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§0. Introduction

Let % be a k-complete ultrafilter on the measurable cardinal .
Scott [13] proved V # L by using ¥ to take the ultrapower of V.
Gaifman [2] considered iterated ultrapowers of V by U to con-
clude even stronger results; for example, that L N #(w) is count-
able. In this paper we discuss some new applications of iterated
ultra-powers.

In § §1-4, we develop a straightforward generalization of Gaif-
man’s method which is needed fo: some of the resultsin §§6—11.
Namely, we consider iterated ulirapowers of a sub-model, M, of
the universe by an ultrafilter which need not be in M. §5 discusses
some known results within our present framework.

In §6, we investigate the universe constructed from a normal
ultrafilter on the measurable cardinal k, and show that in this uni-
verse the normal ultrafilter is unique. In § 7, we obtain a character-
ization of arbitrary k-complete free ultrafilters in this universe, and
in §8, we show that this universe has some pathological model-
theoretic properties.

89 uses methods of §6 to discuss the problem of GCH at a
measurable cardinal. We show that in the theory
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ZFC + 3k [k measurable and 2% > k]
onz can prove the consistency of
ZFC + 3« [k measurable] .

§ 10 shows that the assumption of the existence of a strongly
compact cardinal is more powerful than had been realized. We use
an idea of Vopénka and Hrbadek [19] to prove from this assump-
tion the existence of inner models with many measurable cardinals.

§ 11 uses methods developed in § 10 to show that if k carnes a
k*-saturated k-complete non-irivial ideal, it is measurable in some
inner model.

We shall use without comment standard set-theoretical notation
and results. For less well-known items, we often refer the reader to
the survey by Mathias [9].

Technically speaking, the development of this paper is done
within Morse-Kelley set theory (see the appendix to Kelley [6]),
since we often talk about arbitrary classes being models for ZFC.
However, by the usual metamathematical circumlocutiors, all of
the results can be reformulated within ZFC. We shall comment
further on this in the body of the paper in places where the refor-
mulation is not immediately apparent.

Most of §§1—5 and §10, and parts of §§6 and 9 appeared in
the author’s doctoral dissertation, and we express here our grati-
tude to Professor Dana Scott for supervising this work. We are also
indebted to Ronald Jensen, H.Jerome Keisler, Georg Kreisel,
Adrian Mathias, Karel Prikry, and Robert Solovay for helpful dis-
cussions relating to the material here.

We wish to thank the National Science Foundation for financial
support, both through a NSF Graduate Fellowship, and through
grants GP 7655 and GP 8569. Also, some of the research for this
paper was supported by the Wisconsin Alumni Research Founda-
tion.
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§ 1. M-uitrafilters

To avoid excessive repetition, in §§1—4 we use ihe following
conventions: M will be a transitive model of ZFC (possibly a prop-
er class), p an ordinal in M, and ¥ an M-ultrafilter on p, where

1.1. Definition. U is an M-ultrafilier on p iff p > w and
(i) W is a proper subset of P(p) N M containing no singletons;
@ vx,yxCyePlpyNnMaxeU~yeYl,;
(i) VxeP)NM[{xeUvp—-—xeU,.
(iv) If n < p, the sequence (xE E<neM, and each X, €U, then
N{x :E<n}ew;
(v) If the sequence (x, E< pYeM, then {E:xE €U} eM.

Note that we do not assume U ¢ M. Standard arguments show
that p must be weakly compact in M. Concitions (i)— (iv) alone
imply that p is regular in M, but, as we shall see in § 10, they do
not exclude p from being a successor cardinal in M.

In the case that M =V, p is a measurable cardinal and U is a p-
complete free ultrafilter on p. Scott [13] used U to take an ulira-
power of the universe; he showed that since % is countably comn-
plete, the ultrapower is well-founded. Thus, one can set Ny =V,
N, = the transitive class isomorphic to V? [, and igy the usual
elementary embedding from N0 into N ;- Now ig; Q0 is,in N 1 an
ultrafilter on iy (), so, working within NV 1> We can repeat the pro-
cess and define an ultrapower N, of N , and an elementary embed-
ding i, :N, ~ N, . Clearly, this may b= iterated through any f'nite
number of steps. Gaifman [2] shows now in fact this process can
be continued through the transfinite. He thus obtained transitive
classes, N, for all ordinals «, and elementary embeddings
igp Ny~ Nﬁ for a < B, where for cach a, N, .1 can be defined
within N, as the ultrapower of N, by iy, Q).

In §§2—4, we show that Gaifman’s construction can be carried
out for M, even when U ¢ M. N, will equal M. Roughly, N, will be
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defined as the collection of equivalence classes of functions in M
from p to M, and igy Will be as before. Condition (v) of Definition
1.1 enables us to define an ultrafilter, ¥V, on 99(1'01 PpPHNN 1
Subsets in N, of io; () are equivalence classes of functions, /in M
from p to P(p) N M, put the equivalence class of fin ) jff
{£:1(8) € U} €U; note that (v) says that {£:f(£) e U} e M. We
could now take the ultrapower of N, by %) to form N,, and so
forth.

For technical reasons, it will be convenient to carry out as much
of the construction as is possible within M. We thus take a slightly
different tack. Elements of N, are usually determined by functions
in N; from iy, (p) to N, and these are in turn determined by func-
tions from p to M?. But MP® can be identified with MP*® so we
can considger V, to be made up of equivalence classes of functions
from p X p into M. In general, N, will be made up of equivalence
classes of functions from p® into M. The formal development of
this will be carried out in the next section, and related to the ori-
ginal idea by Theorem 2.11.

Many of the results of this chapter couid be obtained for M an
arbitrary (not well-founded) model of ZFC and % any ultrafilter
on 2(p) N M satisfying (v) of Definition 1.1. Furihermore, follow-
ing G2ifman, Ny could he defined for an arbitrary linear ordering
R. However, the development here will suffice for the applications
in §§5-11.

Our treatment of itcrated ultrapowers is very similar to a miethod
developed independentiy by Keisler to handle iterated ultrapowers
in model theory (see Chang-Keisler [1]).

§ 2. Definition of the iterated ultrapower

2.1. Definition
(i) For each a,
Fn,(p) = {fe V**:3F C o [Ffinite A Vs, tep®[s t F = ¢} F >

> f)=f(Oll};
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(ii) For each a,
PoP)={x e P(p*):IF C a [F finite A

AVs,tep®[stF=¢ttF->[sex<—texl]l]};

(iii) /n (i) and (ii), F is called a support of f, x reSpectively

(ivyIfxe 9’a+ﬁ(p) and f e Fng, 5(p),and s € p%, define X =
{tepb:stex}and set fio(8) = f(sY) for t € pB. For finite B,
abbreviate x (g, ..., gg_1» BY X (g0, ..., tg5-1)-

Here, st is the concatenation of the sequences s, . Note that for
H
n finite, 2,(p) = P(p"), and Fr, (p) = V» ‘

2.2. Definition. Let j be a 1--1 order preserving map from « into 8.
(i) jf;‘ is the function from p# to p® defined by (j;“(s))('y) =s(j(yD:
(i1) j,g will be used for the function either from Fny(p) to Fnﬁ(p)
or from Pq(p) to Pg(p), where (j.5(fINS) = f(i5(5)) or jug(xy=
{sepf:jz(s)ex};
(iii) g = jx5. Where j is the identity 01 «.

For the rest of §§2—4, j wili always denote a 1—1 order pre-
serving function on ordinals. Any f € Fnﬁ(p)(x € P5(p)), with cup-
port F, equals j*ﬁ(g)(;'*ﬂ_(y)) for a suitableg e an )y e 2,(p)
and j:n - 3, where n = F. We use the subscript, 3, since § cannot be
determined from j, but this will be dropped if no confusion could
result.

2.3. Definition ,
(i) Fny (M, p) is the set of all f € Fny(p) such that f=Jj.o(g) for
some g € Fn, (p) N M, where n is finite and j:n - a;
(i1) Py (M, p) is the set of all x € Palp) such that x = j,o(y) for
somey € P,(p) N M, where n is finite and j:n - «.

Note that for n finite, @, (M, p) = P(p") N M, and Fn, (M, p)=
ve" A M.

Iff,g e Fng(M, p), then {s e p®:f(s)=g(s)} and {s € p®: f(5) €
g(s) } are in Py (M, p). As indicated in §1, Fn, (M, p) will become
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N, upon dividing out by a suitabie ultrafilter, to be defined below.
Since p? = {0}, Fny(M, p) can be identified with M.

Condition (v) of Definition 1.1 implies trivially that if the
double sequence, (Xgn £, n<preM, then {<&,n):x,, € U} e M.
With this remark in mind,

2.4. Definition. We define inductively U, € P, (M, p), and show
inductively that if (x,:m < p)is asequence in M, then
{nix, U, }eM.
() Uy = {{0}} (note Po(M, p)={0, {0}}); Uy =U;
(ii) Assuming the inductive hypothesis for ‘U, , define
x €WUpyy iff {E:xy €U, } €U Then if ix, :n< pleM,
{n, £yixpy €Ut e M so {n:x, €Uy } M.

We can easily check that each U, satisfies conditions (i)—(v) of
Definition 1.1 (substiti:ting %,, for U and p" for p). Also, by in-
duction,

{bgr o &, )8 < .. <E,_<pleU, .

The following lemma is proved by unraveling the inductive
Definition 2.4. Thus, for example, x € U, iff

{8 {8 {8y i xgpey) €UY €U €U € L.

2.5. Lemma
(i) Letj:m—n, x€ P, (M,p). Then x € U, iffj.,(x) €U,;
(ii) Let x € Py (M, p). Then x € U1, iff{s€ 0™ :x €U, } €
U s

The definition of j, could, of course, have been given for j not
order preserving, but Lemma 2.5 (i) would not hold, since

{(Egs£1>:£0 < £1 <p} €U, ,
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ut
{<£O,El>1£1 < Eo <p} ¢cuz .

).6. Definition. Define U, € P, (M, p) as follows: If x € P (M, p)
md x = j,(y) for some y in some P,(M, p)and j:n— a, then

c €Uy iffy €U, .
Lemma 2.5 (i) shows this definition t¢ be meaningful and estab-
ishes part (i) of the following; similarly (ii) follows from 2.5 (ii).

