
NON-FORKING W-GOOD FRAMES

MARCOS MAZARI-ARMIDA

Abstract. We introduce the notion of a w-good λ-frame which is a weakening of Shelah’s

notion of a good λ-frame. Existence of a w-good λ-frame implies existence of a model of size

λ++. Tameness and amalgamation imply extension of a w-good λ-frame to larger models. As
an application we show:

Theorem 0.1. Suppose 2λ < 2λ
+
< 2λ

++
and 2λ

+
> λ++. If I(K, λ) = I(K, λ+) = 1 ≤

I(K, λ++) < 2λ
++

and K is (λ, λ+)-tame, then Kλ+++ 6= ∅.

The proof presented clarifies some of the details of the main theorem of [Sh576] and avoids
using the heavy set-theoretic machinery of [Sh:h, §VII] by replacing it with tameness.
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1. Introduction

The central notion of Shelah’s two volume book [Sh:h] is that of a good λ-frame, which is a
forking-like notion for types of singletons in abstract elementary classes. It is crucial in transfer-
ring existence of models and categoricity to other cardinalities.

Since it is hard to build good λ-frames, several weaker notions have been studied. Jarden
and Shelah introduced semi-good λ-frames in [JaSh875] and almost-good λ-frames in [JaSh940].
Vasey worked with good−(S)λ-frames in [Vas16] and with good−λ-frames in [Vas16a].2 These
notions have been particularly useful in deriving existence of models in larger cardinalities.

In this paper we introduce the notion of a w-good λ-frame (see Definition 3.6), which is a
weaker notion than all the ones mentioned above. A w-good λ-frame satisfies all the properties
of a good λ-frame except that the density requirement is weakened and stability, symmetry and
local character are not assumed.

In [Sh:h, §III.0] Shelah introduced pre-λ-frames which are a weaker notion than that of a
w-good λ-frame, but they are so weak that no interesting statement follows from their existence.
The next diagram exhibits the relationship in strength between all the frames presented above.

Date: May 14, 2019.
AMS 2010 Subject Classification: Primary 03C48. Secondary: 03C45, 03C55. Key words and phrases.

Abstract Elementary Classes; Good Frames; Tameness
2See Definition 3.5 for the definitions of all these notions and Diagram 1 for their comparison in strength.
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In the diagram, the source of an arrow is stronger than its target.3

(1)

good λ-frame

semi-good λ-frame

good−(S)λ-frame

good−λ-frame

almost-good λ-frame

w-good λ-frame pre-λ-frame

A w-good λ-frame is useful as it allows us to construct larger models. More precisely we show
the following theorem which generalizes [Sh:h, §II.4.13.3], [JaSh875, 3.1.9] and [Vas16, 8.9]:

Theorem 3.18. If s is a w-good [λ, µ)-frame, then Kκ 6= ∅ for all κ ∈ [λ, µ+].

Under the hypothesis of tameness and the amalgamation property w-good λ-frames can be
extended to larger models. The technique used to show this is similar to that of [Bon14, 1.1], we
only need to show that weak density and no maximal models transfer up.

Theorem 3.24. Assume K is an AEC with the [λ, µ+)-amalgamation property. If s is a w-good
λ-frame and K is (λ,≤ µ)-tame, then s can be extended to a w-good [λ, µ+)-frame.

After presenting the above theorem, we apply the results obtained for w-good λ-frames to
prove the following:

Theorem 4.2. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If I(K, λ) = I(K, λ+) = 1 ≤
I(K, λ++) < 2λ

++

and K is (λ, λ+)-tame, then Kλ+++ 6= ∅.

The proof presented in the paper is an exposition of the ideas displayed in [Sh576] with

the following key feature. Using the assumption that 2λ
+

> λ++, that K is (λ, λ+)-tame and
the results obtained for w-good frames, we are able to avoid using the set-theoretic machinery
developed in [Sh576, §3] and in [Sh:h, §VII] and used in Shelah’s original proof. The set-theoretic
machinery was initially developed by Shelah in a 20 pages section of [Sh576, §3], ten years later
Shelah redid this section in a 200 pages chapter of his book [Sh:h, §VII]. In Shelah words
“Compared to [Sh576, §3], the present version [Chapter VII] is hopefully more transparent”.
This newer version was not refereed and we were still unable to verify Shelah’s assertions.

Another interesting consequence of Theorem 4.2 is that it gives a 200 pages shorter proof for

the main theorem of [Sh576] (see Fact 1.1(1) below), with the extra hypothesis that 2λ
+

> λ++,
in the case K is a universal class (see Definition 4.30).

Lastly, we would like to point out that Theorem 4.2 is not the best possible result in this
direction, since the main theorem of [Sh:h, §VI.0.(2)] (which is a revised version of [Sh576]) is
the following.

3In Section 3.1 we present a more detailed discussion regarding the implications in the other direction.
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Fact 1.1. Suppose 2λ < 2λ
+

< 2λ
++

. If I(K, λ) = I(K, λ+) = 1 ≤ I(K, λ++) < µunif (λ++, 2λ
+

)4,
then

(1) Kλ+++ 6= ∅.
(2) There is an almost-good λ-frame on K.5

The paper is organized as follows. Section 2 presents necessary background. Section 3 in-
troduces the notion of a w-good frame, shows that w-good frames imply the existence of larger
models and shows how to extend w-good frames under tameness and amalgamation. Section 4
presents an exposition of the proof of the main theorem of [Sh576], with the additional hypoth-

esis that 2λ
+

> λ++ and (λ, λ+)-tameness. The proof presented avoids using the set-theoretic
machinery of [Sh:h, §VII] by using (λ, λ+)-tameness and the results of Section 3.

This paper was written while the author was working on a Ph.D. under the direction of Rami
Grossberg at Carnegie Mellon University and I would like to thank Professor Grossberg for his
guidance and assistance in my research in general and in this work in particular. I thank Hanif
Cheung for helpful conversations. I thank Sebastien Vasey for very useful comments on an early
version. I thank the referee for valuable comments that helped improve the paper.

2. Preliminaries

We present the basic concepts of abstract elementary classes that we will need for the devel-
opment of this paper. These are further studied in [Bal09, §4 - 8] and [Gro1X, §2, §4.4].

2.1. Basic notions. First we will fix some notation.

Notation 2.1.

• Given M ∈ K we denote the universe of M by |M | and its cardinality by ‖M‖.
• Let LS(K) ≤ λ < µ such that λ is an infinite cardinals and µ is an infinite cardinal or

infinity. Let [λ, µ) = {κ ∈ card : λ ≤ κ < µ}. Given an abstract elementary class K and
[λ, µ) an interval of cardinals, K[λ,µ) = {M ∈ K : ‖M‖ ∈ [λ, µ)}. In particular we let
K{λ} = K[λ,λ+) = Kλ.

Let us recall the following three properties. They play an important role in this paper,
although not every AEC satisfies them.

Definition 2.2. Let LS(K) ≤ λ < µ such that λ is an infinite cardinals and µ is an infinite
cardinal or infinity.

(1) K[λ,µ) has the amalgamation property (or K has the [λ, µ)-amalgamation property): if
for every M,N,R ∈ K[λ,µ) such that M ≤K N,R, there are f K-embedding and R∗ ∈ K
such that f : N →M R∗ and R ≤K R∗.

(2) K[λ,µ) has the joint embedding property (or K has the [λ, µ)-joint embedding property):
if for every M,N ∈ K[λ,µ), there are f K-embedding and R∗ ∈ K such that f : M → R∗

and N ≤K R∗.
(3) K[λ,µ) has no maximal models: if for every M ∈ K[λ,µ), there is M∗ ∈ K such that

M <K M∗.

The following fact was first proven in [Sh88], but a more straightforward proof appears in
[Gro02, 4.3].

Fact 2.3. Assume 2λ < 2λ
+

. Let K be an AEC. If I(K, λ) = 1 ≤ I(K, λ+) < 2λ
+

, then Kλ has
the amalgamation property.

4See [Sh:h, §VII.0.4] for a definition of µunif and some of its properties.
5Combining further results of Shelah, [Vas, 7.1] actually gets a good λ-frame and a good λ+-frame.
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2.2. Galois-types. Let us begin by reviewing the concept of pre-type and some of its basic
properties, pre-types will play a very important role in Section 4.

Definition 2.4.

(1) The class of pre-types is:

K3
λ = {(a,M,N) : M ≤K N, a ∈ |N |\|M | and M,N ∈ Kλ}.

(2) Given (a0,M0, N0), (a1,M1, N1) ∈ K3
λ we define:

(a) (a0,M0, N0) ≤ (a1,M1, N1) if and only if M0 ≤K M1, N0 ≤K N1 and a0 = a1.
(b) (a0,M0, N0) < (a1,M1, N1) if and only if (a0,M0, N0) ≤ (a1,M1, N1) and M0 6=

M1.
(3) Given (a0,M0, N0), (a1,M1, N1) ∈ K3

λ and h : N0 → N1, we define (a0,M0, N0) ≤h
(a1,M1, N1) if and only if h �M0

: M0 → M1 is a K-embedding, h : N0 → N1 is a
K-embedding and h(a0) = a1.

