A Rigorous Treatment of a Follow-the-Leader Traffic Model
with Traffic Lights Present

Brenna Argall
Eugene Cheleshkin
J. M. Greenberg!
Colin Hinde
Pei-Jen Lin

Carnegie Mellon University
Department of Mathematical Sciences
Pittsburgh, PA 15213

Abstract

Traffic flow on a unidirectional roadway in the presence of traffic lights is modeled.
Individual car responses to green, yellow, and red lights are postulated and these result
in rules governing the acceleration and deceleration of individual cars. The essence of
the model is that only specific cars are directly affected by the lights. The other
cars behave according to simple follow-the-leader rules which limit their speed by the
spacing between it and the car directly ahead. The model has a number of desirable
properties; namely cars do not run red lights, cars do not smash into one another,
and cars exhibit no velocity reversals. In a situation with multiple lights operating
in-phase we get, after an initial startup period, a constant number of cars through
each light during any green-yellow period. Moreover, this flux is less by one or two
cars per period than the flux obtained in discretized versions of the idealized Lighthill,
Whitham, Richards model which allows for infinite accelerations.

1 This research was partially supported by the Applied Mathematical Sciences Program, U.S. Department
of Energy and by the U.S. National Science Foundation.



1 Introduction, Model Description, and Statement of
Results

In this note we examine the behavior of traffic on a uni-directional highway when multiple
traffic lights are present. For simplicity we assume the lights operate in-phase.

The model postulates the dynamics of individual cars but may also be thought of as a
coarse discretization of a continuum model introduced recently by Greenberg [1], Aw and
Rascle [2], and Aw, Klar, Materne, and Rascle [3] (details of this correspondence may be
found in Section 4, egs. (4.6) - (4.8)).

We assume we are presented with an empirically determined function s — V(s) on L < s
which satisfies

V(L) =0, (1.1)
ay d?y
E(s) > 0 and @(s) <0, L<s<oo, (1.2)
and
: ay d?y
315?0 <V(s), E(s), @(s)> = (Vs >0,0,0). (1.3)

The independent variable s is interpreted as the spacing between cars, L is the minimum
car spacing (a lower bound for L is the length of typical car), and V., > 0 is the maximum
allowable speed of a car. A typical function, and one we shall use in simulations, is

V(s) = Vo <1—§), L <s < oo (1.4)
In this classic Lighthill, Whitham, and Richards model [4,5, and 6] the function V(-) gives
the velocity of individual cars; in ours it provides an upper bound for the velocity of an
individual car. An extensive discussion of suitable functions, V(-), may be found in [7,
Chapter 4] and the references contained therein. Suffice it to say that the functions V(-) in
our model are consistent with those used in practice.
In this model z4(t),1 < k < N, denotes the position of the k" car at time ¢ and 0 < u(t)
is the velocity of the k** car. Throughout

dil?k

dt
and the cars are ordered so that (zx11 — zx)(t) > L, 1 < k < N — 1. During time intervals
where the lights are green we assume that

—u, , 1<k<N (1.5)



Up = V(($k+1 — xk)(t)) + o 1 S k S Nl (16)

where ag(t) < 0 satisfies

dak

—_— = — 1<k<N. 1.7
Gdt ap 5 ~ >~ ( )

The parameter ¢ > 0 may be thought of as a relaxation time. Equations (1.6) and (1.7)
imply that during the green light periods the velocities, uy, satisfy

d )
CZk = V (.’Ek+1 —_ xk)(ukﬂ — uk) + (V($k+1 —_ LEk) —_ uk)/e, 1 S k S N —_ 1, (1.7(1)
and
d
—:;ZV — (Voo — UN)/E- (17b)

The interesting feature of our model is how yellow or red lights effect the dynamics of an
individual car. Our traffic lights cycle from green to yellow to red and the numbers 0 < T'G,
0 <TY, and 0 < TR denote the duration of the green, yellow, and red lights. At time ¢ =0
we assume we have a sequence of N cars located at

where L; > L (again L is the minimum allowable auto spacing) and we assume these cars
are all at rest; i.e.

w(0)=0 , 1<k<N. (1.9)

Finally we assume there at traffic lights located at x = {;,1 < I < M, where

(N — kO)Ll <l <ly<...<ly. (110)

When k = N, uny = Vo + an.