2.7. Lemma
(i) Letj:a— f, x € Py(M, p). Then x € U, iff jsp(x) €Ug;
(ii) Let x € Py z(M, p). Then x € U p iff {s€p%:x5 €U} €Uy

Now that we have U, we can use it to divide out Fny(M, p).
Thus,

2.8. Definition
(i) If f, g € Fna (M, p),

f=yeiff {sep®:f(s)=g(s)} €U, .
[f1,=1{g:8~,f A Yhlh~, f~ rank (h) 2 rank (g)]}.

The subscript, a, will often be dropped;
(i) Uity (M, W) is the pair (N, Ey), where

Ny ={lfly:feFn, M, p)},
and E, is the relation on N, defined by:

[F1ELlgl iff {sep®:f(s)eg(s)} eUy ;
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(iii) In the case that E, is well-founded, we shall always identify
Ny, with the transitive class isomorphic to (Ny, E,);

(iv) ff jroa > B, define jug: Ny > Ng by jug([f1a) = Lsg(N]4.
lag = Jxp Where | is the identity on «.

Note that each {g:g ~ f} is a proper class if M is, and in (i) we
employed Scott’s trick for handling a class of equivalence classes.
Even in the case that E, is not well-founded, we shall often

abuse notation and say “N,” when we mean “(Ng, E,)”, or
“Ulty (M, %)’ when we mean “N,”. In §§1-4, N, will be under-
stood to have been constructed from the ultrafilter W% and model
M under discussion. By our conventions, N, is always M.

In later sections, we shall sometimes simultaneously consider
more than one ultrafilter on p. In that case, we shall write :gﬁ for
the embedding defined using thie ultrafilter .

By the usual arguments with ultrapowers, using the fact that M
satisfies the axiom of choice, we have

2.9. Lemma
(i) N, satisfies ZFC;
(it) For each formula v(vy, ..., v,_1),

SN f e 1, D)
iff {s € p®%: @M (fo(5), ... [_ 1)} €Uy ;

(iii) Each j, is an elementary embedding,
(iv) If B is a limit ordinal, N, is isomorphic to the dis2ct limit of
the systems N, (a < () and the embeddings Iy (@ <y <f).

Gaifman [2] first defines N, for n € w, and then obtains N, as
a direct limit of these, using the directed system {F:FC a A
A F finite } and embeddings j, for inclusions, j.

Finally, we connect our construction with the original idea (ex-
pressed in § 1) of iterating ultrapowers. igo(p) is an ordinal of Ny
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and there is a natrual way of defining an ultrafilter on P(iy,(p)) N
N Ny.

2.10. Definition
UD = (£, € PV 0)): (s € P2 f(s) e UY €Uy} -

We can easily check that the definition is independent of the
choice of f from [f1],, and, by Lemma 2.7 (ii),

(f1, eWW iff {s(E):sep® AEef(s)Np} €Uy -

2.11. Theorem. Suppose N, is well-founded.

(i) U s an Ny-ultrafilter on iy, (p);

(ii) For any 8, there is an isomorphism €np from Nom3 onto

Ulty (N, U) such that egp © iy gip = ig’é), where ié%‘) is the
embedding: Ny ~ Ultg(Ny, U®)) defined from U
Proof of (ii). Define €qp S follows: Let fe Fna,,ﬁ(fvl, p) with

support {Yg, ..., Yp_1-@ + 8y, .., + 8,1}, where y5 < ... <
<Yy <a,and by < ...< 8, <B. f=j.f"), where
[ eFng,,, (M,p), jra+m->a+f, jisthe identity on «, and
jlk) = a + 6, foreach k <m. Let g e Fny (M, p), where for each
S € pg, g(s) =[5 € Fn, (Ji'/lv, p). Then {gly =h' € Fn,, (Ny,ipa(p)).
Let j :m~ {3 be such that j(k) =8, foreach k< m. Leth =
T.(n') € Fng(Ng, ioq(0)). Then set eqg([ flge) = 11,.

Note that the isomorphism is with Ulty(N,, U®), not
Ultjgo () Na, UD). If we had defined the construction for non-
well-founded models, then we would not have needed to assume
that N, is well-founded.
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§3. Weli-founded ultrapowers

We now prove some additional theorems for N, weil-founded.
Of course, since iy, is 11, if' N, is well-founded asid o < § then
N, is also well-founded.

3.1. Theorem. Suppose Ny is well-founded and o < §.
(1) ]fE < i()a(p) then i(yg(g) = E;

(i) iqp(ion(0)) = igg(P) > igg(p);

(iii) If B is a limit ordinal, igg(p) = sup {ig,(p): v < B8}:

(iv) Pliga(p)) N Ny = Pliga(p)) N N,

Proof

(i) By Theorem 2.11, we can assume a = 0. Now prove (i) by in-
duction on f, using Theorem 2.11 for successor stages :nd Lemma
2.9 (iv) for limit stages.

(ii) Again we may take a = 0, and, since iy,(p) 2 ig (), take
g = 1. If id is the identity function on p then & < [id] | < iy, (p) for
each £ < p, so p < [id] | < ig (p).

(iii) Suppose & <ig4(p). & =i z(n) for some y < fand n < ig. (P
But then (i) implies £ = n, s0 £ < i, (P).

(iv) Again we may take a =0, 8= i. Now use condition (v) of
Definition 1.1i.

We remark that if NV, is weli-founded, then standard arguments
show (using Theorem 3.1 (iv) fora= 0, 3= 1) that p is I'I,II indc-
scribable in M for all #. However, it is also easy to check that if p is
weakly compact in M and P(p) N M is countable, then there is an
M-ultyafilter on p. Thus, N; need not in general be well-founded.

If o < 8 and N, is well-founded, we can ask what function in
Fnﬁ(M , p) has equivalence class iy (p). Of course, this question is
meaningless if V; is not well-founded.

3.2. Lemma. Suppose N is well-founded, and « < B. Let
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feFny (M, p) be such that [f]1, = p. Define j.1 - B oy j(0) = a.
Then [j.g()] 5 = iga(P)-

Proof. By Theorem 3.1 (i) we may assume f=a + 1.

If [ (N ge1 = [h] o <ipalp®, then, since [iy ,+1(M)]gey = LAy,
{s(Ey:5€p® Af(E)=h(s)} € Wy+1, SO for some s, {£:f(§) =
h(s)} €U, which is impossible.

But suppose {/: (Nl g+1 > iga(®) = [8lg+1- Then
{sep®: {E:f(5)> g(sKEN} €U} € Uy .

Since [ f1, = p, there is a h € T ny (M, p) with range (h) C psuch
that

{sepa:{Q:h(s)=g(sT£))} €U} cU,

Then ig (p) > [h] o = lig a+1 (M) g+1 = [8)q+ 1 » @ contradiction.
We can use this to get a result on indiscernitles.

2.3. Lemma. If 9(vy: ..., v,) is any formula of set theory, a < v, <
<P <<y, 1<8, aS863<86,<..<3,_; <[, aeNy and
NB is well-founded, then N satisfies

tp(io'y(}(p)? ety iO'yn__ 1 (P)> laﬁ(a)) >
« ¢(i050 (9): sy i(){’ﬂ"l(p)’ iaﬁ(a)) .

Proof. Define j:a+n—> by j(§) = £ forE < aandj(a+ k) =1, for
k<n. jugligaen(@) =igg(a)). By Lemma 3.2, j.;(ig o4z (P)) =
0y (p). By Lemma 2.9 (iii), Nﬁ satisfies p(ig,,(Q), ..., 0yy..1(P);

ing(a)) iff Ny, satisties @(igg(P), ... ip qan - 100 iy q+n (@)). Doing
the same with the §, gives the lemma.

3.4. Theorem. If N is well-founded, § < w'™, and £ < p, then M
satisfies [p > (B) 5+ 1.
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Proof. Suppose P=(P,), ., € M, where P, : [p]" - &. By Lemma
3.3, {ip,(2):7 < B} is a homogeneous set for igg(P). Since

B< ) = w‘lNﬁ), enargument due to Silver [15] and Vaught shows
that igg(P) has a homegeneous set of order type §in Ny. i,(8) = B,
so P has a homogeneous set of type 8 in M.

The next two theorems give some sufficient conditions for N,
to be well-founded for all a. The first is essentially due to Gaifman
for the case M = V. The second was done independently by Keisler
in a slightly different context (see Chang-Keisler [1]).

3.5. Theorem. If N, is well-founded for ail « < w,, it is well-
founded for all a.

Proof. If N, is not well-founded, let
e [fﬂ ]aEa see Ea[fl ](XEQ[fO]a b
where f,, € Fny,(M, p) with support F,. Let G =U_ F,. G is of

some order type f < w;. If j is the 11 order preserving map from
B onto G, then there are g, € Fny(M, p) such that j.(g,) = f, . Then

cse [gn ]ﬁEﬂ e Eﬂ [gl ]6E6 [g(‘r]ﬁ 3
SO NI, is not well-founded.

3.6. Theorem. If arbitrary countable intersections of elements of U
are non-empty, then N, is well-founded for all a.

Proof. Suppose
e [f" ]aEa see Ea[f] ]aEa[fO]& *

where f,, € Fn,(M, p).
Let x, = {s € p*: f,,41(5) € f,,(s) }. We shall derive a contradiction
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by finding an s € N {x, : n < w}, since this would mean

o f8) €. €fi(8) € f(s).

We define s inductively, assuming inductively that for each »,
Xp(sty) € Ug— - 1f s Ty is defined and sarisfies this, choose s(y) in
Npeo (E<pix, ((sryf%?e)) € WUy (4+1)) - It is easy to verify that

SE€EN, < Xp- )

Note that the assumption of Theorem 3.6 implies that cf(p) > w
and that arbitrary cocuntable intersections of elements of U are un-
countable. By Theorem 3.1 (iii), cf(iy ,(p)) = w, so that Theorerm
2.11 (i) shows the condition of Theorem 3.6 to be not necessary.

Finally, we give a bound on the size of ipg(n), and of ioﬁ(ﬁ) for
other 6.