We will also use the following property of pre-types, which is introduced in [Sh576, 2.5]. This
will only be used in Section 4.

Definition 2.5. (a0,M0, N0) ∈ K3
λ is reduced if for any (a1,M1, N1) ∈ K3

λ such that (a0,M0, N0) ≤
(a1,M1, N1) we have that M1 ∩N0 = M0.

The following appears as [Sh576, 2.6(1)] without a proof and it is proven in [JaSh875, 3.3.4].

Fact 2.6. For every (a0,M0, N0) ∈ K3
λ there is (a1,M1, N1) ∈ K3

λ such that (a0,M0, N0) ≤
(a1,M1, N1) and (a1,M1, N1) is reduced. In that case, we say that reduced pre-types are dense
in K3

λ.

Let us recall the concept of Galois-type, this was introduced by Shelah in [Sh300].

Definition 2.7.

(1) Given (a0,M0, N0), (a1,M1, N1) ∈ K3
λ we say (a0,M0, N0)Eat(a1,M1, N1) if M := M0 =

M1 and there are f0, f1 and N ∈ K such that fl : Nl →M N for each l ∈ {0, 1} and
f0(a0) = f1(a1).

(2) Let E be the transitive closure of Eat.
(3) Given (a,M,N) ∈ K3

λ, we define the Galois-type (also referred to as orbital type in the
literature) as tp(a/M,N) = [(a,M,N)]E.

(4) Given M ∈ Kλ, let S(M) = {tp(a/M,N) : M ≤K N ∈ Kλ and a ∈ |N |} and Sna(M) =
{tp(a/M,N) : (a,M,N) ∈ K3

λ}. Sna(M) is the set of nonalgebraic types.

The following is straightforward.

Fact 2.8. If K is an AEC and Kλ has the amalgamation property, then Eat is transitive. Hence
Eat = E.

The concept of tameness was introduced by Grossberg and VanDieren in [GrVa06]. We use this
property to avoid using the set-theoretic machinery of [Sh:h, §VII] mentioned in the introduction.
The idea of using tameness instead of set-theoretic ideas traces back to [GrVa06] and [GrVa06b].

Definition 2.9. We say K is (< κ)-tame if for any M ∈ K and p 6= q ∈ S(M), there is
N ≤K M such that ‖N‖ < κ and p �N 6= q �N . K is κ-tame, if K is (< κ+)-tame. If we write
(κ,≤ λ)-tame we restrict to M ∈ K[κ,λ+) and if we write (κ, λ)-tame we restrict to M ∈ Kλ.
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3. w-good frames

3.1. Frames. The concept of a good λ-frame is introduced in [Sh:h, §II.2, p. 259-263]. We will
follow the simplification and generalization given in [Vas16a] and [BoVa17].

First let us recall the notion of a pre-frame.

Definition 3.1. Let λ < µ where λ is an infinite cardinal and µ is an infinite cardinal or infinity.
A pre-[λ, µ)-frame is a triple (K,^,Sbs) where the following properties hold:

(1) K is an abstract elementary class with λ ≥ LS(K) and Kλ 6= ∅.
(2) Sbs ⊆

⋃
M∈K[λ,µ)

Sna(M). Let Sbs(M) = S(M) ∩ Sbs.

(3) ^ is a relation on quadruples (M0,M1, a,N), where M0 ≤K M1 ≤K N , a ∈ N and

M0,M1, N ∈ K[λ,µ). We write a
N

^
M0

M1 or tp(a/M1, N) does not fork over M0 (which is

well-defined by the next three properties).

(4) Invariance: If f : N ∼= N ′ and a
N

^
M0

M1, then f(a)
N ′

^
f [M0]

f [M1]. If tp(a/M1, N) ∈

Sbs(M1), then tp(f(a)/f [M1], N ′) ∈ Sbs(f [M1]).

(5) Monotonicity: If a
N

^
M0

M1 and M0 ≤K M ′0 ≤K M ′1 ≤K M1 ≤K N ′ ≤K N ≤K N ′′ with

N ′′ ∈ K[λ,µ) and a ∈ N ′, then a
N ′

^
M ′0

M ′1 and a
N ′′

^
M ′0

M ′1.

(6) Non-forking types are basic: If a
N

^
M
M , then tp(a/M,N) ∈ Sbs(M).

To simplify the comparison between the different kinds of frames we will introduce below, we
recall the notion of good frame.

Definition 3.2. Let λ < µ where λ is an infinite cardinal and µ is an infinite cardinal or infinity.
A good [λ, µ)-frame is a triple (K,^,Sbs) where the following properties hold:

(1) (K,^,Sbs) is a pre-[λ, µ)-frame.
(2) K[λ,µ) has amalgamation, joint embedding and no maximal models.

(3) bs-Stability: |Sbs(M)| ≤ ||M || for all M ∈ K[λ,µ).
(4) Density of basic types: If M <K N are both in K[λ,µ), then there is an a ∈ |N | such that

tp(a/M,N) ∈ Sbs(M).
(5) Existence of non-forking extension: If p ∈ Sbs(M) and M ≤K N with N ∈ K[λ,µ), then

there is q ∈ Sbs(N) that does not fork over M and extends p.
(6) Uniqueness: If M ≤K N both in K[λ,µ), p, q ∈ S(N) do not fork over M and p �M= q �M ,

then p = q.

(7) Symmetry: If a1

N

^
M0

M2, a2 ∈ M2 and tp(a2/M0, N) ∈ Sbs(M0), then there are M1 and

N ′ ≥K N with a1 ∈M1 and M1, N
′ ∈ K[λ,µ) such that a2

N ′

^
M0

M1.

(8) Local character: If δ < µ is a limit ordinal, {Mi : i < δ} ⊆ K[λ,µ) is an increasing

continuous chain and p ∈ Sbs(Mδ), then there is an i < δ such that p does not fork over
Mi.

(9) Continuity: If δ < µ is a limit ordinal, {Mi : i < δ} ⊆ K[λ,µ) is an increasing continuous

chain, {pi : i < δ} with pi ∈ Sbs(Mi) and for i < j < δ implies that pi = pj �Mi
and



6 MARCOS MAZARI-ARMIDA

p ∈ Sna(Mδ) is an upper bound for {pi : i < δ}, then p ∈ Sbs(Mδ) . Moreover, if each pi
does not fork over M0, then neither does p.

(10) Transitivity: If M0 ≤M1 ≤M2 with M0,M1,M2 ∈ K[λ,µ), p ∈ S(M2) does not fork over
M1 and p �M1

does not fork over M0, then p does not fork over M0.

Recall the following notation which was introduced in [Vas16a].

Notation 3.3. Given L a list of properties a good−Lλ-frame is a pre-λ-frame that satisfies all
the properties of a good λ-frame except possibly the properties listed in L. We abbreviate stability
by St, density by D, symmetry by S and local character by Lc.

In [JaSh940] Jarden and Shelah introduced the following weakening of local character.

Definition 3.4. A (K,^,Sbs) pre-λ-frame satisfies weak local character if there is a 2-ary
relation ≤∗ in Kλ such that:

• If M ≤∗ N both in Kλ, then M ≤K N .
• For every M ∈ Kλ, there is N ∈ Kλ such that M <∗ N .
• If M ≤∗ N ≤K R all in Kλ, then M ≤∗ R.
• If δ < λ+ is a limit ordinal and {Mi : i ≤ δ + 1} ⊆ Kλ is an ≤∗-increasing continuous

chain, then there are a ∈ |Mδ+1|\|Mδ| and α < δ such that tp(a/Mδ,Mδ+1) ∈ Sbs(Mδ)
and does not fork over Mα.

Since good λ-frames were introduced several weaker notions have been studied. In the defini-
tion below we recall all of them and write in parenthesis the paper in which they were introduced.

Definition 3.5.

(1) ( [JaSh875]) A semi-good λ-frame is a good−(St)λ-frame with the additional property
that for any M ∈ Kλ(|Sbs(M)| ≤ ‖M‖+).

(2) ( [JaSh940]) An almost-good λ-frame is a good−(Lc)λ-frame with the additional property
that it satisfies weak local character.

(3) ( [Vas16a]) A good−(S)λ-frame is a good λ-frame without symmetry.
(4) ( [Vas16]) A good−λ-frame is a good−(St,S)λ-frame.

Diagram 1 shows how they compare to one another.

Before introducing the notion of a w-good frame, we will introduce a notion of weak density.

Definition 3.6. A (K,^,Sbs) pre-[λ, µ)-frame has weak density for basic types when: if M ∈
Kλ and M <K N ∈ K[λ,µ) then there are a ∈ |N |\|M | and M ′ <K N ′ with M ′ ∈ Kλ, N

′ ∈
K[λ,µ) such that a ∈ |N ′|\|M ′|, tp(a/M ′, N ′) ∈ Sbs(M ′) and (a,M,N) ≤ (a,M ′, N ′).

