≤ C(n)
|Ω∗∆G|
|G|

≤ C(n)
|Ω∗∆G|
|Ω∗|

,

that is, the first estimate in (4.10). The second estimate immediately follows by combining the
first one with (4.11) and |Ω∗∆G| ≤ |Bρ0 |. Now we set, for x0 ∈ ∂Ω∗ as in (4.9),

A∗ = µ (G− x0) + x0 , A =
A∗

t
,

and claim that A is admissible in (4.7). By definition of µ we have |A∗| = |Ω∗|, so that Ω∗ = tΩ
implies |A| = |Ω|. We thus need to check that

Ω∆A ⊂⊂ Ir0 |Ω|1/(n+1)(∂Ω) .

We first claim that
Ω∗∆A∗ ⊂⊂ I2 ρ0(∂Ω

∗) . (4.12)

The argument is entirely elementary, but we include it for the sake of clarity. Let us first pick
y ∈ A∗ \ Ω∗ and let z ∈ G be such that y = µ(z − x0) + x0. If z ∈ Bρ0(x0), then

dist(y, ∂Ω∗) ≤ |y − x0| ≤ µ |z − x0| ≤ µρ0 ≤ 2ρ0 ,

where we have used the second inequality in (4.10) and have assumed ρ0 small enough to get µ ≤ 2.
On the other hand, if z ̸∈ Bρ0(x0), then G \Bρ0(x0) = Ω∗ \Bρ0(x0) implies that z ∈ Ω∗, so that a
point on the segment joining y and z lies on ∂Ω∗, and

dist(y, ∂Ω∗) ≤ |z − y| = |µ− 1| |z − x0| ≤ diam(Ω∗) |µ− 1| ≤ ρ0 ,

where we have used again the second inequality in (4.10) and the smallness of ρ0. This proves that

dist(A∗ \ Ω∗, ∂Ω∗) ≤ ρ0 .
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Now let us pick y ∈ Ω∗ \ A∗. If y ̸∈ G, then, by (4.9), y ∈ Bρ0(x0) and thus dist(y, ∂Ω∗) ≤ ρ0.
Otherwise, y ∈ G \ A∗, which means that the point z defined by y = µ(z − x0) + x0 cannot lie in
G. Thus the segment joining z and y meets a point in the boundary of G, so that, again by (4.10),

dist(y, ∂G) ≤ |y−z| = |µ−1| |z−x0| = |µ−1| |y − x0|
µ

≤ 2 |µ−1| |y−x0| ≤ 2 diam(Ω∗) |µ−1| ≤ ρ0 ,

provided ρ0 is small enough. By ∂G ⊂ Iρ0(∂Ω
∗) we get

dist(y, ∂Ω∗) ≤ ρ0 + dist(y, ∂G) ,

and thus dist(Ω∗ \A∗, ∂Ω∗) ≤ 2ρ0. The proof of (4.12) is complete.
By |Ω∗| = |A∗|, (4.12), Ω∗ = tΩ and A∗ = t A we obtain that

|Ω| = |A| Ω∆A ⊂⊂ I2ρ0/t(∂Ω) . (4.13)

By (4.4), if ρ0 is small enough with respect to r0, n, M and F , then (4.13) implies that A is
admissible in (4.7). By E(Ω) ≤ E(A), and assuming without loss of generality that r0 ≤ M , we
deduce that

F(Ω) ≤ F(A) + ∥g∥C0(B2M ) |Ω∆A| . (4.14)

Multiplying by tn, this becomes

F(Ω∗) ≤ F(A∗) +
∥g∥C0(B2M )

t
|Ω∗∆A∗| ≤ F(A∗) + C(n, F ) ∥g∥C0(B2M ) v

1/(n+1)
0 |Ω∗∆A∗|

≤ F(A∗) + |Ω∗∆A∗|
where we have used first (4.4), and then the smallness of v0. Now, F(A∗) = µnF(G) so that by
the first estimate in (4.10) and by F(Ω∗) = (n+ 1) |Ω∗|, we obtain

F(A∗) ≤
(
1 + C(n, F,M)

|Ω∗∆G|
|Ω∗|

)
F(G) ≤ F(G) + C(n, F,M)

F(Ω∗)

|Ω∗|
|Ω∗∆G|

≤ F(G) + C(n, F,M) |Ω∗∆G| . (4.15)

Similarly, by F(G) ≤ F(Ω∗) ≤M and by [Mag12, Lemma 17.9],

|G∆A∗| ≤ C(n,M) |µ− 1|P (G) ≤ C(n, F,M) |µ− 1| F(G) ≤ C(n, F,M) |Ω∗∆G| ,
so |Ω∗∆A∗| ≤ C(n, F,M) |Ω∗∆G| by triangular inequality. Combining this last estimate with (4.4),
(4.14) and (4.15) we conclude that (4.8) holds.

