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Abstract. We obtain a characterization of left perfect rings via superstability of the class of

flat left modules with pure embeddings.

Theorem 0.1. For a ring R the following are equivalent.

(1) R is left perfect.
(2) The class of flat left R-modules with pure embeddings is superstable.

(3) There exists a λ ≥ (|R| + ℵ0)+ such that the class of flat left R-modules with pure
embeddings has uniqueness of limit models of cardinality λ.

(4) Every limit model in the class of flat left R-modules with pure embeddings is Σ-cotorsion.

A key step in our argument is the study of limit models in the class of flat modules. We

show that limit models with chains of long cofinality are cotorsion and that limit models are
elementarily equivalent.

We obtain a new characterization via limit models of the rings characterized in [Rot02].

We show that in these rings the equivalence between left perfect rings and superstability can
be refined. We show that the results for these rings can be applied to extend [She17, 1.2] to

classes of flat modules not axiomatizable in first-order logic.
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1. Introduction

An abstract elementary class (AEC for short) is a pair K = (K,≤K), where K is class of
structures and ≤K is a partial order on K extending the substructure relation. AECs are closed
under directed limits and every subset of a model in the class is contained in a small model in the
class. Shelah introduced them in [She87a] to capture the semantic structure of non-first-order
theories. Some interesting algebraic examples are: abelian groups with embeddings, torsion-free
groups with pure embeddings, R-modules with embeddings, R-modules with pure embeddings
and first-order axiomatizable classes of modules with pure embeddings. In this paper, we focus
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on the class of flat modules with pure embeddings. This is an AEC because flat modules are
closed under pure submodules and directed limits. This class was already considered in [LRV, §6].

Superstable theories were introduced by Shelah in [She69] as part of his project to find dividing
lines on the class of complete first-order theories. This project is still central in current research
in model theory. For AECs, Shelah introduced superstability in [She99]. Until recently it was
believed to suffer from “schizophrenia” [Sh:h, p. 19], since it was not known if many natural
conditions that were believed to characterize superstability were equivalent. In [GrVas17, 1.3]
and [Vas18], it was shown (under extra hypotheses that are satisfied by the class of flat modules2)
that superstability is a well-behaved notion as they showed that many possible characterizations
of superstability are equivalent. Due to this and the important role that limit models play in
this paper, we say that an AEC is superstable if it has uniqueness of limit models on a tail of
cardinals.3 Recall that a limit model is a universal model with some level of homogeneity (see
Definition 2.6).

A ring R is left perfect if every flat left R-module is a projective module. Left perfect rings were
introduced by Bass in [Bas60]. They play a significant role in homological algebra (see [Lam91,
§8]). Xu was the first to notice a relation between perfect rings and cotorsion modules in [Xu96,
3.3.1].

In this paper, we provide further evidence that the concept of superstability has algebraic
significance. In the context of AECs this was first noticed in [Maz1]. Prior to it, there were a few
papers [She75], [BaMc82] and [GrSh86] where notherian rings, artinian rings and superstability
were related.

More precisely, we characterize left perfect rings via superstability of the class of flat left
modules with pure embeddings. The main theorem of the paper is the following.

Theorem 3.15. For a ring R the following are equivalent.

(1) R is left perfect.
(2) The class of flat left R-modules with pure embeddings is superstable.
(3) There exists a λ ≥ (|R| + ℵ0)+ such that the class of flat left R-modules with pure

embeddings has uniqueness of limit models of cardinality λ.
(4) Every limit model in the class of flat left R-modules with pure embeddings is Σ-cotorsion.

In order to obtain the above equivalence, we study the limit models in the class of flat modules.
We show that limit models with chains of long cofinality are cotorsion (Theorem 3.5), show that
limit models are elementarily equivalent (Lemma 3.10) and characterize limit models with chains
of countable cofinality (Lemma 3.13).

Merging the main theorem of this paper together with the characterization of noetherian
rings via superstability obtained in [Maz1, 3.12]; we obtain a characterization of artinian rings
via superstability (Corollary 3.17).

In contrast to previous results on limit models with chains of long cofinality [Maz20, 4.10],
[KuMa, 4.5], limit models with chains of long cofinalities in this case might not be pure-injective.
This happens precisely because the class of flat modules is not necessarily closed under pure-
injective envelopes. We obtain the following.

Theorem 4.10. For a ring R the following are equivalent.

(1) Every (λ, α)-limit model in the class of flat modules (with pure embeddings) with λ ≥
(|R|+ ℵ0)+ and cf(α) ≥ (|R|+ ℵ0)+ is pure-injective.

(2) The pure-injective envelope of every flat left R-module is flat.