Observe that if a pre-frame has density for basic types then it has weak density for basic types.
We do not know if under the other axioms of a good λ-frames the conditions are equivalent (but
we suspect it is not the case).6

We are ready to introduce the notion of a w-good frame.

Definition 3.7. Let λ < µ where λ is an infinite cardinal and µ is an infinite cardinal or infinity.
A w-good [λ, µ)-frame is triple (K,^,Sbs) where the following properties hold:

(1) (K,^,Sbs) is a pre-[λ, µ)-frame
(2) K[λ,µ) has amalgamation, joint embedding and no maximal models.

(4)− Weak density
(5) Existence of non-forking extension
(6) Uniqueness

6Shelah shows in [Sh:h, §VI.7.4] that under additional hypothesis weak density implies density.
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(9) Continuity

Using the notation introduced in 3.3, a w-good [λ, µ)-frame is a good−(St,D,S,Lc)λ-frame with
the additional property that it satisfies weak density.

Remark 3.8.

• As in [Sh:h, §II.2.18] one can show that in a w-good frame transitivity of non-forking
holds.

• As we can see by comparing Definition 3.5 and Definition 3.6, a w-good frame is weaker
than all the notions presented in Definition 3.5.

It is natural to ask which of the notions introduced in Definition 3.5 and Definition 3.6 are
strictly stronger. In [JaSh875, §2.2] Jarden and Shelah showed that good λ-frames are strictly
stronger than semi-good λ-frames. Adapting an example of [JaSh875, §2], we show that w-good
λ-frames are strictly stronger than pre-λ-frames.

Example 3.9. Let L(K) = {<}, where < is a binary relation, and K = (Mod(TLO),⊆), where
TLO is the first-order theory of linear orders. Let s = (K,Sna,^) where for M0,M1, N ∈ Kλ:

a
N

^
M0

M1 if and only if M0 ⊆ M1 ⊆ N and a ∈ |N |\|M1|. It is trivial to check that s is a

pre-λ-frame. Moreover, the uniqueness property fails so s is not a w-good λ-frame.

The following example shows that good−λ-frames are strictly stronger than w-good λ-frames.
This example appears in a different context in other papers ( [Sh:h, II.6.4], [Adl09, 6.6] and
[BGKV16, 4.15]).

Example 3.10. Let L(K) = {E}, where E is a binary relation, and K = (Mod(Tind),�), where
Tind is the first-order theory of the random graph. Let s = (K,Sna,^) where for M0,M1, N ∈

Kλ: a
N

^
M0

M1 if and only if M0 � M1 � N , a ∈ |N |\|M1| and there are no edges between a and

|M1|\|M0|.
It is easy to check that s is a w-good λ-frame, we show that s does not have local character.

Build {Mi : i < ω} ⊆ Kλ strictly increasing and continuous. Let Mω =
⋃
i<ωMi and let N ∈ Kλ

such that Mω � N and there is a ∈ |N |\|Mω| such that for every b ∈Mω there is an edge between
a and b. Observe that tp(a/Mω, N) does not fork over Mω, but for any i < ω tp(a/Mω, N) forks
over Mi.

Therefore, s is a w-good λ-frame and it is not a good−λ-frame.

Adapting another example of [JaSh875, §2], we show that semi-good λ-frames and good−(S)λ-
frames are strictly stronger than good−λ-frames. Moreover, the example also exhibits that
almost-good λ-frames are strictly stronger than w-good λ-frames.

Example 3.11. Suppose that 2λ ≥ λ++. Let L(K) = {Rα : α < λ}, where each Rα is a unary
predicate, and K = (L(K)-structures ,⊆). Let s = (K,Sna,^) where for M0,M1, N ∈ Kλ:

a
N

^
M0

M1 if and only if M0 ⊆M1 ⊆ N and a ∈ |N |\|M1|.

Kλ has amalgamation, joint embedding and no maximal models. Moreover, for every M0,M1, N0, N1 ∈
Kλ, a0 ∈ |N0|\|M1| and a1 ∈ |N1|\|M1| it follows that:

tp(a0/M0, N0) = tp(a1/M1, N1) if and only if {α < λ : a0 ∈ RN0
α } = {α < λ : a1 ∈ RN1

α }.
Using this property it is easy to show that all the conditions of a good−λ-frame are satisfied

and that for any M ∈ Kλ(|Sbs(M)| = 2λ). Since 2λ ≥ λ++ it follows that s is neither a semi-
good λ-frame or a good−(S)λ-frame. Observe that the hypothesis that 2λ ≥ λ++ is only used to
show that s is not a semi-good λ-frame.
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For the moreover part, it is clear that s is a w-good λ-frames, but not an almost-good λ-frame.

Below we revise the diagram of the introduction, we write “s” above those arrows for which
it is known that the source frame is strictly stronger than the target frame and we write “s*”
above those arrows for which it is known that the source frame is strictly stronger than the target
frame but under some set-theoretic hypothesis.

(2)

good λ-frame

semi-good λ-frame

good−(S)λ-frame

good−λ-frame

almost-good λ-frame

w-good λ-frame pre-λ-frame

s

s

s*

s
s

s

Question 3.12. Are any of the notions introduced above the same? Are all the notions introduced
above the same under some additional hypothesis on K?

Question 3.13. Let T be a first-order theory. It is easy to show that if T is λ-stable then T has
a w-good λ-frame. Example 3.10 shows that simple theories might have a w-good λ-frame. So
the question is: under what hypothesis does T have a w-good λ-frame?

Another interesting question in this neighborhood is the following: is there a w-good λ-frame
on a λ-stable theory T different from first-order non-forking?

3.2. Inside a w-good [λ, µ)-frame. Let us recall the definition of a coherent sequence of types.
This were already implicit in the work of Grossberg and VanDieren [GrVa06b], but did not appear
in print until [Bal09].

Definition 3.14. Given {Mi : i < δ} an increasing continuous chain and {pi ∈ Sna(Mi) : i < δ}
an increasing sequence of types, the sequence is a coherent sequence of types if and only if there
are {(ai, Ni) : i < δ} and {fj,i : j < i < δ} such that:

(1) fj,i : Nj → Ni.
(2) For all k < j < i, we have fk,i = fj,i ◦ fk,j.
(3) tp(ai/Mi, Ni) = pi.
(4) fj,i �Mj

= idMj
.

(5) fj,i(aj) = ai.

The following lemma is straightforward but due to its importance in what follows we will
sketch the proof.

Lemma 3.15. If {pi ∈ Sna(Mi) : i < δ} is a coherent sequence of types, then there is p ∈
Sna(Mδ) upper bound for the sequence of types, i.e., for every i < δ(p extends pi).

Proof. Let (N, {fi : Ni → N : i < δ}) be the direct limit of the sequence such that Mδ ≤K N and
fi �Mi

= idMi
. Let a := f0(a0) and p := tp(a/Mδ, N). Observe that tp(a/Mδ, N) ∈ Sna(Mδ), if
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a ∈ Mδ then there is i < δ such that a ∈ Mi, then using that fi ◦ f0,i = f0, f0,i(a0) = ai and
fi �Mi

= idMi
it follows that ai ∈ Mi, which contradicts the fact that pi is nonalgebraic. It is

easy to show that tp(a/Mδ, N) is an upper bound for the sequence of types. �

Lemma 3.16. Let s be a w-good [λ, µ)-frame. Let {Mi ∈ K[λ,µ) : i < δ} an increasing continuous

chain such that δ ≤ µ. If {pi ∈ Sbs(Mi) : i < δ} is an increasing sequence of types such that
pi does not fork over M0 for every i < δ, then {pi : i < δ} is a coherent sequence of types.
Moreover, there is pδ ∈ Sna(Mδ) extending all the pi and if δ < µ then pδ ∈ Sbs(Mδ) does not
fork over M0.

Proof. The exact same proof of [Bon14, 5.2] works, since the only properties of good frames that
are used in [Bon14, 5.2] are amalgamation, uniqueness and continuity. �

Lemma 3.17. If s is a w-good [λ, µ)-frame without the assumption that K(λ,µ) has no maximal
models, then K[λ,µ] has no maximal models.

Proof. We show that for every κ ∈ [λ, µ] Kκ has no maximal models. The case when κ = λ
follows directly from the definition of a w-good [λ, µ)-frame and the assumption. So suppose
κ ∈ (λ, µ] and M ∈ Kκ is a maximal model. Let R <K S ≤K M such that R,S ∈ Kλ. By
weak density, [λ, µ)-amalgamation property and using the fact that M is maximal, there are
R′ <K S′ ≤K M both in Kλ and a ∈ |S|\|R| such that tp(a/R′, S′) ∈ Sbs(R′).

We build {Mi : i < κ} ⊆ K<κ an increasing and continuous resolution of M such that
M0 := R′. We build {pi : i < κ} such that:

(1) p0 = tp(a/R′, S′).
(2) For all i < κ, pi ∈ Sbs(Mi).
(3) For all i < κ, pi does not fork over M0.
(4) If j < i, then pj ≤ pi.