Step two: We show that L = 1 in (4.6). Starting from (4.8), and assuming without loss of generality
that ρ0 ≤ 1/S, a standard argument shows the existence of κ ∈ (0, 1) depending on F and n only
such that

κ |Bρ(x)| ≤ |Ω∗ ∩Bρ(x)| ≤ (1− κ) |Bρ(x)| , ∀x ∈ ∂Ω∗ , ρ < ρ0 . (4.16)

(See, e.g., [Mag12, Theorem 21.11] for the case when F is the classical perimeter and use the
constants mF and MF bounding the anisotropy to adapt the proof to the anisotropic case.)

Let us introduce the shorthand K0 =
∪L

i=1(xi +KF ), and let x ∈ ∂Ω∗ be such that

h0 = dist(x, ∂K0) = sup
z∈∂Ω∗

dist(z, ∂K0) .

If x ∈ Kc
0, then by the lower density estimate in (4.16) and (4.6),

κ |Bmin{h0,ρ0}(x)| ≤ |Ω∗ ∩Bmin{h0,ρ0}(x)| ≤ |Ω∗ \K0| ≤ ε .
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If instead x ∈ K0, then the analogous argument using the upper density estimate in (4.16) shows
that κ |Bmin{h0,ρ0}(x)| ≤ ε in this case as well. Taking ε small enough with respect to ρ0 and κ,
and therefore with respect to r0, n, F , g and M , we find that h0 < ρ0 and in particular that

hn+1
0 ≤ C(n, F ) ε .

Furthermore, up to possibly decreasing v0, we find that

hn+1
1 = sup

z∈∂K0

dist(z, ∂Ω) ≤ C(n, F ) ε

as well. Indeed, otherwise, we could find r > 0, a sequence {Ωh} converging to K0 in L
1 and x ∈ K0

such that Br(x)∩∂Ωh is empty for h sufficiently large. Clearly,K0 satisfies a lower perimeter density
estimate. Pairing this estimate with the ellipticity of F and the lower semi-continuity of F implies
that

crn ≤ F(K0;Br(x)) ≤ lim inf
h→∞

F(Ωh;Br(x)) = 0,

yielding a contradiction. We conclude that

h = hd(∂Ω∗, ∂K0) ≤ C(n, F ) ε1/(n+1) . (4.17)

Since Ω is connected, so is Ω∗ ⊂
∪L

i=1 Ih(xi +KF ). Hence, if L ≥ 2, then (up to relabeling the
xis) we have

Ih(x1 +KF ) ∩ Ih(x2 +KF ) ̸= ∅ .
In particular, if z1 ∈ x1+∂KF and z2 ∈ x2+∂KF are such that |z1−z2| = dist(x1+KF , x2+KF ),

then |z1 − z2| < 2h ≤ C(n, F ) ε1/(n+1). Moreover, by (4.17) there exists x ∈ ∂Ω∗ such that

|z1−x| < C(n, F ) ε1/(n+1). Thus there exist w1 and w2 such that w1+(x1+KF ) and w2+(x2+KF )
are disjoint, with a common boundary point at x and

max{|w1|, |w2|} ≤ C(n, F ) ε1/(n+1) . (4.18)

By the upper estimate in (4.16), we find that for every ρ < ρ0

κ |Bρ/2(x)| ≤ |Bρ/2(x) \ Ω∗| ≤
∣∣∣Bρ/2(x) \K0

∣∣∣+ ε

≤
∣∣∣Bρ/2(x) \

(
(x1 +KF ) ∪ (x2 +KF )

)∣∣∣+ ε

≤
∣∣∣Bρ/2(x) \

(
(w1 + x1 +KF ) ∪ (w2 + x2 +KF )

)∣∣∣+ C(n, F ) ε1/(n+1) , (4.19)

where in the last step we have used (4.18). By definition of w1 and w2 and by smoothness of KF ,

lim
ρ0→0+

ρ−1−n
0

∣∣∣Bρ0/2(x) \
(
(w1 + x1 +KF ) ∪ (w2 + x2 +KF )

)∣∣∣ = 0 .