We further assume that each intersection is of width w > 0 and we let

tm=(m—1)(TG+TY +TR), m=1,2,... (1.11)

denote the start of the m* light cycle.
During the time interval ¢,, < ¢t < ¢, + TG all cars satisfy (1.5) - (1.7). At time
ty =l tm, + TG, the green lights turn yellow and this will have an effect on the traffic flow.

We start by describing what happens to the lead car, the one indexed by N, when it
encounters a light at z = [. We assume that

zn(t,) <. (1.12)

If

LBN(ty) + uN(ty)TY Z [+ w+ L, (113)

then the lead car will be able to completely clear the intersection if it travels with its current
speed, un(t,). We allow it to clear the intersection by following its standard dynamics; that
is over the time interval t, <t <t,,,; the N th car satisfies

diL‘N
N 1.14
dt un ( )
where
un = Voo + an (1.15)
and any < 0 satisfies
dOtN
— = —ay. 1.16
€ dt an ( )

Following these dynamics the lead car accelerates through the intersection.
On the other hand if

iI?N(ty) + UN(ty)TY <l+w+ L, (117)

then it will be impossible for the N** car to clear the intersection during the yellow phase if
it continues to travel at its current speed. If



then over the time interval ¢, < ¢ <t,,,1 we require it satisfies the modified dynamics:

—— =uy and —— =0; (1.19)

i.e. we insist that it travels at its current speed. This strategy avoids the Nt car accelerating
and then possibly having to decelerate as it nears the light.

If (1.17) holds and (1.18) is violated, the lead car will have to slow down and possibly
stop. When it satisfies the additional inequality

zn(ty) +un(ty)(TY + TR)/2 > |, (1.20)

the lead car is mandated to satisfy

_ 2 _
uy (ty) t, <t<t,+ 2(l — zn(ty))
N N
Yy amd S (121)
0,t, + w <t <ty

un (ty)

This constant deceleration strategy brings the N car to rest at = = [ at
2(l — xn(t
o g o 20— enlh)

< t;my1 and it then sits at the light until ¢ = ¢,,,11.
un(ty)

2 The dynamics described by (1.21) is equivalent to

d.’L'N _ UN(ty)(l — iEN(t))l/2
dt 201 — zn(ty)) /2

Lty <t <t,+

and
dz N

EN 0,8, +2(1— o {ty)) fun(ty) <t < tmss.



Finally, when

zn(ty) +un(ty)(TY + TR) > 1 and zn(t,) +un(ty)(TY + TR)/2 <1, (1.22)
the lead car is mandated to satisfy

ey
dt

duy  —2(zn(t,) + un(t,)(TY + TG) — 1)

= upy(t) and pra TV + TG)?

over the whole interval ¢, <t < t,,,1. This strategy brings the car to the light at z = at
tme1 With velocity

_ 2(l—an(ty))
UN(tm+1) = m — U,N(ty) > 0. (123)

We note that if the lead car satisfies (1.17), then the cars with indices ¥ < N — 1 follow
their standard dynamics (1.5)-(1.7) over [t,,¢n+1] unless they happen to be influenced by
some other light at z =1’ < [.

Having described what happens when the lead car encounters a yellow light at * = [
we turn our attention to what happens when other cars encounter the same light. We let
k; < N — 1 be the largest integer so that

zy (ty) <1 (1.24)

and we let p; < k; be the largest integer so that

Tp(ty) + min u;(t,)TY <l+w+ L. (1.25)
Pi<j<k

The pi* car will be the first one that does not get through the light at = = [.

We consider first the situation when p; < k;. We assume the existence of a number

A > 1 such that cars travelling with the maximum speed V., can safely brake at a constant
2
(o]

20\L
We first focus our attention on the situation where

deceleration rate a = over a road segment of length AL.

