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In this �le we collect some additional material and comments that we receive
from readers.

� The following modi�cation of Theorem 2.112 for p = 1 was proposed and
written by Nguyen Huy Chieu. With respect to the original proof, it has
more details and is more precise in terms of precise representatives. See
also the �le "Corrections and Improvements" for additional comments.
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Theorem. Let (Ω,A, µ) be a measured space with a σ−finite measure, and let E be a

separable Banach space. The following holds.

(i) If L ∈ (L1(Ω; E))∗ then there exists a unique v ∈ Lw
∞(Ω; E∗) such that

L(u) =

∫

Ω

〈v(ω), u(ω)〉dµ (0.1)

for all u ∈ L1(Ω; E). Moreover, ‖L‖ = ‖v‖Lw∞(Ω;E∗).

(ii) Every functional of the form (0.1), where v ∈ Lw
∞(Ω; E∗), is linear and continuous

on L1(Ω; E).

Proof. (i) Let L ∈ (L1(Ω; E))∗. Since E is separable, there exists {en} ⊂ E\{0} such

that {en} = E. For each n ∈ IN,

Ln(u) := L(uen) ∀u ∈ L1(Ω) = L1(Ω; IR)

is linear and continuous and

‖Ln‖(L1(Ω))
∗ = sup

u∈L1(Ω)\{0}

|L(uen)|
‖u‖L1(Ω)

≤ ‖L‖(L1(Ω;E))∗‖en‖E < ∞. (0.2)

By the Riesz representation in L1(Ω), there exists ven ∈ L∞(Ω) such that

L(uen) =

∫

Ω

ven(ω)u(ω)dµ ∀u ∈ L1(Ω). (0.3)

We have

‖Ln‖(L1(Ω))∗ = ‖ven‖L∞(Ω) ≤ ‖L‖(L1(Ω;E))∗‖en‖E.

Similarly, for each α, β ∈ Q and i, j ∈ IN, there exists a unique vαei+βej
∈ L∞(Ω) such

that

L(u(αei + βej)) =

∫

Ω

vαei+βej
(ω)u(ω)dµ ∀u ∈ L1(Ω).

We have

‖vαei+βej
‖L∞(Ω) ≤ ‖L‖(L1(Ω;E))∗‖αei + βej‖E.

Since vαei+βej
is unique and L is linear,

αvei
(ω) + βvej

(ω) = vαei+βej
(ω) µ− a.e., (0.4)

which implies that

‖αvei
+ βvej

‖L∞(Ω) ≤ ‖L‖(L1(Ω;E))∗‖αei + βej‖E. (0.5)
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Put
Ω̃ =

{
ω ∈ Ω : |αvei

(ω) + βvej
(ω)| ≤ ‖L‖(L1(Ω;E))∗‖αei + βej‖E,

αvei
(ω) + βvej

(ω) = vαei+βej
(ω) ∀i, j ∈ IN, ∀α, β ∈ Q

}
.

From (0.4) and (0.5) it follows that Ω̃ ∈ A and µ(Ω\Ω̃) = 0. Take any e ∈ E. Since {en}
is dense in E, there exists a sequence {enj

} converging to e. For each ω ∈ Ω̃, {venj
(ω)}

is a Cauchy sequence in IR. Hence {venj
(ω)} converges to some ve(ω) ∈ IR. Obviously,

ve(ω) does not depend on the particular sequence {enj
} provided that {enj

} converges to

e. Since ω ∈ Ω̃,

|venj
(ω)| ≤ ‖L‖(L1(Ω;E))∗‖venj

‖E ∀j ∈ IN.

Taking j →∞, we have

|ve(ω)| ≤ ‖L‖(L1(Ω;E))∗‖e‖E ∀ω ∈ Ω̃.

Hence ve ∈ L∞(Ω). Take any e, ẽ ∈ E. Suppose that sequences {enj
} and {eñj

} converge,

respectively, to e and ẽ. We have

|venj
(ω)− veñj

(ω)| ≤ ‖L‖(L1(Ω;E))∗‖enj
− eñj

‖E ∀j ∈ IN, ∀ω ∈ Ω̃.

Letting j →∞, we have

|ve(ω)− vẽ(ω)| ≤ ‖L‖(L1(Ω;E))∗‖e− ẽ‖E ∀ω ∈ Ω̃. (0.6)

This implies that for each ω ∈ Ω̃ the function E 3 e 7→ ve(ω) is continuous. For any

α, β ∈ IR, there exists (αj, βj) ∈ Q × Q such that (αj, βj) → (α, β) as j → ∞. Take

ω ∈ Ω̃. We have

αjvenj
(ω) + βjveñj

(ω) = vαjenj +βjeñj
(ω) ∀j ∈ IN.