Hence if ε is small enough with respect to ρ0, (4.19) leads to a contradiction. This shows that
L = 1. As a consequence, K0 = x1 +KF satisfies upper and lower volume density estimates, so
arguing as above, we find that

hd
(
∂Ω∗, x1 + ∂KF

)
≤ C(n, F )

∣∣∣Ω∗∆(x1 +KF )
∣∣∣1/(n+1)

≤ C(n, F ) ε1/(n+1) ≤ r0
2C∗(n, F )

(4.20)

where the last inequality is obtained by further decreasing ε in terms of r0, n and F , with C∗(n, F )

as in (4.4), that is to say, by taking t−1 ≤ C∗(n, F ) |Ω|1/(n+1). In this way, we obtain

hd
(
∂Ω, p1 + ∂(KF /t)

)
≤ r0

2C∗(n, F ) t
≤ r0

2
|Ω|1/(n+1) , (4.21)
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where p1 = x1/t. This fact will be used in the next step.

Step three: We now prove (1.21) and (1.22) by comparing Ω∗ with a scaling of the Wulff shape of
the same volume. To this end, we introduce the scale invariant Wulff deficit of Ω ⊂ Rn+1, defined
by

δW (Ω) =
F(Ω)

(n+ 1)|KF |1/(n+1)|Ω|n/(n+1)
− 1 .

We first claim that

δW (Ω) ≤ C(n, F ) |Ω∗∆(x1 +KF )| ≤ C(n, F ) ε . (4.22)

Indeed, F(KF ) = (n+ 1)|KF | and F(Ω∗) = (n+ 1)|Ω∗| (as HF,0
Ω∗ = n), so that

|F(Ω∗)−F(KF )| ≤ (n+ 1)
∣∣|Ω∗| − |KF |

∣∣ ≤ (n+ 1) |Ω∗∆(x1 +KF )| ,

while ∣∣F(KF )− (n+ 1)|KF |1/(n+1)|Ω∗|n/(n+1)
∣∣ ≤ C(n, F )

∣∣|KF |n/(n+1) − |Ω∗|n/(n+1)
∣∣

≤ C(n, F )
∣∣|KF | − |Ω∗|

∣∣n/(n+1)

≤ C(n, F ) |Ω∗∆(x1 +KF )| ,

thanks also to (4.11). Again using (4.11) and the scaling invariance of δW (Ω), we deduce (4.22).

This said, let s = (|KF |/|Ω|)1/(n+1). By (4.21),

hd
(
∂Ω, p1 + ∂(KF /s)

)
≤ r0

2
|Ω|1/(n+1) + C(n, F )

∣∣∣1
t
− 1

s

∣∣∣
where by (4.4) and (4.22) and provided we take ε small enough in terms of r0,∣∣∣1

t
− 1

s

∣∣∣ =
δW (Ω)

t
≤ C(n, F ) |Ω|1/(n+1) δW (Ω) (4.23)

≤ r0
2
|Ω|1/(n+1) .

We have thus shown that

hd
(
∂Ω, p1 + ∂(KF /s)

)
≤ r0 |Ω|1/(n+1) ,

and since |p1 + (KF /s)| = |Ω|, this implies that A = p1 + (KF /s) is an admissible competitor in
(4.7).

We can thus obtain (1.21) by the quantitative Wulff inequality of [FMP10] by direct comparison
with the Wulff shape, as in the case of global minimizers [FM11]. We repeat the simple argument
for the convenience of the reader. By (4.7), we get E(Ω) ≤ E(KF /s), which in turn implies

δW (Ω) =
F(Ω)

F(KF /s)
− 1 ≤ 1

F(KF /s)

∣∣∣ ∫
Ω
g −

∫
p1+(KF /s)

g
∣∣∣

≤ C(n, F )

|Ω|n/(n+1)
∥g∥C0(B2M ) |Ω∆(p1 + (KF /s))| . (4.24)

Notice that x1 = t p1 could have actually been chosen so to satisfy

|Ω∆(p1 + (KF /s))| = min
p∈Rn+1

|Ω∆(p+ (KF /s))| .
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Correspondingly, by the quantitative Wulff inequality of [FMP10],

δW (Ω) ≥ c(n)
( |Ω∆(p1 + (KF /s))|

|Ω|

)2
,

so that ( |Ω∆(p1 + (KF /s))|
|Ω|

)2
≤ C(n, F, g,M)

|Ω∆(p1 + (KF /s))|
|Ω|

|Ω|1/(n+1),

and (1.21) follows. Returning to (4.20) we have

hd
(
∂Ω, p1 + ∂(KF /t)