Enough: By Lemma 3.16 there is p ∈ Sna(
⋃
i<κMi). Observe that

⋃
i<κMi = M and since

the type is nonalgebraic there is N ∈ Kκ and a ∈ |N |\|M | such that p = tp(a/M,N). Hence
M <K N , this contradicts the fact that M is maximal.

Construction: The base step is (1) and if i is limit we apply Lemma 3.16. So the only
interesting case is when i = j + 1. By construction we have pj ∈ Sbs(Mj) that does not fork
over M0. Since Mj <K Mj+1 and both models are in K[λ,κ), by the extension property there

is pj+1 ∈ Sbs(Mj+1) such that pj ≤ pj+1 and pj+1 does not fork over Mj . Then by transitivity
pj+1 does not fork over M0

�

Theorem 3.18. If s is a w-good [λ, µ)-frame, then Kκ 6= ∅ for all κ ∈ [λ, µ+].

Proof. It follows from the fact that Kλ 6= ∅ and Lemma 3.17. �

The following corollary has a long history. First, Shelah proved it for good λ-frames in [Sh:h,
§II.4.13], then Jarden and Shelah proved it for good−(St,Lc)λ-frames7 in [JaSh875, 3.1.9] . Later
Vasey proved it for good−(S)λ-frames in [Vas16, 8.9]. Below we prove it for w-good λ-frames.

Corollary 3.19. If s is a w-good λ-frame, then Kλ+ 6= ∅ and Kλ++ 6= ∅.

Proof. Observe that s is a w-good [λ, λ+)-frame and use Theorem 3.18. �

7It is clear that a good−(St,Lc)λ-frame is stronger than a w-good λ-frame. It is suspected that symmetry does
not follow from the other axioms of a good λ-frame, so we suspect that good−(St,Lc)λ-frames are strictly stronger

than w-good λ-frames. The reason we do not mention good−(St,Lc)λ-frames until this point is because they are
simply a technical tool developed in [JaSh875] to encompass both semi-good frames and almost-good frames.



10 MARCOS MAZARI-ARMIDA

3.3. Extending w-good λ-frames. Similarly to [Bon14]8, one can show that under the amal-
gamation property and tameness one can extend a w-good λ-frame to a w-good [λ,∞)-frame.
We will only sketch the proof since all the proofs of [Bon14] work for our weaker setting, except
the proof of weak density and of no maximal models.

The following definition is a local version of (≥ s) which appears in [Sh:h, §II.2.4] for good
λ-frames.

Definition 3.20. Let LS(K) ≤ λ < µ where λ is an infinite cardinal and µ is an infinite cardinal
or infinity. Given s a w-good λ-frame we define:

• K3,bs
s[λ,µ) = {(a,M,N) ∈ K3

[λ,µ) : there is M ′ ≤K M in Kλ such that: if M ′′ ∈ Kλ with M ′ ≤K

M ′′ ≤K M , then tp(a/M ′′, N) does not fork over M ′}.
• Sbss[λ,µ) = {p ∈ S(M) : for some/every (a,M,N) ∈ K3,bs

s[λ,µ) , p = tp(a/M,N)}.

• Given M0 ≤K M1 ≤K N all in K[λ,µ) and a ∈ |N |\|M1|: a
N

^
M0

M1 if and only if there

is R0 ≤K M0 in Kλ such that for any R1, S ∈ Kλ with R0 ≤K R1 ≤K M1 and

R1 ∪ {a} ⊆ S ≤ N it holds that a
S

^
R0

R1.

Define s[λ,µ) = (K,Sbss[λ,µ) , ^
s[λ,µ)

).

The following is already proven for good λ-frames in [Bon14].

Lemma 3.21. Assume K is an AEC with the [λ, µ+)-amalgamation property. If s is a w-good
λ-frame and K is (λ,≤ µ)-tame, then s[λ,µ+) is a pre-[λ, µ+)-frame that satisfies the amalgama-
tion property, the joint embedding property, existence of non-forking extension, uniqueness and
continuity.

Proof. It is trivial to show that s[λ,µ+) is a pre-[λ, µ+)-frame. We have the amalgamation property
by hypothesis and the joint embedding property follows from the amalgamation property and the
fact that we have the joint embedding property in Kλ. The existence of non-forking extension
is [Bon14, 5.3], the uniqueness property is [Bon14, 3.2] and continuity is [Sh:h, §II 2.11(6)]. �

Therefore we only need to prove that weak density and no maximal models transfer up.

Lemma 3.22. Assume K is an AEC with the [λ, µ+)-amalgamation property. If s is a pre-λ-
frame that has weak density, then s[λ,µ+) has weak density.

Proof. Let M <K N such that M ∈ Kλ. If N ∈ Kλ then it follows directly from the fact that s
satisfies the weak density property. So let us do the case when ‖N‖ > λ.

Apply downward Löwenheim-Skolem-Tarski axiom to get N0 ∈ Kλ such that M <K N0 ≤K

N . By weak density in s there are a ∈ |N0|\|M | and M ′ <K N ′0 both in Kλ such that
a ∈ |N ′0|\|M ′|, tp(a/M ′, N ′0) ∈ Sbs(M ′) and (a,M,N0) ≤ (a,M ′, N ′0). By the amalgamation
property there are f and N ′ ∈ K[λ,µ] such that the following diagram commutes:

N ′0
f // N ′

N0

id

OO

id // N

id

OO

8 [Bon14] uses tameness for 2-types to extend symmetry, in [BoVa17, 6.9] it was established that tameness for
1-types is sufficient. Observe that in this paper the results of [Bon14] are enough since symmetry is not assumed.
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Observe that f(a) = a, a ∈ |N ′|\|f [M ′]|, (a,M,N) ≤ (a, f [M ′], N ′) and tp(a/f [M ′], N ′) ∈
Sbss[λ,µ+)

(f [M ′]). �

The reason we can not simply quote [Bon14, 7.1] to transfer up no maximal models is because
Boney’s proof uses symmetry, which we are not assuming.

Lemma 3.23. Assume K is an AEC with the [λ, µ+)-amalgamation property. If s is a w-good
λ-frame and K is (λ,≤ µ)-tame, then K[λ,µ+) has no maximal models.

Proof. By Lemma 3.21 and Lemma 3.22 s[λ,µ+) is a w-good [λ, µ+)-frame without the property
that K[λ,µ+) has no maximal models. Since s is a w-good λ-frame, Kλ has no maximal models.
Therefore, by Lemma 3.17 it follows that K[λ,µ+) has no maximal models. �

With all the work we have done, we obtain the theorem promised at the beginning of the
section.

Theorem 3.24. Assume K is an AEC with the [λ, µ+)-amalgamation property. If s is a w-good
λ-frame and K is (λ,≤ µ)-tame, then s[λ,µ+) is a w-good [λ, µ+)-frame.

Proof. Follows from Lemma 3.21, Lemma 3.22 and Lemma 3.23. �

In [Vas17, 4.16] Vasey weakens the hypothesis of the above theorem for good frames from K
has the amalgamation property for that of K has weak amalgamation. In the proof, it is crucial
the density of basic types, therefore we do not know if one can weaken the hypothesis in the
above theorem.

4. Applications

The following notation will be useful in this section:

Notation 4.1. We denote by (∗)λ the assertion “I(K, λ) = I(K, λ+) = 1 ≤ I(K, λ++) < 2λ
++

”.

In this section we will show how w-good frames can be used to prove the following:

Theorem 4.2. 9 Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If (∗)λ and K is (λ, λ+)-tame,
then Kλ+++ 6= ∅.

The proof presented here follows the blueprint displayed in [Sh576], unless otherwise noted
all the definitions in this section were introduced by Shelah in [Sh576]. We would like to point
out that most of what we prove here is already proved by Shelah in [Sh576], but we decided to
write down the proofs since some of Shelah’s proofs are obscure, in particular those of Section
4.3, and they are central in the study of AECs.

The proof of Theorem 4.2 is done by contradiction. We will assume that Kλ+++ = ∅ and
using this property we will construct an explicit w-good λ-frame. Then using tameness together
with Theorem 3.24 we will get a contradiction by building a model of size λ+++.

4.1. Definition and basic properties. The next definition is crucial.

Definition 4.3. (a,M0, N0) ∈ K3
λ is minimal when: if (a,M0, N0) ≤hl (al,M1, N

l
1) for l ∈ {1, 2}

and h1 �M0= h2 �M0 then tp(a1/M1, N
1
1 ) = tp(a2/M1, N

2
1 ).

A type p ∈ S(M) is minimal for M ∈ Kλ, if for some a and N ∈ Kλ we have that (a,M,N) ∈
K3
λ is minimal and p = tp(a/M,N).

9As mentioned in the introduction, Shelah claims the same conclusion from fewer assumptions (see Fact 1.1
and the two paragraphs above it).
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With this definition we are ready to introduce our candidate for the w-good λ-frame. This
frame was introduced in [Sh:h, §VI.8.3].10

Definition 4.4. We define smin = (Kmin, ^
min

,Sbsmin) as follows:

• Kmin = Kλ.
• Sbsmin = {tp(a/M,N) : (a,M,N) ∈ K3

λ minimal}.

