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§ O. Introduction 

Let 91 be a ~-complete ultrafilter on the measurable cardinal ~. 
Scott [ 1 3 ] proved V ¢ L by using 91 to take the ultrapower of V. 
Gaifman [ 2] considered iterated ultrapowers of V by cg to con- 
clude even stronger results; for example, that L n ~(6o) is count- 
able. In this paper we discuss some new applications of iterated 
ultra-powers. 

In § § 1 -4 ,  we develop a straightforward generalization of Gaif- 
man's method which is needed fo~ some of the restqts in § § 6 -1  1. 
Namely, we consider iterated uhrapowers of a sub-model, M, of 
the universe by an ultrafilter which need not be in M. § 5 discusses 
some known results within our present framework. 

In § 6, we investigate the universe constructed from a normal 
ultrafilter on the measurable cardinal ~:, and show that in this uni- 
verse tb~ normal ultrafilter is unique. In § 7, we obtain a character- 
~zation of arbitrary ~-complete free ultrafilters in this universe, and 
in § 8, we show that this universe has some pathological model- 
theoretic properties. 

§ 9 uses methods of § 6 to discuss the problem of GCH at a 
measurable cardinal. We show that in the theory 
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ZFC + 3t¢ [to measurable and 2 ~ > t¢ ÷ ] 

one can prove the consistency of 

ZFC + 3 ~ [~ measurable] . 

§ 10 shows that the assumption of the existence of a strongly 
compact cardinal is more powerful than had been realized. We use 
an idea of Vop~nka and Hrb~i~ek [ 19] to prove from this assump- 
tion the existence of inner models with many measurable cardinals. 

§ 11 uses methods developed in § 10 to show that if t¢ carries a 
~+-saturated ~-complete non-trivial ideal, it is measurable in some 
inner model. 

We shall use without comment standard set-theoretical aotation 
and results. For less well-known items, we often refer the reader to 
the survey by Mathias [9] .  

Technically speaking, the development of this paper is done 
within Morse-Kelley set theory (see the appendix to Kelley [6] ), 
since we often talk about arbitrary classes being models for ZFC. 
However, by the usual metamathematical circumlocutior:s, all of 
the results can be reformulated within ZFC. We shall co:rnment 
further on this in the body of the paper in places ~here the refor- 
mulation is not immediately apparent. 

Most of §§ 1 -5  and § 10, and parts of §§6  and 9 appeared in 
the author's doctoral dissertation, and we express here our grati- 
tude to Professor Dana Scott for supervising this work. We are also 
indebtedto  Ronald Jensen, H.Jerome Keisler, Georg Kreisel, 
Adrian Mathias, Karel Prikry, and Robert Solovay for helpful dis- 
cussions relating to the material here. 

We wish to thank the National Science Foundation for financial 
support, both through a NSF Graduate Fellowship, and through 
grants GP 7655 and GP 8569. Also, some of the research for this 
paper was supported by the Wisconsin Alumni Research Founda- 
tion. 
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§ 1. M-ultrafilters 

To avoid excessive repe;i t ion,  in § § 1 - 4  we use t:he following 

conventions:  M will be a transitive model  of  ZFC (possibly a prop,  
er class), p an ordinal in M, and ~ an M-ultrafilter on p, where 

1.1. Definit ion.  od is an M-ultrafilter on p i f f  P > co and 
(i) 91 is a proper subset  o f  3~(p) n M containing no singletons; 

(ii) V x , y  [x c y e ? ( p )  c~ M ^. x e cll-~ y e ~ ]  ; 
(iii) V x  e ? ( p )  n M [x  e Cll v p - x e q l ,  : 

(iv) I f  rt < p, the sequence (x~ : ~ < ~l) e M, and each x~ eq l ,  then 

(v) I f  the sequence (x~ :~ < p) e M, then {~:x~ e cg} ell4. 

Note that  we do not  assume q~ e M. Standard arguments show 

that  p must be weakly compact  in M. Condi t ions  ( i ) -  (iv) alone 

imply that  p is regular in M, but,  as we shall see in § 1 0, they da  

not  exclude p from being a successor cardinal in M. 

In the case that  M = V, O is a measurable cardinal and c//is a p- 
complete free ultrafil ter on O. Scott  [ 13 ] used ~ to take an ultra- 

power of  the universe; he showed that  since 9Z is countably  com- 

plete, the ul trapower is well-founded. Thus, one can set N o = V, 

N l = the transitive class isomorphic to VP [cg., and i0! the usual 

elementary embedding from N 0 into N 1 . Now iol ( ~ )  is, in N 1 , an 
ultrafil ter on i0t (P), so, working witiain N1, we can repeat  the pro- 

cess and define an ul t rapower N 2 of  Nj  and an e lementary  embed- 

ding i12 :N 1 --* N 2. Clearly, this may b~ i terated through any f!nite 
number  of  steps. Gaifman [ 2 ] show¢ r~ow in fact this process ,can 
be cont inued through the transfimte He thus obtained trmasitive 
classes, Na,  for all ordinals a ,  and elementary embeddings 

ic~ ~ : N a ~ Na for a <_/3, where for ca, h o~, Na+ 1 can be defined 
within N a as the ul t rapower of  N a by ioa(Cg). 

In § § 2 - 4 ,  we show that  Gaifman's  const ruct ion can be cmxied 

out  for M, even when cg ¢ M. N O will equal M. Rou~;hly, N 1 will be 
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defined as the collection of equivalence classes of functions in M 

from p to M, and i01 will be as before. Condition (v) of Definition 
1.1 enables us to define an ul t raf i l ter ,~  (1), on 9~(i01 Co)) n N 1 : 

Subsets in N 1 of i01 (p) are equivalence classes of functions, f i n  M 
from p to q~(p) n M; put the equivalence class o f f i n C k  ~1) iff 
{~:f(~) e ~ }  eqt;  note that (v) says that {~:f(~) e°d} eM.  We 
could now take the ultrapower of N 1 b y ~  C1) to form N 2, and so 
forth. 

For technical reasons, it will be convenient to carry out as much 
of the con,struction as is possible within M. We thus take a slightly 
different tack. Elements of N 2 are usually determined by functions 
it, N 1 from i01 (p) to N 1 , and these are in turn determined by func- 
tions from p to M p . But M pp can be identified with M p x p so we 

can consider N 2 to be made up of equivalence classes of functions 
from p × ,o into M. In general, Na will be made up of equivalence 
classes of functions from pa into M. The formal development of 
this will be carried out in the next section, and related to the ori- 
ginal idea by Theorem 2.1 1. 

Many of the results of this chapter could be obtained for M an 
arbitrary (not well-founded) model of ZFC and ~ any ultra filter 
on IP(p) n M satisfying (v) of Definition 1.1. Furthermore, follow- 

ing G~fman,  N n could ~e defined for an arbitrary linear ordering 
R. However, the development here will suffice for the applications 
in § § 5 - 1 1 .  

Our treatment of iterated ultrapowers is very similar to a method 
developed independently by Keisler t'o handle iterated ultrapowers 
in model theory (see Char~g- Keisler [ 1 ] ). 

§ 2. Definition of the iterated ultrapower 

2.1. Definition 
(i) For each ~, 

Fna(o)  = {feVO a" 3F_C; o~ [Ffinite ^ Vs, t e p ~ [ s  t F =  t t F-~ 

-~ f ( s )  = f ( t ) ] ]  } ; 
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(ii) For each ~, 
9 ~ ( p )  = {x e 5~(pe): :IFC_ a IF  finite A 

^ Vs,  t e p  t ~ [ s t F = t t F ~ [ s e x <  ~ t e x ] ] ] } ;  

(iii) In (i) and (ii), F is called a support o f f ,  x respectively; 

(iv) l f  x e 9a+a(p) a n d r e  Fna+a(pt ,  and s e pa, define x(s ) = 

{ t e pO :~'t e x } and set f (s)( t )  = f(~'t) for  t e po. For f ini te [3, 
abbreviate x((~o ..... ~_~)) by x(~ o ..... ~ - 0 "  

Here, s~ is the concatenat ion of  the sequences s, t. Note that for 
n finite, ~n (P) = ~(pn ), and Fn n (p) = Vp".  

2.2. Definition. Let  j be a 1 --1 order preserving map f r o m  ~ into [3. 

(i) 1~ is the funct ion  f r o m  0o to p s aefined by (]~(s))(3,) = s(](3,)); 
(ii) ].~ will be used for  the funct ion  either f rom F n a ( p ) t o  Fna(pl  

or f rom "~a(P) to ~a(p),  where (] ,a( f ) ) (s)  = f(]~ (s)) or j .o (x )  = 
{s e e x }; 

(iii) iaa = J'a, where j is the identi ty o~ a. 

For the rest of  § § 2 - 4 ,  j will always denote a 1 - 1 order pre- 
serving funct ion on ordinals. Any f e  Fna(p)(x  e 9~(p)), with ~.up- 

port F, equals j . a ( g ) ( j , ~ y ) )  for a suitable g e Fn n (p ) (y  e 9n(P) )  
and j : n ~ 6, where n = F. We use the subscript, [3, since ~ cannot  be 
determined from j, but this will be dropped if no confusion could 
result. 

2.3. Definit ion 

(i) Fn~(M, p) is the set o f  all f e Fna(P)  such that f = j .~ (g )  for  
some g e Fn n (p) n M, where n is f ini te  and j: n -* ~; 

(ii) ?~(M, p) is the zet o f  all x e ~ ( p )  such that x = j . ~ ( y )  for  
some y e 5~ n (p ) n M, where n is .finite and j : n -~ ~. 

Note that for n finite, ~n (M, p) = 5~(p n ) n M, and Fn n (M, p) = 
V pn n M. 

If f ,  g e Fna(M,  p), then {s e pa : f(s)  = g(s) } and {s e pt~ : f ( s )  e 
g(s)} are in 5~t~(M, p). As indicated in § 1, F n a ( M  , p) will become 



184 K.Kunen, Some applkations of  iterated ultrapowers in set theory 

Na upon dividing out by a suitable ultrafilter, to be defined below. 
Since p0 = { 0 }, Fno(M, p) can be identified with M. 

