Math 301: Homework 6

Due Wednesday October 18 at noon on Canvas

For this homework you may use this version of the Chernoff Bound:

Theorem 1. Let X_1, \dots, X_n be independent random variables with $\mathbb{P}(X_i = 1) = p$ and $\mathbb{P}(X_i = 0) = 1 - p$. Let $S = X_1 + \dots + X_n$. Then for any $0 \le \epsilon \le 1$,

$$\mathbb{P}\left(S \le (1-\epsilon)pn\right) \le e^{-\epsilon^2 pn/2}$$
$$\mathbb{P}\left(S \ge (1+\epsilon)pn\right) \le e^{-\epsilon^2 pn/3}$$

1. Prove the Lopsided Lovász Local Lemma (if you promise to write neatly, you may handwrite this and scan it into your pdf).

Theorem 2 (LLLL). Let A_1, A_2, \dots, A_n be events in a probability space and let D be a dependency graph for them. Suppose that there exist real numbers $x_1, x_2, \dots, x_n \in [0, 1)$ such that for all i,

$$\mathbb{P}(A_i) \le x_i \prod_{(i,j) \in E(D)} (1 - x_j).$$

Then

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_i^c\right) \ge \prod_{i=1}^{n} (1-x_i) > 0.$$

- 2. Let G be a random graph on n vertices with edge probability 1/2. Let $\epsilon > 0$ be arbitrary and let $k = (2 + \epsilon) \ln n$.
 - (a) Use the Chernoff Bound to give an upper bound on the probability that any fixed set of k vertices forms an independent set.
 - (b) Use part (a) to show that $\alpha(G) \leq k$ with probability tending to 1.
- 3. The purpose of this problem is to show that any regular graph can be partitioned into parts such that between parts the graph is almost biregular. The constants 1/4, 1/4and 1/2 may obviously be changed depending on the situation. For a vertex v we denote its neighbors by $\Gamma(v)$. Show that for any $\epsilon > 0$ there exists a D_0 such that for any $d > D_0$, any d regular graph has a vertex partition into three parts A, B, C so that for any vertex v

$$\left(\frac{1}{4} - \epsilon\right)d \le |\Gamma(v) \cap A| \le \left(\frac{1}{4} + \epsilon\right)d$$

$$\left(\frac{1}{4} - \epsilon\right) d \le |\Gamma(v) \cap B| \le \left(\frac{1}{4} + \epsilon\right) d$$
$$\left(\frac{1}{2} - \epsilon\right) d \le |\Gamma(v) \cap C| \le \left(\frac{1}{2} + \epsilon\right) d$$

- (a) For each vertex, independently put it in A with probability 1/4, into B with probability 1/4 and into C with probability 1/2. For each v, denote by A_v the event that either $|\Gamma(v) \cap A| < (1/4 \epsilon)d$ or $|\Gamma(v) \cap A| > (1/4 + \epsilon)d$. Define events B_v and C_v similarly.
- (b) Show that the probability of each of the events A_v, B_v, C_v is exponentially small as a function of d.
- (c) Let D be a dependency graph for the events A_v, B_v, C_v . Show that the maximum degree of D is $O(d^2)$.
- (d) Use the Lovász Local Lemma to prove the theorem.