Zp(t,) < 1— AL (1.26)

Our basic strategy is to let cars with indices k£ > p; + 1 follow their standard dynamics (1.5)-
(1.7) over t, <t < tp,y1. The cars with indices p; + 1 < k < k; will clear the intersection by

tm +TG+TY def tr; i.e. satisfy zx(¢,) > [+ w + L. This follows from the observation that
local spatial minima in the velocity are non-decreasing in ¢ (for details see (2.79)-(2.81)).
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Rules for the pi* Car
Solong as t, <t <t, and z,,(t) <! — AL we let the pfh car follow its standard dynamics
(1.5)-(1.7). If there is a first t,, < t, so that z,,(t,,) = { — AL, then the driver must decide
what to do. In the unlikely event that

Up, (tpl)(tm-i-l - tpl) S )\L, (1.27)

then over the interval [t,,,tmy1] the pf® car is required to satisfy

dx . def
dfl = min (up(ty), Up(t)) = up(t)
and
dUpl 1
i V' (Zp11 — Tpy) (Ups1 — Up) + (V (@41 — 2p) — Up,) /€ and Uy, (ty) = up, (ty)-
(1.28)
On the other hand if
Up, (tpt)(tm+1 - tpz) > )‘La (1'29)
then the pi* car will have to slow down and possibly stop.
When the pf* car satisfies the additional inequality
tpy (b)) (b1 — £)/2 > AL, (1.30)
the pt* car is required to satisfy
dzy . Up, (tp) (I — 2 )/ def
Wl = min ( : 21()\L)1/2l y Up | = up, (1.31)
where
dUp, /
dt =V (mpH—l - mpl)(upt-i-l - Upt) + (V(po'l - xm) - Upt) /6 (1'32)
and
Zp, (tpt) =1—AL and U, (tpt) = Up, (tpl)' (1'33)



When (1.31) reduces to

drp,  Up (tp)(l — xpz)l/Q def

i~ 2002 'm (1:34)
we see that
2 2

dop __Upltn) Ve (1.35)

dt 20\L — 2)\L
and thus we apply this constant braking strategy over ¢,y <t <t, + m and the strategy

PL\"Pi
2)\L
zp(t) =lovert, + ——— <t <tpmy1.
Up, (tp,)

If instead of (1.30) the pi car satisfies

Up,(tpy) (tmt1 = ) /2 < AL, (1.36)

the pt* car is required to satisfy

2AL — up, (tp,) (tmt1 — tp))
(tm+1 - tpz)z

def
(t— tpz) ) Upz) = Up, tp STt

(1.37)

and (1.33) and again U, satisfies (1.32) and (1.33).

The dynamics for U, postulated in (1.28) and (1.32) might seem a bit strange. What
we are insisting is that the p!* auto must travel no faster than the minimum of its braking
speed and the speed it would travel at if it disregarded the light and allowed its velocity
to be determined by the car ahead. The latter speed U, is computed from the standard
dynamics equation (see (1.6), (1.7), (1.7a), and (1.7b)).

If there is no such time ¢, < ¢, so that z,,(t,) = {—AL, then we know that z,, (¢.) < I-AL.
In this situation we replace t,, in (1.27)-(1.37) by ¢, and the terms AL in all inequalities and
identities by | — zp,(t,).

Finally, if (1.26) does not hold; i.e. if

1— AL <z, (t,) <1, (1.38)

we set tp, to t, in (1.27)-(1.37) and replace AL in these formulas by I — z,,(¢,).
The rules when p; = k; are similarly amended.

The cars with indices p; 1 < k < p; — 1 are required to satisfy their standard dynamics
over [ty, tmi1]-



Our first result deals with the models consistency; we shall show that for all ¢ > 0 and
all indices, L < (zg+1 — 2k)(t) and 0 < ug(t) < V((@r+1 — zx)(t)). We also have the theorem
that no cars run any red lights. With two in-phase-lights, the number of cars through an
intersection during the green and yellow phases is, after a start up period, a constant. This
constant is less than the constant obtained with models which allow for infinite accelerations;
i.e. discrete Lagrangian versions of the Lighthill, Whitham, Richards model [4,5,6].