Condition (v) of Definition 1.1 implies trivially that if the 
double sequence, (X~n : ~, ri < p> e M, then {(~, r/) :x~n e cg} e M. 
With this remark in mind, 

2.4. Definition. We define inductively atn C_ 9n(M,  0), and show 
inductively that i f  (x n : ~ < O> is a sequence in M, then 

{r t :x  n ~qgn} eM.  
( i ) ~  0 = {{0}} (note 7 '0 (M,p)=  {0, {0}}); cg I = ~ ;  

(ii) Assuming the inductive hypothesis for  a t . ,  define 

x eq£n+ 1 i f f { ~ : x ( o  eqtn  } eCg. Then if<x n : r /<  p) eM,  
'{<n, ~>:xnm eat.} e :4, so { n : x  n e qZn+l } e M. 

We can easily check that each Cgn satisfies conditions ( i ) - (v )  of 
Definition 1.1 (subst i tvt ing~n f o r ~ a n d  pn for p). Also, by in- 
duction, 

{<Go,-.., ~.-~>:~0 < "" < ~.-1 < P} e ~ . .  

The following lemma is proved by unraveling the inductive 
Definition 2.4. Thus, for example, x e at4 iff 

2.5. Lemma 
(i) Let  i: m + n, x e ~ m  (/14, p) .  Then x e c~ m i f f ] ,  n (X) e c'~ n ; 

(ii) Let x e ~m+n(M, O). Then x eCgm+n i f f  { s e ta m :X~s ) cog n } e 

Odin; 

The definition of j .  could, of course, have been given for j not 
order preserving, but Lemma 2.5 (i) would not hold, since 

{(Go,~>:~o < gl < P} e ~ 2 ,  
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Put 

{%, < Go < p } • 

:.6. Definition. DefinegL~ :_ ~4x(.M, p)as follows." If x e 7~(M, p) 
:nd x = ].(y) for some y in some ~n (M, ,o) and ]" n -+ ~, then 

: eCMa i f f y  eQl n . 

Lemma 2.5 (i) shows this definition t¢ be meaningful and estab- 
ishes part (i) of the following; similarly (ii) follows from 2.5 (ii). 

2.7. Lemma 
(i) Let j:a ~ {J, x e ~a(M, p). Then ~ eq£~ i f f  j.~(x) eQ£o; 

(ii) Let x e ~ct+~(M, p). Then x eqeo:+~ i f f  {s e pa :X(s ) eCgo} e c/£t~ 

Now that we haveCgt~ we can use it to divide out Fna(M, p). 
thus, 

2.8. Definition 
(i) If.f, g e Fn~(M, p), 

f "~tx g i f f  { s e pO~ : f (s)  = g(s)} e c/£t~ . 

[ f ]~  = {g:g-~a f ^ Vh[h ~ a f - ~  rank (h) >_ rank (g)] }. 

The subscript, ~, will often be dropped; 
(ii) Ulta(M,q£ ) is the pair (Na, Ea), where 

Na = {[f]tx : f e  Fna(M, p)} , 

and E~ is the relation on Ntr defined by: 

[ f ]  Ea[g] i f f { s  e pa :f(s) eg(s)}  eq£t~ ; 
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(iii) In the case that Eot is well-founded, we shall always identi fy 
N a with the transitive class isomorphic to (N a, Ea); 

(iv) l f  ] : ot -~ [3, define ]*o : Na -~ N o b y / , o ( [ f ]  o~) = [ / ,0 ( f ) ]0  • 
iao = j ,o ,  where ] is the identi ty on a. 

Note that each {g:g  ~. f }  is a proper class i fM is, and in (i) we 
employed Scott 's trick for handling a class of equivalence classes. 

Even in the case that Eot is not well-founded, we shall often 
abuse notation and say "Not" when we mean " (N a, Ea)" ,  or 
"Ulta(M, ~ ) "  when we mean "N,~". In §§ 1-4 ,  Na will be under- 
stood to have been constructed from the ultrafilter cg and model 
M under discussion. By our conventions, N O is always M. 

In later sections, we shall sometimes simultaneously consider 
more than one ultrafilter on p. In that ca~,e, we shall write t ~  for 
the embedding defined using ttLe ultrafilter ~ .  

By the usual arguments with ultrapowers, using the fact that M 
satisfies the axiom of choice, we have 

2.9. Lemma 

(i) Not satisfies ZFC; 
(ii) For each formula  ~o(v 0 , ..., v n_ l ), 

~o(Not)(tf o 1, ..., [ f , _ , l  ) 

i f f  { s e pot : ~o(M)(fo(S) ' ..., f n _  l (S)) l e c h o  t ., 

(iii) Each ]. is an elementary embedding; 
(iv) I f  ~ is a l imit  ordinal, N o is isomorphic to the di~e~t limit o f  

the ~ystems N a (a < (3) and the embeddings ia. r (ot < "r < [3). 

Gaifman [2] first defines N n for n e ~ ,  and then obtains N~ as 
a direct limit of these, using the directed system {F: F c_ a A 
^ F finite } and embeddings j ,  for inclusions, j. 

Finally, we connect our construction with the original idea (ex- 
pressed in § 1) of  iterating ultrapowers, io~LO ) is an ordinal o fN~ ,  
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and  there  is a na t rua l  way  o f  def in ing  an u l t ra f i l te r  on  ~(ioa(p))  n 
n N ~ .  

7.10. Definition 

9Z (~) = { I l l  ~ e 9¢~v~)(ioo,(p))" {s e p~ : f (s )  e ~ }  e ~o,  } • 

We can easily check  tha t  the  de f in i t ion  is i n d e p e n d e n t  o f  the  

choice  o f  f f rom [ f l a ,  and,  by  L e m m a  2.7 (ii), 

l / I s  e ~  (a) i f f  (s~ '~) :s  e 0 a ^ lj e f ( s )  c~ P} e ~ o t +  1 • 

2.1 i .  T h e o r e m .  Suppose Nt~ is well-founded. 
(i) c/£(~) is an Nt~-ultrafilter on iot~(p); 

(ii) For any {3, there is an isomorphism e ~  f rom Na+ ~ onto  
Ultt~(Na,C/£ (t~)) such that e ~  o ia,a~o = i~) where i(m is the 

embedding." N a -* Ulto(Na ,  cllla) ) defi;~ed f rom cl~(a). 

Proof  o f  (ii). Def ine  e ~  as fol lows:  Let  f e  Fn~+~(M,  p)  wi th  

suppor t  {~/0, -.., Tn-  1, a + 8o, ---, t~ + 5 m_ l }, where  3"0 < ..- < 

< "}'n- 1 < ~, and 5 0 < ... < 8 m _ 1 </3.  f =  j , ( f ' ) ,  where  
f '  e Fn~+ m (M,p) ,  j:t~ + m -+ t~ + 18, ] is the  i den t i t y  on u,  and  

j(k) = ¢~ + 8 k for  each k < m. Let  g e F n ~  (M, p),  where  for  each 

- ' = h '  s e pt~, g(s) - f is) e Fn  m (M, p).  T h e n  [g] t~ e F n  m (Nt~, i0t~(p) ). 
Let  7" :m --> ~ be such tha t  ~(k)  = 6 k for  each k < m. Let  h = 

~. (h ' )  e F n ~ ( / ~ ,  i0a(P)) .  T h e n  set ea~( [ . f l  ~÷a) = I h l ~ .  

N o t e  tha t  the  i somorph i sm is wi th  Ul ta (Na,  q£(a)),  no t  

Ul t ioa(~)(Na,  ~'~dta)). I f  we had def ined  the  cons t ruc t i on  for  non-  

wel l - founded  models ,  t hen  we would  n o t  have needed  to  assume 
tha t  Nt~ is wel l - founded.  
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§3. Weli-fou~lded ultrapowers 

We now prove some additional theorems for Na well-founded. 
Of  course, since ia~ is 1 - 1 ,  if Na is well-founded a~d a < [3 then 
N a is also well-founded. 

3.1. Theorem.  ,Suppose NZ is well- founded and a < [3. 
( i ) / f ~  < ioa(p) then iao(~) = ~; 

(ii) iae(ioa(p)) = ioa(p) > ioa(p); 
( i i i ) / f [3  is a limit ordinal, ios(p) = sup { ion(p): 3" < ~ } ; 
(iv) 9(ioa(p))  n N a = ~(ioa(p))  n Na. 

Proof 
(i) By Theorem 2.1 1, we can assume a = 0. Now prove (i) by in- 

duction on [3, using Theorem 2.1 1 for successor stages and Lemma 
2.9 (iv) for limit stages. 

(ii) Again we may take a = 0, and, since ion(p) >_ iol (p), take 
[3 = 1. If  id is the identi ty function on p then ~ < [id] 1 < i01 (P) for 
each ~ < p, so p <_ [id] t < i01 (P). 

(iii) Suppose ~ < ioo(p). ~ = i.r0(r/) for some 3' < ~ and r / <  io~(p~. 
But then (i) implies ~ = 77, so ~ < ion(p). 

(iv) Again we may take ~ = 0, I3 = 1~ Now use condit ion (v) of  
Definit ion 1. i. 

We remark that  if N 1 is well-founded, then standard arguments  
show (using Theorem 3.1 (iv) for a = 0, [3 = 1 ) that  p is H 1 inde- 
scribable in M for all n. However, it is also easy to check that if 0 is 
weakly compact  in M and :9(0) n M is countable,  then there is an 
M-ult~afilter on p. Thus, N l need not in general be well-founded. 

If a < ~ and N o is weU-founded, we can ask what  function in 
Fnt3(M ,/9) has equivalence class i0a(p ). Of  course, this question is 
meaningless if N o is not  well-founded. 

3.2. Lemma.  Suppose N o is well-founded, and a < [3. Let  
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f e Fn  1 (M, p) be such that [ f ]  1 = P. Define j: 1 -* ~ by ](0) = ~. 
Then [ ] , a ( f ) ]  0 = iou(P)- 

Proof .  By T h e o r e m  3.1 (i) we may  assume/3 = a + 1. 

I f  [ ] . ( f ) ] a + l  = [ h ] ~ <  iou(p ~., then ,  since [ia,~+](h)]a+ ~ = [h],~, 

{ s ~ > ' s  e pa ^ f (~)  = h(s) } e 9/~a+ 1, so for  some s, { ~ : f( / j )  = 

h(s)} e q/, wh ich  is impossible.  