3.7. Theorem. If N, is well-founded and ¥ 2 1, then
g, (P) < (2P0 3" .

Proof. This follows from the fact that the cardinai on the right is
greater than the number of elements in Fn.,(M , p) with range p.

3.8. Corollary. If B is cny cardinal larger thaqz 2°M) Gnd Nﬁ is well-
founded, then iga(p) = B.

Proof. Use Theorems 3.1 (iii) and 3.7.
Similarly,

3.9. Theorem. Suppos2 ¥ = 1 and N, is well-founded. Then
(i) For any 8, ig,(8) < ((8#@WD)" - J)*;
(ii} If 6 is a limit ordiral and cfM)(8) + p, then iy, (8) =
sup {ip,(§):§<d};
(iii) If cEM)(8) # p, & is a cardinal > v, and for all £ < 5,
(§pUDY" < 8, then i, (8) = 5.
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§ 4. Normal ultrafilters

4.1. Definition. U is normal iff whenever (x, E< preM, each
xg €W, and x, =N {x,:n< &} forall limit§, then {E:kex,}el

As in the usual theory of normal ultrafilters,

4.2. Lemma. U is normal iff N| has a pth ordinal and this ordinal
is [id] |, where id is the identity function on p.

Also, we get normal ultrafilters from ordinary ones by

4.3. Lemma. Suppose N, has a pth ordinal, [f1, where f.p > p.
Define Vby x e Viffx e P(p)N Mand [f1E iy (x)
(iff x € P(P)N Mand f~1(x) € W). Then
(i) V is a normal M-ultrafilter on p;
(ii) If arbitrary countable intersections of elements of WU cre non-
empty, the same is true for<Y;
(iii) If Uis normal, VY =Y,
(iv) If Ult, (M, ) is well-founded, so is Ulty(M, V).

Proof. The proofs of (i)--{iii) are standard. For (iv), define an ems
bedding, e: Fny,(M, p) » Fny (M, p) by (e(g))(s) = g(fos). This de-
fines an embedding: Ult (M, V) - Ult,(M,U), so the existence of
a descending e-chain in Ult (M, V) would imply the existence of
one in Ult (M, U).

To go along with Theorem 2.11 we have

4.4, Lemma. Suppose WU is normal and N, is well-founded. Then
U js normal.

Proof. Use Lemma 4.2, along with Lemma 3.2 and the proof of
Theorem 2.11.
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The next lemma will show that Q(«) can be defined from a
single countable set, {ig,(p):n < w}. This idea will be very useful
in later sections.

4.5. Lemma. Suppose W is normal, a a limit ordinal, and N, is well-
founded. The for all x € P(ige(p)) N Ny,

x e U® jff < a [{iov(p):BS y<a}Cx].

Proof. It is clearly only necessary to prove the implication from
left to right. Let x e U(®). x =iz, (y) for some < « and y € UW.
Then for all ¥ such that < v < a, i;, () € UM, s0 that

io-,(P) € ip,,ﬂ()’) C x.

Ultrafilters give rise to elementary embeddings. Conversely, we
can get ultrafilters from elementary embeddings. Thus,

4.6. Lemma. Let N be a transitive model such that P(p) " N =
P(p) N M, and suppose i is an elementary embedding from M into
N such that i{p) > p and i is the identity on p. Then {x ¢ PU(¢):
:p €i(x)} is a normal M-ultrafilter on p.

8§ £. Measurable cardinals

A special case of the situation discussed in §§1—4 occurs when
U is an M-ultrafilter on p and U is actually a member of M, i.e., ¢
is a measurable cardinal in M. Now Ult (M, U) can, for a € M, b
constructed completely within M, and is essentially the same as
O%M in Gaifman [2]. Theorem 3.6 (relativized to M) shows tha-
Ulto(M,U) is - :ll-founded, for a € M, and hence, by Theorem 3.5,
for all « when w, C M.

The only non-trivial part of the next lemma is due to Scott.

5.1. Lemma. Let U be an M-ultrafilte. on p such that Ue M,
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a < B e M. Then (using the notation of Lefinition 2.8)
(i) U =iy, (U) (see Definition 2.10);

(ii) (Scott) U(®) ¢ Ny, 1

(iii) Ny ©€ Ny and Ny # N,

Proof. (i) follows immediately from the definition of U(®) By
Theorem 2.11, we need only prove (ii) and (iii) for a = 0. NB € N
= M since the definition of N, is made completely within M. That
Nﬁ. # Ny follows from (ii).

Suppose U e N, . By Theorem 3.1, Pp) N M = P(p) " N,. Fur-
thermore, there is a map from p® onto iy (0 definable from
P(p) N M andU. Thus, N, satisfies [ig;(p) < (2°)"]. But p < ig(p)
and iy (p) is inaccessible in Ny, a contradiction.

When M =V, a V-ultrafilter on p is the same as a p-complete free
ultrafilter on p, and a normal V-ultrafilter on p is the same as a
normal ultrafilter on p in the usual sense.

Many of the results of this paper deal with the universe con-
structed from a normal ultrafilier on a measurable cardinal, and
we shall define now our notation regarding this universe. These
results usually have rather trivial generalizations to the universe
constructed from a sequence of normal ultrafilters on a sequence
of measurable cardinals (see e.g. [7]). We shall not bother with
these generalizations here. However, for § 10 we shall need some
of the basi: notation for construction from such sequences, so we
shall define our notatior: in suitable generality. To simplify nota-
tion, we shall often appl y=«rms and formulas to sequences coor-
dinate-wise. Thus if @ is the sequence (p“ u < m), then P(@) =
(@(p“) M < 7 cS P(;3 ) means that cS is d sequence,

(S, u<m, and Vu<wid, < ?(p“)] cSnx—(cS Nx:u< ),
etcz

The following definition is a specialization of a more general
notion of construction discovered by Lévy and others:
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5.2. Defmmon Let 3c ?(3), 3 a sequeiice of length m.
() Lo(31 =
(i) L, [cS] =y {L 31: :B< «} if « is a limit ordinal;
(1) Ly [cS] = {a C Ly [6] a is first order definabie from ele-
ments of L, cSl in the relational system,

(La[gS];e,{f.n,pu):u<7rﬁ o p“< TNal,
{(u,x):u< rNaAxe cS“n La[g.}})};
(iv) L[3] =u {La[gl :a is an ordinal }.

3 need not be in L[S]. For example, ifs = @(3) and 3 €L,
then L[ S] = L. However, we have

5.3. _I;emma_;lfg _C__?(B), . .
i s n Lid] iL[d]_;andp e L[3];

(i) L[J] =L[d N L[d1T;

(iii) L[d] satisfies ZFC;

(iv) L[cS] has a well-ordering definable in L[cS] from 3N L[cS] ;

(v) If M is a transitive model for ZF containing all the ordinals,
andg NMeM, then L[cj] - M

(vi) If p are measurable and 3 are p complete free ultraﬁlters on
p then, in LIS i, p are measurable and 3 0 L[d l are p-com—
plcﬁe free ultrafilters on p. If QS are normal, so are 3 N L[L,&] in
L[J].

I'1 (iv), the definable well-ordering is the analog of the usual
;'ell-o_gdraring for L, and will be called *““the order of construction
fromd”.
N The original intent of Definitiorl 5.2 was that S be ultr_f.ffilters on
p. Howevir, it ‘may tu_l;n out that ¢ are merely filters on g, but
thatin L[S}, & N L[J] are ultrafilters.
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5.4, Defimtlon g is a strong sequence of filters on p 0 iff 8 are fil-
tgrs on p and, in addition, in L[%] zare measurable and
30 LIF] are normal ultrafilters on p.

There are two natural candidates for being strong filters:

5.5. Definition
(i) If cf(p) > w, the closed unbounded filter on p is

{x:xC pA3dylyCx Ayisaclosed,

unbounded subset of p] };
(i) If p is a limit cardinal, the cardinal filter on p is

{x:xCpn 3£<an['£}<n<pAna€ardinaé
- nexl}.

Note that if p is a limit cardiral and cf(p) > w, the closed un-
bounded filter on p is an extensicn of the cardinal filter.

We do not need the following theorem for future work, but cite
it to show what is possible.

5.6. Theorem (Solovay). Suppose the class of measurable cardinals
is of order type at least m + 1. Let 3 be an increasing sequence of
cardinals of length m such that it po >mand p, > sup{p,:v<pu} for
allu<m. Let 5} be filters on p o such that for each p < w, either

(i) cf (p,)> w and 8‘ is the closed unbounded filter on p,. or
(ii) p, isa limit cardmal and % is the cardmal filteron p,,.
Then % is a strong sequence of fllters on p

In Solovay’s proof, the 7 + 1 measurable cardinals are used to
construct 7 + 1 sets of indiscernibies for the uriverse constructed
from normal ultrafilters on the first # measurable cardinals. An
alternate proof can be given using iterated ultrapowers.
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For the rest of this paper, except in § 10, we shall restrict our-
selves to construction from sequences of iength 1. We shall write,
e.g., LIS] for L{{(J)].

The universe constracted from a normal ultrafilter on a meas-
urable cardinal is in many ways analogous to L. For example,

5.7. Theorem (Silver [ 16]). Suppose p is measurable, U a normal
ultrafilter on p, and V = L{U) . Then GCH hoids. Furthermore, if
a2 pandx C a, then x € L U] for some £ < o*.

Silver also shows that there is a A; well-ordering of the conti-
nuum in L{U] . Silver used methods of Rowbottom to get his re-
sults, although alternate proofs can be constructed using iterated
ultrapowers.

We shall need an analog of Theorem 5.6 for the case where we
only know that there is 1 measurable cardinal of perhaps 1 meas-
urable cardinal in some sub-model of the universe.

5.8. Theorem. Suppose M is a transitive model for ZFC containing
all the ordinals, U € M is a normal M-ultrafilter on p, M = L{U],
and o is a cardinal greater than p*®). Let & be either the closed
unbounded filter on o (assuming cf(0) > w) or the cardinal filter
on o (essuming o is a limit cardinai). Then

(i) & is a strong filter on o.

(i) LIF] = Ult, (M, W), iy,(p) =0, and iy, (U) = F N LIF].

Proof. We start by proving (ii). That iy, (p) = o follows from Corcl-
lary 3.8 and Theorem 5 7.