2The hypotheses are amalgamation, joint embedding, no maximal models and tameness.
3For a complete first-order T , (Mod(T ),�) is superstable if and only if T is superstable as a first-order theory,

i.e., T is λ-stable for every λ ≥ 2|T |.
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Since the rings characterized in [Rot02] are precisely those that satisfy the second condition
of the above theorem, the result gives a new characterization of such rings. In these rings we
characterize the Galois-types and the stability cardinals of the class of flat modules with pure
embeddings. As a simple corollary we obtain a result of Shelah regarding universal torsion-free
abelian groups with respect to pure embeddings [She17, 1.2] (see Lemma 4.6 and the remark
below it). Moreover, by using that flat cotorsion modules are the same as pure-injective modules
in this special case, we are able to lower the bound in Theorem 3.15 where the tail of cardinals
where uniqueness of limit models begins to |R|+ ℵ0 (Theorem 4.12).

The class of flat modules is not first-order order axiomatizable [EkSa71, Theo. 4], but it
is axiomatizable in L∞,ω [HeRo09, §2]. Due to this, the results of this paper lie outside of the
scope of first-order model theory and hint to the importance of the development of non-first-order
methods.

The paper is divided into four sections. Section 2 presents necessary background. Section
3 studies limit models in the class of flat modules with pure embeddings and provides a new
characterization of left perfect rings via superstability of the class of flat modules. Section 4
studies limit models in the class of flat modules under an additional assumption, characterizes
this assumption via limit models and provides a refinement of the main theorem under the
additional hypothesis.

This paper was written while the author was working on a Ph.D. under the direction of Rami
Grossberg at Carnegie Mellon University and I would like to thank Professor Grossberg for his
guidance and assistance in my research in general and in this work in particular. I would like to
thank Thomas G. Kucera for sharing his module theoretic knowledge. I would like to thank John
T. Baldwin, Philipp Rothmaler and the referee for many valuable comments that significantly
improved the paper.

2. Preliminaries

We present the basic concepts of abstract elementary classes that are used in this paper. These
are further studied in [Bal09, §4 - 8] and [Gro1X, §2, §4.4]. An introduction from an algebraic
point of view is given in [Maz21, §2]. Regarding the background on module theory, we give a
brief survey of the concepts we will use in this paper and present a few concepts throughout the
text. The main module theoretic ideas used in this paper are studied in detail in [Xu96].

2.1. Abstract elementary classes. Abstract elementary classes (AECs) were introduced by
Shelah in [She87a, 1.2]. Among the requirements we have that an AEC is closed under directed
limits and that every set is contained in a small model in the class. The reader can consult the
definition in [Bal09, 4.1].

Notation 2.1.

• Given a model M , we will write |M | for its underlying set and ‖M‖ for its cardinality.
• If λ is a cardinal and K is an AEC, then Kλ = {M ∈ K : ‖M‖ = λ}.
• Let M,N ∈ K. If we write “f : M → N”, we assume that f is a K-embedding, i.e., f :
M ∼= f [M ] and f [M ] ≤K N . In particular, K-embeddings are always monomorphisms.

In [She87b] Shelah introduced a notion of semantic type. The original definition was refined
and extended by many authors who following [Gro02] call these semantic types Galois-types
(Shelah recently named them orbital types). We present here the modern definition and call
them Galois-types throughout the text. We follow the notation of [MaVa18, 2.5].

Definition 2.2. Let K be an AEC.

(1) Let K3 be the set of triples of the form (b, A,N), where N ∈ K, A ⊆ |N |, and b is a
sequence of elements from N .
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(2) For (b1, A1, N1), (b2, A2, N2) ∈ K3, we say (b1, A1, N1)EK
at(b2, A2, N2) if A := A1 = A2,

and there exist K-embeddings f` : N` −→
A
N for ` ∈ {1, 2} such that f1(b1) = f2(b2) and

N ∈ K.
(3) Note that EK

at is a symmetric and reflexive relation on K3. We let EK be the transitive
closure of EK

at .
(4) For (b, A,N) ∈ K3, let gtpK(b/A;N) := [(b, A,N)]EK . We call such an equivalence

class a Galois-type. Usually, K will be clear from the context and we will omit it.
(5) For M ∈ K, gSK(M) = {gtpK(b/M ;N) : M ≤K N ∈ K and b ∈ N}.
(6) For gtpK(b/A;N) and C ⊆ A, gtpK(b/A;N) �C := [(b, C,N)]E.

Definition 2.3. An AEC K is λ-stable if for any M ∈ Kλ, |gSK(M)| ≤ λ.

Recall the following notion that was isolated by Grossberg and VanDieren in [GrVan06].

Definition 2.4. K is (< κ)-tame if for any M ∈ K and p 6= q ∈ gS(M), there is A ⊆ |M | such
that |A| < κ and p �A 6= q �A.

Before introducing the concept of limit model we recall the concept of universal extension.

Definition 2.5. M is λ-universal over N if and only if N ≤K M and for any N∗ ∈ K≤λ such
that N ≤K N∗, there is f : N∗ −→

N
M . M is universal over N if and only if ‖N‖ = ‖M‖ and

M is ‖M‖-universal over N .

With this we are ready to introduce limit models, they were originally introduced in [KolSh96].

Definition 2.6. Let λ be an infinite cardinal and α < λ+ be a limit ordinal. M is a (λ, α)-limit
model over N if and only if there is {Mi : i < α} ⊆ Kλ an increasing continuous chain such
that M0 := N , Mi+1 is universal over Mi for each i < α and M =

⋃
i<αMi.