But  suppose  [] . ( f )]a+l  > ioa(P) = [ g ] a + ] -  T h e n  

{s e po,. > g(sT >) } e a t e .  

Since [ f ]  1 = P, there  is a h e r na (M,  p) wi th  range (h)  c_ p such 

tha t  

{ s e po, : { g : h ( s )  = e, ) } e } e qlo  . 

T h e n  iota(p) > [h ] a = [i¢~,a+ 1 (h)]  ~+ 1 = [g] ¢~+ ,,, a con t r ad ic t ion .  
We can use this  to  get  a resul t  on  indiscerm J~les. 

3.3. Lem m a .  I f  ~P(Vo~ ..., o n) i~ any ]brmula o f  set theory, u <_ 7o < 
< '~/1 < "" < "Yn- I </3, ~ <- 50 < 81 < .... < 5n_ 1 < ~, a e Na and 
N o is well-founded, then Na satisfies 

~o(i0~ofp), ..., io.rn_l (P), iao(a)) ~ -. 

, ~0(iO8o (p),  ..., iO~,n_l(P), io~o(a)). 

Proof .  Def ine  j:¢~ + n -*/3 by i (~)  = ~ for  ~ < a and  ](¢~ + k)  = 3'k for  

k < n. ].a(ia,a+n(a))= lea(a)). By L e m m a  3.2,  j ,~( io ,cx+k(p))= 

io~k(P). By L e m m a  2.9 (fii), .Na satisfies ~o(ig7o(p), ..., iOvn_. I(P),  

iao(a)) i ff  Na+ n satisfies ~O(ioa(p) , ..., io,a+n_ l (P) ,  ia,a+n(a)). Doing  
the  same wi th  the  8 k gives the  lemma.  

3.4. T h e o r e m .  I f  N:s ~!s well-]ounded, [3 < co(~ ~), and ~ < p, then M 
satisfies lP -* ((J)~<~ ]. 
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Proof.  Sugpose P = (Pn>~. <~o e M, where Pn : [0 ]  n ~ [" By Lemma 
3.3, {i0,t(9): ~, </3} is a homogeneous set for ioa(P). Since 

< c o ]  M) = co]~vo ). z-.~,~ ~r:, gument• due to Silver [ 15] and Vaught  shows 

that  ioo(P) has a homogenoous set of  order type ~ in N 0. i0a(fl) =/3, 
so P has a homogeneous  set of  type/3 in M. 

The next  two theorems give some sufficient conditions for Na  
to be well-founded for  all a .  The first is essentially due to Gaifman 
for the case M = V. The second was clone independently by Keisler 
in a slightly different context  (see Chang-Keisler [ 1 ] ). 

3.5. Theorem. l f  N a  is we i l - founded  f o r  all a < <~1, it  is well- 

f o u n d e d  f o r  all 4. 

Proof.  If  N a is not well-founded, let 

... t y ,  ... E tA l E tfo  , 

where 3'n e Fna(M, O) with support  F n. Let G = w n F n . G is of  
some order type/3 < co 1 . I f / i s  the 1 -  ! order preserving map from 

/3 onto G, then there are gn e Fna(M, P) such that J*(gn ) = In" Then 

• "" [gn ] aEt3 "'" Ea [gl ] ~Ea [go I t~ ' 

so N O is not well-founded. 

3.6. Theorem. I f  arbitrary countable  intersect ions o f  e lements  o f  ell 

are non-empty ,  then Na  is we l l - founded  f o r  all a. 

Proof.  Suppose 

... t y ,  ... E f;, 

where fn e Fne(M, p). 
Let x n = {s e P e : f n  + 1(s) e fn(S) }. We shall derive a contradict ion 
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by finding an s e n {x n : n < co}, since this would mean 

... ( s )  e ...  e f l  ( s )  e f o ( s )  . 

We define s inductively, assuming inductively that for each n, 

xn(st~) e ~a- 'r"  If s t 3' is defined and sarisfies this, choose s(3") in 

nn< ~ {ti < # "xn((s ~:~<~>) eO_~/t~_(.r+l ) } It is easy to verify that 

S e f"l n <to Xn"  ) 

Note that the assumption of  Theorem 3.6 implies that cf(p) > 60 
and that arbitrary countable intersections of  elements of  cg are un- 
countable. By Theorem 3.1 (iii), cf( i0w(p))= w, so that Theorem 
2.1 1 (i) shows the condit ion of Theorem 3.6 to be not necessary. 

Finally,  we give a bound on the size of  leg(p), and of i0a(5) for 
other 5. 

3.7. Theorem. I f  N~ is well-founded and ~1 ~ 1, then 

iov(P) < ((2P(M)) = . ~,)+ . 

Proof. This follows from the fact that the cardinal on the right is 
greater than the number  of elements in Fn~(M, p) with range p. 

3.8. Corollary. 11:{3 is c,:ny cardinal larger tha~ 2 pO/1) and Na is well- 
founded, then i0a(p) = ~. 

Proof. Use Theorems 3.1 (iii) and 3.7. 

Similarly, 

3.9. Theorem. Suppose "r >- 1 and N~ is well-founded. Then 
(i) For any 6, io.f(6) < ((Sp(M)) =. ~)+ ; 

(ii) 1]'8 is a limit ordinal and cf(M)(5) ~ p, then io~(5 ) = 
sup {io.r(~) : ~ < 5 } ; 

(iii) I f  cf(M)(6) ¢ O, 5 i*S a cardinal > % and for all ~ < 5, 
(~jP(M)) = < 5, then io.~(5) = 5. 
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§4. Normal ultrafilters 

4.1. Definition.q/is normal iff whenever (x~ :~ < P) e M, each 
x~ e cg, and x~ = n {x  n : ~1 < ~ } for  all l imit ~, then { I~ : ~ e x~ } eqt .  

As in the usual theory of normal ultrafilters, 

4.2. Lemma. ~ is normal i f f  N 1 has a oth ordinal and this ordinal 

is [id] 1, where id is the identi ty funct ion  on p. 

Also, we get normal ultrafilters from ordinary ones by 

4.3. Lemma. Suppose N 1 has a pth ordinal, [ f ]  1, where f :p -~ p. 

Define C)3by x e q~ i f f  x e 9 ( 0 ) n  M and [ f j E l i o l ( x )  
( i f f  x e 9 ( p )  n M and f -  1 (x) e ~ ) .  Then 

(i) c19 is a normal M-ultrafilter on P; 
(ii) I f  arbitrary eoun table in terseetions o f  elemen ts o f  cg are non- 

empty ,  the same is true f o r ~ ;  
(iii) I f  ~ i s  normal, c,y = 9!; 
(iv) I f  Ulta(M, °d) is we l l founded ,  so is Ulta(M, ~ ) .  

Proof. The proofs of (i)-- (iii) are standard. For (iv), define an em~ 
bedding, e: Fna(M, P) "* Fna(M, P) by (e(g))(s) = g ( fo  s). This de- 
fines an embedding: Ulta(M, c~) _~ Ulta(M ' q£), so the existence of 
a descending e-chain in Ulta(M, ~ )  would imply the existence of 

one in Ulta(M, 9/). 

To go along with Theorem 2.11 we have 

4.4. Lemma. Suppose 91 is normal and Na is well-founded. Then 
c~(~) is normal. 

Proof. Use Lemma 4.2, along with Lemma 3.2 and the proof of 

Theorem 2. I 1. 
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The next lemma will show that ~ ( ~ )  can be defined from a 
single countable set, { ion(P):n < w }. This idea will be very useful 
in later sections. 

4.5. Lemma. Suppose 91 is normal, ~ a l imit ordinal, and N a is well- 

founded.  The for  all x e ?( ioa(P))  n Na,  

x e91 (a) i f f  3 ~ <  o~ [{i0.y(p):fl _< ~,< ct} c_ x] . 

Proof. It is clearly only necessary to prove the implication from 
left to right. Let x e 91(a). x = iaa(y)  for some/3 < 0~ and y e ~(a).  
Then for all ~, such that [3 <_ 7 < a, ia~(y) e 91(~), so that 

i0~/(p) e ia,~+l (y)  c_ x~ 

Ultrafilters give rise to elementary embeddings. Conversely, we 
can get ultrafilters from elementary embeddings. Thus, 

4.6. Lemma. Let  N be a transitive model  such that 9 ( p )  ¢3 N = 
5~(p) A M, and suppose i is an elementary embedding f r o m  M into 
N such that i(p) > p and i is the identi ty on p. Then {x  e ?(M)(~): 
: p e i(x) } is a normal M-ultrafilter on p. 

§ 5. Measurable cardinals 

A special case of the situation discussed in § § 1 - 4  occurs when 
is an M-ultrafilter on p and ~ is actually a member of M, i.e., t:' 

is a measurable cardinal in M. Now Ulto~(M, 9/) can, for a e M, bc 
constructed completely within M, and is essentially the same as 
OaM in Gaifman [ 21. Theorem 3.6 (relativized to M) shows tha'2 
Ultct(M, 91) is zll-founded, for a e M, and hence, by Theorem 3.5, 
for all a when o~ 1 c_ 34. 

The only non-trivial part of  the next lemma is due to Scott. 

5.1. Lemma. Let  ~ be an M-ultrafilte, on p such that ~ e  M, 
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< [3 e M. Then (using the notation o f  Definition 2. 8) 
(i) °d(a) = io(x(9/) (see Definit ion 2.1 0); 

(ii) (Scott)  c//(a) ¢ N(x+ l ; 

(iii) Na c_ N a and Na 4: N a. 

?roof.  (i) follows immediately from the definit ion ofC~ ((~). By 

Theorem 2,1 !, we need only prove (ii) and (iii) for (x = 0. N o c_ N o 

= M sirrce the defini t ion of Na is made completely within M. That  

N o =/: N o foUows from (ii). 
Suppose ~ e N l . By "l-heorem 3.1, 50t0) n M = 50(0) n N 1 . Fur- 

thermore,  there is a map from 0 ° onto ~01 (0) definable from 

50(0 ) n M a n d S .  Thus, N 1 satisfies [i01(0) < (2°)+].  But 0 < i01(0) 

and i01 (0) is inaccessible in N l , a contradict ion.  

