QED Q's

(Service-Science & -Engineering of)

Quality- and Efficiency-Driven Queues

(Call/Contact Centers)

Avishai Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

CMU, Probability in (the **Service**) Industry, August 2007

Based on joint work with Sergey Zeltyn, ...

Technion SEE Center / Lab: Paul Feigin, Valery Trofimov, RA's, ...

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ()

- Data-Based Introduction
 - ► Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, ...

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, . . .
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, . . .
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why? Robustness via asymptotic analysis that reveals operational regimes: QED, ED, ED+QED

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, . . .
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why? Robustness via asymptotic analysis that reveals operational regimes: QED, ED, ED+QED
- And many ("stochastically-challenged") call centers work as well
 Why? "Right Answers for the Wrong Reasons"

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, . . .
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why? Robustness via asymptotic analysis that reveals operational regimes: QED, ED, ED+QED
- And many ("stochastically-challenged") call centers work as well
 Why? "Right Answers for the Wrong Reasons"
- "Appendix": Demo of DataMOCCA

Background Material (Downloadable)

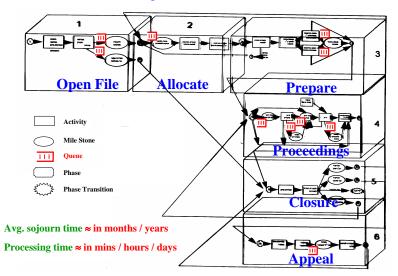
► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng

Background Material (Downloadable)

- ► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng
- Gans (U.S.A.), Koole (Europe), and M. (Israel):
 "Telephone Call Centers: Tutorial, Review and Research Prospects." MSOM, 2003.
- Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." JASA, 2005.
- Trofimov, Feigin, M., Ishay, Nadjharov:
 "DataMOCCA: Models for Call/Contact Center Analysis."
 Technion Report, 2004-2006.
- ► M. "Call Centers: Research Bibliography with Abstracts." Version 7, December 2006.

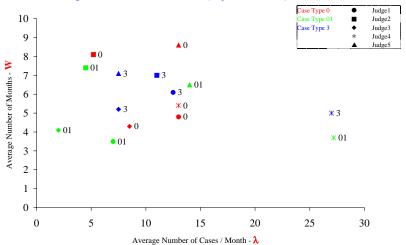
"Production of Justice" (Administrative) Network

Skills-Based-Routing at the Labor-Court in Haifa, Israel



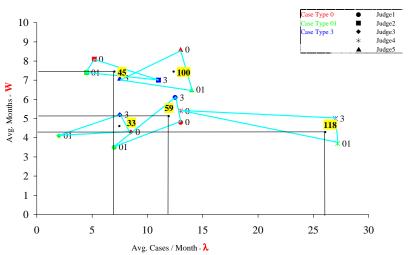
Operational Performance: 5 Judges, 3 Case-Types

Judges: The Best/Worst (Operational) Performer



Little's Law in Court (Creative Averaging)

Judges: The Best/Worst (Operational) Performer



Prerequisite: Data

Averages Prevalent.

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's stay in a hospital), its **operational history** = time-stamps of events.

Prerequisite: Data

Averages Prevalent.

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's stay in a hospital), its **operational history** = time-stamps of events.

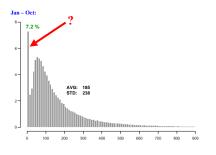
Sources: "Service-floor" (vs. Industry-level, Surveys, ...)

- Administrative (Court, via "paper analysis")
- ► Face-to-Face (Bank, via bar-code readers)
- ► Telephone (Call Centers, via ACD / CTI)
- Future:
 - Hospitals (via RFID)
 - ► IVR (VRU), internet, chat (multi-media)
 - Operational + Financial + Marketing / Clinical history

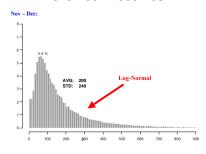
Beyond Averages: Service Times in a Call Center

Histogram of Service Times in an Israeli Call Center

January-October



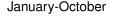
November-December



▶ 7.2% Short-Services:

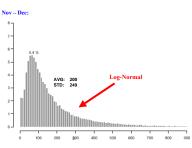
Beyond Averages: Service Times in a Call Center

Histogram of Service Times in an Israeli Call Center



Jan – Oct: 7.2 % 8 4 AVG: 185 STD: 238

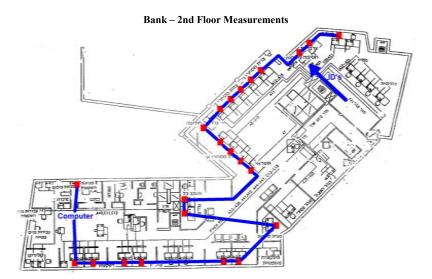
November-December



- ▶ **7.2% Short-Services:** Agents' "Abandon" (improve bonus, rest)
- Distributions, not only Averages, must be measured.
- ▶ Lognormal service times prevalent in call centers

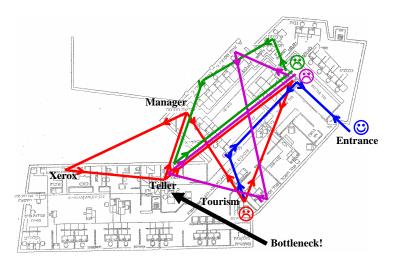
Measurements: Face-to-Face Services

23 Bar-Code Readers at a Bank Branch



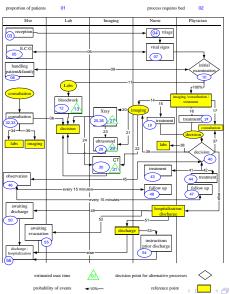
"Face-to-Face Services" Network

Bank Branch = Jackson Network



Hospital Network (Marmur, Sinreich)

Generic Emergency Department (RFID)