M is a (λ, α)-limit model if there is N ∈ Kλ such that M is a (λ, α)-limit model over N . M
is a λ-limit model if there is a limit ordinal α < λ+ such that M is a (λ, α)-limit model. We say
that M is a limit model if there is an infinite cardinal λ such that M is a λ-limit model.

Observe that if M is a λ-limit model, then M has cardinality λ. The next fact gives conditions
for the existence of limit models.

Fact 2.7 ( [Sh:h, §II], [GrVan06, 2.9]). Let K be an AEC with joint embedding, amalgamation
and no maximal models. If K is λ-stable, then for every N ∈ Kλ and limit ordinal α < λ+ there
is M a (λ, α)-limit model over N . Conversely, if K has a λ-limit model, then K is λ-stable

The key question regarding limit models is the uniqueness of λ-limit models for a fixed cardinal
λ. When the lengths of the cofinalities of the chains of the limit models are equal, one can show
that the limit models are isomorphic by a back-and-forth argument.4 Therefore, the question is
what happens when the cofinalities of the chains of the limit models are different. This has been
studied thoroughly in the context of abstract elementary classes [ShVi99], [Van06], [GVV16],
[Bon14], [Van16], [BoVan] and [Vas19].

Definition 2.8. K has uniqueness of limit models of cardinality λ if K has λ-limit models and
if given M,N λ-limit models, M and N are isomorphic.

In [GrVas17, 1.3] and [Vas18] it was shown that for AECs that have amalgamation, joint
embedding, no maximal models and are tame, the definition below is equivalent to every other
definition of superstability considered in the context of AECs. Since the class of flat modules
with pure embeddings satisfies these properties (see Fact 3.1), we introduce the following as the
definition of superstability.

4Hence, for a fixed cardinal λ and a fixed limit ordinal α < λ+, there is a unique (λ, α)-limit model.
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Definition 2.9. K is a superstable AEC if and only if K has uniqueness of limit models on a
tail of cardinals.

Remark 2.10. For a complete first-order theory T , (Mod(T ),�) is superstable if and only if T
is superstable as a first-order theory, i.e., T is λ-stable for every λ ≥ 2|T |. The forward direction
follows from Fact 2.7 and the backward direction from [GVV16, 1.6].

Finally, recall the standard notion of a universal model.

Definition 2.11. Let K be an AEC and λ be a cardinal. M ∈ K is a universal model in Kλ if
M ∈ Kλ and if given any N ∈ Kλ, there is a K-embedding f : N →M .

The following fact will be useful.

Fact 2.12 ( [Maz20, 2.10]). Let K be an AEC with the joint embedding property. If M is a
λ-limit model, then M is a universal model in Kλ.

2.2. Module Theory. All rings considered in this paper are associative with an identity ele-
ment. Recall that a left R-module F is flat if (−)⊗F is an exact functor. M is a pure submodule
of N , denoted by ≤pp, if for every L right R-module L⊗M → L⊗N is a monomorphism.

Notation 2.13. Given a ring R, let KF = (Kflat,≤pp) where Kflat is the class of flat left
R-modules and ≤pp denotes the pure submodule relation.

We assume the reader is familiar with pure-injective modules (see for example [Pre88, §2])
and focus on cotorsion modules. Cotorsion modules were introduced by Harrison in [Har59].

Definition 2.14. A left R-module M is cotorsion if and only if Ext1(F,M) = 0 for every flat
module F , or equivalently, every short exact sequence 0 → M → N → F → 0 with F a flat
module splits.

It is easy to check that a pure-injective module is a cotorsion module. The following general-
ization of Bumby’s result [Bum65] will be useful.

Fact 2.15 ( [GKS18, 2.5]). Let M,N be flat cotorsion modules. If there are f : M → N a pure
embedding and g : N →M a pure embedding, then M and N are isomorphic.

Similar to the notion of pure-injective envelope there is the notion of cotorsion envelope. These
are thoroughly studied by Xu in [Xu96, §1, 3.4].

Definition 2.16. Let M be a module, M ↪→i C(M) is the cotorsion envelope of M if and only
if

(1) If φ : M → C and C is a cotorsion module, then there is f : C(M) → C such that
φ = f ◦ i.

(2) If an endomorphism f : C(M)→ C(M) is such that i = f ◦i, then f is an automorphism.

The existence of a cotorsion envelope for every module is a deep result that is equivalent to
the Flat Cover Conjecture. The Flat Cover Conjecture was asserted by Enoch in [Eno81] and
proved twenty years later by Bican, El Bashir and Enochs in [BEE01]. We will use that there
are cotorsion envelopes a few times in the text.

An easy assertion that we will use is the following.

Fact 2.17 ( [Xu96, 3.4.2]). If M ↪→i C(M) is a cotorsion envelope, then C(M)/M is flat and
M ≤pp C(M). Moreover, if M is flat, then C(M) is flat.