If x € i5,(U), Lemmas 4.5 and 5.1 (i) imply that x ¢ 5 N
N Ult, (M, U), 50 iy, (U= F M Ult, (M, W). Then Ult, (M, ) =
Llig, ()] = L{F]. This also establishes (i).

This result is best possible in the sense that if V = L{9], it can
be shown that (i) is false whenever 0 < p*.
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5.9. Theorem. Suppose M, U, pand MU', p' both satisfy the
hypothesis of Theorem 5.8 for M, U, p Then

Pnp)YNM=PpNp)r M,

Proof. By Theorem 5.8 (ii), these are both equal to 2(p N p) N
N L{$] for a suitable .

We shall now show that p is the only measurable cardinal in M.
The proof is essentially the same as Sco-t’s proof [13] that there
are no measurable cardinals in L. An ea1lier proof was given by
Solovay using methods of Theorem 5.6.

5.10. Leinma. Let ¢ and p be measurable, 6 # p,V a o-complcte
free ultrafilter on o, U a normal ultrafilter on p. Let Ny =
Ulty(V, V), and iy, : V ~ Ny as in Definition 2.8. Then i (p)=p
and igy (U) =UN N, .

Proof. The theorem is trivial if 0 > p, so assume 0 < p.

That iy; (p) = p follows from Theorem 3.9 (iii).

Leta={8:0 << pn &isinaccessible}. 3.9 (iii) also implies
that iy; (6) = 6 for each & € a. Furthermore, a € U since 9 is normal.

Now suppose x € ig; (U). i.et x = [f], where fe Fn, (¢) and
range(f) C U. Letb=nN {/(§):£<0}. beYUand iy (b) & x. Also,
bnaeWUand b N aC ig (b). Thusx € U.

5.11. Thecrem. Suppose M, U, p satisfy the hypotkesis of Theorem
5.8. Then 9 is the only measurable cardinal in M.

Proof. Suppose ¥ € M is an M-ultrafilter on ¢, where ¢ # p. Let
Ny =Ult (M, D).

By Lemma 5.10, ig; (W) =UN Ny, so N; =M, contradicting
Lemma 5.1 (ii).
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§6. Structure of L[U]

It is well-known that L is the unique transitive model for ZFC +
+ V = L containing all the ordinals. In this section we develop ana-
logous theorems for the universe constructed from a normal ultra-
filter on a measurable cardinal.

6.1. Definition. ZFML is the theory ZFC + 3k, U [k is measurable
A U is a normal ultrafilter on k A V = L[U]].

6.2. Definition. For any ordinal p, a p-model is a transitive model,
M, for ZFML, such that M contains all the ordinals and p is the
measurable cardinal in M. A constructing ultrafilter for M is a

WU e M such that M = LIU] and M = [Uis a normal ultrafilter on

pl.

Note that by Theorem 5.11, p is the only measurable cardinal in
M. We shall show (Corollary 6.5) that in M, p has exactly one nor-
mal ltrafilter, but we have not yet ruled out the possibility that
there are more than one constructing ultrafilter, or that there is a
Ve M such that

M & [Vis a normal ultrafilter on p] ,

but L{V] is a proper subset of M.

We shall eventually obtain a complete description of all p-
models, assuming any exist. We remark here that the discussion can
be formulated entirely within ZFC, even though we are talking
about arbitrary class models for ZFML. This formulation woulid
talk about sets, U, such that Y N L[] is, in L[U], a normal ultra-
filter. Note that L[] always satisfies ZFC. ‘

Our main tool is the following lemma.

6.3. Lemma. Let M be any p-model, U a constructing ultrafilter for
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M. Let Y, < 8) be an increasing sequence of ordinals such that
Yo > pand & 2 p* M) Let 0 be any cardinal greater than all the vy,,.
Then every element of P(p) N M is definable in (Ly[U] ; €,U) from
a finite number of ordinals in {7y, :p < d}u(p+1).

Proof. Let A be the set of elements so definable. Then {'yg: u> 6}
U (p + 1) S A. Furthermore, L, [%] has a well-ordering definable
from Y, so A is an elementary subsystem of L,[U]. Hence, 4 is
isemorphic to some L[], where § 2 § 2 p* ), By Silver’s Theo-
rem 5.7, Lﬁ[%] , and hence A4, contains all elements of 2{p) N M.

6.4. Theorem. Let M and N both be p-models, ¥ a constructing
ultrafilter for M, Va constructing uvltrafilter for N. Then U =Y,
and hence M = N,

Proof. Let A\ be a regular cardinal > p*, ¥ the closed unbounded
filter on A. By Theorem 5.8, L[¥] = Ult, (M, %) = Ult, (W, V),
and ig, (U) = ig, (V)= FN L[F].

Let Y < 0) be an increasing sequence of ordinals such that
Yo > Aand & 2 p*, and let 0 be a cardinal greater than all the Vu-
Furthermore, assume the Y, and 0 are chosen so as to be fixed by
the embeddings igi and ig’}\; this is possible by Theorem 3.9 (iii).

We shall show % € Y. The reverse inclusion is proved in exactly
the same manner.

Suppose x € U. By Lemma 6.3, there is a formula ¢ (with sym-
tols for =, €, and U), and ordinals 0y, ..., 4,, < pand u¢, ..., u, < 8,
such that

x ={E< p:(L,[UI; €, U
# ‘P(z, T’1$ cees nmapa 7}419 s 'y“n)} .

Let

y={E<pL,[V]; e,
F: ‘P(E, nls sesy nm’p) ’Yyl) ey 'Yy,,)} .
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Now x e Uiff i (x) e F,and y eV iff ig) (y) e F. Butigy (x) =
ioq’,\ (y), since they both equal

(£ <AL [F) e, F N LIFD
'= ‘P(E: 771, rery ﬂm, )\: 'Yul, ety 'Y[.Ln)} .

Hence y e V. Also
x=ip )N p=ig (MNp=y,
SO x € Y.

6.5. Coroilary. If V = L[U], wherel is a normal ultrafilter on K,
then U is the only normal ultrafilter on K.

Proof. Let <V be any normal ultrafilter on k. Then L[V} is a k-
model with constructing ultrafiltery N L[V]. By Theorem 6.4,
YN L[Y] =U, soV=U.

This corollary shows that it is consistent that a measurable car-
dinal have a unique normal ultrafilter. It is also consistent that a
measurable vardinal have more than one normal ultrafilter. For
example, Solovay has shown that if k is super-compact, k has at
least (2¢)" distinct normal ulitrafilters (see [18]). Also, Jeffrey
Paris { 10] and the author [ 7] have shown by a Cohen-style inde-
pendence proof that if ZFC + 3k [k measurable] is consistent, so
is

ZFC + 3k [k measurable A k has 22% normal
ultrafilters] .

We now proceed to get a better description of all p-models for
varying p.
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6.6. Lemma. If M is a p-model, and U is the normal ulirafilter on o
in M, then there are no a-modeis for any ¢ such that p < 0 < igll(p).

Proof. Suppose there is such a o-model, N, with <Y the normal ultra-
on g in N. Let X be a regular cardinal > ¢*. Let F, Y, (1< 8),and
0 be as in the proof of Theorem 6.4.

Since 0 < ig‘l (p), there is an f'e p? N M such that [f] =0 in
Ult, (M,U%). Then (z'&”,\(f))(p) = ¢g. By Lemma 6.3, f is definable in
(L[] ; €,%) from elements of {'y“ u< 8} U (p+1). Thus iga(f),
and hence aiso g, is definable in (L,{F}; €, F 0 L {F]) from ele-
ments of {1y, :u < 8} U (p+1)u {\}. Now definej: A > X by
jl@)=a+ 1. jY :LIF] - LIF] and fixes 6 and every ordinal in
{v,:u< 8} U (p+ 1)U {7}, so it aiso fixes 0. But this contradicts
Lemma 3.2, which implies j;’(0) = ig) (0} > 0.

6.7. Theorem. If M - a p-model, Win M the norme¢  itrafilter on p,
and N is a g-model with o > p, the, for some a, " = Jit (M, ).

Proof. If for some a, i(()"a(p) = g, then N = Ult (M,%) by Theorem
6.4.

If not, then by Theorem 3.1 (iii), there is an a such that it (p) <
<0< i, (P). But this contradicts Lemma 6.6 (by Theorem 2.11).

6.8. Corollary. If p is the least ordinal for which there is a p-model,
M, and U is the normal ultrafilter on p in M, then all transitive
models for ZFML containing all the ordinals are of the form
Ulta(M, ) for some «.

The above methods give the following rather technical result
which will be usefulin §11.

6.9. Theorem. Let M be a p-model. Suppose that for some ordinal
o < p there is a normal M-ultrafilter, W, on o, with the property
that arbitrary countable intersections of elements of Ware non-
empty. Then there is a a-model, N, such that We N and Wis the
normal uitrafilter on o in N.
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rooy. Let G be the normal ultrafilter on o. By iterating ultra-
owers by U, we car assume that p is a regular cardinal such that
FA< p, (\°)" < p. Furthermore, we can assume that Y =M N F,
vhere ¥ is the closed unbouncried filter on p.

Throughout this proof, iy, will be i&‘; :M > Ult, (M, W). These
iitrapowers are well-founded ty Theorem 3.6. Note that i, p(c»')= P,
nd ips(0) < p for § < p. Also, Ult,(M, W) = M when § < p.

Lety, (€ ORD) bea strictly increasing sequence of ordinals
> p such that each Ve is fixed by iy, . Let S € M be the Skolem
will in M of { Ye €€ ORD} U e U {p}. Then every element of' S is
ixed by all iy, for < p, so S contains no ordinals, &, such that
r< a < 2. Hence, the transitive model, N, isomorphic to S, is a
3-model.

Now W is also an N-ultrafilter on o by Theorem 5.9. Let <V be
‘he normal ultrafilter on ¢ in N. Let j be the embedding i;;‘; N>
> Ult p(N,CW). Note that Ultp(N,(W) = M by Theorem 6.4, If
¢ € W, then j(x) € F, soj(x) €U, and hence x eV. ThusW =Y.

In order to formalize the above proof in ZFC, one wouid take
the Skolem hull in a suitable bounded segment of M.