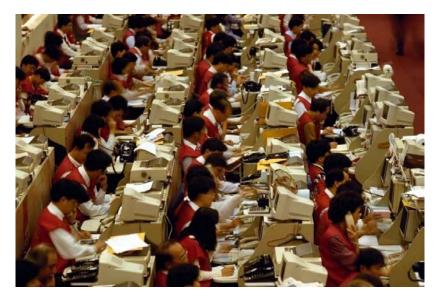
Present Focus: Call Centers

U.S. Statistics (Relevant Elsewhere)

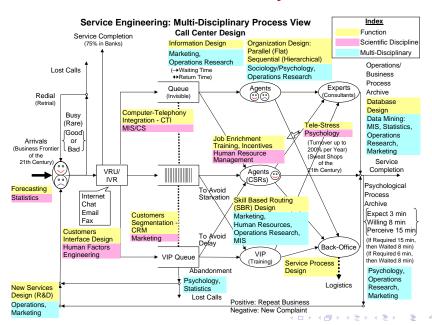
- ▶ Over 60% of annual business volume via the telephone
- ▶ 100,000 200,000 call centers
- 3 − 6 million employees (2% − 4% workforce)
- ▶ 1000's agents in a "single" call center = 70 % costs.
- 20% annual growth rate
- ▶ \$200 \$300 billion annual expenditures

Call-Center Environment: Service Network

Call-Centers: "Sweat-Shops of the 21st Century"



Call-Center Network: Gallery of Models

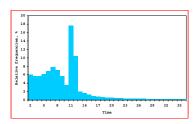


Beyond Averages: Waiting Times in a Call Center

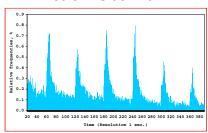
Small Israeli Bank

20 1 % Maars - 68 SD = 105 SD

Large U.S. Bank



Medium Israeli Bank



The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- ► Felt like 20, Actually waited 10,
- ... etc.

The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- ► Felt like 20, Actually waited 10,
- ... etc.

An attempt at "Modeling the Experience":

```
1. Time that a customer expects to wait willing to wait ((Im)Patience: \tau)
3. required to wait (Offered\ Wait: V)
4. actually waits (W_q = min(\tau, V))
5. perceives waiting.
```

The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- ► Felt like 20, Actually waited 10,
- ... etc.

An attempt at "Modeling the Experience":

```
1. Time that a customerexpects to wait<br/>willing to wait<br/>required to wait<br/>actually waits<br/>perceives waiting.((Im)Patience: \tau)<br/>(Offered Wait: V)<br/>(W_q = \min(\tau, V))
```

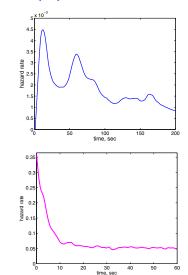
Experienced customers "Rational" customers

- ⇒ Expected = Required
- \Rightarrow Perceived = Actual.

Then left with (τ, V)

Call Center Data: Hazard Rates (Un-Censored)

(Im)Patience Time τ



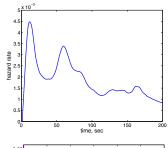
Israel

U.S.

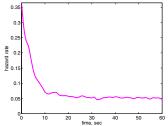
Call Center Data: Hazard Rates (Un-Censored)

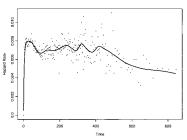
(Im)Patience Time τ

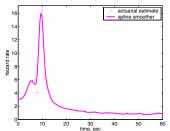
Required/Offered Wait V



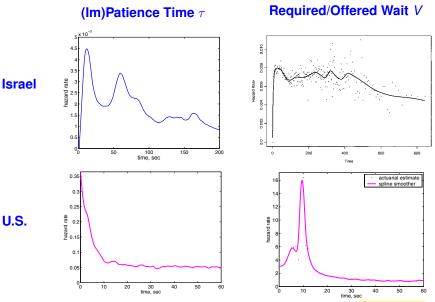
U.S.





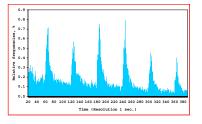


Call Center Data: Hazard Rates (Un-Censored)



Note: 5% abandoning ⇒ 95% (im)patience-observations censored!

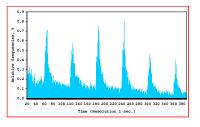
A "Waiting-Times" Puzzle at a Large Israeli Bank



Peaks Every 60 Seconds. Why?

► Human: Voice-announcement every 60 seconds.

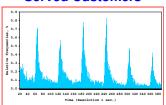
A "Waiting-Times" Puzzle at a Large Israeli Bank



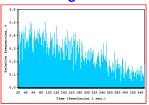
Peaks Every 60 Seconds. Why?

- ► Human: Voice-announcement every 60 seconds.
- System: Priority-upgrade (unrevealed) every 60 sec's (Theory?)

Served Customers



Abandoning Customers



Models for Performance Analysis

- ▶ (Im)Patience: r.v. τ = Time a customer is willing to wait
- ▶ Offered-Wait: r.v. V = Time a customer is required to wait (= Waiting time of a customer with infinite patience).
- ▶ Abandonment = $\{\tau \le V\}$
- **Service** = {*τ* > *V*}
- ▶ Actual Wait $W_q = \min\{\tau, V\}$.

Models for Performance Analysis

- ▶ (Im)Patience: r.v. τ = Time a customer is willing to wait
- Offered-Wait: r.v. V = Time a customer is required to wait
 (= Waiting time of a customer with infinite patience).
- ▶ Abandonment = $\{\tau \le V\}$
- **Service** = {*τ* > *V*}
- ▶ Actual Wait $W_q = \min\{\tau, V\}$.

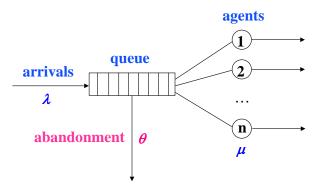
Modeling: $\tau = \text{input}$ to the model, V = output.

Operational Performance-Measure calculable in terms of (τ, V) :

- eg. Avg. Wait = $E[min\{\tau, V\}]$ ($E[W_q|Served] = E[V|\tau > V]$)
- eg. % Abandon = $P\{\tau \le V\}$ ($P\{5 \sec < \tau \le V\}$)

Application: Staffing - How Many Agents? (then: When? Who?)