When M = V, a V-ultrafil ter on ,o is the same as a 0-complete free 

ultrafi l ter  on 0, and a normal V-ultrafilter on 0 is the same as a 

normal  ultrafi l ter  on 0 in the usual sense• 

Many of the results of  this paper deal with the universe con- 

structed from a normal  ultrafil ter on a measurable cardinal, and 

We shall define now our nota t ion  regarding this universe. These 

results usually have rati~er trivial generalizations to the universe 

constructed from a sequence of normal ultrafilters on a sequence 

of measurable cardinals (see e.g. [7] ). We shall not  bother  with 

these generalizw~ions here. However, for § 10 we shall need some 

of the basi~ nota t ion  for construct ion from such sequences, so we 

shall define our nota t io~ in suitable generality. To simplify nota- 

t ion, we shall of ten appl#" ;,~rms and formulas to sequences coor- 

dinate-wise. Thus, if ~ is the sequence ~Ou "ta < 7r), then 50(~) = 

<C~(Ou):ta < tO; ~ c_ 7)(i~) means that  g i s a  sequence, 
• c C9(0u)] ; 05 n x = (05, n x : t s  < r,>; <c5 u /s<Tr) ,  and X/to< rr[05~,_ 

etc. 
The following definit ion is a specialization of a more general 

not ion  of  construct ion discovered by L6vy and others: 
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5.2. Definition. Let e5 ~ ~('p ), p a sequence o f  length lr. 

(i) L 0 [~ ] = O; 
(fi) La[c3] u {Loft]  "/~< c~} i fa  isa limit ordinal; 

(iii) La+ ] [~ l = {a c_ L~ [~ ] • a is first order definable from ele- 
ments o f  L~[~] in the relational system, 

<L~[~I ; e, {:U, O.>:u < ~.no~ ,,~ G <  7r n ~}, 

{<u,x>:u< ~ n ~  A x e  G , n  La[~:]})}; 

(iv) L[~I = u {L~x[~] :~ is an ordinal}. 

need not be in L[~] .  For example, i f g  = ~(~) and ~ e L, 
then L[~] = L. However, we have 

5.3. 
(i) 
(ii) 
(iii) 
(iv) 
(v) 

(vi) 

Lemma. If ~ c ~(~'), 
"~ n L[-~] e L[-~],and-pe L[-~] ; 
L[~] -- L[~ n L[~] ] ;  
L[~] satisfies ZFC; 
L[~] has a well-ordering definable in L[~i from ~ n L[~] ;  
I f  M is a transitive model for ZF containing all the ordinals, 
and ~ n M e M, then L[~ ] c_ M; 
If-o are measurable and c5 are O-complete free ultrafilters on 
O, then, in L[~] ,  t~ are measurable a n d ~  n L[~] are O-com- 
plete f)ee ultrajilters on O. I f  c5 are normal, so are ~ n L[~ ] in 
LI- l . 

la (iv), the definable well-ordering is the analog of the usual 
well-ordering for L, and will be called "the order of construction 
from ~';. 

The original intent of Definition 5.2 was that ~ be ultrafilters on 
P. However, it may turn out that c5 are merely filters on g~,, but 
that in L[-~], ~ n L[~] are ultrafilters. 
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5.4. Definition. ~ is a strong sequence c~f filters on p i f f ~  are fil- 
(_~rs on ~, and, in addition, in L [ ~ ] ,  -p ~re measurable and 

n L [ ~ ]  are normal vltrafilters on "~. 

There are two natural candidates for being strong filters: 

5.5. Definition 
(i) I f  cffp) > co, the closed unbounded filter on p is 

{x :xC_p  A 3 y [ y C  x A y i s~ c l o sed ,  

unbounded  subset of  O] } ; 

(ii) I r a  is a limit cardinal the card;hal filter on O is 

{X:X C p A :l~ ( jO V'F/[i~ ( T / (  p A T/a cardinai 

- '  r exl}. 

Note that  if p is a limit cardiral  and cf(p)  > ~ ,  the closed un- 
bounded filter on p is an extensien of  the cardinal filter. 

We do not  need the following theorem for future work,  but  cite 
it to show what  is possible. 

5.6. Theorem (Solovay). Suppose the class o f  measurable cardinals 
is o f  order type at least 7r + I. Let -p be an increasing sequence o f  
cardinals o f  length rr such that P0 > rr and p u > sup {Pv: v < # } for 
all ~ < lr. Let  ~ be filters on p such that for each la < ~r, either 

(i) cf(pu) > w and ~u is the closed unbounded filter on Pu' or 
(ii) p is a limit cardinal and ~u is the cardinal filter on Pu" 
Then ~ is a strong sequence o f  filters on p~ 

In Solovay's proof,  the ~r + 1 measurable cardinals are used to 
construct  lr + 1 sets of  indiscernibies for the universe constructed 
from normal u!trafilters on the first lr measurable cardinals. An 
alternate p roof  can be given using iterated ultrapowers.  
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For the rest of this paper, except in ,~i 1 O, we shall restrict our- 
selves to construction from sequences of iength 1. We shall write, 
e.g., L[cS] for L[<e5>l. 

The universe constructed from a normal ultrafilter on a meas- 
urable cardinal is in many ways analogous to L. For example, 

5.7. Theorem (Silver [ 16l ). Suppose P is measurable, ell a normal 

ultrafilter on p, and V = L[Cg]. Then GCH holds. Furthermore, i f  
>- p and x c_ t~, then x e L~[C/t] for  some ~ < a +. 

Silver also shows that there is a A~ ~ ell-ordering of the conti- 
nuum in L [ ~ ) .  Silver used methods of Rowbottom to get his re- 
suits, although alternate proofs can be cons t~c ted  using iterated 
ultrapowers. 

We shall need an analog of Theorem 5.6 for ~t~e case where we 
only know that there is 1 measurable cardinal of perhaps 1 meas- 
urable cardinal in some sub-model of the universe. 

5.8. Theorem. Suppose M is a transitive model  for  ZFC containing 

all the ordinals, cg e M is a normal M-ultrafilter on p, M = L[gZ], 
and o is a cardinal greater than p+(M). Le t  ~ be either the closed 

unbounded fi l ter on tr (assuming cf(o) > co) or the cardinal f i l ter  
on o (assuming o is a limit cardinal). Then 

(i) ~ is a strong fi l ter on o. 

(ii) L [~]  = Ulta(M, q0,  ioo(p) = o, and ioo(Cl£) = ~ n L [ ~ ] .  

Proof. We start by proving (ii). That ioo(p ) = o follows trom Cord-  
lary 3.8 and Theorem 5 i .  

I f x  e i0a(~),  Lemmas 4.5 and 5.1 (i) imply that x e 13 n 

n Ulto(M,q£)~ so ioo(~) = ~ r~ Ult~(M, 9/). Then Ulto (M , 9/) = 
L[i0o(~)]  = L [ ~ ] .  This also establishes (i). 

This result is best possible in the sense that if V = L [ ~ ] ,  it can 
be shown that (i) is false whenever o <_ p+. 
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5.9. Theorem.  Suppose M, 91, p and Ai ~ ' ,  p' both satisfy the 
hypothesis  o f  Theorem 5. 8 for  M, cll, p Then 

.9(,0 n p ' )  n M = 9(p  n p') r" M ' .  

Proof. By Theorem 5.8 (ii), these are bc~th equal to 5~(p n p ' )  ¢~ 

n L [ ~ ]  for a suitable ~ .  

We shall now show that  p is the only measurable cardinal in M. 

"['he p roof  is essentially the same as Sco: t ' s  proof  [ 1 3 ] that  there 

are no measurable cardinals in L. An earlier proof  was given by 

Solovay using methods  of  Theorem 5.6. 

5.10. Lei, nma. Le t  a and p be measurable, o ~ p,C~ a o-complete 

free ultra,5"lter on o, cl£ a normal ultrajilter on p. Let  N 1 = 

Ult l (V,  ~') ,  and iol : V ~ N 1 as in Definit ion 2.8. Then i01 (p) = p 

and iol (c;~) = c/£ n N 1 . 

Proof. Tia¢, theorem is triv;.al if  o > p, so assume o < p. 

That  i01 (p) = p follows from Theorem 3.9 (iii). 
Let a := { 8 : o < ~i < p ^ 8 is inaccessible }. 3.9 (iii) also implies 

that  i01 (/i) = / i  for each 8 e a. Fur thermore,  a e c~ since QZ is normal. 

Now suppose x e i01 (°d). L e t x  = I f ] ,  where f e  Fn l  (o) and 
range( / )  C ~ .  Let b = n {f(/j).  ~ < o }. b e c~ and i01 (b) C x. Also, 

b r-I a e ~ and b n a c_ i01 (b). Thus x e 9/. 

5.1 1. Thec~rem. Sub, pose M, ell, p satisfy the hypothesis  o f  Theorem 
5. 8. Then p is the only measurable cardinal in M. 

Proof. Suppose c~ e M is an M-ultrafil ter on o, where o 4: P. Let 

N 1 = Ult 1 IM, q3). 
By Lemma 5.1 0, i01 ( ~ )  = ~ n N l ,  so N 1 = M, contradict ing 

Lemma 5. ?~ (ii). 
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§6. Structure of L[ql] 

It is well-known that  L is the unique transitive model for ZFC + 
+ V = L containing all the ordinals. In this section we develop ana- 

logous theorems for the universe constructed from a normal  ultra- 

filter on a measurable cardinal. 

6.1. Definition. ZFML is the theory ZFC + :i ~, o d [x is measurable 

^ ~ is a normal ultrafil ter on ~ A V = L [~ ]  ]. 

6.2. Definition. For any ordinal p, a p-model is a transitive model, 

M, for ZFML, such that M contains all the ordinals and p is the 

measurable cardinal in M. A constructing ultrafi l ter  for M is a 

c~ e M such that M = L[C//] and M ~ [c~ is a normal ultrafi l ter  on 

01. 

Note that  by Theorem 5.1 1, p is the only measurable cardinal in 

M. We shall show (Corollary 6.5) that  in M, p has exactly one nor- 

mal • qtrafilter,  but  we have not  yet  ruled out  the possibility that  

there are more than one constructing ultrafilter,  or that  there is a 

C~e M such that  

M ~ [qY is a normal  uitrafil ter on p] , 

but L[C~] is a proper subset o f  M. 

