Reparameterize the curve with respect to arc length

1.
$$\mathbf{r}(t) = \langle 1 - t, 4t + 3, 6t \rangle$$

2.
$$\mathbf{r}(t) = \langle 5\sin t, 3\cos t, 4\cos t \rangle$$

3.
$$\mathbf{r}(t) = \langle [\ln(t+1)]^3, 6, 7 \rangle$$

Find the curvature of the following functions

4.
$$\mathbf{f}(t) = \langle 2\sin t, 5t, 2\cos t \rangle$$

5.
$$\mathbf{f}(t) = \langle t^2, \sin t - t \cos t, \cos t + t \sin t \rangle$$

6.
$$\mathbf{f}(t) = \langle t\sqrt{2}, e^t, e^{-t} \rangle$$

Find the curvature of the following functions using the cross product

7.
$$\mathbf{f}(t) = \langle t^2, 0, t \rangle$$

8.
$$\mathbf{f}(t) = \langle t, t, 1 + t^2 \rangle$$

- 9. (a) Imagine a parabola. Where do you expect to have higher and lower curvature?
 - (b) Look at the equations of the last 5 problems. Which describes parabola?
 - (c) In that problem, where is the curvature highest and lowest?
 - (d) Does this match your intuition from part (a)?