The Basic Staffing Model: Erlang-A (M/M/N + M)



Erlang-A (Palm 1940's) = Birth & Death Q, with parameters:

- $\rightarrow \lambda$ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential)
- \bullet θ Impatience rate (Exponential)
- ► *n* Number of **Service-Agents**.

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ・ 釣 ९ ○

Testing the Erlang-A Primitives

Arrivals: Poisson?

Service-durations: Exponential?

▶ (Im)Patience: Exponential?

Testing the Erlang-A Primitives

Arrivals: Poisson?

Service-durations: Exponential?

(Im)Patience: Exponential?

Primitives independent?

Customers / Servers Heterogeneous?

Service discipline FCFS?

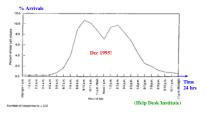
▶ ...?

Validation: Support? Refute?

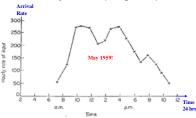
Arrivals to Service: only Poisson-Relatives

Arrival Rate to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks)



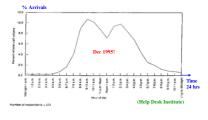
May 1959 (England)



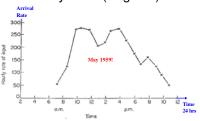
Arrivals to Service: only Poisson-Relatives

Arrival Rate to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks)



May **1959** (England)



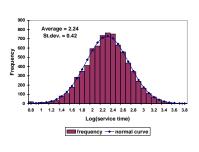
November 1999 (Israel)

Observation:

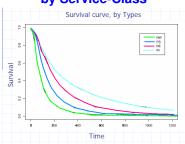
Peak Loads at 10:00 & 15:00

Service Durations: LogNormal Prevalent

Israeli Bank Log-Histogram



Survival-Functions by Service-Class



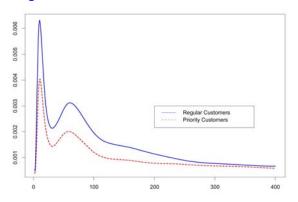
- New Customers: 2 min (NW);
- Regulars: 3 min (PS);

- Stock: 4.5 min (NE);
- Tech-Support: 6.5 min (IN).

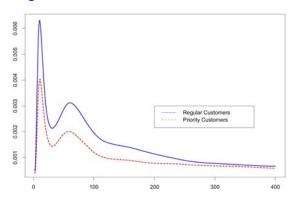
Observation: VIP require longer service times.

(Im)Patience while Waiting (Palm 1943-53)

Irritation ∝ Hazard Rate of (Im)Patience Distribution Regular over VIP Customers – Israeli Bank



(Im)Patience while Waiting (Palm 1943-53)

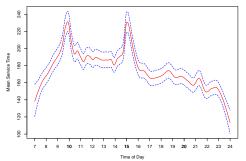


- Peaks of abandonment at times of Announcements
- ► Call-by-Call Data (DataMOCCA) required (& Un-Censoring).

Observation: VIP are more patient (Needy)

A "Service-Time" Puzzle at an Israeli Bank Inter-related Primitives

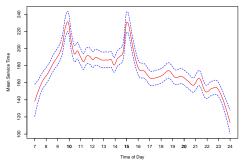
Average Service Time over the Day – Israeli Bank



Prevalent: Longest services at peak-loads (10:00, 15:00). Why?

A "Service-Time" Puzzle at an Israeli Bank Inter-related Primitives

Average Service Time over the Day – Israeli Bank

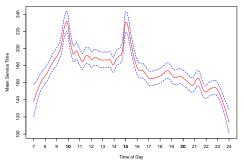


Prevalent: Longest services at peak-loads (10:00, 15:00). Why? Explanations:

Common: Service protocol different (longer) during peak times.

A "Service-Time" Puzzle at an Israeli Bank Inter-related Primitives

Average Service Time over the Day – Israeli Bank



Prevalent: Longest services at peak-loads (10:00, 15:00). Why? Explanations:

- Common: Service protocol different (longer) during peak times.
- Operational: The needy abandon less during peak times;
 hence the VIP remain on line, with their long service times.

Erlang-A: Practical Relevance?

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- Building Blocks need not be independent (eg. long wait possibly implies long service)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment)
- ▶ · · · , and more.

Erlang-A: Practical Relevance?

Experience:

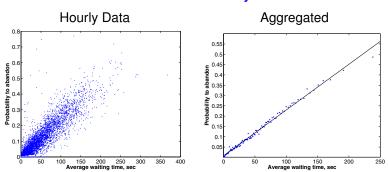
- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not Exponential** (various patterns observed).
- Building Blocks need not be independent (eg. long wait possibly implies long service)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment)
- ▶ · · · , and more.

Question: Is Erlang-A Practically Relevant?

Estimating (Im)Patience: via $P{Ab} \propto E[W_q]$

Assume $Exp(\theta)$ (im)patience. Then, $P\{Ab\} = \theta \cdot E[W_q]$.

Israeli Bank: Yearly Data



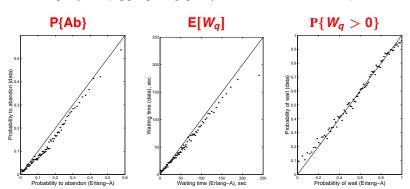
Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: $250/0.55 \approx 450$ seconds.

28

Erlang-A: Fitting a Simple Model to a Complex Reality

- Small Israeli Banking Call-Center (10 agents)
- ▶ (Im)Patience (θ) estimated via P{Ab} / E[W_q]
- Graphs: Hourly Performance vs. Erlang-A Predictions, during 1 year (aggregating groups with 40 similar hours).



Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty, ...

Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty, ...

Answers via **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- ► Efficiency-Driven (ED) regime: Fluid models (deterministic)
- Quality- and Efficiency-Driven (QED): Diffusion refinements.

Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty, ...