We shall eventually obtain  a complete description of  all p- 
models, assuming any exist. We remark here that  the discussion can 
be formulated entirely within ZFC, even though we are talking 
about  arbitrary class models for ZFML. l'his formulat ion would 

talk about  sets, c//, such that  q~ n L[Od] is, in L [ ~ ] ,  a normal  ultra- 
filter. Note that  L[C~] always satisfies 22~C. 

Our main tool is the following lemma. 

6.3. Lemma. Let M be any p-model, clg a constructing ultrafilter for  
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M. Let "gu (p < 5) be an increasing sequence o f  ordinals such that 
~1o > P and ~ >- p÷ (M) Let 0 be any cardinal greater than all the ~u" 
Then every element o f  T~(p) n M is definable in (L0 [od] ; e , ~ )  from 
a finite number o f  ordinals in {~/~ :# < 5} u (p + 1). 

Proof.  Let A be the set of  elements so definable. Then { %," p > ~ } 

u (p + 1 ) c_ A. Fur thermore ,  L 0 [~1 has a well-ordering definable 
f rom ~ ,  so A is an elementary subsystem of L 0 [9/1. Hence, A is 
isomorphic to some La[q£], where ~ _>/i _> p+(M). By Silver's Theo- 
rem 5.7, La[ed], and hence A, contains all elements of  :9(p) n M~ 

6.4. Theorem. Let M and N both be p-models, cl£ a constructing 
ultrafilter for M, C)3 a constructing v ltrafilter for N. Then clg = cy, 
and hence M = N. 

Proof.  Let ;k be a regular cardinal "_., p÷, 5 r ~:he closed unbounded  
filter ,an ;k. By Theorem 5.8, L[5 r] = Ultx(M, Cg) = Ult~,~.N, q2), 

• = = n L [  and t0~ ' (c~) 

Let "y# (/a < 5) be an increasing sequence of  ordinals such that  
~/0 > h and 5 _> p+, and let 0 be a cardinal greater than all the "y~. 
Fur thermore ,  assume the ~,u and 0 are chosen so as to be fixed by 

the embeddings i ~  and tom "~ ," this is possible by Theorem 3.9 (iii). 
We shall show ¢)£ c Q;. The reverse inclusion is proved in exactly 

the same manner.  
Suppose x e ~ .  By Lemma 6.3, there is a formula ¢ (with sym- 

bols for =, e, and c~), and ordinals 771, ..., 77m < P and/~1, .... #n < 8, 
such that  

Let 

x = {~ < p :(L0[C/~] ; e,eg) 

~0(~, 771 , . . . .  77m'  p '  'YI~I , " " ,  "YUn ) } • 

y = {~j < p : ( L  o [~1 ; e,C/9) 

F-= ~o(~, 771, "", 77m' p '  "Y/~I, "", ')'tZn) } • 
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Now x e 91 iff t~ex(x)" e 5 r, and y e cl~ iff i~h(y) e 5 r. But i0~ (x) = 

i~vx (y) ,  since they both  equal 

{~ < ), !<Lo [cY] ;e ,  cj. n Lo[CY]> 

I= , (~2 ,  7? l , . . . ,  f t , , ,  X, % 1 ,  "", %, ,)}  • 

Hence y e cy. Also 

x= i (x)n o = i (y) n a = y ,  

s o x  eC~. 

6.5. Corollary. I f  V = L[911, where91 is a normal ultrafilter on r~, 

then 9Z is the only normal ultrafilter on ¢~. 

Proof. L e t ~  be way normal ultrafil ter on ~:. "Ihen L [ ~ ]  is a ~:- 
model with constructing ultrafilterC)Y n L[C)5]. By Theorem 6.4, 
~ n  L[OtS] =,91, so c)~= 91. 

This corollary shows that  it is consistent that  a measurable car- 
dinal have a unique normal ultrafilter. It is also consistent that  a 
measurable vardinal have raore than one normal ultrafilter. For  
example,  Solovay has shown that  if/~ is super-compact, /~ has at 
least (2~) ÷ distinct normal uitrafilters (see [ 1 8] ). Also, Jef f rey  
Paris [ 10] and the author  [7] have shown by a Cohen-style inde- 
pendence proof  that  if ZFC + 3~: [~ measurable] is consistent,  so 
is 

ZFC + 3~ [~ measurable ^ ~ has 22~ normal 
ultrafilters] . 

We now proceed to get a bet ter  description of  all o-models for 
varying O. 
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6.6. Lemma.  l f  M is a p-model, and gZ is the normal ultrafilter on p 

in M, then there are no o-models for  any o such that p ~, o < i~l(p). 

Proof.  Suppose there is such a o-model, N, with ~ the normal ultra- 
on o in N. Let k be a regular cardinal > o + . Let O r, "t't, (to < 6), and 
0 be as in the proof  of  Theorem 6.4. 

Since o < i ~ ( p ) ,  there is a n f e  pP n M such that  [ f ]  = o.in 

Ult 1 (M, ~ ) .  Then ( i ~ ( f ) ) ( p )  = o. By Lemma 6.3, f i s  definable in 
(L0[~]  ; e ,9/)  f rom elements of  {3, u :11 < 6} u (p + 1). Thus i~tx(f), 
and hence also o, is definable in <L 0 [or] ;e ,  or n L o [or]> from ele- 
ments  of  {3'u : ta < 6 } u (p + 1 ) u { ~ }. Now define ] : k -, k by 
](0e) = ~ + 1. ]~  :L[Or] -~ LIar] and fixes 0 and every ordinal in 
{'Yu : ti < 8 } u (p + 1 ) u { ;k },. so it also fixes o. But this contradicts 
Lemma 3.2, which implies ]W. (o) = i~  (o) > o. 

6.7. Theorem. I f  M :" a p-model, ~ in M the normt itrafilter on p, 

and N is a a-model with o > p, the, for  some ~, ~ = t_lltoe(M, °d). 

Proof.  If  for some a, i~a(p) = o, then N = Ul to t (M,~)  by Theorem 
6.4. 

If  not,  then by Theorem 3.1 (iii), there is an e such that  i ~ ( o )  < 
< o < z0,0e+ 1 . a t  (p). But this contradicts Lemma 6.6 (by Theorem 2.11 ). 

6.8. Corollary. l f  p is the least ordinal for  which there is a p-model, 

M, and clg is the normal ultrafilter on p in M, then all transitive 

models for  ZFML containing all the ordinals are o f  the form 

Ulta(M , ol)  for  some a. 

The above methods give the following rather technical result 
which will be useful in § ! 1. 

6.9. Theorem.  Let  M be a p-modeL Suppose thct  for  some ordinal 

o < p there is a normal M-ultrafilter, chy, on o, with the property  

that arbitrary countable intersections o f  elements o f  CMare non- 

empty.  Then there is a o-model, N, such tha tqCe  N andC~is  the 
normal ultra f i l ter on o in N. 
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~rcoi. Let 91 be the normal ultrafilter on p. By iterating ultra- 
,owers by ct£, we ca," assume that p is a regular cardinal such t hat 
F ~ <  p, (X°) -- < p. Furthermore, we can assume t h a t g / =  M ta 5 r, 

~here ~ is the closed unbounded filter on p. 
Throughout this proof, i0a will be i ~  :M-* Ulta(M,q~). Th~;se 

tltrapowers are well-founded by Theorem 3.6. Note that i0p(c)= p, 
Jad i0a(a) < p for/3 < p. Also, Ultp(M,c~) = M when ~ < p. 

Let q¢~ (~ e ORD) be a strictly increasing sequence of ordina ls 
> p such that each T~ is fixed by lop. Let  S c_ M be the Skolem 
roll in M of  {'t~: ~ e ORD } u o u { p }. Then every element of  S is 
"ixed by all i0a for/~ < p, so S contains no ordinals, a, such that 

_<. a < a. Hence, the transitive model, N, isomorphic to S, is a 
J-model. 

NowqCis also an N-ultrafilter on tr by Theorem 5.9. Let C~be 
:he normal ultrafilter on o in N. Let j be the embeddmg top : N -~ 
+ Ultp(N,q~.  Note that Ultp(N,C~) ---M by Theorem 6.4. If 
c eC~, then j (x)  e 5 r, so j (x)  eC/£, and hence x ec)Y. Thusq~=  qL 

In order to formalize the above proof in ZFC, one wouid take 
the Skolem hull in a suitable bounded segment of M. 

§ 7. Non-normal ultrafilters 

We have been talking so far about construction from normal 
ultrafilters. In this section we explore non-normal ones. Our first 
result is: 

7.1. Theorem. Suppose g is a measurable cardinal, cl£ a normal 

ultrafilter on g, andC~ an arbitrary g-complete free ultrafilter on 
Then LIgZ] = L[C/Y]. 

Proof. Since ~: is still measurable in LiqJ1, there is a r-model which 
is a sub-class of L[cp]. Tbus, by Theorem 6.4, L[q£] C L[C~], so we 
need only show thatC~n L[9/I e LIg/]. 
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Using qg, we obtain the e lementary embedding i ~ '  V-~ 
-. Ultli(V, q~). Let o = i~ (h:). Let ] be the restriction of i~  to 
L[9/]. By elementarity of i~ and Theorem 6.4, / is an elementary 
embedding f rom L[qO into the o-model. Call this model N. 

By Theorem 6.7, N = U l t a ( L [ ~ ]  ,c~ n L[C~] ) for some ord.;nal 
a .  Thus, if k = t0a'~tnL[~l , k is also an elementary embedding: 

LI°d] ~ N. 
• If  id is the identi ty function: t¢ ~ to, let ~" = lid] in U I t I ( V , ~ ) .  

Then.for  any x ~ ~:, :¢ e ~ i f f~ "  e i~(x). In particular, 

c~n  LIq~l :- {x e 9 ( g ) n  L[~I  :fe/(x)}. 