One surprising observation about the model just described is that the largest decelerations
are not necessarily associated with the cars indexed by p; but rather by cars with indices
k < p; — 1 which are forced to slow down because the p{" car has stopped. Equation (1.7a)
implies that the latter cars’ decelerations are determined by the negative velocity gradients
Ug41 — Ug-

Finally, we note that though we have been quite specific in postulating our stopping rules
for the pi* car, it would have sufficed to have chosen any rule of the form

= min (Upl’ Upz) = Up, , tp St <tmir
where U, satisfies

du, ,
d:l =V ($Pt+1 - xpz)(uplﬂ - Upz) + (v(pol o mp’) - Upl)e

and Uy, (ty) = up,(ty) if pp < N —1 and

dUn
dt

if p; = N and where v,, > 0 is chosen so that if

= (Voo — Un)/€ and Un(ty) = up,(ty)

dz
d;” =y, , ty <t <tny and z,(t,) <,

then z,,(t) <1, t, <t < tmy1.

2 Model Consistency

In this section we turn our attention to the issue of model consistency. The central issue
before us is to show that for 1 <k < N —1 and 0 < ¢ that

L < (@41 —zg)(t) and 0 < ug(t) < V(11 — 2x)(2)) (2.1)

and that for K = N and 0 < { that



We are also interested in knowing that the distinguished cars indexed by p; do not run
the red lights over the intervals ¢, &s (m—-1)(TG+TY +TR)+ TG+TY <t <m(TG +
TY + TR) & tm+1, and that the (p; + 1)% car clears the intersection by t,; i.e. satisfies

Tp+1(ty) > 1+ w+ L. (2.3)

Once again z = [ is supposed to be the leading edge of the intersection, w the width of the
intersection, and L the length of an auto.

There are two natural approaches one can take to establish the above claims. The first is
to show that the desired conclusions follow directly from the governing differential equations
and initial and constraining conditions while the second is to show that approximate solu-
tions, generated by numerical discretization, satisfy the desired consistency results. Noting
then that these consistency results are sufficient to guarantee that the approximate solutions
converge (as At — 0) to solutions of the original model we are guaranteed that these limiting
solutions satisfy the same consistency results. We adopt the latter procedure here since in
the next section we shall perform computations with the discrete approximating system.

Throughout, At will denote our time step and the quantities (2}, u}, af) will denote the

values of the approximate solutions at ¢, = nAt. To keep matters simple we shall assume
that the numbers TG/At, TY/At, TR/At, and €/At are all integers and we shall assume
that At < min (¢, (V'(L) = max V'(s)™).

Our first result deals with the traffic flow over the time intervals

tn & (m—1)(TG+TY +TR) <t, =nAt<t, & t,+ TG (2.4)

when all lights are green. Over such intervals we replace (1.5) by

it =2+ upAt , 1<k<N (2.5)
and this yields
s =sp+ (upy —up)At , 1<k<N-1 (2.6)
where
5= (af, —af) and st = (eft) —apt). (2.7)

The u’s and s’s are related by

up = V(sg) + o (2.8)
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and

At
UZ+1 = V(S;CH—I) + (1 — ?> O[Z'. (29)
These updates hold for indices n satisfying
(m —1)(TG+TY +TR)/At ® n,, <n < np+TG/At — 1. (2.10)
Theorem 1 Suppose that
L<si and 0<u™ <V(sp™), 1<k<N-1 (2.11)
and
0 < upy™ < Voo = lim V(s). (2.12)
8§—00
Then, the same inequalities hold for
T <1 < M + TGJAL Z . (2.13)

Proof. The identity (2.6) implies that if s} > L and u},; — uf > 0, then s{*' > s? > L. In
the situation where u? ; — uf <0, (2.6) implies that

st = sk + (upyy — o — V(sg)) At (2.14)

and the natural induction hypotheses af < 0, 0 < u} < V(s}), and s} > L imply that
up,; — ap > 0. In the situation where 0 < uyp, ;, — oy < V. we are guaranteed a unique
5p41 € [L, 00) satisfying

Ugs1 = @ = V(Sk41) (2.15)

and here (2.14) reduces to

st = st 4+ (V(5r,1) — V(sp)) At (2.16)

or

11



spth = (1 =V (s.)At)spy + V' (s.) At5y (2.17)

for some s, € (min (s}, 53, ), max (sy, 55, ,))- The latter identity, together with

AtV'(L) <1 and min (sg,57,4) > L, (2.18)

yields sp*' > L. When u ; — u} < 0 and ull,; — af > Vy, the identity (2.14) implies that

ST > 8T 4+ (Voo — V(s7))At. (2.19)

The inequality (2.18);, guarantees that s — s + (Vo — V(s))At is strictly increasing on
[L,0) and thus (2.19) implies that sf*! > L 4+ VAt > L as desired.