§ 7. Non-normai ultrafilters

We have been talking so far about construction from normal
ultrafilters. In this section we explore non-normal ones. Qur first
result is:

7.1. Theorem. Suppose « is a measurable cardinal, ¢ a normal
ultrafilter on x, and Y an arbitrary x-complete free ulirafilter on
K. Then LIU] = L[V].

Proof. Since K is still measurable in L{V], there is a k-model which
is a sub-class of L[V]. Thus, by Theorem 6.4, L[%] C L[V], so we
need only show that Vn L[U] e L{o].
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Using <V, we obtain the elementary embedding if)‘; V=
- Ult;(V, V). Let 0 = i) (k). Let j be the restriction of ig, to
L{<U] . By elementarity of 58’1 and Theorem 6.4, j is an elementary
embedding from L{%] into the o-model. Call this model N.

By Theorem 6.7, N = Ulty, (L[U], % N L[U]) for some or.nal
. Thus, if k = i{,’&n”"‘] . k is also an elementary embedding:
L{u] - N.

“If id is the identity function: k - «, let { = [id] in Ult;(V, V).

Then for any x € &, x € Viff { € i) (x). In particular,

VYN LU ={xePr)NLIU]:Tejx)}.

{xePx)NL[U:¢ek(x)} eliUl,

we need now only show that j and k agree on P(k) N L{U].

The proof of this last fact is similar to that of Theorem 6.4. Fix
v. (u < £) an increasing sequence of ordinals such that vy > ¢ and
§2 k", and leth be a cardinal greater than all the v, . Further-
more, assu:ne that the v, and 0 are fixedbyjand k. If x € P(k) N
N L[U], we can write

x={E<wk:(L,U); e, UN L, {UD
B0, My s oo My s Ky Yy s oo V) }

for suitable vy 7y, ..., M, < K, and gy, ..., 4, < 6. Then, if Wis the
normal ultrafilter on ¢ in N, j(x) and k(x) must both equal

{E < oLy W]l e, m
FoE s o0 My s O, Yuys oo Yup) s

proving the theorem.
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We now consider the question of how many k-complete free
ultrafiiters there are on k. The following lemma gives some bounds.

7.2. Lemma. If k is measurable, there are at least 2* and no more
than 22% k-complete free ultrafilters on K.

Proof. Each ultrafilter is a subset of ?(k), and there are no more
than 22% of these. Now let {xE:£< 2%} be a family of almost dis-
juint subsets of k. For each &, there is a k-corplete free ultrafilter,
U , such that x € Uy, and these U, must be distinct.

The upper bound is possible. For example, as we mentioned in
86, it is consistent that there be even 22* normal ultrafilters on k.

Another example is when k is str-.::gly compact. Since k is inac-
cessible, an immediate generalization of a theorem of Hausdorff
[3] shows that there are subsets A, of k for 8 < 2% such that
whenever x, y are disjoint subsets of 2% of cardinality < k,

(n {Aﬁzﬁex_})n(n{K~A7:7ey})¢0.

Hence, as pointed cut by W.Rudin [12] for k = w, strong com-
pactness of k implies that for each X C 2%, there is a k-complete
ultrafilter Uy on «k such that 4 g € Uy iff B € X. Thus, there are
22% g-complete ultrafilters on k.

In contrast to the above, we have:

7.3. Theorem. If V = L{U]) , U a normal ultrafilter on k, then
(1) There are exactly k* k-complete free ultrafilters on k.,
(ii) Every K-complete free ultrafilter, V, on k, is of the form
{xCk:¢e€ lo (x)} forsome ¢ < Zo (k).

Proof. (i) follows from (ii) by Lemma 7.2.
For (ii), we see, as in the proof of Theorem 7.1, that for some a,
tm(K) = an(K) that ’m anc 100 agree o1 P(k), and that hence for
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some § < g5 (k), V= {x C k:§ e ig,(x)}. Since then alsoV =
{xCk:te i(‘}g(x)} for any 8 > «, we are done if we show that «
must be finite.

Suppose not. Then a 2 w. Then ig‘w (x) must be inaccessible in
Ulty(V, ¥%), since it is in Ult  (V,U) and both these models have
the same subsets of iy° (k). But Ulty(V, %) = Ulty)(V, V), and
hence contains all countable sets of ordinals, so i?fw (k) is cofinal
with w there, a contradiction.

Theorem 7.3. was noticed independently by _Jéffrey Paris.
Another description of the k-complete free ultrafilters on «
arises from considering equivalence classes under permutations. It

is convenient to consider base sets other than «.

7.4. Definition. If UC ?(I ) and [ is a function from I into J, let
f@)={y CT:f~ () eV} . IfVC PJ),Vand U are equivalent
iff there is a 1—1 function, f, from I onto J such that V= f,(UW).

If U is 2 k-complete ultrafilter on some set / of cardinality x, we
shail use the same notation, Ult, (V, %), ié’fx, etc., as for ultrafilters
on k. It is clear that all the basic theorems are essentially the same
as for ultrafilters on k.

7.5. Lemma. Let k be measuradle, I=J=«, Ua K-complete free
ultrafilter on I, <V a k-complete free ultrafilter on J. Then U and <V
are equivalent iffig{(x) = ig’l (k) and igi and igi agree on P (k).

Proof. The implication from left to right is obvious, so we prove
the implication from right to left. We may assume for convenience
that { =J = k. In general, if f e V¥, let [f],, [ f],, be the equiva-
lence class of fin Ult,(V,U), Uit (V, V) respectively.

Let id be the identity: k - k. Fix f, g: k > « such that [id],, =
[£1 and [id]q, = [g]q-

Since ig‘l and igi agree on P(k), we have, for any x ¢ ?(k),
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€ Wiff [id] o, € igy () iff [f1,, € gy Ge) iff £~ * (x) € V. Thus,
'= £ (V). Similarly, V= g, (%).

Thus, U= (fo g).(U). It follows that for some set a € U,
fog)ta=id t a,so gis 1—-1 on a. Thus there is a 1--1 function,
, from k onto k such that {§ <k :g(¥) =g(§¥)} e . Then
1= g, (W), so U and Y are equivalent.

.6. Theorem. Suppose V = LIU),U a normal ultrafilter on k. Let
? be any other k-complete free ultrafilter on k. Then for some n,
7is equivalent to the ultrafilter U,, on k" (see Definition 2.4).

roof. In the proof of Theorem 7.3, we saw that for somg‘ n,
(k)= i(c)li; (r), and igi and iy agree on P(k). But igfn =iy, 80 the
heorem follows by Lemma 7.5. :

§ 8. Model theory in L[U]

In this section we give two examples to show that model theory
s rather pathological in the universe constructed from a normal
itrafilter on a measurable cardinal. The first involves Hanf num-
yers, the second, Rowbottom cardinals.

3.1. Definition

(i) If k and A\ are regular infinite cardinals, L, is the infinitary
language consisting of finitary function and predicate symbols,
with < k conjunctions and disjunctions, and < \ strings cf
quantifiers;

(ii) If £ is any language, the Hanf number of £, H(.0), is the least
cardinal, a, such that whenever a sentence, @, of £ has a model
of cardinality > «, ¢ has n:odels of arbitrarily large cardinality.

For more cn infinitary languages, see Karp [4].
We remind the reader of some well-known eiementary facts
about Hanf numbers.
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8.2. Theorem. Lef a = H(L,,).

(i) @ is a limit cardinal, and if ¢ € L,, has models of arbitrarily
large cardinaiity below a, @ has models of arbitrarily large
cardinality,

(i) a = 37 for some ordinal y;
(iii) IfA> w, a=2,;
(iv) k S cf(a) < (L,,).

There are reasonable bounds known for H(£2, ), given by

8.3. Theorem
(i) (Lopez-Escobar [8]) H(£2,,,)=3u s
(11) (lhld) H(EK+’“‘) < :(2")+;
(iii) H(L + ) > 2, + when cf(k) > w;
(iv) (Hellin’g) If GCH and cf (k) = w, then H(£K+,w) =3+

In §15 of [7], we showed that for k = w,, results (ii) and (iii)
are best possible. ‘
_ Assoon as X becomes bigger than w, bounds for H(£2,,) can no
longer be stated in terms of elementary cardinal arithmetic (i.e.,
sums, sroducts, and exponentiation). Thus,

8.4. Theorem (Silver [15]). Let 2 be the language consisting of
those sentences of £, 4,1 Which are conjunctions of sentences of
£, and purely universal sentences Oof Loyjwy-
(1) If k= (wy)<v, k> H(L2);
(ii) For each v < wy, H(L) is greater than the first cardinal K such
that k - (y;<w(if it exists).

One might hope to generalize 8.4 (i) and get a bound on
H(£,, ) in terms of partition properties of the type k > (o)<«.
In this section (Theorem 8.8) we show that this is impossible, since
it is consistent to assume that H(L ., ) is greater than the first
measurable cardinal.
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8.5. Definition. For the rest of this section:

(1) Assume K is a measurable cardinal, U a normal ultrafilter on k.
iy p is the embedding: Ulty (L[, U N L{UT) > Ultg(L[U],
U N LIUY) of Definition 2.8;

(i) a={ip,(K):new},

{iii) ¢, is the conjunction of the first n axioms of ZFC (in some
fixed enumeration). Y(vy) asserts that vy is a measurable car-
dinal and that the universe is constructed from a normal ultra-
filter on v,

8.6. Lemma. There is scime fixed m such that whenever M is a
transitive (set) model for ¢, satisfying (o) (where 0 € M) and
0 2 i, (K), thena ¢ M.

Proof. First assume M is a model! for all of ZFC.

Let M satisfy that it is constructed from the normal ultrafilter,
Y, on 0, where 0 2 iy, (K).

We see, as in the proof of Theorem 5.8, that if v is a regular car-
dinal greater than 0™ and ¥ the closed unbounded filter on v, then
Ult, (M, V) = Ly [F] for some 8.

Thus, ifa e M, alsoa e Ly [F] C L[ F].

But also by Theorem 5.8, LI¥F] = Ulty(L[‘Z(] ,LUN Liuy))

C Ut (L{%],% N L{U%]), and a cannot be in Ult  (L[U],U N
N Li{Uu}), since iy (k) is inaccessible there. This is a contradiction.