Since 

{x e 9 0 0  n L [ ~ I  :~" e k(x)} e L [ ~ I  , 

we need now only show that  ] and k agree on 9(1¢) n L[q/] .  
The p roof  of  this last fact  is similar to that  of  Theorem 6.4. Fix 

3tu. (/a < 3) an increasing sequence of  ordinals such that  ")'0 > o and 
>_ ~:+, and leti0 be a cardinal greater than all the 3'u. Further-  

more,  assume that  the %, and 0 are fixed by ] and k. If  x e 9(~:) n 

n L [ ~ I ,  we can write 

x = {~ < I¢:<L01~] ;e ,  q l n  La[C~]) 

~(~, n l ,  -.., nm, ~¢, "r~,~, ..., v ,n )  } 

for suitable ~, r h , ..., r/m < i¢, and #1, ...,/an < 8. Then, i f q~ i s  the 
normal ultrafilter on o in N, j (x )  and k(x) must  both equal 

{~ < o :<L0 1~ ]  ; e ,q¢)  

~(~, n~, .,., nm, o, V. l ,  .-., ~ . . ) } ,  

proving the theorem. 
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We now consider the question of  how many K-complete free 
ultrafilters there are on r .  The following lemma gives some bounds. 

7.2. Lemma.  I f  r~ is measurable, there are at least 2 K and no more 
than 22" g-complete free ultrafilters on r. 

Proof.  Each ultrafil ter is a subset of  9(r)~ and there are no more 
than 2zK of  these. Now let {x~:/j < 2 K } be a family of  almost  dis- 
joint  subsets of  x. For  each ~, there is a r-coraplete  free ultrafil ter,  
qQ,  such that  x~ e od~, and these ql~ must  be distinct. 

The upper  bound is possible. For example,  as we ment ioned in 
§6.~ it is consistent that  there be even 22~ normal ultrafil ters on x. 

Another  example is when r is str-.::gly compact .  Since r is inac- 
cessible, an immediate generalization of  a theorem of  Hausdor f f  
[3] shows that  there are subsets A~ of  ~: for 13 < 2 K such that  
whenever x,  y are disjoint subsets of  2 ~ of cardinality < r ,  

(n { A a . [ 3 e x } ) O  ( n { g - A v : T e  y } ) ¢  O. 

Hence, as pointed cut  by W.Rudin [ 12] for r = ~ ,  s trong com- 
pactness of  ~: implies that  for each X c_ 2 K, there is a K-complete 

ultrafilter q lx  on ~: such that  A n e q/x  iff  ~ e X. Thus, there are 
22~ g-complete ultrafilters on r .  

In contrast  to the above, we have: 

7.3. Theorem. I f  V = L[C~] ,91 a normal ultrafilter on r,  then 
i) There are exactly r + K-complete free ultrafilters on r;  

(ii) Every g-complete free ultrafilter, ~ ,  on r, is o f  the form 
{x C_ r" ~ e i ~0,~ (x)} for some ~ < i ~  (r). 

Proof.  (i) follows from (ii) by Lemma 7.2. 

For OiL we see, as in the proof  of  Theorem 7. l ,  tha f  for  some or, 

"~ agree o:~ ~ ( r ) ,  and tha!: hence for tol'q~ ( r )  = i ~ ( r ) ,  that  io~ and toa 
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some ~" < i~ (K) ,  q~ = {x C_ X:~" e t0ot(x)}. Since then a l s o ~  = 
/ x  c_ x "~" e i ~ ( x )  } for any/3 >_ ot, we are done if we show that  ot 
must  be finite. 

Suppc~se not. Then ot _> co. Then i~to(r) must be inaccessible in 

Ultot(V, ~ ) ,  since it is in Ult,o(V, 9/)  and both these models have 
the same subsets of  i ~t (x). But Ultot(V, 91) = Ul t l (V,  q~), and 0to 
hence contains all countable sets of  ordinals, so i~t (~) is cofinal 
with 6o there, a contradiction.  

Theorem 7.3. was noticed independently by Jeffrey Paris. 
Another  description of  the K-complete free ultrafilters on x 

arises f rom considering equivalence classes under  permutations.  It 
is convenient to consider base sets other  than K. 

7.4. Definition. I f  ql c_ 7~(I ) and f is a ~anction from I into J, let 
f . ( q l )  = {y c_ j : f - l ( y )  eC~}. ifc~c_ 7~(j), gYand91are equivalent 
i f f  there is a 1-1  .function, f, f rom I onto J such that ~ =  f .  (91). 

If  q / i s  a K-complete ultrafil ter on some set I of cardinality K, we 
shall use the same notat ion,  Ultot(V, 91), i ~ ,  etc., as for ultrafilters 
on ~. It is clear that  all the basic theorems are essentially ,.he same 
as for ultrafilters on K. 

7.5. Lemma.  Let  K be measurable, f =  J=  K, °d a K-complete free 
ultrafilter on L q~ a K-complete free ultrafilter on J. Then 91 and %9 
are equivalent i f f  i~l 1 (K) = i~ (K) and i~ and i~ agree on 7~(K). 

Proof. The implication from left to right is obvious, so we prove 
the implication from right to left. We may assume fo~ convenience 
that  I = J  = K. In general, i f f e  V K, let I f ] a t ,  [ f ] w  be the equiva- 
lence class o f f  in Ul t l (V,  ~ ) ,  U]t l (V,  q~) respectively. 

Let id be the identi ty:  K ~ K. Fix f ,  g: t~ ~ K such that  [idiot = 

[f]~, and [ id ]~  = [g]qt. 
Since t01 and i~1 agree on 9(~) ,  we have, for any x e 9(K), 
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e ~ i f f  [id] nte i~z(x) iff  [ f ] ~  e i ~ ( x )  i f f f -  ~(x) e qL Thus, 
! = f .  (c~). Similarly, ~ = g .  (~ ) .  

Thus, cg = ( f o g ) .  (c//). It  follows that  for some set a e c//, 

t'o g) t a = id t a, so g is 1 - 1 on a. Thus there is a 1 - 1 funct ion,  

, from r onto  ~: such that  {~ < r :g(~) = ~(~)} e ~ .  Then 
-- ~', (c//), so cg and q~ are equivalent. 

.6. Theorem. Suppose V = L [ ~ ]  ,c~ a normal ultrafilter on r. Let  
be any other r-complete free ultrafilter on ~. Then for some n, 
is equivalent to the ultrafilter ql n on r n (see Definit ion 2.4). 

roof.  In the proof  of  Theorem 7.3, we saw that  for some n, 
"~ and i~n agree on So(r). But i ~ "ntn ~1 (~) = i~n (~'), and t01 on = t01 ' so the 

heorem follows by Lemma 7.5. 

§ 8. Model theory in L[q/] 

In this section we give two examples to show that  model  theory  
s rather  pathological  in the universe con:~tructed from a normal  

dtrafilter on a measurable cardinal. The first involves Hanf  num- 

bers, the second, Rowbo t tom cardinals. 

I. 1. D e f i n i t i o n  

(i) I f  r and ;k are regular infinite cardinals, ~Kx is the infinitary 
language consisting o f  finitary function and predicate symbols, 
with < r conjunctions and disjunctions, and < 7, strings c f  
quantifiers; 

( i i ) / f , e  is any language, the Hanf  number  of12, H(~2), is the least 
cardinal, ~, such that whenever a sentence, ~o, o f  12 has a model 
o f  cardinality >1 a, ~o has models o f  arbitrarily large cardinality. 

For more on inf ini tary languages, see Karp [4 ] .  

We remind the reader of  some well-known e lementary  facts 
about Hanf  numbers.  
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8.2. 

(i) 

(ii) 
(iii) 
(iv) 

Theorem. Let  a = H ( . ~ , ) .  
a is a l imit  cardinal and if~o e £?~ has models o f  arbitrarily 

large cardinaiity below ~, ~o has models o f  arbitrarily large 

cardinality; 

a - ~1~ for  some ordinal 3,; 

I f  X >  w,  a = ~la; 

x ~ cf(a)  <_ (~Kx) =. 

There are reasonable bounds known for H ( ~ w ) ,  given by 

8.3. Theorem 
(i) (Lopez-Escobar 18]) H(~?~l,o) = 2,ol ; 

(ii) (ibid.) H(~ ,+ , t  ) < 3(2,,)+ ; 
(iii) H~ ~ +, ,~)> ~1~+ when cf(t~)> w; 
(iv) (lqelling) I f G C H a n d  cf(~) = w, then H(~? +,w) = "1+. 

In § 1 5 of  [7] ,  we showed that for ~ = w l, results (ii) and (iii) 
are be~,t possible. 

As soon as X becomes bigger than w, bounds for H ( ~ x )  can no 
longer be stated in terms of  elementary cardinal ari thmetic (i.e., 
sums, products, and exponentiat ion) .  Thus, 

8.4. T!aeorem (Silver [ 1 5] ). Let  ~o be the language consisting o f  

those :~entences o f  ~°~o 1,o 1 which are conjunctions o f  sentences o f  

~to 1~ and purely universal sentences o f  ~O,o 1~o 1" 
(i) ll~-+ (w l )  <~ ,  ~ > H(~?); 

(ii) For each 3" < 6o I , H ( ~ )  is greater than the first  cardinal K such 

that K -~ (3,) <``' ( i f  it exists). 

One might hope to generalize 8.4 (i) and get a bound on 
H(23~o 1,o :) in terms of  part i t ion properties of  the type ~: -~ (o) <°~ . 
In this section (Theorem 8.8) we show that this is impossible, since 
it is consistent to assume that H(~  ~, 1,,, 1) is ~ea te r  than the first 
measurable cardinal. 
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8.5. Definition. For  the rest of  this section: 
(i) Assume ~ is a measurable cardinal, 91 a ~ormal ultrafilter on ~. 

ia¢j is the embedding: Ulta(L[C/O ,91 n L[91] ) --, Uita(L1911, 

91 n L[91] ) o f  Definit ion 2. 8; 

(ii) a = {i0n(tQ:n e ~ } ; 
(iii) ~o n is the conjunction o f  the first n axioms o f  ZFC (in some 

f i x ed  enumeration). ~(o o) asserts that o o is a measurable car- 

dinal and that the universe is constructed f rom a normal ultra- 

f i l ter on v o. 

8.6. Lemma.  There is some f i x e d  m such that whenever M is a 

transitive (set) model  f e r  ~o m satisfying ~k(a) (where o e M) and 

o ~ io~ (~), then a ~ M. 