We will also work with the following class of modules.

Definition 2.18. A left R-module M is Σ-cotorsion if and only if M (I) is a cotorsion module
for every index set I.
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Left perfect rings were introduced by Bass in [Bas60]. They play a significant role in homo-
logical algebra and have been thoroughly studied, see for example [Lam91, §8].

Definition 2.19. A ring R is left perfect if every flat left R-module is a projective module.

Below we give some equivalent conditions that characterize left perfect rings. Further equiv-
alent conditions that mention cotorsion modules are given in [GuHe05].

Fact 2.20 ( [Xu96, 3.3.1]). For a ring R the following are equivalent.

(1) R is left perfect.
(2) Every flat left R-modules is cotorsion.
(3) Every left R-module is cotorsion.

3. The main case

In this section, we will work with the class of flat modules with pure embeddings. We obtain a
characterization of left perfect rings via superstability of the class of flat left modules with pure
embeddings (Theorem 3.15). This is obtained by understanding the limit models of the class.

The next result follows from [LRV, §6].

Fact 3.1. Let R be ring and KF = (Kflat,≤pp) where Kflat is the class of flat left R-modules.

(1) KF is an AEC with LS(KF ) = |R|+ ℵ0.
(2) KF has joint embedding, amalgamation and no maximal models.
(3) There is a cardinal θ0 ≥ |R|+ ℵ0 such that if λθ0 = λ, then KF is λ-stable.
(4) There is a cardinal θ1 ≥ |R| + ℵ0 such that KF is θ1-tame for Galois-types of finite

length.

Proof. Observe that in the class of flat modules, N/M is flat if and only if M is a pure submodule
of N (see for example [Ste75, 11.1]). Therefore we can use the results obtained in [LRV, §6]. Since
KF is a flat-like category in the sense of [LRV, 6.11] and KF is closed under pure submodules,
then by [LRV, 6.20, 6.21] it follows that KF is an AEC with amalgamation and moreover it has
a stable independence notion. Then by [LRV19, 8.16] it follows that (3) and (4) hold. That joint
embedding and no maximal models hold, follows from the fact that flat modules are closed under
direct sums. �

Notation 3.2. Fix θ0 and θ1 as the least cardinals such that (3) and (4) of Fact 3.1 hold.

A natural question to ask is the value of θ0 and θ1. We say more about this in the next section
under additional assumptions, but for now we focus on proving the main theorem of the paper
(Theorem 3.15).

Since KF has joint embedding, amalgamation and no maximal models, from Fact 3.1 and
Fact 2.7, it follows that KF has a (λ, α)-limit model if λθ0 = λ and α < λ+ is a limit ordinal.
As hinted by previous results [Maz20], [KuMa], limit models with chains of long cofinality are
easier to understand than limit models with chains of small cofinality so we study these first.

Before we characterize these limit models, we need to carefully work with some of the ideas
of [GuHe06] and [GuHe07]. Recall the following definition.

Definition 3.3 ( [GuHe06, Def. 1]). Let I be a directed system, (ni)i∈I ∈ NI , Ā = (Aij)i≤j with
Aij a ni × nj matrix with coefficients in R and (x̄i)i∈I with x̄i an ni-tuple of variables. Given
M a left R-module and b = (bij)i≤j ∈ Πi≤jM

ni , we associate the system:

ΩĀb (x̄i)i∈I := {x̄i −Aij x̄j = bij}i≤j .

We call a system of linear equations divisible of size λ if it is of the form ΩĀb (x̄i)i∈I , for every
i ≤ j ≤ k it holds that AjkAij = Aik, for every i ∈ I it holds that Aii = id and |I| = λ.
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The next assertion is a minor improvement of [GuHe06, Cor. 3].

Fact 3.4. A left R-module M is cotorsion if and only if every finitely solvable divisible system
of linear equations in M of size at most |R|+ ℵ0 is solvable in M .

Proof. The forward direction is [GuHe06, Cor. 3]. For the backward direction, recall that to show
that M is cotorsion it is enough to show, by [BEE01, Prop. 2], that Ext1(F,M) = 0 for every flat
module F of cardinality at most |R|+ ℵ0. Then remember that in Lazard’s Theorem the index
set I to get a flat module F as a direct limit of finitely generated free R-modules is contained
in {(J,N) : J ⊆fin F × Z and N ≤ R(F×Z) finitely generated} (see for example [Osb00, 8.16]).
This set has size at most |R| + ℵ0 if |F | ≤ |R| + ℵ0. Then by repeating the argument given
in [GuHe06, p. 3,4] one can obtain the result. �

With this we are able to characterize limit models of big cofinality.

Theorem 3.5. Assume λ ≥ (|R| + ℵ0)+. If M is a (λ, α)-limit model in KF and cf(α) ≥
(|R|+ ℵ0)+, then M is a cotorsion module.

Proof. Fix {Mβ : β < α} a witness to the fact that M is a (λ, α)-limit model. By Fact 3.4 it is
enough to show that every finitely solvable divisible system of linear equations in M of size at
most |R|+ℵ0 is solvable in M . Let ΩĀb (x̄i)i∈I be a divisible system of linear equations satisfying
these hypotheses.