• Given M0 ≤K M1 ≤K N and a ∈ |N |\|M1| we define: a
N

^
M0

M1 if and only if tp(a/M1, N) �M0

is minimal.

An easy consequence of Fact 2.3 is the following.

Remark 4.5. Suppose 2λ < 2λ
+

< 2λ
++

. Let K be an AEC. If (∗)λ, then K{λ,λ+} has the
amalgamation property.

Therefore the theorems on this section that assume that K has λ or λ+ amalgamation follow
from the hypothesis of Theorem 4.2.

Definition 4.6.

(1) (a0,M0, N0) ∈ K3
λ has the weak extension property if there is (a1,M1, N1) ∈ K3

λ such
that (a0,M0, N0) < (a1,M1, N1).

(2) K3
λ has no maximal pre-type if every (a0,M0, N0) ∈ K3

λ has the weak extension property.

As one can see from the definition of minimal pre-type, a pre-type can be minimal if there is no
pre-type above it, but we will show that under the hypothesis of Theorem 4.2 this can not happen.
This appears first as [Sh576, 2.4], but a more straightforward proof is given in [Gro02, 7.11]
(in [Gro02] it is assumed that the class is a PC class, but the hypothesis is not necessary).

Fact 4.7. Let K be an AEC. If I(K, λ) = I(K, λ+) = 1 and Kλ++ 6= ∅, then K3
λ has no maximal

pre-type.

Now that we have that out of the way, we will show some basic properties about minimal
pre-types. The following is [Sh576, 2.6]. Although the proofs are easy, we sketch them since they
don’t appear on [Sh576] and this facts are used throughout the paper.

Lemma 4.8.
(1) If (a,M0, N0) ≤ (a,M1, N1) ∈ K3

λ and (a,M0, N0) is minimal, then (a,M1, N1) is mini-
mal.

(2) (λ-amalgamation property is used) (a,M0, N0) is minimal if and only if the follow-
ing holds: if (a,M0, N0) ≤hl (al,M1, N1) for l ∈ {1, 2} and h1 �M0= h2 �M0 then
tp(a1/M1, N1) = tp(a2/M1, N1).

(3) (λ-amalgamation property is used) If (a,M0, N0) ∈ K3
λ, p = tp(a/M0, N0) and p is

minimal, then (a,M0, N0) is minimal.
(4) (λ-amalgamation property is used) Let M ≤K M ′ ∈ Kλ. If p ∈ S(M) minimal and

q ∈ S(M ′) extending p, then q is a minimal type.

Proof. (1), (3) and (4) are straightforward so let us sketch (2). The forward direction is trivial
so let us show the backward one. Suppose (a,M0, N0) ≤hl (al,M1, N

l
1) for l ∈ {1, 2} and

10In [Sh:h, §VI.8.3] Shelah shows, under the hypothesis of Fact 1.1, that smin is an almost good λ-frame. The
reason we only show that smin is a w-good λ-frame is because by Section 3 this is enough to get a model of size
λ+++ and because the known proofs of the other properties use the machinery of [Sh:h, §VII] which we avoid.
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h1 �M0= h2 �M0 , then apply the amalgamation property to obtain N and j such that the
following diagram commutes:

N2
j // N

N0

h2

OO

h1 // N1

id

OO

Then simply apply the hypothesis to h′1 = h1, h′2 = j ◦ h2 and N .
�

First let us show that smin is a pre-λ-frame. This appears without a proof in [Sh:h, §VI.8.1(1)].

Lemma 4.9. Suppose 2λ < 2λ
+

. If K is λ-categorical and 1 ≤ I(K, λ+) < 2λ
+

, then smin =
(Kmin, ^

min
,Sbsmin) is a pre-λ-frame.

Proof. It is clear that (1) through (3) of the definition of pre-λ-frame are satisfied, so let us check
that (4) through (6) are satisfied:

(4) Invariance: It follows from the fact that minimal pre-types are closed under isomorphisms.
(5) Monotonicity: It follows from Lemma 4.8(4).
(6) Non-forking types are basic: By definition.

�

Moreover, we can show the following.

Lemma 4.10. Suppose 2λ < 2λ
+

. If K is λ-categorical and 1 ≤ I(K, λ+) < 2λ
+

, then smin
satisfies:

(2) Kλ has amalgamation, joint embedding and no maximal models.
(6) Uniqueness.
(9) Continuity.

Proof.

(2) Kλ has amalgamation, joint embedding and no maximal models: The amalgamation prop-
erty follows from Remark 4.5. Joint embedding follows from λ-categoricity and no max-
imal models from λ-categoricity and the fact that Kλ+ 6= ∅.

(6) Uniqueness: It follows from the definition of minimal type.

(9) Continuity: Let δ < λ+, {Mi : i < δ} ⊆ Kλ an increasing continuous chain, {pi : i < δ}
with pi ∈ Sbsmin(Mi) and for i < j < δ implies that pi = pj �Mi

and p ∈ Sna(Mδ) an
upper bound. Since p �M0

= p0 and p0 is minimal by Lemma 4.8(4) it follows that p is
minimal and hence basic.

Moreover, if each pi does not fork over M0, then by definition p �M0 is minimal. Hence
p does not fork over M0.

�

Therefore to show that smin is a w-good λ-frame, we just need to show that it satisfies
weak density and existence of non-forking extension. The proofs of these two facts are more
complicated and will use all the hypothesis of Theorem 4.2 together with the assumption that
Kλ+++ = ∅. Before we do that there is a useful property that we get by assuming that Kλ+++ = ∅.

Definition 4.11. Let M ∈ Kµ and LS(K) ≤ λ ≤ µ infinite cardinals. M is universal above λ
if and only if for all N0, N1 ∈ K[λ,µ] such that N1 ≥K N0 ≤K M there is f : N1 →N0

M .

The following is similar to [Sh576, 2.2], but instead of working in λ++ we work in λ+++.
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Lemma 4.12. If K{λ,λ+} has the amalgamation property, Kλ++ 6= ∅ and Kλ+++ = ∅, then there

is C ∈ Kλ++ universal above λ. Moreover if I(K, λ) = I(K, λ+) = 1, for each N ∈ K{λ,λ+} there
is C ∈ Kλ++ universal above λ such that N ≤K C.

Proof. Since Kλ+++ = ∅ there is C ∈ Kλ++ maximal. We claim that C is universal above λ. Let
N0 ≤K N1 ∈ K{λ,λ+}, then since K{λ,λ+} has the amalgamation property, there are M ∈ Kλ++

and f such that the following diagram commutes:

N1
f // M

N0

id

OO

id // C

id

OO

Since C is maximal, we have that C = M . Hence f : N1 →N0
C. The moreover part follows

from λ-categoricity or λ+-categoricity copying C.
�

4.2. Weak density. The only place where we use the extra cardinal arithmetic hypothesis that

2λ
+

> λ++ is to prove the following lemma, since we are already assuming that 2λ < 2λ
+

this is
a weak hypothesis.

The lemma below is [Sh576, 2.7]. Shelah’s proof and our proof are very similar, but we have
decided to include it for the sake of completeness.

Lemma 4.13. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If (∗)λ and Kλ+++ = ∅, then minimal
pre-types are dense in K3

λ, i.e., for every pre-type there is a minimal one above it.

Proof. We do the proof by contradiction. Let (a,M,N) ∈ K3
λ with no minimal pre-type above

it. We will build {(aη,Mη, Nη) : η ∈ 2<λ
+} and {hη,ν : η < ν with η, ν ∈ 2<λ

+} by induction
such that:

(1) (a<>,M<>, N<>) := (a,M,N).

(2) (aη,Mη, Nη) ∈ K3
λ for all η ∈ 2<λ

+

.
(3) If η < ν, then (aη,Mη, Nη) ≤hη,ν (aν ,Mν , Nν).
(4) If η < ν < ρ, then hη,ρ = hν,ρ ◦ hη,ν .

(5) Mη∧0 = Mη∧1, Nη∧0 = Nη∧1, hη,η∧0 �Mη
= hη,η∧1 �Mη

for all η ∈ 2<λ
+

.
(6) tp(aη∧0/Mη∧0, Nη∧0) 6= tp(aη∧1/Mη∧1, Nη∧1).
(7) If η ∈ 2δ and δ < λ+ limit then (Mη, {hη�α,η}α<δ), (Nη, {hη�α,η}α<δ) are the direct limits

of ({Mη�α : α < δ}, {hη�α,η�β : α < β < δ}) and ({Nη�α : α < δ}, {hη�α,η�β : α < β < δ})
respectively where aη = hη�1,η(a).

Construction: In the base step apply (1). On limits take the direct limits, so the only interest-
ing case is when α = β+1. By construction we are given (aη,Mη, Nη), since (a<>,M<>, N<>) ≤h<>,η
(aη,Mη, Nη) it follows that (aη,Mη, Nη) is not minimal. Applying Lemma 4.8(2) we are done.

Enough: By Lemma 4.12 there is C ∈ Kλ++ universal above λ. We build {gη : Mη → C : η ∈
2<λ

+} by induction such that:

(1) For every ν < η, gν ◦ hη,ν = gη.
(2) gη∧0 = gη∧1.