The induction hypothesis a} < 0 together with At/e < 1 and (2.9) guarantees that

uptt < V(sPt!). What remains to be shown is that uf™' > 0. To establish this assertion we
combine (2.8) and (2.9) to obtain

At
W = V(s + (4] — u)AE) + (1 - —) (uf — V(s2)).

€
Noting that

V(sg + (ugy1 — up) At) = V(sg) + V'(s4) (ugyy — ug) At

for some s, > L we find that

/ n At n n ! n
uptt =y (s4)Atuy, , + e (V(sk) — ug) + (L = V'(s4)At)uy.

The last identity, when combined with

AtV'(sy) <1, AtJe<1 , wup >0, up,, >0, and V(s})—uj >0,

yields uf ™" > min (uf, uf, ;) > 0 as desired. m

We now turn our attention to what happens over the yellow and red phases; i.e. when

t, % (m — 1) (TG +TY + TR) + TG < tn = nAt < tmi1 2 m(TG +TY +TR). (2.20
Yy

The results of Theorem 1 imply that when n = n, s (m—-1)(TG+TY +TR)+TG/At

the following inequalities are valid:

L<s¥ and 0<u <V(s*) , 1<k<N-1 (2.21)

12



and

0 < up < Vo = lim V(s). (2.22)

§—00

Our next goal is to show that (2.21) and (2.22) hold for indices

Ny <N < M1 =2 m(TG +TY +TR). (2.23)

For definiteness we assume the lights are located at [ < ls < ... < Iy where M << N and
that L << ;41— 17, 1 < I <M —1. For 1 < I < M, ky will be largest integer less than or
equal to N so that

zy! <l (2.24)
and p; will be the largest integer less than or equal to k; so that
Ty : Ty
¥ + (plréljlgkluﬂ ) TY <lj+w+ L. (2.25)

It can and does happen that for some I < M that

pr=pry1=...=pu = N. (2.26)

Our first task is to establish the desired inequalities for indices (py—1 +1) <k <p;=N
for ny <n < npyq1. This is the situation that obtains when the lead car, indexed by N, has
passed the (I — 1)% light but not the I'** light.

The rules laid out in (1.17)-(1.23) imply that zx(-) satisfies

dry def

— = min (vn,Un) = un , ty <t <tpm1 (2.27)
where Uy satisfies
dU.
d—tN = (Voo — Un)/e and Un(t,) = un(t,) (2.28)

and vy(-) > 0 is chosen so that if zy(-) satisfies

diI?N

o TN and zn(t,) <, (2.29)
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then zy(tmy1) < ;. We replace this system with its discrete analogue:

ot = 2% +up At Ny <N < Nypyg — 1 (2.30)
n+1 At n
U™ =Vo + 1—7 Uy V) 5 My <n<np—1 (2.31)

and these are solved subject to the initial conditions

zy <lp and 0 <uy <UW < V. (2.32)

The discrete velocity uy; is given by

uR = min (v, UR) (2.33)

and v}y, > 0 is a discretization of vy with the property that if

et = 2% + vy At and zY <) (2.34)

for ny, <n < npy1 — 1, then

et < g (2.35)

The identities (2.31), (2.32),, and (2.33) guarantee that

0<uy < Vo , 7y <1< Nynya (2.36)

If we assume that (p;_1 +1) < N — 1, then the (N — 1)* car will follow the standard
dynamics (1.5)-(1.7) on ¢, < t < %41 and thus for n, < n < n,p1 — 1 we have the
approximating discrete system:

it =af  Huf At uR o =V(shq) +ak g, and uit, =V(siH) + (1 - ?) ON_1;
(2.37)
where
sy =xn—xy ; and sy =2t — Wt =% |+ (ufy — Ul At (2.38)