Consider C(M) the cotorsion envelope of M , observe that ΩĀb (x̄i)i∈I is finitely solvable in

C(M) because M ≤pp C(M). Since C(M) is cotorsion, by Fact 3.4 ΩĀb (x̄i)i∈I is solvable in
C(M). Let (c̄i)i∈I ∈ ΠiC(M)ni be a solution.

Since cf(α) ≥ (|R| + ℵ0)+ and |I| ≤ |R| + ℵ0, there is an ordinal β < α such that {bij :
i ≤ j} ⊆ Mβ . Observe that C(M) ∈ KF and Mβ ≤pp C(M) by Fact 2.17. Then applying the
downward Löwenheim-Skolem-Tarski axiom to Mβ ∪ {c̄i : i ∈ I} in C(M) we obtain M∗ ∈ KFλ
such that Mβ ≤pp M∗ and {c̄i : i ∈ I} ⊆ M∗. Then there is f : M∗ −−→

Mβ

Mβ+1, because Mβ+1

is universal over Mβ . Since {bij : i ≤ j} is fixed by the choice of Mβ , it is easy to see that

{f(c̄i) : i ∈ I} ⊆Mβ+1 ≤pp M is a solution to ΩĀb (x̄i)i∈I in M . Therefore, M is cotorsion. �

Remark 3.6. The reader might wonder if the limit model above is pure-injective instead of
just cotorsion. This is not the case as the class of flat modules is not necessarily closed under
pure-injective envelopes. We will study this with more detail in the next section.

Since limit models are universal models by Fact 2.12, the following follows from Fact 2.15.

Corollary 3.7. Let λ be a cardinal. If M,N are λ-limit models in KF and cotorsion modules,
then M and N are isomorphic.

Putting together the last two assertions we obtain.

Corollary 3.8. Assume λ ≥ (|R|+ ℵ0)+. If M ∈ KF is a (λ, α)-limit model and N ∈ KF is a
(λ, β)-limit model such that cf(α), cf(β) ≥ (|R|+ ℵ0)+, then M and N are isomorphic.

Remark 3.9. Conjecture 2 of [BoVan] asserts that for an AEC K and λ ≥ LS(K) a regular
cardinal such that K is λ-stable, the regular ordinals α less than λ+ such that the (λ, α)-limit
model is isomorphic to the (λ, λ)-limit model is an end segment of regular cardinals. Observe
that the above corollary shows that the conjecture is true for KF if R is a countable ring.

Recall that two models are elementarily equivalent if they satisfy the same first-order sentences.
Surprisingly, one can still obtain that every two limit models in KF are elementarily equivalent.
The proof is basically the same as that of [KuMa, 4.3] so we omit it.
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Lemma 3.10. If M,N are limit models in KF , then M and N are elementarily equivalent.

We do not think that the previous result is as fundamental as the same result for classes axiom-
atizable in first-order logic, see [Maz1, §4.1], but anyhow this will be useful when characterizing
left perfect rings.

The next step will be to characterize limit models with chains of countable cofinality. In order
to do that we will need the following remark.

Remark 3.11. If M,N are flat modules, M is a cotorsion module and M ≤pp N , then M is a
direct summand of N . This follows from the fact that N/M is a flat module and the definition
of cotorsion module.

Using the above remark together with the fact that flat modules are closed under pure submod-
ules and that cotorsion modules are closed under finite direct sums, we can construct universal
extensions and characterize limit models of countable cofinality as in [KuMa, 4.8, 4.9].

Lemma 3.12. Let λ be a cardinal. If M ∈ KFλ is cotorsion and U ∈ KFλ is a universal model
in KFλ , then M ⊕ U is universal over M .

Proof. LetN ∈ KFλ withM ≤pp N . By Remark 3.11 there is anM ′ such thatN = M⊕M ′. Since
KF is closed under pure submodules M ′ ∈ KF≤λ and by universality of U there is f : M ′ → U .

Then observe that g : M ⊕M ′ →M ⊕ U given by g(m+m′) = m+ f(m′) is as required. �

Lemma 3.13. Assume λ ≥ (|R| + ℵ0)+. If M ∈ KF is a (λ, ω)-limit model and N ∈ KF is a
(λ, (|R|+ ℵ0)+)-limit model, then M and N (ℵ0) are isomorphic.

Proof. Let N be a (λ, (|R|+ℵ0)+)-limit model. By Theorem 3.5 N is a cotorsion module. Then
using the above lemma {N i : 0 < i < ω} is a witness to the fact that N (ℵ0) is a (λ, ω)-limit
model. Therefore, M is isomorphic to N (ℵ0) . �

Let us recall the following results from [ŠaŠt]. They extended to uncountable rings the results
of [GuHe07].

Fact 3.14. Let R be a ring.