Construction: Base: Since K is λ-categorical there is g<> : M<> → C.
Induction step: If α is limit using that Mη is a direct limit and the fact that we are constructing

a cocone we obtain gη : Mη → C.
If α = β+ 1. Suppose we have gη : Mη → C. By the first construction we have hη,η∧0[Mη] ≤K

Mη∧0, copying back the structure we build g and M ′η∧0 such that:
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M ′η∧0

∼=g // Mη∧0

Mη

id

OO

∼=h
η,η∧0// hη,η∧0[Mη]

id

OO

Then copying forward the structure with respect to gη we build h and M ′′η∧0 such that:

M ′η∧0

∼=h // M ′′η∧0

Mη

id

OO

∼=gη // gη[Mη]

id

OO

Then using the universality of C we get j : M ′′η∧0 →gη [Mη ] C. So let gη∧0 := j ◦ h ◦ g−1 and

gη∧1 := j ◦ h ◦ g−1. Since Mη∧0 = Mη∧1 it is well-defined.

Enough: For each η ∈ 2λ
+

let ((aη,Mη, Nη), {hν,η : ν < η}) be the direct limit of ({Mη�α :

α < λ+}, {hη�α,η�β : α < β < λ+}) and ({Nη�α : α < λ+}, {hη�α,η�β : α < β < λ+}) .
By the construction of {gν : ν < η} and the definition of direct limits there is fη : Mη → C

such that for any ν < η(fη ◦ hν,η = gν). Using that C is universal above λ there is f ′η : Nη → C
such that fη ⊆ f ′η.

Observe that for every η ∈ 2λ
+

we have that f ′η(aη) ∈ C. Since ‖C‖ = λ++ and 2λ
+

> λ++

we have η 6= ν ∈ 2λ
+

such that f ′η(aη) = f ′ν(aν). Let α < λ+ least such that η �α= ν �α and
η(α) 6= ν(α), we may assume without loss of generality that η(α) = 0 and ν(α) = 1.

Claim tp(aη�∧α0/Mη�∧α0, Nη�∧α0) = tp(aη�∧α1/Mη�∧α1, Nη�∧α1).
Observe that the following diagram commutes:

Nη�∧α0

f ′η◦hη�∧α0,η // C

Mη�∧α0

id

OO

id // Nη�∧α1

f ′ν◦hη�∧α1,ν

OO

Moreover, since f ′η(aη) = f ′ν(aν) we have that f ′η ◦ hη�∧α0,η(aη�∧α0) = f ′ν ◦ hη�∧α1,ν(aη�∧α1). †Claim

Finally observe that this contradicts (6) of the first construction.
�

From the above lemma, the assertion below follows trivially.

Lemma 4.14. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If (∗)λ and Kλ+++ = ∅, then smin
has weak density.

Proof. Let M <K N both in Kλ, then pick a ∈ |N |\|M |. By the previous theorem there
is (a,M ′, N ′) ∈ K3

λ such that (a,M,N) ≤ (a,M ′, N ′) and (a,M ′, N ′) is minimal. Hence
tp(a/M ′, N ′) ∈ Sbsmin(M ′). �

4.3. Existence of non-forking extension. Fact 4.7 asserts that K3
λ has the weak extension

property, in this section we will deal with the extension property.

Definition 4.15.

• (a0,M0, N0) ∈ K3
λ has the extension property if given M1 ∈ Kλ and f : M0 →M1, there

are N1 ∈ Kλ and g : N0 → N1 such that (a0,M0, N0) ≤g (g(a0),M1, N1) and g ⊇ f .
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• p ∈ Sna(M0) has the extension property if given M1 ∈ Kλ such that M0 ≤K M1 there
is q ∈ Sna(M1) extending p.

Remark 4.16. p has the extension property if and only if there is (a,M,N) ∈ K3
λ such that

p = tp(a/M,N) and (a,M,N) has the extension property.

The following fact is [Sh576, 2.11], to show it Shelah used the λ-amalgamation property.

Fact 4.17. If (a,M0, N0) ≤ (a,M1, N1) ∈ K3
λ and (a,M1, N1) has the extension property, then

(a,M0, N0) has the extension property.

The proof of the following lemma is similar to [Sh576, 2.9], but our proof is shorter since we

assume λ+-categoricity instead of 1 ≤ I(K, λ+) < 2λ
+

and we assume that Kλ+++ = ∅.

Lemma 4.18. Assume K{λ,λ+} has the amalgamation property, K is λ+-categorical and Kλ+++ =

∅. If (a,M0, N0) ∈ K3
λ, M0 ≤K R and |{c ∈ R : c realizes tp(a/M0, N0)}| ≥ λ+, then (a,M0, N0)

has the extension property.

Proof. We may assume R ∈ Kλ+ and by Lemma 4.12 there is C ≥K R universal above λ. Let
f : M0 → M1 , we may assume that f = idM0

. By universality there is h : M1 →M0
C. Since

‖h[M1]‖ = λ then there are c ∈ |R|\|h[M1]| and R′ ≤K R such that (a,M0, N0)Eat(c,M0, R
′).

Then by definitions of Eat and universality of C, there is R′′ ≤K C and g : N0 →M0 R
′′ such that

g(a) = c.
Applying downward Löwenheim-Skolem-Tarski axiom to h[M1]∪R′′ inside C we get S ≤K C.

Let S∗ ≥K M1 and d : S∗ ∼= S such that h ⊆ d. Since c /∈ h[M1] it follows that (d−1(c),M1, S
∗) ∈

K3
λ and one can show that (a,M0, N0) ≤d−1◦g (d−1(c),M1, S

∗) and d−1 ◦ g ⊇ idM0
.

�

The next step is to prove the extension property for minimal types, for that we use weak
diamond principles. Weak diamonds were introduced (for λ = ℵ0) by Devlin and Shelah in
[DeSh78].

Definition 4.19. Let S ⊆ λ+ be a stationary set. Φ2
λ+(S) holds if and only if ∀F : (2λ)<λ

+ → 2

∃g : λ+ → 2 such that ∀f : λ+ → 2λ the set {α ∈ S : F (f �α) = g(α)} is stationary.

The following facts will be used in the proof of Lemma 4.21 and a proof of them can be found
in [Gro1X, §15].

Fact 4.20.

(1) 2λ < 2λ
+

if and only if Φ2
λ+(λ+) holds.

(2) Φ2
λ+(S) holds for a stationary set S ⊆ λ+ if and only if ∀F : (2 × 2 × λ+)<λ

+ → 2

∃g : λ+ → 2 such that ∀η ∈ 2λ
+∀ν ∈ 2λ

+∀h : λ+ → λ+ the set {α ∈ S : F (η �α, ν �α
, h �α) = g(α)} is stationary.

(3) If Φ2
λ+(λ+) holds, then there exists {Si ⊆ λ+ : i < λ+} pairwise disjoint stationary sets

such that Φ2
λ+(Si) for each i < λ+.

The lemma below is presented precisely in the way it will be used in the proof of Theorem
4.24. It is similar to [Sh576, 1.6(1)], but our assumptions and conclusions are weaker.

Lemma 4.21. Suppose 2λ < 2λ
+

. Let {Mη : η ∈ 2λ
+} such that for each η ∈ 2λ

+

:

(1) {Mη�α : α < λ+} strictly increasing and continuous.
(2) For all α < λ+(Mη�α ∈ Kλ).

If for every η ∈ 2λ
+

and α < λ+ Mη�∧α0 can not be embedded to Mν over Mη�α when η �∧α 1 < ν

and ν ∈ 2<λ
+

, then K is not λ+-categorical.



NON-FORKING W-GOOD FRAMES 17

Proof. We may assume that for all ν ∈ 2<λ
+

(|Mν | = γη ∈ λ+), for every η ∈ 2λ
+

({γη�α : α <

λ+} is continuous) and in that case ∀η ∈ 2λ
+

(|Mη| = λ+).
For each δ ∈ λ+, η ∈ 2δ, ν ∈ 2δ and h : δ → δ define:

F (η, ν, h) =


1 |Mη| = |Mν | = δ and h : Mη →Mν can be extended to an isomorphism from

Mη0 to M0̄ where η∧0 < η0 and ν < 0̄

0 otherwise

Let {Si ⊆ λ+ : i < λ+} pairwise disjoint stationary sets such that Φ2
λ+(Si) holds for each

i < λ+, they exist by the previous fact.

By Φ2
λ+(Si) for all i < λ+ let gi : λ+ → 2 such that for any η, ν ∈ 2λ

+

and h : λ+ → λ+ the
following set is stationary:

S∗i = {δ ∈ Si : F (η �δ, ν �δ, h �δ) = gi(δ)}

Now, given X ⊆ λ+ we define ηX : λ+ → 2 as follows:

ηX(δ) =

{
gi(δ) if ∃i ∈ X(δ ∈ Si)
0 otherwise

Observe that since {Si : i < λ+} are pairwise disjoint, for each X ηX is well-defined.