Answers via **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- ► Efficiency-Driven (ED) regime: Fluid models (deterministic)
- Quality- and Efficiency-Driven (QED): Diffusion refinements.

Motivation: Moderate-to-large service systems (**100's - 1000's** servers), notably **call-centers**.

Results turn out **accurate** enough to also cover **10-20** servers. Important – relevant to **hospitals** (nurse-staffing: de Véricourt & Jennings, 2006), ...

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu}$ (= $\lambda \times E[S]$) not too small.

QD Regime: $N \approx R + \delta R$ $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

▶ Essentially **no** delays: $[P\{W_q > 0\} \rightarrow 0]$.

ED Regime: $N \approx R - \gamma R$

- ► Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- ▶ Wait same order as service-time; γ % Abandon (10-25%).

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu}$ (= $\lambda \times E[S]$) not too small.

QD Regime: $N \approx R + \delta R$ $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

▶ Essentially no delays: $[P\{W_q > 0\} \rightarrow 0]$.

ED Regime: $N \approx R - \gamma R$

- Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- ▶ Wait same order as service-time; γ % Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$

- Erlang 1924, Halfin & Whitt 1981
- ▶ %Delayed between 25% and 75%
- ▶ Wait one-order below service-time (sec vs. min); 1-5% Abandon.

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu}$ (= $\lambda \times E[S]$) not too small.

QD Regime: $N \approx R + \delta R$ $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

▶ Essentially **no** delays: $[P\{W_q > 0\} \rightarrow 0]$.

ED Regime: $N \approx R - \gamma R$

- ► Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- Wait same order as service-time; γ % Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$

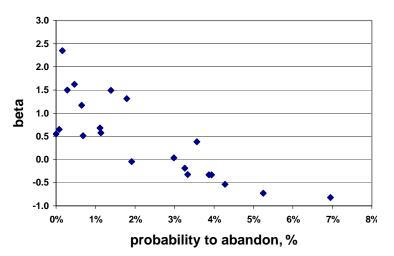
- Erlang 1924, Halfin & Whitt 1981
- %Delayed between 25% and 75%
- ▶ Wait one-order below service-time (sec vs. min); 1-5% Abandon.

QED+ED: $N \approx (1 - \gamma)R + \beta\sqrt{R}$

- Zeltyn & M. 2006
- ▶ QED refining ED to accommodate "timely-delays": $P\{W_q > T\}$.

QED: Practical Support

QOS parameter $\beta = (N - R)/\sqrt{R}$ vs. %Abandonment



QED: Theoretical Support (Garnett, M., Reiman '02; Zeltyn '03)

Consider a sequence of M/M/N+G models, N=1,2,3,...

Then the following **points of view** are equivalent:

$$%{Wait > 0} \approx \alpha,$$

$$0 < \alpha < 1$$
;

• Customers
$$% \{Abandon\} \approx \frac{\gamma}{\sqrt{N}},$$

$$0 < \gamma$$
;

OCC
$$\approx 1 - \frac{\beta + \gamma}{\sqrt{N}}$$

$$-\infty < \beta < \infty$$
;

$$N \approx R + \beta \sqrt{R}$$

• Managers
$$N \approx R + \beta \sqrt{R}$$
, $R = \lambda \times E(S)$ not small;

QED performance (ASA, ...) is easily computable, all in terms of β (the square-root safety staffing level) – see later.

QED Approximations (Zeltyn, M. '06)

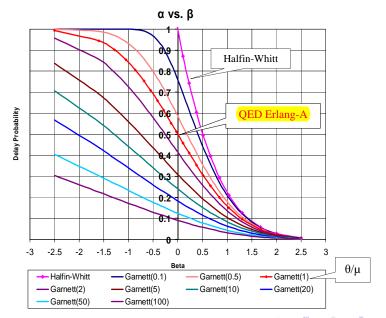
G – patience distribution,

 g_0 – patience density at origin $(g_0 = \theta, \text{ if } \exp(\theta)).$

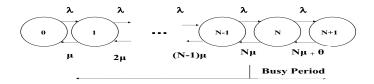
Here

$$\begin{split} \widehat{\beta} &= \beta \sqrt{\frac{\mu}{g_0}} \\ \bar{\Phi}(x) &= 1 - \Phi(x) \,, \\ h(x) &= \phi(x)/\bar{\Phi}(x) \,, \text{ hazard rate of } N(0,1). \end{split}$$

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$



QED Intuition via Excursions: Busy/Idle Periods



Q(0) = N: all servers busy, no queue.

Let
$$T_{N,N-1}=$$
 Busy Period (down-crossing $N\downarrow N-1$)

$$T_{N-1,N} =$$
 Idle Period (up-crossing $N-1 \uparrow N$)

Then
$$P(Wait > 0) = \frac{T_{N,N-1}}{T_{N,N-1} + T_{N-1,N}} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}}\right]^{-1}$$

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

$$T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$$
 Both apply as
$$\sqrt{N} \left(1 - \rho_N\right) \to \beta, \ -\infty < \beta < \infty.$$
 Hence,
$$P(Wait > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}.$$

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$
 $T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$ Both apply as $\sqrt{N} \left(1 - \rho_N\right) \to \beta, \ -\infty < \beta < \infty.$ Hence, $P(Wait > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}.$

Special cases:

▶ $\mu = \theta$: $Q \stackrel{d}{=} M/M/\infty$, since sojourn-time always exp($\mu = \theta$).

$$\begin{array}{ll} \text{Calculate} & T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)} \\ & T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta} \\ & \text{Both apply as} \quad \sqrt{N} \left(1-\rho_N\right) \to \beta, \ -\infty < \beta < \infty. \end{array}$$

Special cases:

- ▶ $\mu = \theta$: $Q \stackrel{d}{=} M/M/\infty$, since sojourn-time always $\exp(\mu = \theta)$.
- $\beta = 0 \ (N \approx R)$: $P\{Wait > 0\} \approx [1 + \sqrt{\theta/\mu}]^{-1}$.

$$\begin{array}{ll} \text{Calculate} & T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)} \\ & T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta} \\ & \text{Both apply as} \quad \sqrt{N} \left(1-\rho_N\right) \to \beta, \ -\infty < \beta < \infty. \end{array}$$

Special cases:

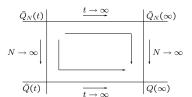
- ▶ $\mu = \theta$: $Q \stackrel{d}{=} M/M/\infty$, since sojourn-time always $\exp(\mu = \theta)$.
- $\beta = 0 \ (N \approx R)$: $P\{Wait > 0\} \approx [1 + \sqrt{\theta/\mu}]^{-1}$.
- ▶ Both of the above: $P{Wait > 0} \approx 1/2$.