By examining the above, we see that we really only needed that

M is a model for some p,), .

For the rest of the section, fix m to be as in Lemma 8.6.
By the standard Lowenheim-Skolem argument,

8.7. Lemma. if V = L{U], there is a transitive model, M, of cardi-
aality k, for ¢,,, such that k e M, M satisfies y(k3, and
VxCM[X=w-=>xeM].
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8.8. Theorem. If V = L[U], where U is a normal ultrafilter on the
measurable cardinal k, then the Hanf number of 2., is greater
than k. -

Proof. Let x be the sentence of £,,,,, in =, €, constant symbol s,
and unary function symbol f, which is the conjunction of:
() ¢
(ii) ¥(s);
(iii) - 3vguv, ... [...v, € ... €evy €V sy,
(iv) Vuus ... 3ug Vo (v evg— vy =vy v v, o3 v L]
(v) Yyg v [ugesa fu)) =yl

Thus, models of x are isomorphic to transitive models, M, of
¥, » satistying (o) for some ordinal 0 € M, and such that
VxC M{Z=w-xeM] (iv)and M = o (v).

By Lermma 8.7, x has models of cardinality k. By Lemma 8.6

and the fact that iy, (k) < k**, x has no models of cardinality
>k,

We remark that, by usual ultrapower methods, any sentence x
of £, , with a model of cardinality k has one of cardinaiity 2*
(=t in L[] ).

Once we have that H(L,,,,,) > &, Lemma 8.2 shows that it is
larger than 2 .+, 23, +, etc., so it is doubtful that any relation could
be found between measurable cardinals and H(L,,.,4)-

Conceivably, some partition properties stronger than k - xk(<w),
perhaps involving infinite sequences, could be used to invsstigate
H(£,;w), but so far the or:ly bound known is the triviai one that
H(£, ) is less than the first strongly compact cardinal.

Another unusual pnenomenon in L[] is the behavior of F.ow-
bottom cardinals (see [9], D4007). Prikry [11] has shown that the
limit of w measurable cardinals is a Rowbottom cardinal, and the
question of whether the limit of w Rowbottom cardinals is a Row-
bottom cardinal has remained open. We shall show that in L[],
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this is not the case; in fact, in L[%], all Rowbottom cardinals are
Ramsey cardinals (and hence regular). We shall actunally show that
in Lf%}, a property somewhat weaker than Rowbottom implies
Ramsey. Thus,

8.9. Definition
(i) A Jonsson model is g finitary relational sysiem with no proper
elementary subsystems of the same power;
(ii) N is a Yonsson cardinal iff there are nc Jonsson models of
power A.

We now prove a preliminary lemma on the structure of L{%].

8.10. Definition. If x € L[U], od(x) is the least a such that
x €Ly U]

8.11. Lemma. Suppose M is a transitive set model for ZFML, with
measurable cardinal p and normal ultrafilterV, where p < k, and
Ult, (M, ) is well-founded for all a. Let x € P{p) " M. Then

x € L{U], and for any y € P(p) 1" LI} such that od(y) < od(x),
ve PP NM

Proof. Ult (M, V) = L., [U] for some v, and 2(p) " M = P(p) N
N L7[%] . Thusx € Ly[%]. od{y)<1v,soy € L,[¥%] and hence
yeM

Note that Ult, (M, V) will be well-founded for all @ whenever
w; = M (by Theorem 3.5).

8.12. Theorem. If V = L[], where U is a normal ultrafilter on the
measuradle cardinal k, and \ is a Jonsson cardinal, then \ is a Ram-
sey cardinal.

Proof. Standard arguments show A < «k, and « is a Ramsey cardinal,
so we may assume A < K. Since w,, is never a Jénsson cardinal for
n<w, A2 w,.
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Let P, :[A)"~ 2, P=(P,.n < w). We shall show how to get a
homogeneous set for P of cardinality A.

Special case. Suppose that for some bounded subset x of A,
od(P) < od(x). Say x € 8, where w; < & < A. By standard Lowen-
heim-Skolem and collapsing arguments, there is a transitive model
M for ZFML with measurable cardinal p and normal ultrafilter V
such that 6 < p, x = M, and M = §. Note that igx(p) = \. By.Lemma
8.11, P e Ult,(M, V>. Since A is measurable in Ult, (M, V), there is a
homogeneous set for P of cardinality A in Jlt, (M, V).

General case. Now let M be a transitive model for ZFML with
measurable cardinal p and normal ultrafilter <V such that A < p,
PeM,and M= \. Let F be a function frern A onto M, and consider
the relational system (M;e, F, {P}). Since \ is a Jonsson cardinal,
there is a proper subset A of M containing P such that A=\and
(A;e, FI A <M;e, F). Then(AN A =N, butAn A# AN If Tis
the transitive model isomorphic to (A; €), and j is the elementary
embedding: T -~ M, then the first ordinal, 8, moved by j is less than
. Also,j(A) =\, and § ('P) = P for some P ¢ T. Now T cannot con-
tain all subsets of 8, since otherwise {x € ?(6):8 €j(x)} would be
a normal ultrafilter on §; but & is not measurable by Theorem S5.11.
Let x € (8) — T. Then od(x) > od(P) by Lemma 8.11, 50, by the
Special case, there is a set H C A of cardinality A homogeneous for
P. Then {j(§): ¢ e H} is homogeneous for P.

§9. On GCH at a measurable cardinal

It is still unknown whether GCH can fail at a measurable car-
dinal. The results of this section indicate that this question may be
very difficult, since we show that, arguing in ZFC + 3k [k meas-
urable A 2% > k'], one can prove the consistency of the theory
ZFC + Ak [k measurable].

9.1. Definition. For the rest of this section, k will be a measurable
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~ardinal, W a normal ultrafilter on k, and M = LIU) . For each «a,
et My = Ulty(M,U% N LIUY). For a < B, let iy; be the usual em-
bedding: My~ M.

3.2. Definition. For the rest of this section, let A, B, C, D, E abbre-
viate the following propositions:

A. kY >kt

B. All uncountable cardinals are inaccessible in M.

C. There is a p-model for some ordinal p < k (see Definition 6.2).
D. For some k-complete ultrafilter,V, on K, ig) (k) 2 iy, (k).

E. Solovay’s OF exists (see Matthias [9], D2040).

We shall show (Theorems 9.4, 9.5) that A, B, C, D, E are cquiv-
alent, and that they follow from 2% > k™. Thus, using =.g. B,
2% > k* implies the existence of a set model for ZFC + 3« [k meas-
urable] .

The following iemma is well known.

9.3. Lemma. Let <Y be any k-complete free ultrafilter on K, z‘f)”l the
embedding: V > Ulty(V,V). Then ig (k) > 2*.

Proof. Let N = Uly;(V, V). Since iy, (k) is inaccessible in N and
P() C N, we have i (k) > 2¢¥) > 2%,

9.4. Theorem. The propositions A, B, C, D, E are all equivalent.

Proof. Clearly E implies B and B implies A.

To see that A implies D, note that iy (k) < k"™ < k*  where-
asig (x) > «* for any k-complete free <V by Lemma 9.3.

We now assume D, and shall conclude C. Let N = Ult; (V, V).
Note that i, () > i, (x); equality cannot hold, since
cf(ip,, (k) = w, and N contains all countable sets of ordinals, but
igy (1) is inaccessible in N. Now let F = {x C ip,(K):Am Vn>
> miligy(k) € x1}. FN NeN,since {ig,(k):n < w} e N. Further-
more, by Lemma 4.5, iy, (UN M) = F 0 Ult (M, U N M), so F is
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a strong filter on iy, (k) (see Definition 5.4). Hence, the sentcnce
3p < iy (k)3 Q [ g is a strong filter on p]

is true in N (take p = iy, (k), § = F N N). By elementarity of ig),
dp <k 3 Q[ Gis a strong filter on p]

is true in V, so C holds.

We now derive E from C. Let P be the g-model for some p < k.
Let W be the normal ultrafilter on p in P, <Y any k-complete free
ultrafilter on k. For any «, iy, (») = p and ig) (W) =W, so i3}, takes
P into P. It follows from Lemmae 3.3 that {i(‘)’(’x(fc):x € ORD} isa
class of indiscernibles for (P; €, &)5< o Hence, the class K =
{\:A regular and A > 2%} is a class of indiscernibles for (P;e, rcps
since ig, (k) = X for A € K. Since Ult, (P, W) is the k-model M and
igj'; (A)=Afor A e K, K is also a class of indiscernibles for
(M;e, ‘g’)E <k We can now, as usual, pick I € U such that [ is a set of
indiscernibles for (M; €, A,,),<, (Where A, is the nth element of X)
to show that O exists.

9.5. Theorem. If 2¢ > k", then the propositions A—E hold.

Proof. Let<Y be any k-compiete free ultrafilter on k. By Lemma
9.3,

g, () < KD < 2% < i (k)

so D holds.

Another question that might be asked about k is whether every
k-complete filter on « can be extended to a k-complete ultrafilter.
We shall show that this statement would also imply A—E.

Consider the setU , C Kk« (see Definition 2.7). By the method
of proof of Theorem 3.6, any intersection of < k elements of U,
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is non-empty, so¥% , generates a k-complete filter, F, on k¥,
which is a sot of cardinality k. Suppose F could be exiended to a
k-complete ultrafilter, V. Then the inclusion Fn (k) C Fn (k)
defines an elementary embedding e: Ult (V, %) - Ult,(V,92). In
particular, e(ig (k) = ig; (x), so iq., (k) < igi (), s0 D holds.
Hence we have shown:

9.6. Theorem. If U  can be extended to a k-complete ulirafilter on
K, then propositions A—E hold.

Actually, using methods of § 10, one can derive from the hy-
pothesis of this theorem the existence of an inner model with two
measurable cardinals, Fut we omit the proof here.

Theorem 9.6 imglies:

9.7. Con;cllary. IfV = L[U], not every k-complete filter ot K can
be extended to a k-complete ultrafilter.

§1C. Strongly compact cardinals

K is called strongly compact iff for every A, every k-complete
filter on A can be extended to a k-complete ultrafilter.