14



The inequalities (2.21) and (2.22) imply that oY ; < 0, ayy < 0, and sy’ , > L. The
identities (2.37) and (2.38) imply that

n n n At " Ny n
syt = s+ (uy — <1 — ?> an_; — V(sh_1))At (2.39)
and (2.37), and (2.39), together with
L<sy, , ay <0, u} >0, At'(L) <1, and At <eg, (2.40)

and the arguments used to establish Theorem 1 imply that

L<sy.. 5 ny<n<ng. (2.41)

The arguments used to establish Theorem 1 along with (2.40) and (2.41) also yield 0 <
uh_y <V(s%_1), ny <n < nyiq. An induction on k for indices (pr—1 + 1) < k then yields
L <sp= (25 —2)) and 0 <up <V(s), ny <n < Ny (2.42)

This situation when p;_; = N — 1 is handled similarly provided one adopts the proper
first order integration scheme for Uy_;. The governing equation for Uy_; is

dUn-1
dt

= V’($N - iIIN_l)(uN - UN—l) + (V(iIIN - iI?N_l) — UN_l)/G (243)

where

d(iEN — J,‘N_l)

dt = UN —UN-1 (244)
and vy_; > 0 is chosen so that if
diBN
W = ovny_1 and J?N_l(ty) < l[, (245)
then
$N_1(tm+1) S l[. (246)
Additionally

15



UnN-—-1 déf min (’UNfl, UNfl). (247)

The integration scheme we use is

UF = Vs o+ - U 080+ (1= ) -k (2a8)

where

s o1 =2xN —zh_q. (2.49)

To complete the proof one does an induction on the index I, first replacing I by I — 1.
One knows that the car with index (p7-1 + 1) has a velocity uf,, ., satisfying

0<wuy .41 < V(sp, 111), Ny <1< Nynyr (2.50)

We first focus on the p§ ; car and note that

dzp, . def
% = min (’Uprfl’ UPIA) = Upr 4 (2'51)
and
dsy,_,
% = (u(mfﬁ-l) - uPI—l)' (2‘52)
The rules laid out in (1.7)-(1.23) imply that
dUp,,_,
% = v,(sp1—1))(u(171—1+1) - UPI—I) + (V(S(PI—H-l)) - U;DI—1)/6 (2'53)

3 This scheme is essentially a first-order Euler scheme applied to (2.43). The scheme implies that

At

Ulr\LT—i—_%l =Uyn_+AtY (5%—1) (“RI - UJT\LT—I) + e (V (3%—1) - UIT\Lf—l) + O(At)Q-

16



and that the velocity field 0 < v,, , is chosen so that if z,, , evolves as

dmpl —1

7 = Up;_4 and xpzﬂ(ty) < lI

then

Tpr y (tmy1) < o1
The discretization we apply to the p$* | car is
n+l _ _n n n+l _ n n n
xPI—l - xPI—l + UPI—IAt and 81’1-1 - 81’1-1 + <u(P1—1+1) - upI—l) At
for n, <n < n,41 — 1. Moreover, for some n, < ng < n, +TY/At —1

=V + (1- 20 (g, - V65,0

Pr—1 Pr-1

and

n+l _ _ n+l
UP171 - uPIfl’

whereas for ng <n <n,1 —1

n _ : n n
uPI—l = min (UPI—I’ UPI—l)’

At
Urtl = y(sm Lt (u?pFlH) — UM )AL) + <1 — —) Ur  —v(s® )t

Pr-1 pr Pr—-1 € Pr—-1 Pr-1

and

no _ ,,M0 no
UPI—l = Upr_, and Tpr_s <lIr.