Claim: If X ⊆ λ+ and X 6= ∅, then MηX �Mη∅ .
Suppose h : MηX

∼= Mη∅ . Observe that η∅ = 0̄. Let i ∈ X and S∗i = {δ ∈ Si : F (ηX �δ, 0̄ �δ
, h �δ) = gi(δ)} be the stationary set obtained for ηX , 0̄ and h.

Let CηX = {δ < λ+ : |MηX�δ | = δ}, C0̄ = {δ < λ+ : |M0̄�δ | = δ} and D = {δ < λ+ : h �δ: δ →
δ}. Since they are all clubs we can pick δ ∈ CηX ∩C0̄ ∩D ∩ S∗i . Define η := ηX �δ and ν = 0̄ �δ.
There are two cases:

(1) Case 1: ηX(δ) = 1. Since δ ∈ S∗i we have that gi(δ) = F (η, ν, h �δ) and since i ∈ X we
have that ηX(δ) = gi(δ). Hence F (η, ν, h �δ) = 1. Then by definition there is g ⊇ h �δ
and η0 > η∧0 such that g : Mη0

∼= M0̄.
By hypothesis h : MηX

∼= M0̄, so consider f := h−1 ◦ g : Mη∧0 → MηX . Since
{MηX�α : α < λ+} is strictly increasing and continuous there is α < λ+ such that
f [Mη∧0] ⊆MηX�α , so f : Mη∧0 →MηX�α . Moreover ηX �α> η∧1 and Mη is fixed under
f ; contradicting the hypothesis of the lemma.

(2) Case 2: ηX(δ) = 0. Then observe that h ⊇ h �δ: Mηx → M0̄ where ηX > η∧0. So
F (η, ν, h �δ) = 1. Since δ ∈ S∗i it follows that ηX(δ) = 1. A contradiction to the
hypothesis of this case. †Claim

Therefore, K is not λ+-categorical. �

We recall one last definition before we tackle Theorem 4.24.

Definition 4.22.

• Given p = tp(a/M,N) ∈ S(M) and f : M ∼= R define f(p) := tp(f ′(a)/R, f ′[N ]) such
that f ′ : N ∼= f ′[N ] and f ′ ⊇ f .

• Let p = tp(a/M,N) ∈ S(M) and R ∈ Kλ then Sp(R) := {f(p) : f : M ∼= R}.

Observe that if M and R are not isomorphic then Sp(R) = ∅, but in this paper when we refer
to this notion, we will always assume categoricity in λ. Hence it will always be not empty. We
will use the following lemma.

Lemma 4.23. Let p = tp(a/M,N) ∈ Sna(M). If g : M ∼= R, then |Sp(M)| = |Sp(R)|.
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Proof. Define Φ : Sp(M)→ Sp(R), by Φ(tp(f ′(a)/M, f ′[N ])) = tp(gf ◦f ′(a)/R, gf ◦f ′[N ]) such
that f ′ : N ∼= f ′[N ] and f ′ ⊇ f where f : M ∼= M and the following square commutes:

f ′[N ]
∼=gf // gf ◦ f ′[N ]

M

id

OO

∼=g // R

id

OO

It is easy to see that Φ is a bijection. �

The next theorem is [Sh576, 2.13]. Our proof is similar to that of Shelah, but we show that
Lemma 4.21 is enough.

Theorem 4.24. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. Assume (∗)λ and Kλ+++ = ∅. If
(a,M,N) ∈ K3

λ is minimal, then it has the extension property.

Since the proof is very long we have divided it into three lemmas.

Lemma 4.25. Under the hypothesis of Theorem 4.24. Let p = tp(a/M,N) ∈ Sna(M) such that
p does not have the extension property. If q extends p, then q has less than λ+ realizations.

Proof. Follows from Lemma 4.18. �

Lemma 4.26. Under the hypothesis of Theorem 4.24. Let p = tp(a/M,N) ∈ Sna(M) such that
(a,M,N) is reduced, minimal and does not have the extension property. Then there is a reduced
pre-type (a,M ′, N ′) ≥ (a,M,N) such that |Stp(a/M ′,N ′)(M ′)| ≥ λ++.

Proof. Let M ≤K C such that C ∈ Kλ++ universal above λ, this exists by Lemma 4.12. We do
the proof by contradiction, so suppose it is not the case. We build {(a, Pα, Qα) : α < λ+} such
that:

(1) (a, P0, Q0) := (a,M,N).
(2) {Pα : α < λ+} and {Qα : α < λ+} are increasing and continuous.
(3) Pα <K Pα+1.
(4) (a, Pα, Qα) ∈ K3

λ is reduced for each α < λ+.

The construction of the chain is done by combining Fact 4.7 and Fact 2.6.
We also build {Rα : α < λ+} and {Γα : α < λ+} such that:

(1) R0 := M
(2) ∀α < λ+(Rα ≤K C and Rα ∈ Kλ).
(3) {Rα : α < λ+} is increasing and continuous.
(4) Γα = {qαi : i < λ+} =

⋃
γ<λ+ Stp(a/Rγ ,Qγ)(Rα).

(5) ∀β < λ+∀q(q = qαi for α, i < β then there is no N ′ ∈ Kλ such that C ≥K N ′ ≥K

Rβ+1 and c ∈ |N ′|\|Rβ+1| realizing q).

Construction: If α = 0 apply (1) and if α is limit one takes unions. So the only interesting case
is when α = β + 1. By hypothesis given γ < λ+ we have that |Stp(a/Pγ ,Qγ)(Pγ)| ≤ λ+, then by

λ-categoricity and Lemma 4.23 |Stp(a/Pγ ,Qγ)(Rβ)| ≤ λ+. So let {qβi : i < λ+} an enumeration of⋃
γ<λ+ Stp(a/Rγ ,Qγ)(Rβ). Let Σ = {qαi : i, α < β}, clearly |Σ| ≤ λ. Observe that by Lemma 4.25

if u ∈ Σ and Au = {c ∈ C : c realizes u} then |Au| ≤ λ. Hence A =
⋃
u∈ΣAu is of size λ and let

Rβ+1 the structure obtained by applying downward Löwenheim-Skolem-Tarski axiom to A∪Rβ
in C. Rβ+1 works.

Enough: Let P =
⋃
α<λ+ Pα, Q =

⋃
α<λ+ Qα and R =

⋃
α<λ+ Rα. By λ+-categoricty there

is g : P ∼= R. Let D = {δ < λ+ : g : Pδ ∼= Rδ}, by continuity of the chains this is a club. Let
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δ ∈ D and q = g(tp(a/Pδ, Qδ)) ∈ Stp(a/Pδ,Qδ)(Rδ), by the enumeration there is i < λ+ such

that q = qδi . Let g′ : Q ∼= g′[Q] ≤K C with g ⊆ g′.
Let ε > δ, i. Since {Pα : α < λ+} is increasing and continuous there is γ < λ+ such that

g−1[Rε+1] <K Pγ . Moreover since (a, Pγ , Qγ) ≥ (a, Pδ, Qδ), then g′(a) ∈ |g′[Qγ ]|\|Rε+1| and
realizes q. Hence g′[Qγ ] and g′(a) contradict (5). �

Lemma 4.27. Under the hypothesis of Theorem 4.24. Let p = tp(a/M,N) ∈ Sna(M) such
that (a,M,N) is reduced, minimal, does not have the extension property and |Sp(M)| ≥ λ++. If
R ∈ Kλ, Γ ⊆

⋃
{Sp(R′) : R′ ≤K R,R′ ∈ Kλ} and |Γ| ≤ λ+ then

Γ∗ = {q ∈ Sp(R) : ∃R∗ ∈ Kλ(R ≤K R∗,R∗ realizes q and there is no c ∈ |R∗|\|R| realizing u ∈ Γ)}

has size λ++.

Proof. Let R ≤K C such that C ∈ Kλ++ universal above λ, this exists by Lemma 4.12. Let
{Cα : α < λ++} an increasing and continuous resolution of C such that C0 := R.

Given q ∈ Sp(R) let (aq, R, Tq) ∈ K3
λ such that (a,M,N) ∼= (aq, R, Tq) and q = tp(aq/R, Tq).

Since (a,M,N) is reduced it follows that (aq, R, Tq) is reduced. Moreover, from the fact that C
is universal above λ we may assume that Tq ≤K C.

Claim

(1) If q1 6= q2 ∈ Sp(R), then aq1 6= aq2 .
(2) If aq /∈ Cα, then Tq ∩ Cα = R.

The proof of the first claim follows from the fact that Tq1 , Tq2 ≤K C. As for the second claim, it is
clear that R ⊆ Tq ∩Cα, so we will show the other inclusion. Let b ∈ Tq ∩Cα, let R′ the structure
obtained by applying downward Löwenheim-Skolem-Tarski axiom to {b} ∪ R in Cα and let T ′

the structure obtained by applying downward Löwenheim-Skolem-Tarski axiom to {aq} ∪ R′ in
C. Clearly (aq, R, Tq) ≤ (aq, R

′, T ′) ∈ K3
λ and since (aq, R, Tq) is reduced Tq ∩ R′ = R. Since

b ∈ Tq ∩R′, it follows that b ∈ R. †Claim

For each u ∈ Γ, u ∈ Sp(R
′) for some R′ ≤K R by definition. Hence by Lemma 4.25 if

Au = {c ∈ C : c realizes u}, it follows that |Au| ≤ λ. Since |Γ| = λ+, |A| = |
⋃
u∈ΓAu| ≤ λ+.