(1) If N is Σ-cotorsion and M ≤pp N , then M is Σ-cotorsion.
(2) If N is Σ-cotorsion and M is elementarily equivalent to N , then M is Σ-cotorsion.
(3) ( [ŠaŠt, 3.8]) M is Σ-cotorsion if and only if M (|R|+ℵ0) is a cotorsion module.

Proof. (1) and (2) follow from [ŠaŠt, 3.3] and using that the definable subcategory generated by
a module is closed under pure submodules and elementarily equivalent modules. �

The next theorem is the main theorem of the paper.

Theorem 3.15. For a ring R the following are equivalent.

(1) R is left perfect.
(2) The class of flat left R-modules with pure embeddings is superstable.
(3) There exists a λ ≥ (|R| + ℵ0)+ such that the class of flat left R-modules with pure

embeddings has uniqueness of limit models of cardinality λ.
(4) Every limit model in the class of flat left R-modules with pure embeddings is Σ-cotorsion.

Proof. (1)⇒ (2) By Fact 3.1.(3) there is a θ0 ≥ |R|+ℵ0 such that KF is λ-stable if λθ0 = λ. Let
λ0 be the least λ such that KF is λ0-stable, we claim that for every λ ≥ λ0, KF has uniqueness
of limit models of size λ.

By Fact 2.20 every flat module is a cotorsion module. Then by Corollary 3.7 there is at most
one λ-limit model for each λ up to isomorphisms. To finish the proof, we show by induction that
for every λ ≥ λ0, KF is λ-stable.
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The base step follows from the choice of λ0, so we do the induction step.
Suppose λ is an infinite cardinal and that KF is µ-stable for every µ ∈ [λ0, λ). Let cf(λ) = κ

and {λi : i < κ} be a continuous increasing sequence of cardinals such that λi < λ for each i < κ
and supi<κλi = λ−.5 Using the hypothesis that KF is µ-stable for every µ ∈ [λ0, λ), one can
build {Mi : i < κ} strictly increasing and continuous chain such that:

(1) Mi+1 is ‖Mi+1‖-universal over Mi.
(2) Mi ∈ KFλi .

Let M =
⋃
i<κMi. By construction M is universal in KFλ .6 Since R is left perfect, M is a

cotorsion module. Then using Lemma 3.12, as in Lemma 3.13, one can show that {M i : 0 < i <
ω} witnesses that M (ℵ0) is a (λ, ω)-limit model in KF . Hence KF is λ-stable by Fact 2.7.

(2)⇒ (3) Clear.
(3)⇒ (4) We show that if N is the (λ, (|R|+ ℵ0)+)-limit model, then N is Σ-cotorsion. This

is enough by Lemma 3.10 and Fact 3.14.(2).
Consider {N (γ) : 0 < γ ≤ |R|+ ℵ0} ⊆ KFλ , we show by induction on 0 < γ ≤ |R|+ ℵ0 that:

(1) N (γ) is cotorsion.
(2) N (γ+1) is universal over N (γ).

Before we do the proof, observe that this is enough since by taking γ = |R|+ℵ0 we have that
N (|R|+ℵ0) is cotorsion. Then by Fact 3.14 N is Σ-cotorsion.

Base: N is cotorsion by Theorem 3.5, so (1) holds. Moreover, N ⊕N is universal over N by
Lemma 3.12.

Induction step: If γ = β + 1, then N (β+1) is cotorsion because N (β) is cotorsion by induction
hypothesis, N is cotorsion and cotorsion modules are closed under finite direct sums. As for (2),
this follows from Lemma 3.12.

If γ is a limit ordinal, then consider {N (β) : 0 < β < γ}. It is clear that it is an increasing
and continuous chain in KFλ such that

⋃
β<γ N

(β) = N (γ). Moreover, by induction hypothesis

N (β+1) is universal over N (β) for β < γ. Therefore, {N (β) : 0 < β < γ} witnesses that N (γ) is a
(λ, γ)-limit model. Then by uniqueness of limit models of size λ, N (γ) is isomorphic to N . We
know that N is cotorsion by Theorem 3.5, hence N (γ) is a cotorsion module. That N (γ+1) is
universal over N (γ) then follows from Lemma 3.12.

(4) ⇒ (1) Let M ∈ KF , by Fact 2.20 it is enough to show that M is cotorsion. Let µ ≥
‖M‖ + (|R| + ℵ0)+ such that KF is µ-stable, which exists by Fact 3.1.(3). Then fix P ∈ KF a
(µ, (|R|+ ℵ0)+)-limit model. Observe that by Fact 2.12 there is f : M → P a pure embedding.
Since P is Σ-cotorsion by hypothesis and Σ-cotorsion modules are closed under pure submodules
by Fact 3.14, we conclude that M is a cotorsion module. �

Remark 3.16. It was pointed out to us by Baldwin that in [Gar80, p. 159] the following is
shown for right coherent rings: if R is a left perfect ring, then every projective left R-module
is totally transcendental. This can be used to show (1) implies (2) of the above theorem in the
particular case when the ring is right coherent. This case is even more special than the one we
consider in the next section (see Hypothesis 4.1) since if a ring R is right coherent, then the class
of flat left R-modules is first-order axiomatizable by [EkSa71, Theo. 4].