Finally vy | is chosen so that if
n+l _ _n n -
Ty =Ty T+ va_lAt , Mo <n <Ny —1,

then

Nm+41
$P171 S lI'

4See Footnote 3.
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The arguments employed to establish Theorem 1 guarantee that for n, <n < mny

L<sy ~and 0<wu, <V(s; ) (2.64)
and that for n = ng
O S uz;) 1 UI’:LIO 1 < v( pI 1) (2'65)
Lemma 1 For ng < n < npyq
L<s;  and 0<wu, <U; <V(s, ) (2.66)

Proof. The identities (2.56) and (2.60) imply that

V( pI 1 UITJLI+1 = V(SZI—I + (u”(@pjfl"‘l) pI 1)At) ( Spr_s + (U?Plfl‘Fl) - UpI 1)At)

€

N <1 - ﬁ) V() ~ Up)

At
= AtV (sy) (U;; —un ) + (1 — —) V(sp,_,) = Up,_,)

€

(2.67)

for some sy > min (sj,_| + (u,, , 1) — U5, )AL s, + (ul,, 11y — Up,_,)At). If we now
make the induction hypotheses that

L<s;  and 0SU) < V(s ), (2.68)
then (2.59) implies that
0 < uIT’LI 1 S UI?I 1 — V( pI 1) (269)
and (2.69) and (2.42) with k£ = p;_; + 1 implies that
min (81n71—1 + (u(np1_1+1) - uInJI—l)At SPI 1 + (u(npl—l-i-l UPnI 1)At)
(2.70)
n n def n
Z SPI—l - V(8P1—1)At ‘7:( PI 1)'

This constraint AtV'(s) < 1, L < s guarantees F(-) in nondecreasing on L < s and this

fact, together with F(L) L guarantees that s”“1 and sy are both greater than or equal
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to L. Moreover, (2.67) also yields Upt? < V(sp, ). The defining relation (2.60) and (2.70)

and u?pl_l 41y 2 0 also implies that
n+1 / n / n At n n
UPI—l = Aty (8*)u(1’1—1+1) + (1 — AtV (S*))UPI—I + T(V(spl—l) - UPI—l) (2'71)

for some s, > L and (2.71) guarantees that U}t! > 0. The last inequality and (2.59), with
n + 1, guarantees that

0 <ultl <yttt <y(stit) (2.72)

— "PI-1 — Pr-1 Pr-1

and this completes the proof of Lemma 1. m
Once again an induction on k for indices (pr 2 + 1) < k yields

L < sp= (x5, —2) and 0 <up <V(sy) (2.73)

and additionally yields
Theorem 2. For n, <n < npy1 =m(TG+TY +TR)

L<sy and 0<up <V(s}), 1<k<N-1 (2.74)
and
0<uly <Vy = li_)m V(s). (2.75)

Moreover, for 1 < I < M

g < I m (2.76)

b1

Theorems 1 and 2 go a long way towards establishing the consistency of our model. What
remains to be shown is that cars with index p; + 1 clear the light; i.e. satisfies

TY
ny+ac

Tpi1) =+ w+ L (2.77)

The reader should recall that the cars with these indices satisfy

v o <lIr and z} )+ ( min " ) TY >li+w+ L (2.78)

(PI+1
) (pr4+1)<j<kr
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and that cars with indices (p; + 1) < k < k; evolve by the standard discrete dynamics for
ny <n<n, +TY/At —1; ie.

At n—nmy n
gt = 2} +ufAt and u} = V(s}) + (1 - —) (u, — V(s™))

€
where
0 <wup <V(s;’) and L < s}.
It is a straight forward calculation to show that cars with these indices also satisfy

At
W = V(s + (4 — )AL + (1 - —) (g = V(sp)

€

At
= AtV (sg)up + (1 — AtV (s4))up + ?(V(SZ) — up)
from some sy > L and this identity, along with

AtV'(L) <1, At<e¢, and 0<V(s}) —u}

implies

up™ > min (uf, up ). (2.79)

We now note that at ¢t = ¢, (equivalently n = n,) the cars with indices p; < k typically
satisfy

p,%-igk,“j” = U, Where (pr+1) < kg < kg (2.80)
and
wly—ug 20, ko <k <ky (2.81)

where k. is greater than k;. Moreover if the spacing of the lights is sufficiently large, then the
spatial monotonicity of the velocities is preserved for n, <n < n,+TY /At and kg < k < k.
When this is the case, the inequalities (2.78)-(2.81) guarantee (2.77).

3 Simulations

In this section we present some simulations of the system outlined in Section 1. We chose
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Voo =50f/s, L =20f, L1 =25f, A=15, e =5s and N = 600.