Process Limits (Queueing, Waiting)

• $\hat{Q}_N = \{\hat{Q}_N(t), t \ge 0\}$: stochastic process obtained by centering and rescaling:

$$\hat{Q}_N = \frac{Q_N - N}{\sqrt{N}}$$

- $\hat{Q}_N(\infty)$: stationary distribution of \hat{Q}_N
- $\hat{Q} = {\hat{Q}(t), t \geq 0}$: process defined by: $\hat{Q}_N(t) \stackrel{d}{\to} \hat{Q}(t)$.



Approximating (Virtual) Waiting Time

$$\hat{V}_N = \sqrt{N} \ V_N \Rightarrow \hat{V} = \left[\frac{1}{\mu} \ \hat{Q}\right]^+ \qquad \text{(Puhalskii, 1994)}$$

Operational Regimes provide a conceptual framework.

Operational Regimes provide a conceptual framework.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Operational Regimes provide a **conceptual framework**.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

1. Approximations are **extremely accurate**.

Operational Regimes provide a **conceptual framework**.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

- 1. Approximations are extremely accurate.
- 2. Dimensioning:
 - Cost / Profit Optimization: eg. Min costs of Staffing + Congestion.
 - Constraint Satisfaction: eg. Min. N , s.t. QOS constraints .

Operational Regimes provide a **conceptual framework**.

Questions:

- How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

- 1. Approximations are **extremely accurate**.
- 2. Dimensioning:
 - Cost / Profit Optimization: eg. Min costs of Staffing + Congestion.
 - Constraint Satisfaction: eg. Min. N , s.t. QOS constraints .
- Robustness depends:
 - Without Abandonment: QED covers all, at amazing accuracy.
 - With Abandonment: ED, QED, ED+QED all have a role.

Operational Regimes: Rules-of-Thumb

Constraint	P{Ab}		$\mathrm{E}[W]$		$P\{W > T\}$	
	Tight	Loose	Tight	Loose	Tight	Loose
	1-10%	$\geq 10\%$	$\leq 10\% \mathrm{E}[\tau]$	$\geq 10\% \mathrm{E}[\tau]$	$0 \le T \le 10\% \mathrm{E}[\tau]$	$T \geq 10\% \mathrm{E}[\tau]$
Offered Load					$5\% \le \alpha \le 50\%$	$5\% \leq \alpha \leq 50\%$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large	QED	ED,	QED	ED,	QED	ED+QED
(100's-1000's)		QED		QED if $\tau \stackrel{d}{=} \exp$		

ED:
$$N \approx R - \gamma R$$
 (0.1 $\leq \gamma \leq$ 0.25).

QD:
$$N \approx R + \delta R$$
 (0.1 $\leq \delta \leq$ 0.25).

QED:
$$N \approx R + \beta \sqrt{R}$$
 $(-1 \le \beta \le 1)$.

ED+QED:
$$N \approx (1 - \gamma)R + \beta \sqrt{R}$$
 (γ, β as above).

40

Back to "Why does Erlang-A Work?"

Theoretical Answer:
$$M_t^J/G/N_t + G \stackrel{d}{\approx} (M/M/N + M)_t$$
, $t \geq 0$.

- ► General Patience: Behavior at the origin is all that matters.
- ► General Services: Empirical insensitivity beyond the mean.
- ► Time-Varying Arrivals: Modified Offered-Load approximations.
- ▶ Heterogeneous Customers: 1-D state collapse.

41

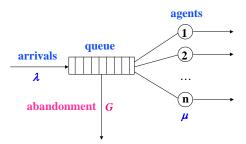
Back to "Why does Erlang-A Work?"

Theoretical Answer:
$$M_t^J/G/N_t + G \stackrel{d}{\approx} (M/M/N + M)_t, t \geq 0.$$

- ► **General Patience**: Behavior at the origin is all that matters.
- ► General Services: Empirical insensitivity beyond the mean.
- ► Time-Varying Arrivals: Modified Offered-Load approximations.
- ▶ Heterogeneous Customers: 1-D state collapse.

Practically: Why do (stochastically-challenged) Call Centers work? "The right answer for the wrong reason"

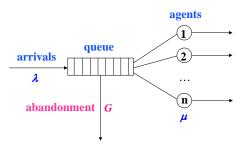
"Why does Erlang-A Work?" General Patience



(Im)Patience times Generally Distributed: M/M/n+G

Exact analysis in steady-state (Baccelli & Hebuterne, 1981): solve Kolmogorov's PDE's (semi-Markov) for the offered-wait *V*.

"Why does Erlang-A Work?" General Patience



(Im)Patience times **Generally Distributed**: M/M/**n**+G

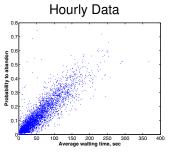
Exact analysis in steady-state (Baccelli & Hebuterne, 1981): solve Kolmogorov's PDE's (semi-Markov) for the offered-wait **V**.

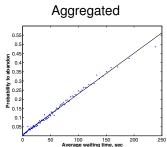
QED analysis (w/ Zeltyn, 2006): $\mathbf{n} \approx \mathbf{R} + \beta \sqrt{\mathbf{R}}$.

- Assume (Im)Patience density g(0) > 0.
- ▶ V asymptotics ($\lambda \uparrow \infty$): Laplace Method, leading to
- ▶ QED Approximations: Use Erlang-A as is, with $\theta \leftrightarrow g(0)$.