Pick α < λ++ such that A ⊆ Cα. Let

Σ = {q : q = tp(aq/R, Tq) and aq /∈ Cα},
we will show that Σ ⊆ Γ∗ and |Σ| ≥ λ++.

Let q ∈ Σ, so q = tp(aq/R, Tq) for aq /∈ Cα. Suppose there is c ∈ |Tq|\|R| and u ∈ Γ such that
c realizes u. Since Tq ≤K C, by definition c ∈ Au ⊆ Cα. Hence by claim (2) c ∈ Tq ∩ Cα = R,
contradicting the fact that c /∈ R.

Finally, since |Sp(M)| ≥ λ++, by λ-categoricity and Lemma 4.23 we have that |Sp(R)| ≥ λ++.
From the fact that ‖Cα‖ = λ+ and Claim (1), it follows that |Σ| ≥ λ++. �

Proof of Theorem 4.24. Let C ∈ Kλ++ universal above λ, this exists by Lemma 4.12.
We do the proof by contradiction, so assume that p = tp(a/M,N) does not have the extension

property.
By λ-categoricity there is h : N → C so we may assume that N ≤K C. Moreover by Fact 2.6,

Lemma 4.26, Lemma 4.25 and Lemma 4.17 we may assume that (a,M,N) is reduced, minimal
and |Stp(a/M,N)(M)| ≥ λ++.

We build {Mη : η ∈ 2<λ
+} and {plη : η ∈ 2<λ

+

, l ∈ {0, 1}} such that:

(1) M<> := M .

(2) ∀η ∈ 2<λ
+

(Mη ∈ Kλ and Mη ≤K C).
(3) If η < ν, then Mη <K Mν .
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(4) ∀η ∈ 2<λ
+∀l ∈ {0, 1}(plη ∈ Sp(Mη)).

(5) Mη realizes plη�β if and only if β < lg(η) and η(β) = l.

Before doing the construction let us show that this is enough.

Enough: Given η ∈ 2λ
+

let Mη =
⋃
α<λ+ Mη�α . Realize that the construction above satisfies

the hypothesis of Lemma 4.21. In particular, if η ∈ 2λ
+

and α < λ+Mη�∧α0 can not be embedded

to Mν over Mη�α if η �∧α 1 < ν and ν ∈ 2<λ
+

by condition (5). Hence by the conclusion of
Lemma 4.21 K is not λ+-categorical, contradicting the hypothesis of the theorem.

Construction: For the base step use (1) and in limit stages take unions. So the only interesting
case is when α = β+ 1. In that case, we are given by induction hypothesis Mη and need to build
Mη∧0, Mη∧1 and p0

η, p
1
η. We build {(Nη

δ , a
η
δ ) : δ < λ++} such that:

(1) (aηδ ,Mη, N
η
δ ) ∈ K3

λ and Nη
δ ≤K C.

(2) tp(aηδ/Mη, N
η
δ ) ∈ Sp(Mη).

(3) Nη
δ omits every q ∈ Γδ, where Γδ = {plη�β : β < lg(η), l 6= η(β)} ∪ {tp(b/Mη, N

η
γ ) : γ <

δ, b ∈ Nη
γ and tp(b/Mη, N

η
γ ) ∈ Sp(Mη)}.

As before we will first show that this is enough and then we will do the construction.
Enough: For every δ < λ++, letW η

δ = {γ < λ++ : ∃b ∈ Nη
δ (tp(b/Mη, N

η
δ ) = tp(aηγ/Mη, N

η
γ ))}.

Observe that for every δ we have that |W η
δ | ≤ λ since Nη

δ realizes at most λ types and by (3) if
γ 6= γ′ then tp(aηγ/Mη, N

η
γ ) 6= tp(aηγ′/Mη, N

η
γ′).

Therefore, there are δ < ε < λ++ such that δ /∈W η
ε and ε /∈W η

δ . Let Mη∧0 = Nη
δ , Mη∧1 = Nη

ε ,
p0
η = tp(aηδ/Mη, N

η
δ ) and p1

η = tp(aηε /Mη, N
η
ε ).

By (3) they omit all the restrictions and by δ /∈W η
ε and ε /∈W η

δ it follows that p0
η is omitted

in Mη∧1 and p1
η is omitted in Mη∧0.

Construction: If δ = 0, then

|Γ0| = |{plη�β : β < lg(η), l 6= η(β)}| ≤ λ+.

Observe that p, R = Mη and Γ = Γ0 satisfy the hypothesis of Lemma 4.27. Therefore, there is
(aη0 , N

η
0 ) such that Mη ≤K Nη

0 , tp(aη0/Mη, N
η
0 ) ∈ Sp(Mη) and no c ∈ |Nη

0 |\|Mη| realizes a type
in Γ0. Moreover, since Mη omits Γ0 it follows that Nη

0 omits Γ0 and since C is universal above
λ we may assume that Nη

0 ≤K C.
If δ is limit or successor, realize that |Γδ| ≤ λ+, then apply Lemma 4.27 as we did in the base

step.
This finishes the construction and since we got to a contradiction in the first enough statement,

we conclude that (a,M,N) has the extension property. �

We are finally able to obtain that smin satisfies the existence of non-forking extension property.

Lemma 4.28. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If (∗)λ and Kλ+++ = ∅, then smin
satisfies existence of non-forking extension property.

Proof. Let p ∈ Sbsmin(M) and M ≤K M ′. Since p ∈ Sbsmin(M), there is (a,M,N) minimal pre-
type such that p = tp(a/M,N). Then by Theorem 4.24 there are g and N ′ ∈ Kλ such that
(a,M,N) ≤g (b,M ′, N ′) ∈ K3

λ and g ⊇ id. Let q = tp(b/M ′, N ′), it easy to show that g is the
witness for (a,M,N)Eat(b,M,N ′), so p ≤ q. Since q �M= p is a minimal type, we conclude that
q does not fork over M . �

4.4. Conclusion. Putting together everything we have done in this section we get:

Theorem 4.29. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If (∗)λ and Kλ+++ = ∅, then there
is a w-good λ-frame.
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Proof. By Lemma 4.9 smin is a pre-frame. Then by Lemma 4.10 smin satisfies everything except
weak density and existence of non-forking extension. Finally, by Lemma 4.14 smin satisfies weak
density and by Lemma 4.28 smin satisfies existence of non-forking extension. �

Now, using the ideas from Section 3 together with the above theorem we are able to prove
Theorem 4.2. We repeat the statement of the theorem for the convenience of the reader.

Theorem 4.2. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. If I(K, λ) = I(K, λ+) = 1 ≤
I(K, λ++) < 2λ

++

and K is (λ, λ+)-tame, then Kλ+++ 6= ∅.

Proof. Suppose for the sake of contradiction that Kλ+++ = ∅. Then by Lemma 4.29 smin is
a w-good λ-frame. Since K is (λ, λ+)-tame and K{λ,λ+} has the amalgamation property (by

Remark 4.5), it follows from Theorem 3.24 that smin,{λ,λ+} is a w-good [λ, λ++)-frame. Hence
by Theorem 3.18 Kλ+++ 6= ∅, which contradicts the hypothesis. �

Lastly, let us show how we can apply Theorem 4.2 to universal classes. In [Sh300] Shelah
introduced the concept of universal classes in the non-elementary setting.

Definition 4.30. A class of structures K is a universal class if:

(1) K is a class of τ -structures, for some fixed vocabulary τ = τ(K).
(2) K is closed under isomorphisms.
(3) K is closed under ⊆-increasing chains.
(4) If M ∈ K and N ⊆M , then N ∈ K.

Observe that if K is a universal class then K = (K,⊆) is an AEC with LS(K) = |τ(K)| + ℵ0.
We identify K and K.

When K is a universal class, without any additional hypothesis, Will Boney proved that K is
(< ℵ0)-tame. It appears in print in [Vas17, 3.7].

Fact 4.31. If K is a universal class, then K is (< ℵ0)-tame. In particular, K is λ-tame for
every λ ≥ LS(K).

Putting together this fact with Theorem 4.2 we get the following.

Theorem 4.32. Suppose 2λ < 2λ
+

< 2λ
++

and 2λ
+

> λ++. Assume K is a universal class. If
(∗)λ, then Kλ+++ 6= ∅.11

Proof. By Fact 4.31 K is (λ, λ+)-tame and by Theorem 4.2 Kλ+++ 6= ∅. �

Observe that the proof of Theorem 4.32 is around 30 pages long (we cited a couple of facts in
this paper), while Shelah’s original proof is around 250 pages long, making the above proof for

universal classes 200 pages shorter. We use the additional hypothesis that 2λ
+

> λ++, but as
mentioned in Section 4.2 this is a weak hypothesis.
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