Our maximal velocity was given by

V(s)=VOO<1—£>, L<s

S

We restrict our attention to a roadway with two in-phase lights located at

[y =1 mile =5280f and l; = 2 miles = 10,560 f

and we assume that the width each intersection is

w=20f.

Finally the durations of the green, yellow, and red lights were chosen to be

TG = 25s, TY = 5s,and TR = 30s.
Our initial data is taken to be

z1(0) = 25(k — 400) and u(0) =0, 1 < k < 600.

Snapshots of the solution are shown at times 30, 147, 151, 179, and 191 seconds in Figures
1-5 respectively, and a film may be seen at www.math.cmu.edu/users/plin/21380/traffic.html

In the first frame of each snapshot we plot the auto velocity u; (in miles/hour) versus
current auto position z; (in miles) and in the second frame we plot the empirical density

pr = — (in cars/mile) versus current auto position zj, (in miles).
Tk+1 — Tk

After an initial startup period we are able to get 18 cars through each light during each
green-yellow-red cycle. This number should be contrasted with what one obtains in the
singular limit where e = 07, TY = 0s,7G = 30s, w = 0f, and A = 5. In this limit

L
w = Ve <1 _ 7)
Tk+1 — Tk

and if, perchance, we have a car satisfying

e(tm +TG)")=1l , I=1lor2

and

ug((tm +TG)7) > 0,
then for times t,, + TG <t <t, + TG+ TR,

zx(t) =l and u(t) = 0.
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For this singular model we declare a car through the light at [ if z;(t,) > [. The singular
model has the potential for infinite accelerations. In steady state the singular model allows
us to get 20 cars through an intersection during each green-red cycle.

We note that our choice of which car must stop is made at times ¢, = ¢,, + TG (when a
green light turns yellow) and is conservative when the car chosen to stop satisfies z,(¢,) <
I — AL. A more aggressive strategy would have been to allow the p{* car follow its standard
dynamics until time ¢, < t,+7TY where z,,(ty,) = I — AL and then reevaluating whether the
pi* car can get through the light in the remaining time ¢, + TY —t,,: i.e. checking whether

t i TY — > L.
xpl(pl)-‘_p,g?glgl(tpl) uk(tp ) (ty + tp) >l +w+
If the latter inequality holds, the aggressive strategy would allow the pi" car through and
stop the (p; — 1)* car. We avoided this strategy because it did not seem to be worth the
effort to get one more car through the intersection during the green-yellow-red cycle.

The attentive reader will by now realize that once we have determined which car will
slow down or stop at a given light the particular braking strategy adopted is immaterial; all
that is required is the velocity associated with the braking strategy, vp,, be such that if z,,
satisfies

then z,,(tm+1) < 1. We adopted constant braking strategies here because they were simple
and realistic.

4 Concluding Remarks

There are some obvious connections between the discrete model studied in this paper and
the continuum or macroscopic models of Aw, Klar, Materne and Rascle [3].

If one assumes that the maximal velocity V(-) introduced in (1.1)-(1.3) is actually a

function of vy = % defined on v = % >1;ie.

V(s) = W(s/L), (4.1)
then (1.1) and (1.7) takes the form
dry (T — Ug+1 — Uk (W () — w)
g7 ur, and 7 —W(k)< I >+ . (42)

where again
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Z — T
" (k+1L k)

Il
—
=
w
~

and

dyr  Ugp1 — Ug

_ = 4.4

dt L (44)
The connection between the follow-the-leader system (4.1)-(4.4) is now clear. One introduces
reference coordinates

X, = kL, (4.5)
lets
X(Xk,t) = x(t) and u(Xi,t) = uk(?), (4.6)
. Uk+1 — Uk . o . 0x
and interprets 7, and ———— as the downwind finite difference approximations to X
0
and 8—; at the reference point Xy; i.e.
0x Tpy1 — T ou Uk41 — U
— (X == —- — (X = 4.

With these identifications one obtains, at least formally, the Lagrangian traffic equations

oX oxX
where
0y Ou ou 0w (W(y) —u)
ot —ox @ 5 = W0gx c (4.9)

This correspondence is faithful if one restricts one’s attention to initial value problems ex-
clusively. We have not seen how to incorporate the traffic light problem into a continuum
format.
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