General Patience: Fitting Erlang-A

Israeli Bank: Yearly Data





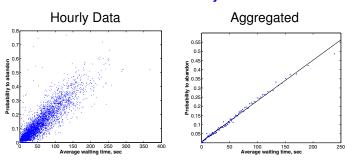
Theory:

Erlang-A:
$$P\{Ab\} = \theta \cdot E[W_q];$$

$$M/M/N+G$$
: P{Ab} $\approx g(0) \cdot E[W_q]$.

General Patience: Fitting Erlang-A

Israeli Bank: Yearly Data



Theory:

Erlang-A: $P{Ab} = \theta \cdot E[W_q];$

M/M/N+G: $P{Ab} \approx g(0) \cdot E[W_q]$.

Recipe:

In both cases, use Erlang-A, with $\hat{\theta} = \widehat{P}\{Ab\}/\widehat{E}[W_q]$ (slope above).

Established: $M/M/N+G \approx M/M/N+M$ $(\theta = g(0))$.

Established: $M/M/N+G \approx M/M/N+M$ ($\theta = g(0)$).

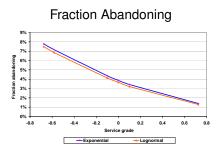
Now: $M/G/N+G \approx M/M/N+G$ (E[S] same in both).

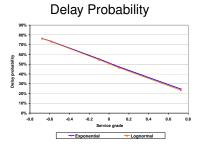
Established: $M/M/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M/G/N+G \approx M/M/N+G$ (E[S] same in both).

Numerical Experiments: Whitt (2004), Rosenshmidt (2006) demonstrate a **useful fit** for typical call-center parameters.

Lognormal (CV=1) vs. Exponential Service Times, QED Regime; 100 agents, average patience = average service



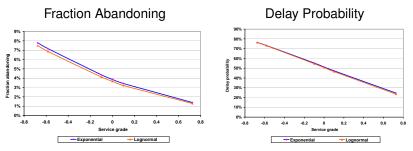


Established: $M/M/N+G \approx M/M/N+M$ $(\theta = g(0))$.

Now: $M/G/N+G \approx M/M/N+G$ (E[S] same in both).

Numerical Experiments: Whitt (2004), Rosenshmidt (2006) demonstrate a **useful fit** for typical call-center parameters.

Lognormal (CV=1) vs. Exponential Service Times, QED Regime; 100 agents, average patience = average service



QED G-Services: $G/D_K/N+G$ (w/ Momčilović, ongoing).

Established: $M/G/N+G \approx M/M/N+M$ $(\theta = g(0))$.

Established: $M/G/N+G \approx M/M/N+M$ $(\theta = g(0))$.

Now: $M_t/G/N_t+G\approx (M/G/N+G)_t$ $(N_t,\lambda \text{ well chosen}).$

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

- Modified Offered-Load: λ
 - ▶ Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t)$, $t \ge 0$.
 - Approximate its **time-varying** performance **at time** t with a **stationary** $M/G/N_t + G$, in which $\lambda = E\lambda(t S_e)$. ($S_e \stackrel{d}{=}$ residual-service: congestion-lag behind peak-load.)

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

- Modified Offered-Load: λ
 - ▶ Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t)$, $t \ge 0$.
 - Approximate its **time-varying** performance at **time** t with a stationary $M/G/N_t + G$, in which $\lambda = E\lambda(t S_e)$. ($S_e \stackrel{d}{=}$ residual-service: congestion-lag behind peak-load.)
- 2. Square-Root Staffing: Nt
 - Let $R_t = E\lambda(t S_e) \times ES$ be the Offered-Load at time t ($R_t = Number-in-system in a corresponding <math>M_t/G/\infty$.)
 - Staff $N_t = R_t + \beta \sqrt{R_t}$.

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

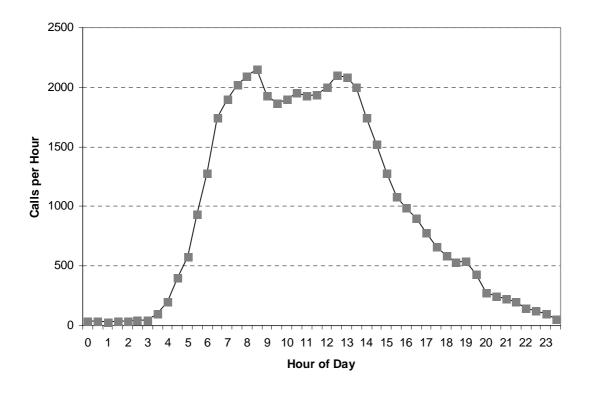
- Modified Offered-Load: λ
 - ▶ Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t)$, $t \ge 0$.
 - Approximate its **time-varying** performance at **time** t with a stationary $M/G/N_t + G$, in which $\lambda = E\lambda(t S_e)$. ($S_e \stackrel{d}{=}$ residual-service: congestion-lag behind peak-load.)
- 2. Square-Root Staffing: N_t
 - Let $R_t = E\lambda(t S_e) \times ES$ be the Offered-Load at time t ($R_t = Number-in-system in a corresponding <math>M_t/G/\infty$.)

Serendipity: Time-stable performance, supported by **ISA** = Iterative Staffing Algorithm, and QED diffusion limits $(M_t/M/N + M, \mu = \theta)$.

Example: "Real" Call Center

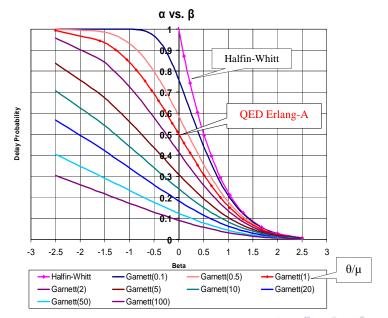
(The "Right Answer" for the "Wrong Reasons")

Time-Varying (two-hump) arrival functions common (Adapted from Green L., Kolesar P., Soares J. for benchmarking.)