As a simple corollary we obtain a characterization of artinian rings via superstability.

Corollary 3.17. For a ring R the following are equivalent.

(1) R is right artinian.
(2) KF is superstable and the class of right R-modules with embeddings is superstable.

5For θ a cardinal, we define θ− = µ if θ = µ+ and θ− = θ otherwise.
6A similar construction is presented in [KuMa, 3.18]
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Proof. It is known that a ring is right artinian if and only if it is left perfect and right noetherian
(see for example [EkSa71, Prop. 3]). Moreover, R is left perfect if and only if KF is superstable
by the theorem above. And R is right noetherian if and only if the class of right R-modules with
embeddings is superstable by [Maz1, 3.12]. �

4. A special case

In this section we study KF under Hypothesis 4.1 (see below). This allows us to characterize
Galois-types, bound the values of θ0, θ1 and lower the bound in Theorem 3.15 where the tail of
cardinals where uniqueness of limit models begins to |R|+ ℵ0.

We assume the next hypothesis throughout this section.

Hypothesis 4.1. The pure-injective envelope of every flat left R-module is flat.

These rings were characterized by Rothmaler in [Rot02]. Every first-order axiomatizable class
of flat modules satisfies this hypothesis since M is an elementary substructure of its pure-injective
envelope. Example 3.3 of [Rot02] shows that there are rings satisfying Hypothesis 4.1 such that
KF is not first-order axiomatizable. This shows that the results in this section extend those
obtained in [KuMa] for the class of flat modules.

One of the characterizations obtained in [Rot02] that will be useful in this section is the
following.

Fact 4.2 ( [Rot02]). For a ring R the following are equivalent.

(1) Hypothesis 4.1, i.e., the pure-injective envelope of every flat left R-module is flat.
(2) All flat cotorsion left R-modules are pure-injective.

Recall that φ is a positive primitive formula (pp-formula for short), if φ is an existentially
quantified system of linear equations. For M a module, ā ∈ M<ω and B ⊆ M we define the
pp-type of ā over B in M , denoted by pp(ā/B,M), to be the set of pp-formulas φ(x̄, b̄) such that
b̄ ∈ B and M satisfies φ(ā, b̄). Recall the following result.

Fact 4.3 ( [Zie84, 3.6]). Let M,N be pure-injective left R-modules, A ⊆M and B ⊆M . If there
is f : A→ B a partial isomorphism7, then there is g : HM (A) ∼= HN (B) such that g extends f .

One of the missing pieces in the previous section is that we did not characterize Galois-types.
The next lemma characterizes them under Hypothesis 4.1. We obtain the same characterization
as that of [KuMa, 3.14], but with a conceptually different proof. The argument of [KuMa, 3.14]
can not be applied in this setting and vice versa.

Lemma 4.4. Let M,N1, N2 ∈ KF , M ≤pp N1, N2, b̄1 ∈ N<ω
1 and b̄2 ∈ N<ω

2 . Then:

gtp(b̄1/M ;N1) = gtp(b̄2/M ;N2) if and only if pp(b̄1/M,N1) = pp(b̄2/M,N2).

Proof. The forward direction is clear, so we only prove the backward direction.
Assume pp(b̄1/M,N1) = pp(b̄2/M,N2), then by amalgamation there is N ∈ KF and f :

N1 −→
M

N with N2 ≤pp N . Since KF is closed under pure-injective envelopes by Hypothesis 4.1,

PE(N) ∈ KF . Moreover, N ≤pp PE(N) so pp(f(b̄1)/M,PE(N)) = pp(b̄2/M,PE(N)). Then
by Fact 4.3 there is

g : HPE(N)(M ∪ {f(b̄1)}) ∼=M HPE(N)(M ∪ {b̄2})
with g ◦ f(b̄1) = b̄2.

Since flat modules are closed under pure submodules, we have that HPE(N)(M ∪{f(b̄1)}) and
HPE(N)(M ∪ {b̄2}) are flat. Then applying amalgamation a couple of times we get the desired
result. �

7f is a bijection between A and B and f preserves pp-formulas.
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As a corollary we obtain that θ0 = ℵ0, this improves the results of [LRV, §6] (Fact 3.1.(4)) for
classes of flat modules with pure embeddings under Hypothesis 4.1.

Corollary 4.5. KF is (< ℵ0)-tame.

As in [KuMa, 3.16-3.19] one can obtain the following results.

Lemma 4.6.

(1) If λ|R|+ℵ0 = λ, then KF is λ-stable.
(2) If λ|R|+ℵ0 = λ or ∀µ < λ(µ|R|+ℵ0 < λ), then KFλ has a universal model

Proof sketch.

(1) Let M ∈ KFλ and {gtp(ai/M ;N) : i < α} be an enumeration without repetitions of

gS(M). Then define Φ : gS(M) → S
Th(N)
pp (M) by φ(gtp(ai/M ;N)) = pp(ai/M,N).