All strongly compact cardinals are measurable. Are all measur-
able cardinals strongly compact?

Vopénka and Hrbacek [ 19} showed that one could not prove
this in set theory, since if there is a strongly compact cardinal, the
universe is not constructible from any set, so that in an L{%], there
is a measurable cardinal but no strongly compact cardinals.

One might still hope to prove that Con(ZFC + 3k [« measur-
able] ) irnplies Con(ZFC + 3k [« strongly compact] ). However,
this statement is also not provable in set theory, since we shall
show, in ZFC + 3« [k strongly comvpact] . the existence of sub-
models of V with many measurable cardinals.
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For the rest of this section, we let k be a fixed strongly compact
cardinal.

We begin with some remarks on the method of Vopénka and
Hrbacek.

Whenever g is a cardinal > «, there is a k-complete ultrafilter,U,
on p*, such that Wx € p*[¥ < p » x ¢U]. Vopénka and Hrbacek
realized that thisU could be used to get an extension of Scott’s
result with measurable cardinals. The following definition is due to
them (with different notation).

10.1. Definition (Vopénka-Hrbacek). For any cardinal p > k and

any w-complete free ultrafilter, U, on p* satisfying Vx € p* [X <

< p - x ¢U], we construct models My, M,, and embeddings

ij:V>M,;,i,:V~>M,, and k:M; > M,, as follows:

(i) My = Ult(V,%) = {[f] : fe Fn(p")} of Definition 2.8(ii).
Note that this definition makes sense even though U is not
p*-complete. j, is the embedding iy, of 2.8 (iv), s0 j,(x) = [f],
where V< p*[f(§) = x];

(ii) Fn] (") = {f e Fn {p"):(range (f))” < p}. For fe Fuj (0"),
[f17 ={geFny(p*):g~fAn VheFny (p")[h=~ [~
- rank(h) > rank(g)]1}. M, ={[f]":fe Fn] (p")}. j, ()=
[f17, where VE< p* [f(§) = x];

(iii) € relations are defined as in Definition 2.8 on M| and M, but
again we always identify M| and M, with the transitive classes
to which they are isomorphic;

(iv) For f e Fny (o*), k([f17)=[f];

(v) If K is a class, set j (K)={[f]:fe€ Fnl(p‘*) A range(1) € K},
Jo(K)={[f17:fe Fny (p*) A range(f)C K}.

Actually, the definition of M is a special case of Keisler’s notion
of a limit ultrapower. In the notation of Keisler [5] p. 389, M, =
VPfMlG , where G is the filter on p* X p* generated by those equiv-
alence relations on p* with no more than p equivalence classes.
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10.2. Lemma. With the notation of Defition 8.1:
{i) jy, j, and k are elementary embeddings and j, =k o j,;
(i) If £ < jy(p%), k(§)=E;
(iii) j1(p7) < J2(0*);
(i) jy (") = sup{jy(£): §< p"};
(v) If each Ve € M, for ¢ <Kk, then <y£:g <kK)eM,;
(vi) For any X, (< k), (jl(xs): E<k)eM,;
(vii) If each y, € M, for § < a, where ¢ is an ordinal < K such that
(p®)" =p, then(y, E<a)e M.

Proof. (i) —(vi) are standard.

For (vii), let y, = [f,] 7. Define g(n) =(f(n): £ < o) forn < p*.
g € Fn] (p*) since (range(g))” < ()™ = p. Then (ypif<aw=
(Ig]l 7 ite.

M, cannot equal M, since j;(p) = j,(p), j; (p*) < j-(p"), and
ji(p*) is the successor of j,(p) in M;(I = 1, 2). Vopénka and Hrbalek
concluded from this that V # L[a] for any a C p, and, since p can
be made arbitrarily large, V # L{a] for any a.

The restriction, (p®)” = p in Lemma 10.2 {vii) «znnot in general
be eliminated. For example, suppose (p® )~ = 2° (e.g. take p =
3.+, ). Let £ be a 11 function from ?(p) onto the set of func-
tions p«. It follows from j, (pH< js (p") that there is an
a € P(jy(p)) —M,, and hence (j,(#))(e) is an w-sequence of ordi-
nals absent from M, . Also, if (p«)™ = p*, we could take f to be a
11 function from £* onto p*; then (j,(£))(p") ¢ M,.We do not
know what happens when p* < (p*)” < 2° or even whether this
situation is possible.

The elementary embedding, k, naturally suggests defining W =
{x € 2G1 (") N My :j,(p7) € k(x)}.W is not quite a normal M, -
ultrafilter. W satisfies (i)— (iv) of Definition 1.1, along with the
criterion for normality in Definition 4.1. Butj 1(p*) is a successor
in M, and hence not weakly compact, so that W cannot satis
1.1 (v). But note that by Lemma 10.2 (vii}, W is closed under arbi-
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trarv countable intersections whenever p* = p. This, along with
Theorem 3.6 allows us to conclude, using Lemma 4.6,

10.3. Lemma. With the notation of Definition 10.1, suppose K is a
transitive model of ZFC containing all the ordinals, such that
i1(K) = j»,(K), and suppose p* = p. ThenW = {x € ?(j;(p*)) N

N 7, (K):j1(p*) € k(x)} is a normal j, (K)-ultrafilter on j; (p*) such
that all Ult,{j, (K), W) are well-founded.

Whenever j; (K) = j,(K), it is known that we can conclude, using
the embedding, , that j, (p") is inaccessible and II7 indescribable
in j;(K) for all n and m, and hence the same bolds for p¥inkK. In
particular, we have this situation if K = L[V], where <V is ¢ normal
ultrafilter on k, so that p* is I indescribable in L[] for all
n,in < w and p 2 k. This fact was noted also by Reinnardt.

It will be convenient to actually get a K-ultrafilter on some or-
dinal. Conceivably, % may not be in M, so it is not clear that p*
has a normal K-ultrafilter. Hcwever,

10.4. Lemma. Continuing the notation and assumptions of Lenima
10.3, suppose in addition that Ult _(j, (K), W) =j, (X). Then there
is a normal K-ultrafilter, W', on some ordinal, o, such that

p* < 0 < 22, and such that all Ult (K, W') are well-founded (2‘; =
2°,and 20, = 225).

Proof. Let iy be i :j, (K) - Ult_(j, (K), W) = j (K). W) (see
Definition 2.10) is a normal j; (K)-ultrafilter on 7 =iy (j;(0*)),
and for all x € 2(7) N j1(K), x eW iff AmVY n>m
lig, (1(P*)) € x]. Hence, W) e M, since it is definable from the
countable set, {ig,( jl(p*)) :n < w}. Furthermore, all
Ult, (j; (K), W) are well-founded by Theorem 2.11 and Lemma
10.3.

j1(r) 2 7. Thus, M, satisfies that there is a normal j; (K)-ultra-
filter,'W’, on some ordinal g, such that j; (pPH<o< j1(7) and such
that all Ult,(j; (K),W') are well-founded.
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Since j; is elementary, we shall have the desired conciusion once
we know that 7 < 22. Now j, (p* ) < (2¢7Y < 28,50
: (nt
=105, < (1Y < 2.

We were not very careful about getting the best bound for o,
but this will not matter.

We now launch into the main body of the proof. The plan is as
follows: We shall fix a sequence of 7 limit cardinals, 7\), and attempt
10 prove that the sequence of cardinal filters on Nis strong (see
Definitions 5.4, 5.5). That this be true does not seem too surprising
in view of Solovay’s Theorem 5.6. However, now we do not know
that we have 7 + 1 measurable cardinals, but only one strongly
compact cardinal. Nevertheless, the desired result will eventually
be obtained by Lemina 10.4 and iterated ultrapowers.

First, an cxercise in cardinal arithmetic to justify the next defi-
nition.

10.5. Lemma. Let a be any cardinal.
(i) There are arbitrarily large cardinals, £, such that % = 8;

(ii) If B% = B then (B*)* = §*.

10.6. Definition. For the rest of this section fix 7 < k. Also, fix
cardinals p,,, Y,p )\“ foru<w, n< w,such that:

() (vu0; ex0 (2¢*) =7,45
(D) Yy o1 = Vun)'s
(iii) A, =sup{v,,:n< w};
(ivy p, >sup{X,:v<pu}; pp>k;
) (p.)° =p,.

1G.7. Definition
(i) For u< w,let ¥, be the cardinal filter on A
(i) Leta={yn<ar l1<n< w};
(iii) Lla] is the universe constructed from a under the usual defini-
tion of construction from a set of ordinals.
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Note that ¥ is det};nable from a, so that L['Ef] C Lial. In our
effort to prove that ¥ is strong, we shall use normal L{a] -ultra-
filters on ordinals, o,, situated between p, and Yu0-

10.8. Lemma. For cach u< m, thereisa g, and ‘W, such that
(p,)" <0, <2%*, W, isanormal L[a]-ultraﬁlter on 0, and all
Ulta(L[a] W, )are well-]bunded.

Proof. We wishi to apply Lemma 10.4 with L[a] as K and P, asp.

To chech iart "(Lial) =j,(L{a]), we need only show that
J1(a) = jy(a), ana, since a is of length w7 < k, we need only show
thatj,(v,,) =/j,(v,,) forv<w, 1 < n < w. This is clear from Lemma
10.2 (ii) for » < p since then v,, < (p,)*. Now for v > g,
Jv,n) = sup {j)(§): £ < v,,} (=1, 2),since y,, is regular and
> {p,)". By Definition 10.6 (ii) and Lemma 10.5 (ii), each j,(§) <
««nnn%)~memanﬂ'm(rlm

We similarly check that Ult_ (j; (L[a]), W)= j;(Llal).

Hence, let g, be the 0 and W, theW' of Lemma 10.4.

For the rest of this section, ¢, andW, will be as in Lemma 10.8.
Also, i&‘B will be the embedding from Ulty(L{a] ,Cw"“) into
Ultg(L{a], W) defined by W ,.