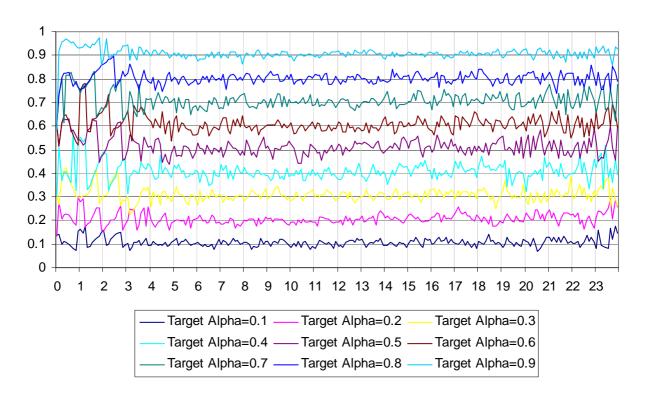


Assume: Service and abandonment times are both Exponential, with mean 0.1 (6 min.)

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$

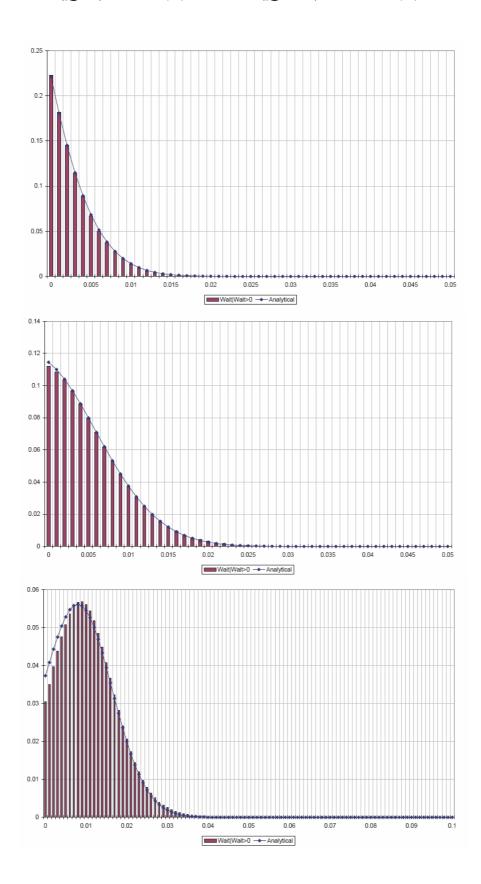


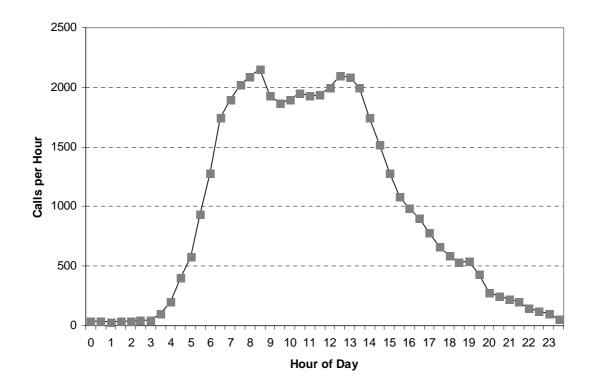
Delay Probability

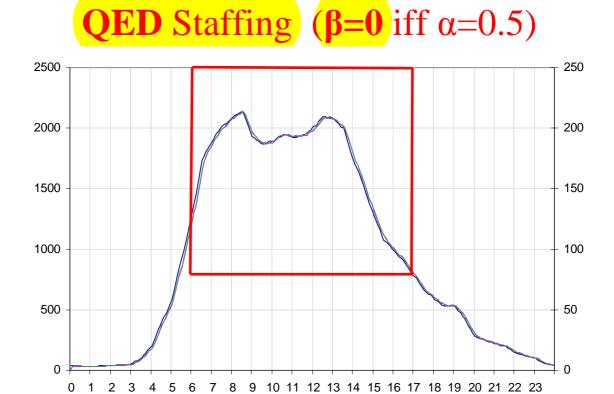


Real Call Center: Empirical waiting time, given positive wait

(1) α =0.1 (QD) (2) α =0.5 (QED) (3) α =0.9 (ED)







Staffing

Arrived

Offered Load

The "Right Answer" (for the "Wrong Reasons")

Prevalent Practice

$$N_t = \lceil \lambda(t) \cdot E(S) \rceil$$
 (PSA)

"Right Answer"
$$N_t \approx R_t + \beta \cdot \sqrt{R_t}$$
 (MOL)

$$R_t = E\lambda(t - S) \cdot E(S)$$

The "Right Answer" (for the "Wrong Reasons")

Prevalent Practice
$$N_t = \lceil \lambda(t) \cdot E(S) \rceil$$
 (PSA)

"Right Answer"
$$N_t \approx R_t + \beta \cdot \sqrt{R_t}$$
 (MOL)

$$R_t = E\lambda(t - S) \cdot E(S)$$

Practice
$$\approx$$
 "Right" $\beta \approx 0$ (QED)

and $\lambda(t) \approx \text{stable over service-durations}$

Practice Improved $N_t = \lceil \lambda [t - E(S)] \cdot E(S) \rceil$

The "Right Answer" (for the "Wrong Reasons")

Prevalent Practice
$$N_t = \lceil \lambda(t) \cdot E(S) \rceil$$
 (PSA)

"Right Answer"
$$N_t \approx R_t + \beta \cdot \sqrt{R_t}$$
 (MOL)
$$R_t = E\lambda(t-S) \cdot E(S)$$

Practice
$$\approx$$
 "Right" $\beta \approx 0$ (QED)

and $\lambda(t) \approx$ stable over service-durations

Practice Improved
$$N_t = \lceil \lambda [t - E(S)] \cdot E(S) \rceil$$

When Optimal? for moderately-patient customers:

- 1. Satisfization ⇔ At least 50% to be serve immediately
- 2. Optimization \Leftrightarrow Customer-Time = 2 x Agent-Salary

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled).