Proof. First assume M is a model for all of  ZFC. 
Let M satisfy that  it is constructed from the normal ultrafil ter,  

q~, on o, where o _> i0,,,(~:). 
We see, as in the p roof  of  Theorem 5.8, that  if ~/is a regular car- 

dinal greater than o + and 5 r the closed unbounded  filter on ~, then 
Ult.r(M,qg) = L~ [7 ]  for some 5. 

Thus, i f a  e M, also a e L~ [~7] c_c_ L [ f f ] .  
But also by Theorem 5.8, L[~7] = UIt~(L[911,91 n L[Q/] ) c  

c UIt,~(L[91] ,c~ n L[911 ), and a cannot  be in Ult~(L[C~] ,91 n 

n L[91] ), since i0~(~:) is inaccessible there. This is a contradict ion.  
By examining the above, we see that  we really only needed that  

M is a model for some ~o m . 

For  the rest of  the section, fix m to be as in Lemma 8.6. 
By the s tandard LSwenheim-Skolem argument ,  

8.7. Lemma.  i f V  = L[9/] ,  there is a transitive model,  M, o f  cardi- 

~ality ~, for  ~Pm , such that r~ e M, M satisfies ~/(~), and 
V x  c M [~ = o~-+ x e M ] .  
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8.8. Theorem. I f  V = L [ ~ ] ,  where gl is a normal ultrafilter on the 

measurable cardinal ~, then the Han f  number  o f  Z?`0 1~ 1 is greater 

than K. 

Proof. Let × be the sentence of .6?,,, lW 1 in =, e, constant symbol s, 
and unary function symbol f,  which is the conjunction eft: 

(i) %n ; 
( i i )  i f ( s ) ;  

( i i i )  - -  :1000102  ... [... v n e . . .  e o 2 e v 1 e V o ] ;  

(iv) Vo2v 3 ... :Iv 0 Vv I [01 eo  0 -'.~ Iv I =02 v o~ = o 3 v  ...]]I ; 
(V) V O  0 : 1 0 1  [IJ 1 e S A f ( o 1 )  = O 0 ] .  

Thus, models of X are isomorphic to transitive models, M, of 
~Pm, satisfying ~(o) for some ordinal o e M, and such that 
V x  ~ M[~  = ~ -~ x e M] (iv) and)iV/= o (v). 

By Lemma 8.7, X has models of cardinality ~. By Lemma 8.6 
and the fact that io,,, (~) < x++, X has no models of cardinality 
> t¢ ++ . 

We remark that, by usual ultrapower methods, any sentence X 
of Z?~ with a model of cardinality ~ has one of cardinafity 2 K 
(= x+ in L[9/] ). 

Once we have that H(.t?`01` o 1) > g, Lemma 8.2 shows that it is 
larger than :Ix+, :I:IK+, etc., so it is doubtful that any relation could 
be found between measurable cardinals and H(.q.`0 10~ 1)- 

Conceivably, some partition properties stronger than ~: ~ ~(<`0), 
perhaps involving infinite sequences, could be used to inv¢stigate 
H(.e,,, 1,o I), but so far the only bound known is the trivial one that 
H(~,o 1,o 1) is less than the first strongly compact cardinal 

Another unusual phenomenon in L[~]  is the behavior of Eow- 
bottom cardinals (see [91, D4007). Prikry [ 11 ] has shown that the 
limit of co measurable cardinals is a Rowbottom cardinal, and the 
question of whether the limit of 6o Rowbottom cardinals is a Row- 
bottom cardinal has remained open. We shall show that in L[cE], 



} 8. Model theory in L[~] 211 

~his is not  the case; in fact, in L[9/] ,  all Rowbot tom cardinals are 

Ramsey cardinals (and hence regular). We shall actually show treat 

ha LIg/] ,  a proper ty  somewhat  weaker than Rowbot tom implies 

Ramsey. Thus, 

8.9. Definition 
(i) A J6nsson model  is a f initary rela¢tional system with no proper 

elementary subsystems o f  the same power; 

(ii) ~ is a J6nsson cardinal i f f  there are n6 JOnsson models o f  
power  ~. 

We now prove a preliminary lemma on the structure of  L[9t] .  

8.10. Definition. I f  x e L[9/] ,  od(x)  is the least a such that 

x e La+ 1 [9/]. 

8.11. Lernma. Suppose M is a transitive set model  for  ZFML, with 

measurable cardinal O and normal ~dtrafilter':)Y, where p < ~, and 

Ulta(M ' c~) is well- founded for  all a. Le t  x e 5~(p) ~ M. Then 

x e L[9/] ,  a n d f o r a n y  y e ~(ta) r~ L!C~Jl such that o d ( y )  <_ od(x) ,  
y e ~ (p )  n M. 

Proof. Ult~(M, ~ )  = L~[9/] for some -/, and 9 ( 0 )  n M = 5~(p) n 

n Lv[9/].  Thus x e Lv[9/].  o d ( y )  < ~/, so y e L v [gZ] and hence 
y e M .  

Note that  Ulta(M, cp) will be well-founded for all a whenever 
~o 1 ~ M (by Theorem 3.5). 

8.12. TE,~orem. I f  V = L [ ~ ] ,  where9~ is a normal ultrafilter on the 

measurable cardinal ~, and X is a J6nsson cardinal, then X is a Ram- 
sey cardinal 

Preof. Standard arguments show ~ < ~, and ~: is a Ramsey cardinal, 

so we may assume ?~ < ~:. Since co n is never a J6nssan cardinal for 
n < w ,  ~_> o ~ .  
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Let Pn" [;k] n ~ 2, P = (Pn" n < w).  We shall show how to get a 

homogeneous set for P of  cardinality X. 
Special case. Suppose that for some bounded subset x of  X, 

od(P)  <_ od(x) .  Say x c 5, where w 1 _< 6 < ;k. By standard Lbwen- 
heim-Skolern and collapsing arguments,  there is a transitive model 

M for ZFML with measurable cardinal p and normal ultrafil ter 
such that  6 < p, x ,~ M, and/17 = ~. Note that  i~x(p) = X. By. Lemma 
8.11, P e Ultx(M, q~ ~. Since X is measurab!e in Ultx(M, cp), there is a 
homogeneous set for P of  cardinality X in iAlt~,(M, cp). 

General case. Now let M be a transitive model for ZFML with 
measurable cardinal p and normal ultrafilter c)~ such that  X < p, 
P e M, and/17 = X. Let F be a function frora X onto M, and consider 
the relational system (M; e, F,  {P}~. Since k is a J6nsson cardinal, 
there is a proper subset A of M containing P such that A = X and 
(A; e, F t A) -< (M; e, F).  Then ( A n  X) = = X, but A n ~. ~ ;L If T is 
the transitive model isomorphic to (A ; e), and j is the elementary 
embedding:  T ~ M, then the first ordinal, 6, moved by ] is less than 
X. Also, I(X) = X, and j (P) = P for some P ,5 T. Now T cannot  con- 
tain all subsets of  6, since otherwise {x e 9 ( 6 )  : 6 e / (x )}  would be 
a normal ultrafil ter on 5; but 6 is not  measurable by Theorem 5.1 1. 
L e t x  e 9 ( 6 )  - T. Then od(x)  > od(P)  h3, Lemma 8.11, so, by the 
Special case, there is a set H c_ X of cardinality X homogeneous for 
ft. Then {j(~)" ~ e H} is homogeneous for P. 

§ 9. On GCH at a measurable cardinal 

It is still unknown whether  GCH can fail at a measurable car- 
dinal. The results of  this section indicate that  this question may be 
very difficult, since we show that, arguing in ZFC + 3~ [x meas- 
urable ^ 2 ~ > s: + ],  one can prove the consistency of  tile theory 
ZFC + 3 ~ [~ measurable] .  

9.1. Definition. For  the rest of  thir. section, ~ will be a measurable 
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:ardinal, 91 a normal ultrafilter on x, and M = L[C//]. For each ~ 
'et Ma = U l t a ( M , 9 / n  L[~I  ). For ~ ~ [3, let iat ~ be the usual em- 
bedding: M a -~ Mo. 

9.2. Definition. For the rest of this section, let A, B, C, D, E abbre- 
viate the following propositions: 
A. K + > K +(M). 

B. All uncountable cardinals are inaccessible in M. 
C. There is a p-model for some ordinal p < x (see Definition 6.2). 
D. For some x-complete ultrafilter, ey, on u, i~  (K) >_ low (K). 
E. Solovay's O~ exists (see Matthias [9] ,  D2040). 

We shall show (Theorems 9.4, 9.5) that A, B, C, D, E are cqaiv- 
alent, and that they follow from 2 K > u + . Thus, using e.g. B, 
2 K > K ÷ implies the existence of a set model for ZFC + 3 u [K iaaeas- 
urab!e]. 

The following ~emma is well known. 

9.3. Lemma. Let q~ be any x-complete free ultrafilter on u, i~1 i~he 
embedding." V ~ Ult1(V,c~ ). Then i~  (x) > 2 ~. 

Proof. Let N = Uhl(V,C~). Since i~  (K) is inaccessible in N and 
5"(u) ~ N, we have i~(K) > 2 ~(lv) _> 2 ~ . 

9.4. Theorem. The propositions A, B, C, D, E are all equivalent. 

Proof. Clearly E implies B and B implies A. 
To see that A implies D, note that i0,,,(K) < K ÷+(M) < u + , where- 

as t01 "~' ~,~) > ,~+ for any K-complete free q~ by Lemma 9.3. 
We now a~sume D, and shall conclude C. Let N = Ult 1 ( V , ~ ) .  

.c~ (K) > equality cannot hold, since Note that t01 i0,o(K); 
cf(i0to(K)) " CO, and N contains all countable sets of ordinals, !gut 
i~ (K) is inaccessible in N. Now let cy = {x c_ i0~,(x ) • 3m Vn > 

> m[i0n(U) e x] }. 9 r n N e N, since {ion(X):n < to } e N. Further- 
more, by Lemma 4.5, i0w(~ n M) = cy nUl t ,o  (M ' ~ n M), so ~ is 
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a strong filter on i0, o (u) (see Definition 5.4). Hence, the sentence 

30  < i ~ ( g )  ~!~ [ ~ is a strong filter on p] 

is true in N (take p = i0,o(g), ~ = 9 r n N). By elementarity of i ~ ,  

3 O < g 3 ~ [ ~ is a strong filter on O] 

is true in V, so C holds. 
We now derive E from C. Let P be the g-model for some p < g. 