Note that the function E 3 e 7→ ve(ω) is continuous, taking j →∞, we have

αve(ω) + βvẽ(ω) = vαe+βẽ(ω).

Hence for each ω ∈ Ω̃ the function E 3 e 7→ ve(ω) is linear and continuous. Replacing n

by nj in (0.3) and then taking j →∞ yields

L(uy) =

∫

Ω

ve(ω)u(ω)dµ ∀u ∈ L1(Ω). (0.7)

Consider the function v : Ω → E∗ defined by

v(ω) : E → IR,

e 7→ ve(ω).
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Since {en} is dense in E and for each ω ∈ Ω̃, v(ω)(·) is linear and continuous on E,

‖v(ω)‖E∗ = sup
n

|〈v(ω), en〉|
‖en‖E

= sup
n

|ven(ω)|
‖en‖E

≤ ‖L‖(L1(Ω;E))∗

for all i ω ∈ Ω̃. For each e ∈ E the mapping Ω 3 ω 7→ 〈v(ω), e〉 = ve(ω) is measurable,

thus v is weak star measurable. We have

‖v‖Lw∞(Ω;E∗) = ess sup
ω

‖v(ω)‖E∗ = ess sup
ω

(
sup

n

|ven(ω)|
‖en‖E

)
≤ ‖L‖(L1(Ω;E))∗ .

By Theorem 2.110(i) and the density of {en} in E, the class S of integrable simple

functions of the form

s =
n∑

i=1

χFi
ciei, (0.8)

where ci ∈ IR v Fi ∈ A (i = 1, ..., n), is dense in L1(Ω; E). Hence

‖L‖(L1(Ω;E))∗ = sup
s∈S\{0}

|L(s)‖
‖s‖L1(Ω;E)

.

Take any s ∈ S of the form (0.8). By (0.3) and Hölder’s inequality,

|L(s)| =
∣∣∣

n∑
i=1

∫
Fi

civei
dµ

∣∣∣ ≤
n∑

i=1

∫
Fi
|ci|‖ei‖E

|vei(ω)|
‖ei‖E

dµ

≤ ∫
Ω

( n∑
i=1

χFi
(ω)|ci|‖ei‖E

)
sup

k

|vek
(ω)|

‖ek‖E
dµ

≤ ‖s‖L1(Ω;E) ess sup
ω

(
sup

k

|vek
(ω)|

‖ek‖E

)
.

Hence

‖L‖(L1(Ω;E))∗ = sup
s∈S\{0}

|L(s)|
‖s‖L1(Ω;E)

≤ ess sup
ω

(
sup

k

|vek
(ω)|

‖ek‖E

)
= ‖v‖Lw∞(Ω;E∗),

and thus

‖L‖(L1(Ω;E))∗ = ‖v‖Lw∞(Ω;E∗).

Since for each ω ∈ Ω̃ the mapping E 3 e 7→ ve(ω) is linear,

L(s) =
n∑

i=1

∫
Fi

civei
(ω)dµ =

n∑
i=1

∫
Fi

vciei
(ω)dµ =

n∑
i=1

∫
Fi

vs(ω)(ω)dµ

=
∫
Ω

vs(ω)(ω)dµ =
∫
Ω

v(ω)(s(ω))dµ =
∫
Ω
〈v(ω), s(ω)〉dµ.
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Take any u ∈ L1(Ω; E). Then there exists {sj} ⊂ S such that

lim
j→∞

‖sj − u‖L1(Ω;E) = 0.

We have

L(u) = lim
j→∞

L(sj) = lim
j→∞

∫

Ω

vsj(ω)(ω)dµ.

From (0.6) it follows that

|vsj(ω)(ω)− vu(ω)(ω)| ≤ ‖L‖(L1(Ω;E))∗‖sj(ω)− u(ω)‖E

for all ω ∈ Ω̃. Hence

L(u) =

∫

Ω

vu(ω)(ω)dµ =

∫

Ω

〈v(ω), u(ω)〉dµ,

and (i) is proved.

(ii) Let v ∈ Lw
∞(Ω; E∗) and L is the functional of the form (0.1). We need to prove

that L is linear and continuous on L1(Ω; E). Indeed, since v ∈ Lw
∞(Ω; E∗), there exists

M > 0 such tha ‖v(ω)‖E∗ ≤ M µ− a.e.. Hence

|L(u)| =
∣∣∣
∫

Ω
〈v(ω), u(ω)〉dµ

∣∣∣ ≤
∫

Ω
|〈v(ω), u(ω)〉|dµ

≤ ∫
Ω
‖v(ω)‖E∗‖u(ω)‖Edµ ≤ M‖u‖

for all u ∈ L(Ω; E). Note that Ω 3 ω 7→ 〈v(ω), u(ω)〉 is measurable and L is linear. Hence

L is linear and continuous. The proof is complete. 2
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