Service Levels: Class 1 = VIP, ..., Class J = best-effort.

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled).

Service Levels: Class 1 = VIP, ..., Class J = best-effort.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- ▶ Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_i(t), t \geq 0$.
- Assume i.i.d. servers.
- ▶ Let $R_t = E \sum_i \lambda_i (t S_e) \times ES$ be the **Offered-Load** at time t.

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled).

Service Levels: Class 1 = VIP, ..., Class J = best-effort.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- ▶ Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_i(t), t \geq 0$.
- Assume i.i.d. servers.
- ▶ Let $R_t = E \sum_i \lambda_i (t S_e) \times ES$ be the **Offered-Load** at time t.
- ▶ **Staff** $N_t = R_t + \beta \sqrt{R_t}$, with β determined by a desired QED performance for the lowest-priority class J.
- Control via threshold priorities, where the thresholds are determined by ISA according to desired service levels.
- Approximate time-varying performance at time t with a stationary threshold-controlled $M^J/G/N_t+G$, in which $\lambda_i = \mathbb{E}\lambda_i(t-S_e)$.

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled).

Service Levels: Class 1 = VIP, ..., Class J = best-effort.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- ▶ Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_i(t), t \geq 0$.
- Assume i.i.d. servers.
- ▶ Let $R_t = E \sum_i \lambda_i (t S_e) \times ES$ be the **Offered-Load** at time t.
- ▶ **Staff** $N_t = R_t + \beta \sqrt{R_t}$, with β determined by a desired QED performance for the lowest-priority class J.
- Control via threshold priorities, where the thresholds are determined by ISA according to desired service levels.
- Approximate time-varying performance at time t with a stationary threshold-controlled $M^J/G/N_t+G$, in which $\lambda_j = \mathbb{E}\lambda_j(t-S_e)$.

Serendipity: Multi-Class Multi-Skill, w/ **class-dependent** services. Support: ISA, QED diffusion limits (Atar, M. & Shaikhet, 2007).

Additional Simple (QED) Models of Complex Realities: Exponential Services; i.i.d. Customers, i.i.d. Servers

Performance Analysis:

- Khudiakova, Feigin, M. (Semi-Open): Call-Center + IVR/VRU;
- De Véricourt, Jennings (Closed + Delay), then w/ Yom-Tov (Semi-Open): Nurse staffing (ratios), bed sizing;
- Randhawa, Kumar (Closed + Loss): Subscriber queues.
- ▶ Optimal Staffing: Accurate to within 1, even with very small *n*'s, for both constraint-satisfaction and cost/revenue optimization (staffing, abandonment and waiting costs).
 - ► Armony, Maglaras: (*M_x*/M/N) Delay information (Equilibrium);
 - ▶ Borst, M., Reiman (M/M/N): Asymptotic framework;
 - Zeltyn, M. (M/M/N+G): Optimization still ongoing.
- ► Time-Varying Queues, via 2 approaches:
 - Jennings, M., Massey, Whitt, then w/ Feldman: Time-Stable Performance (ISA, leading to Modified Offered Load);
 - M., Massey, Reiman, Rider, Stolyar: Unavoidable Time-Varying Performance (Fluid & Diffusion models, via Uniform Acceleration).

Less-Simple (QED) Models: General Service-Times

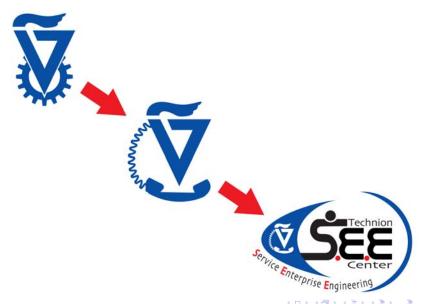
The Challenge: Must keep track of the state of n individual servers, as $n \uparrow \infty$. (Recall Kiefer & Wolfowitz).

- ► Shwartz, M. (M/G/N), Rosenshmidt, M. (M/G/N+G): Simulations; LogNormal better then Exp, 2-valued same as D.
- Whitt (GI/M+0/N): Covering CV > 1;
- Puhalskii, Reiman (GI/PH/N): Markovian process-limits (no steady-state); also priorities;
- ▶ Jelencović, M., Momčilović (GI/D/N): steady-state (via round-robin); then M., Momčilović (G/D_K/N): process-limits, via "Lindley-Trees"; G/D_K/N+G ongoing.
- ► Kaspi, Ramanan (G/G/N): Fluid, next Diffusion (measure-valued ages, following Kiefer & Wolfowitz);
- ▶ Reed (GI/GI/N): Fluid, Diffusion (Skorohod-Like Mapping).

Complex (QED) Models: Skills-Based Routing (Heterogeneous Customers or/and Servers - Theory)

- V-Model: Harrison, Zeevi; Atar, M., Reiman; Gurvich, M., Armony; then Class-dependent services: Atar, M., Shaikhet;
- Reversed-V: Armony, M.;
 then Pool-dependent services: Dai, Tezcan; Gurvich, Whitt (G-cμ); Atar, M., Shaikhet (Abandonment);
- General: Atar, then w/ Shaikhet (Null-controllability, Throughput-suboptimality); Gurvich, Whitt (FQR);
- ▶ Distributed Networks: Tezcan;
- ▶ Random Service Rates: Atar (Fastest or longest-idle server).

The Technion SEE Center / Laboratory



- ► **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC).
- ▶ industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

- ► **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC).
- ▶ industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data / Information**.

- ► **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC).
- industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data / Information**.

System Components:

- ► Clean Databases: operational-data of individual calls / agents.
- ► **Graphical Online Interface**: easily generates graphs and tables, at varying resolutions (seconds, minutes, hours, days, months).

- ► **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- ▶ Wharton: L. Brown, N. Gans, H. Shen (UNC).
- industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data** / **Information**.

System Components:

- ► Clean Databases: operational-data of individual calls / agents.
- Graphical Online Interface: easily generates graphs and tables, at varying resolutions (seconds, minutes, hours, days, months).

Free for academic adoption: ask for a DVD (3GB).