Using that λ|R|+ℵ0 = λ and pp-quantifier elimination the result follows.
(2) If λ|R|+ℵ0 = λ, then there are limit models of cardinality λ and limit models are universal

models. If ∀µ < λ(µ|R|+ℵ0 < λ), the argument is similar to the induction step of (1)
implies (2) of Theorem 3.15.

�

Remark 4.7. Recall that [She17, 1.2] asserts that there is a universal group of size λ in the
class of torsion-free abelian groups with pure embeddings if λℵ0 = λ or ∀µ < λ(µℵ0 < λ).
Observe that the class of torsion-free abelian groups is the class of flat Z-modules and it satisfies
Hypothesis 4.1. Therefore, the above lemma generalizes [She17, 1.2] to classes of flat modules
not axiomatizable in first-order logic.

Remark 4.8. Observe that the above lemma bounds θ1 by |R|+ ℵ0.

In this case we get that long limit models are not only cotorsion modules, but they are pure-
injective modules.

Lemma 4.9. Assume λ ≥ (|R| + ℵ0)+. If M is a (λ, α)-limit model in KF and cf(α) ≥
(|R|+ ℵ0)+, then M is pure-injective.

Proof. By Theorem 3.5 M is a cotorsion module. Then by Hypothesis 4.1 and Fact 4.2 it follows
that M is pure-injective. �

It is not a coincidence that we had to use Hypothesis 4.1 to obtain the above result. The next
result shows that both notions are equivalent.

Theorem 4.10. For a ring R the following are equivalent.

(1) Every (λ, α)-limit model in KF with λ ≥ (|R| + ℵ0)+ and cf(α) ≥ (|R| + ℵ0)+ is pure-
injective.

(2) Hypothesis 4.1, i.e., the pure-injective envelope of every flat left R-module is flat.

Proof. The backward direction is Lemma 4.9, so we show the forward direction. Let M ∈
KF . Pick λ ≥ ‖M‖ + (|R| + ℵ0)+ such that KF is λ-stable, this is possible by Fact 3.1.(3).
Then by Fact 2.7 there is N a (λ, (|R| + ℵ0)+)-limit model. From the assumption we have
that N is pure-injective and since there is f : M → N a pure embedding, it follows that
PE(M) ∼= PE(f [M ]) ≤pp N . Since KF is closed under pure submodules, we conclude that
PE(M) ∈ KF . �

Remark 4.11. Since Hypothesis 4.1 is one of the equivalent assertions of the main theorem
of [Rot02, 2.3], the above theorem gives a new characterization of the rings studied in [Rot02].
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To finish this section we show that under Hypothesis 4.1, one can lower the bound where the
tail of uniqueness of limit cardinals begins to |R|+ ℵ0.

Theorem 4.12. For a ring R satisfying Hypothesis 4.1 the following are equivalent.

(1) R is left perfect.
(2) The class of flat left R-modules with pure embeddings is superstable.
(3) There is a λ ≥ (|R|+ℵ0)+ such that the class of flat left R-modules with pure embeddings

has uniqueness of limit models of cardinality λ.
(4) Every limit model in the class of flat left R-modules with pure embeddings is Σ-pure-

injective.
(5) For every λ ≥ |R|+ℵ0, the class of flat left R-modules with pure embeddings has unique-

ness of limit models of cardinality λ.

Proof. (1)⇔ (2)⇔ (3)⇔ (4) Follow from Theorem 3.15 and Fact 4.2.
(5)⇒ (2) Clear.
(1) ⇒ (5) Since every limit model is a cotorsion module. Then by Corollary 3.7 there is at

most one λ-limit model for each λ up to isomorphisms. Hence to finish the proof, it is enough
to show that for every λ ≥ |R|+ ℵ0, KF is λ-stable.

Let λ ≥ |R| + ℵ0 and M ∈ KFλ . Let {gtp(ai/M ;N) : i < α} be an enumeration without
repetitions of gS(M). We can assume that they are all realized in a fixed N by amalgamation.

Now, consider Φ : gS(M)→ S
Th(N)
pp (M) given by Φ(gtp(ai/M ;N)) = pp(ai/M,N). By Lemma

4.4 it follows that Φ is a well-defined injective function. Since N is Σ-pure-injective by (1) and
Hypothesis 4.1, Th(N) is totally transcendental (see for example [Pre88, 3.2]). In particular, since

complete theories of modules have pp-quantifier elimination we can conclude that |STh(N)
pp (M)| =

|STh(N)(M)| ≤ λ. Therefore, |gS(M)| ≤ λ.
�

Remark 4.13. Recall that Z is not a perfect ring. Then by condition five of the above theorem we
have that the class of torsion-free abelian groups with pure embeddings does not have uniqueness
of limit models in any uncountable cardinal. This was shown in [Maz20, 4.26] using AEC methods
and in [KuMa, 4.15] using group theoretic methods. The results of those papers show more in
the case of torsion-free groups as a group theoretic description of limit models is provided and it
is shown that the class does not have uniqueness of limit models in ℵ0.
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