10.9. Lemma. Leta <A, v<1r.

(i) if,(A) = l),100[(7\) x;

(ii) Forx e (A ) N Llal nif (Llal), xeF, szxet o(F, 0
N Lial);

(iii) i (LIF]) = LIF];

uwz(?ann—?nuﬁL

Proof. (iii) and (iv) follow from (i) and (ii).
80 (Yyn) =7, Whena < Vun by Theorem 3.9 (iii), using Defini-
tion 10.6 (i) u"d Lemma 10.8. Hence (i) and (ii).

10.10. LeTma. Fn L['C:F)] is, in L[7] , a sequence of normal ultra-
filters on \ .
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Proof. We show first that they are ultrafilters, next that they are
x-complete and finally that they are normal.
If 9-’ N L[ET } is not an ultrafilter, let b be the fi Lrst (in order of
constructlon from f—f) of the subsets, x, of A, in Liﬁf J such that
x ¢ F,and (A, ~x) ¢ F,. Then by Lemma 10 9, i§,(b) = b for all
a<)\ Also, zo.,‘m(a ) Vun forl <n< w. Thus Von € b iff
o, € b forl <n<w,so b eF,or(\,—b)eF,,a contradlctxon.
Similarly, if ?7_4. N L[‘F] is not A -comp!ete m L[?] let
(b :£< 8) € L[] be the first counter-example to A -complete-
ness. Thus, each b, ¢ ¥, but n 522E £E<8} ¢ F, and 8 <vup for
some m. if (<b S< a)) = (.; £ < ) for Pacha < 7\ Also, for
nz=m, z.,“m.,“n (E) = £ for & < 6 and z.,“m.mn('y“m) 'ym ,
Yun € b.g iff v,,,, € by. Thus, {,,,:n 2 m} € b, for eachz sC
N {b <d}e F,, a contradiction.
Jlmﬂarly, suppose (b, : £< Ae L[?T] is the fﬂ'St counter-
example to normality oi Fun L[?] Theneach b e 7, and b =
N {b, :n< &} for limit £. As before, {y,,:n>m} C bs whenever
E<7vYym>soeachy,, € byym > SO {E:¥eb,} e F ,acontradiction.
By somewhat more carzful computation of cardinal bounds, we
could have put somewhat less stringent conditions on X than those
ini Definition 10.6. This does not seem worthwhile, however, in
view of Solovay’s Theorem 5.6, which implies (after we have gone
through Lemma 10.10 with one sequence of length T+ 1) that we
in fact could have been very free in choosing .
Even without Solovay’s theorem we have:

10.11. Theorem. If there is a strongly compuct cardinal, k, then
for any ordinal w, there is a transitive wodel M of ZFC with «
measurable cardinals. M may be taken to be either a class contain-
ing all the ordinals, or a set.

Proof. For 7 < k, take M = L| '?'f] and use Lemma 10.10. Or, if we

want a set, apply Lemma 10.10 to a sequence of length 7 + {, and
take M = L{#] n R(A,).
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For an arbitrary «, letV be a k-complete free ultrafilter on .
For a suitable Ult,(V,YV), ij4(x) > m, and apply the above within
Ult (V, D).

§11. Saturated ideals

Solovay [17] has shown that if a cardinal, k, has a A\-saturated
k-complete nontrivial ideal, where A < k, then k is measurable in
some sub-model of the universe. In this section w2 ghall, by meth-
ods similar to those of § 10, extend this result to k*-saturated
ideals.

11.1. Definition. For the rest of this section, k is an uncountable
cardinal and 9 is a normal, k-complete, K*-saturated, non-trivial
ideal on k.

ik must be regular. Also, assuming 9 to be normal is no loss in
generality, since Solovay [17] shows that the existence of any
k-complete, k*saturated, non-trivial ideal on k implies the existence
of a normal one.

We shall eventually show (Theorem 11.12) that 9N L[9] is, in
L1 g1, a prime ideal, so that k is measurable in L[ 9].

We first describe some ideas due to Solovay [17]. The material
through Lemma 11.5 is taken from there, with slightly changed
notation.

11.2. Definition
(i) B is the Boolean algebra, P(k)/9;
(ii) If x € P(k), [x] is the equivalence class of x in B,

9 has the x*-chain condition. Also, by a thzorem of Tarski, DB is
complete. We use the standard notation regarding the “B-valued uaii-
verse, V(B) (see Scott-Solovay [ 14]). It is convenient to extend the
¥ notation to proper classes, Thus,
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11.3. Definition. If C is a proper class, C is theB-valued sub-class
of V(®) defined by

[ueCl=V{[p=ul:peC}.

11.4. Definition. U is the object in V(®) such that [UC P(K)N
N V] = 1, and, for each x € P(k), [¥ eU] = [x].

It is easy to see that, with value 1, U satisfies (i) — (iv) of Defini-
tion 1.1 (with M = \7), even though it may not satisfy (v). Thus,
within V(%) one may, as in Definition 2.3, form the ultrapowers
Ult,(V, %) and the embedding, il : V - Ult, (V,%). Of course,
since condition (v) is lacking, it is not clear how to iterate ultra-
powers by U.

11.5. Lemma. [Ult,(V, %) is well-founded] = 1.

Now, before showing that k is measurable in L[ 9], we first
prove that some larger A is measurable in an inner model. The fol-
lowing is analogous to Definitions 10.6 and 10.7.

11.6. Definition. For the rest of this section,
(i) Let v, (n < w) be an increasing sequence of cardinals such
that cf(y,) > kand v, =3,,;
(i) A=sup{v,:n<w};
(iii) ¥ is the filter on’\ defined by x € F iff Im ¥Yn > m[,, e x];
i)a={y,:n< w};
(v) W is the object in V{B) such that [W=UN L[a]] = 1.

Analogously to Lemma 10.3, we have

11.7. Lemma. [Wis a normal L{g]-ultrafilteron k] = 1.

Proof. By normality of &, [X e W] = [K e if§ (X)] for any
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x € ?(k) N L{a}. The lemma then follows from the fact tha
[[ig‘l(ci)=é}] =1.

Although the fact that Ult,(L[d],W) is, with value 1, well-
founded follows from Lemma 11.5, it is not immediately obvious
that all Ult,(L[d],%) are well-founded, so we cannot proceed im-
mediately as in Lemma 10.10. What we shall do instead is to first
prove (Lemma 11.10) thatW is 2-valued. The proof is like the
uniqueness proof for p-models in §6.

11 8. Definition

(1) 60;- =2K+w <(¢+1) (§< 'YO):
(i) 8,41, ¢ =gy +e-(£+1) E<7p+1)s

() A={8,,:n<wn§<y,}U{f,:{cORD}.
Note that [[1'3"1(5)= 5] =1 foreach & € A.

11.9. Lemma. Let x € (k) N Llal. Then there is a finite subset, F,
of k U A and a formula, ¢, of set theory such that

x={t<k:Lla] E (& F,a)}

Proof. Let 4 be the class of elements of L{a] which are first order
definable in L{a] from ¢ and some finite subset of A U k. Then

A < Lla]. Furthermore, 4 is isomorphic to L{a] since each v,, is
Y, is the v, th ordinal in A. Let j be the isomorphism: 4 - L{a],
and let y € A be such that x =j(y). Then for some , F,

y={t:Llal ko, F,a)} ,
and, since j is the id-=tity on k,

x={s<k:Llal F o, F,a)}.
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11.10. Lemma. If x € ?(x) N Llal, [¥ eW] is either 0 or 1.

Proof. Since [T eW] =[Ke ig‘l (X)], it follows, if we write x as in
Lemma 11.9, that [¥ eW] = 1 if L[al E ¢(k, F, a), 0 otherwise.

From now on, we identify W with {x € (k) 0 Lla}: [X W] =
= 1}. Thus, W= {x € (k) N L{a] : x —x € 9}. We may now forget
about V(®) .9y is a normal L{a]-ultrafilter on «, and, since 9 is
k-complete, arbitrary countable intersections of elements of W are
non-empty, so that ali Ulty(L[a], W) are well-founded. Thus, we
may prove, as we did Lemma 10.10,

11.11. Lemma. & 0 L{F] is, in LIF1, a normal ultrafilter on A.

1t follows immediately by Theorem 6.9 that there is a k-model
M, with W the normal ultrafilter on k in M. Since W is the dual
filterto 9N MinM, M=L[9] and 9 N L[9] is, in L.[9], a nor-
mal prime ideal.

We remark finally that if z is any bounded subset of k, the
above would through exactly the same for L[ 9, z], since z would
be fixed by any elementary embeddings we considered. Thus,

11.12. Theorem. If O is a normal, k-complete, k' -saturated, non-
trivial ideal on k, and z is a bounded subset of k, then 90 L9, z]
is, in L[ 9, z1, a normal prime ideal on K.

There are many open questions concerning k-saturated and k-
saturated ideals. We can show (by methods of §10in {7]) that it
is consistent that k = 20 and carrics a k-saturated ideal, but no
A-saturated ideals for A < . However, it is not known whether
can be strongly inaccessiblz and carry a k-saturated ideal without
being measurable.

Even less is known about k*-savurated ideals. For example, it is
not known whether w; can have an w,-saturated ideal, or even
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whether the ideal on w; dual to the closed uabounded fiiter can
be w,-saturated. Some indication of the difficulty of these prob-
lems is given by

11.13. Theorem. If k = \* and « has a k" -saturated i-complete
non-trivial ideal, 9, then Solovay’s O (see [9], D2040) exists.

Proof. As before, we assume 9 is normal.

if)“l (k) is, with value 1, greater than k, but still the successor car-
dinal to A in Ult, (V, %). Since B has the «* chain condition, £* is
a cardinal in Ult, (V, %), so {[ig‘1 (K) = (k*)”] = 1. Thus, there is a
k*-model. Since i () > «* ™) (where i} : M > Ult,(M,W)), Theo-
rem 6.7 implies that k™ ™) < x*. 5

Since W has cardinality «, I[Cﬁ? e Ult, (V,U)] = 1. By elementarity
of it , there is a p-model, N, for some p such that P WM<k Ifzis
a subset of p*») which codes the normal ultrafilter on pin N, we
have, by Theorem 11.12, that

Liz, 9] & [k is measurable and there is a p-model] ,

so 07 exists by Theorem 9.4.

In fact, e can show by a somewhat more complicated argument
that, under the hypothesis of this theorem, there is an inner model
with 2 measurable cardinals.
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