
Math 21-301 Exam 2 October 18, 2017

Name:
Instructions: You have 50 minutes to complete this exam. Show your work and
justify all of your responses. No calculators, notes, or other external aids are allowed.
You may use the following theorems:

Theorem 1 (Markov’s Inequality). If X is a nonnegative random variable and λ > 0
is a real number, then

P(X ≥ λ) ≤ E(X)

λ
.

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable with finite vari-
ance and λ > 0 a real number. Then

P(|X − E(X)| > λ) ≤ Var(X)

λ2
.

Theorem 3 (Chernoff Bound). Let X1, · · · , Xn be independent random variables
with P(Xi = 1) = p and P(Xi = 0) = 1 − p. Let S = X1 + · · · + Xn. Then for any
0 ≤ ε ≤ 1,

P (S ≤ (1− ε)pn) ≤ e−ε
2pn/2

P (S ≥ (1 + ε)pn) ≤ e−ε
2pn/3

Theorem 4 (Lovász Local Lemma). Let A1, A2, · · · , An be events in a probability
space and let D be a dependency graph for them. If d has maximum degree d, P(Ai) ≤
p for all i, and

ep(d+ 1) ≤ 1,

then

P

(
n⋂
i=1

Aci

)
> 0.
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1. (10 points) Let A be a subset of integers in [n]. A is called a Sidon set if for
x1, x2, x3, x4 ∈ A, if

x1 + x2 = x3 + x4,

then it implies that {x1, x2} = {x3, x4}. Show that there is a Sidon subset
A ⊂ [n] with |A| = Ω

(
n1/3

)
(Hint: you may want to show that the total number

of solutions to x1 + x2 = x3 + x4 with x1, x2, x3, x4 ∈ [n] is O(n3)).

Solution: For any fixed x1, x2, x3 ∈ [n], there is at most one x4 ∈ [n] such
that x4 = x1 + x2 − x3. Therefore there are at most n3 solutions to the
equation x1 + x2 = x3 + x4.

Choose S ⊂ [n] randomly, putting each integer in S independently with
probability p. Let X = |S| and Y count the number of solutions to the
equation x1 + x2 = x3 + x4 with x1, x2, x3, x4 ∈ S. Given our set S, we may
make it a Sidon set by removing at most one element of S for each solution
to the equation. Therefore, there is a Sidon set of size at least X − Y for
every outcome of this random process. In particular, there is a Sidon set of
size at least E(X − Y ) = pn − p4 · (the number of solutions) ≥ pn − p4n3.
Choosing p = 1

2
n−2/3 yields the result.
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An alternative solution using the Local Lemma:

Solution: Let m = εn1/3 where ε > 0 will be chosen later. For i from 1 to m,
choose xi uniformly independently at random from [n]. For 1 ≤ i < j ≤ m,
let Aij be the event that xi = xj. For {i, j} 6= {r, s}, let Aij,rs be the event
that xi + xj = xr + xs. Then if none of the events Aij and Aij,rs occur, we
have found a Sidon set of size m. Note that

P(Aij) =
1

n

and

P(Aij,rs) =
number of solutions to Sidon equation

n4
≤ n3

n4
=

1

n
.

An event Aij is independent of events Ars and Aab,cd if {i, j} ∩ {r, s} = ∅ or
{i, j} ∩ {a, b, c, d} = ∅. Therefore in the dependency graph Aij has degree
at most 2m + 8m3. Similarly, in the dependency graph the event Aij,rs has
degree at most 8m+ 16m3. If ε is a small enough constant, then

e · 1

n
O(m3) < 1

and therefore we may apply the LLL.
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2. (10 points) Let G be a d-regular graph. Show that if

e · k
kd
· (d2 + 1) < 1,

then there is a coloring of V (G) with k colors such that each vertex sees at least
2 colors (ie no vertex has a monochromatic neighborhood).

Solution: Color the vertices of G independently and uniformly at random,
each color with probability 1

k
. Order the vertices of G arbitrarily and let Ai

be the event the the i’th vertex sees a monochromatic neighborhood. Then

P(Ai) =
k

kd
.

If vertex i and vertex j do not share any neighbors, then the events Ai and
Aj are independent. Since G is d-regular, the number of vertices that may
share a neighbor with a fixed vertex is at most d2. Therefore the dependency
graph has degree at most d2. So, if

e · k
kd
· (d2 + 1) < 1,

we may apply the LLL. Noting that if none of the Ai occur then we have
colored our graph so that no vertex sees a monochromatic neighborhood
yields the result.
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3. (10 points) Take a random walk on the number line starting at 0 and lasting n
steps. At each step you walk either right or left by 1 step independently with
probability 1/2 each. Show that with probability tending to 1 (as n → ∞), at
the end of n steps you are not more than

√
n log n steps away from the origin.

Solution: Make random variables Xi where Xi = 1 if the i’th step was to
the right and Xi = 0 if the i’th step was to the left. Let X = X1 + · · ·+Xn

and note that the random walk is more than
√
n log n steps away from the

origin if and only if X is more than
√
n log n/2 away from n

2
. Noting that

E(X) = n
2
, we may apply the Chernoff Bound and say

P
(
|X − n

2
| >
√
n log n/2

)
= P

(
|X − E(X)| > log n√

n

n

2

)
≤ 2e

−
(

logn√
n

)2
E(X)/3

= 2e− log2 n/6 → 0.