)
≤ C(n, F )

∣∣∣Ω∆(p1 +KF /t)
∣∣∣1/(n+1)

, (4.25)

while by (4.23),(4.24), and (1.21),∣∣∣1
t
− 1

s

∣∣∣ ≤ C(n, F ) δW (Ω) |Ω|1/(n+1)

≤ C(n, F, g,M)
|Ω∆(p1 + (KF /s))|

|Ω|
|Ω|2/(n+1) ≤ C(n, F, g,M) |Ω|3/(n+1)

By (4.4) and [Mag12, Lemma 17.9]∣∣∣(p1 +KF /s)∆(p1 +KF /t)
∣∣∣ ≤ C(F )

1

tn

∣∣∣1
t
− 1

s

∣∣∣ ≤ C(n, F, g,M) |Ω|n/(n+1) |Ω|3/(n+1) ,

while

hd
(
p1 + ∂(KF /t), p1 + ∂(KF /s)

)
≤ C(F )

∣∣∣1
t
− 1

s

∣∣∣ ≤ C(n, F, g,M) |Ω|3/(n+1) .

By (4.25), we conclude

hd
(
∂Ω, p1 + ∂(KF /s)

)
|Ω|1/(n+1)

≤
hd

(
∂Ω, p1 + ∂(KF /t)

)
|Ω|1/(n+1)

+
hd

(
p1 + ∂(KF /t), p1 + ∂(KF /s)

)
|Ω|1/(n+1)

≤ C(n, F )
( |Ω∆(p1 +KF /t)|

|Ω|

)1/(n+1)
+ C(n, F, g,M)

|Ω|3/(n+1)

|Ω|1/(n+1)

≤ C(n, F, g,M) |Ω|1/(n+1)2 ,

where in the last inequality we have used (1.21). This proves (1.22).
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[HLMG09] Y. He, H. Li, H. Ma, and J. Ge. Compact embedded hypersurfaces with constant higher
order anisotropic mean curvatures. Indiana Univ. Math. J., 58(2):853–868, 2009.

[KM17] B. Krummel and F. Maggi. Isoperimetry with upper mean curvature bounds and sharp
stability estimates. Calc. Var. Partial Differential Equations, 56(2):56:53, 2017.

[LM07] G. Leoni and M. Morini. Necessary and sufficient conditions for the chain rule in

W 1,1
loc (R

N ;Rd) and BVloc(RN ;Rd). J. Eur. Math. Soc. (JEMS), 9(2):219–252, 2007.
[Mag12] F. Maggi. Sets of finite perimeter and geometric variational problems, volume 135 of

Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2012.

[Mor94] F. Morgan. Soap bubbles in R2 and in surfaces. Pacific J. Math., 165(2):347–361, 1994.
[MR91] S. Montiel and A. Ros. Compact hypersurfaces: the Alexandrov theorem for higher

order mean curvatures. In Differential geometry, volume 52 of Pitman Monogr. Surveys



38 DELGADINO, MAGGI, MIHAILA, AND NEUMAYER

Pure Appl. Math., pages 279–296. Longman Sci. Tech., Harlow, 1991.
[MX13] H. Ma and C. Xiong. Hypersurfaces with constant anisotropic mean curvatures. J.

Math. Sci. Univ. Tokyo, 20(3):335–347, 2013.
[Per11] D. Perez. On nearly umbilical surfaces. 2011. PhD. Thesis available at

http://user.math.uzh.ch/delellis/uploads/media/Daniel.pdf.
[Rei77] R. C. Reilly. Applications of the Hessian operator in a Riemannian manifold. Indiana

Univ. Math. J., 26(3):459–472, 1977.
[Ros87] A. Ros. Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat.

Iberoamericana, 3(3-4):447–453, 1987.
[Sim83] L. Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre

for Mathematical Analysis. Australian National University, Centre for Mathematical
Analysis, Canberra, 1983.

[Str84] M. Struwe. A global compactness result for elliptic boundary value problems involving
limiting nonlinearities. Math. Z., 187(4):511–517, 1984.

[Str00] M. Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-
ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin, third edition, 2000. Applications to nonlinear partial differen-
tial equations and Hamiltonian systems.

[Tay74] J. E. Taylor. Existence and structure of solutions to a class of nonelliptic varia-
tional problems. In Symposia Mathematica, Vol. XIV (Convegno di Teoria Geometrica
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