Let q¢~ be the normal ultrafilter on p in P, c~ any g-complete free 
ultrafilter on g. For any ~, i ~ ( ~ )  = p and i~(q~)  =q¢, so i ~  takes 
P into P. It follows from Lemm~ 3.3 that { i ~ ( g ) : g  e ORD} is a 
class of indiscernibles for (P; e, [)~<p. Hen:e,  the class K = 
{ X: 3. regular and X > 2 ~ } is a class of indiscernibles for (P; e, ~)~<p, 
since i~x(g) = X for ?t e K. Since UItK(P,:~) is the g-model M and 
i ~  (~,) = X for X e K, K is also a class of indiscernibles for 
(M; e, ~)~<~ o We can now, as usual, pick I e g /such  that I is a ~ t  of 
indiscernibles for (M; e, X n)n<,o (where X n is the nth element of  K) 
to show that 0 t exists. 

9.5. Theorem. f f  2 g > g+, then the propositions A - E  hold. 

Proof. Let ~ be any g-complete free ultrafilter on g. By Lemma 
9.3, 

ioo, (g) < g++cM) _< 2. < (g), 

so D holds. 
Another question that might be asked about r is whether every 

g-complete filter on g can be extended to a g-complete ultrafilter. 
We shall show that this statement would also imply A - E .  

Consider the setC//,o c go,, (see Definition 2.7). By the method 

of proof of  Theorem 3.6, any intersection of  < K elements of  q~,o 
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is non-empty,  so 91,,, generates a ~-complete filter, fir, on x ~ , 
which is a set of  cardinality x. Suppose fir could be extended to a 
x-complete ultrafilter,  ~ .  Then the inclusion Fn,.,(v;~ c Fn I (x' , ' )  
defines an elementary embedding e : Ult ,(V, cg) _. Ult l (V ' qy). In 
particular, e(i~,., (x)) = i~  (x), so i~ t  (~) _< i~  (s) ,  so D holds. 

Hence we have shown: 

9.6. Theorem. 13"91,o can be ex tended  to a x-complete  ultrafilter on 
x ~, then proposi'tions A - E  hold. 

Actually,  using methods  of  § 10, one can derive from the hy- 
pothesis of  this theorem the existence of  an inner model with two 
measurable cardinals, t 'ut we omit  the proof  here. 

Theorem 9.6 imFlies: 

9.7. Cor~ollary. I f  V = L[ql] ,  not  every x-complete  f i l ter on x can 
be ex tended  to a x-complete  ultrafilter. 

§ 10. Strongly compact cardinals 

x is called strongly compact  iff  for every k, every x-complete 
filter on k can be extended to a K-complete ultrafilter. 

All strongly compact  cardinals are measurable. Are all measur- 
able cardinals strongly compact?  

Vop~nka and Hrb~6ek [ 19] showed that  one could not  prove 
this in set theory,  since if there is a strongly compact  cardinal,  the 
universe is not  constructible from any set, so that  in an L[9/ ] ,  there 
is a measurable cardinal but no strongly compact  cardinals. 

One might still hope to prove that  Con(ZFC + 3 x Ix measur- 
able] ) implies Con(ZFC + 3x  Ix strongly compact ]  ). However,  
this s ta tement  is also not  provable in set theory,  since we shall 
show, in ZFC + 3 x [x strongly c o m p a c t ]  ~:he existence o f  sub- 
models of  V with many  measurable cardinals. 
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For the rest of  this section, we let r be a fixed strongly compact  
cardinal. 

We begin with some remarks on the method of  Vop~nka and 
Hrb~iEek. 

Whenever p is a cardinal >_ ~:, there is a ~:-complete ultrafil ter,91, 
on O +, such that  kCx C O ÷ [~ _< O ~ x ~ 9 / ] .  Vop~nka and Hrb~i~ek 
realized that  this 9 / c o u l d  be used to get an extension of  Scott 's  
result with measurable cardinals. The following definition is due to 
them (with different notat ion).  

1 0.1. Definition (Vop~nka-Hrb~i6ek). For any cardinal p >_ x and 

any x-complete free ultrafilter, 91, on p+ satisfying V x  _c._ O + [~ <_ 
<_ p -+ x ~91] , we construct models M l, M 2, and embeddings 

i 1 :V ~ MI ,  i 2 :V ~ M 2, and k :M 1 ~ M 2, as follows: 
(i) M 2 = Ul t l (V,  91) = { I f ]  : r e  Fnl(p+)} o f  Definition 2.8(ii). 

Note that  this definition makes sense even though 9 / i s  not  

O+-complete. ]2 is the embedding iol o f  2.8 (iv), so ]2(x) = [ f ] ,  
where V~ < p+ [f(~)  = x]  ; 

(ii) Fn  I (p+) = { r e  Fn I (p+) : ( range (f))= <_ p }. F o r f e  Fo~ (o + ), 
I f ] -  = { g e  F n - { ( p + ) : g ~ f ^  Vh e Fn~- (p+) th  - ~ f o  
-~ rank(h)  >_ rank(g)]  ~,. M 1 = {[ f ]  - :re  Fn]- (p+)}. Jl(X) = 
I f ] - ,  where V~ < p+ [f(~) = x] ; 

(iii) e relations are defined as in Definition 2. 8 on M 1 and M2,, but 
again we always identify M 1 and M 2 with the trans/tive classes 
to which they are isomorphic; 

(iv) F o r f e  Fn~ (p+), k ( [ f ]  - ) = [ f ]  ; 
(v) I f  K is a class, set Jl (K) = { [ f ]  : f e  Fnl (p  + ) ^ rang~ (y) c_ K }; 

j2(K) = { [ f ] -  : r e  Fn~-(O +) A range(f)c_ K}.  

Actually,  the definition o f M  1 is a special case of  Keisler's notion 
of  a limit ultrapower. In the notation of  Keisler [ 5] p. 389, M 1 = 
Vo+.I G, where G is the filter on O + x p+ generated by those equiv- 
alence relations on O + with no more than O equivalence =lasses. 
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10.2. Lemma.  With the notat ion of  Defition 8.1 : 

(i) Jl, J2, and k are elementary embeddings and j 2 = k o Jl ; 
(ii) If ~ < jl(p+), k(~) = ~; 

(iii) ]l(p +) </2(p+); 
(iv) 11 (O +) = sup { ]1 (0  : ~ < P+}; 
(v) I f  each y~ e M 2 for  ~ < to, then (y~ :/j < to) e M 2 ; 

(vi) I~brany x~ (~ < ~:), (/l(X~): ~ < ~:) e M 1 ; 
(vii) I f  each y~ e M 1 for  ~ < a, where o: i~ an ordinal <_ ~ such that 

(pa) = = p, then (y~:~ < ~) e M ! .  

Proof. ( i ) - ( v i )  are standard. 
For (vii), let y~ ~ tf l - .  Define g(rl) =(.f~(rD:/j < o0 for 7/< p+. 

g e F n l ( P  +) since (range(g)) = < ( a s )  = = p. Then (y~ :/j < cO = 
( [g l - ) t~ '~  

M 1 cannot  equal M 2 since Jl(P) = J2(P), I1 (P+) < J2(P+), and 
]t(p +) is the successor of Jl(p) in Mt(l = 1,2).  Vop~nka and Hrb~i~ek 
concluded from this that  V ¢ L[a] for any a c_ p, and, since p can 
be made arbitrarily large, V 4: L[a]  for any a. 

The restriction, (p~)= = p in Lemma 10.2 (vii) ,  ::mnot in general 
be eliminated. For example, suppose (p'~)= = 2 o (e.g. take p = 

~1~+,o). Let t be a 1 - 1 function from 9~(p) onto the set of  func- 

tions p'~. It follows from Jl (P+) < J2(P +) that  there is an 
a e ~'(j] (p))-/1/11, and hence ( j z ( t ) ) (a)  is an co-sequence of ordi- 
nals absent from M 1 . Also, if (p'~)= = p+, we could take t to be a 
1-1  function from #+ onto p'~ ; then ( j z ( t ) ) (p  ÷) ~t M1. We do not  
know what happens when p+ < (p ~)= < 2 p, or e,ren whether  this 
situation is possible. 

The elementary emb~,dding, k, naturally suggests defining q¢ = 

{x e ~ ( j l  (p+)) n M 1 : ] l (p +) e k(x)} .qg  is not quite a normal  M 1- 
ultrafilter, qg satisfies ( i ) -  (iv) of  Definition 1.1, along with the 
criterion for normali ty in Definit ion 4.1. But j l (p  +) is a successor 
in M~ and hence not weakly compact ,  so that  q~ cannot  satis 
i.1 (v). But note that  by Lemma 10.2 (vii),q~ is closed under  arbi- 
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t r a ~  countable  intersections whenever O" = 19. This, along with 

Theorem 3.6 allows us to conclude,  using Lemma 4.6, 

10.3. Lemma. With the notation o f  Definit ion 10.1, suppose K is a 

transitive mode l  o f  ZFC containing all the ordinals, such that 

]I(K) = ]2(K), and suppose p '° = O. Then cM = {x e 5~(]1(0+)) n 

n ,/~ (K): / l (O +) e k(x)} is a normal ]l (K)-ultrafilter on 1~ (O +) such 
that all Ulta(]  2 (K),q¢)  are well-founded. 

Whenever ]l  (K) = ]z (K), it is known that  we can conclude, using 

the embedding,  k, that ] l  ('O +) is inaccessible and l-I n indescribable 

in ] l (K)  for al~ n and m, and hence the same holds for O ÷ in K. In 

particular, we have this si tuation if K = L [ ~ ] ,  w h e r e ~  is ~'. normal 

ultrafi l ter  on K, so that  0 + is II~n lndescnb,.ole in L[c¢] for all 
n, m < to and P -> ~. This fact was noted alamo by Reinnardt.  

It will be convenient  to actually get a K-ultrafilter on some or- 

dinal. Conceivably,q¢ may not  be in M j ,  so it is not  clear that  O + 

has a normal  K-ultrafilter. However, 

10.4. Lemma. Continuing the notation and assumptions o f  L e m m a  

10.3, suppose in addition that Ult o(] l (K),q¢) = ]1 ("t")" Then there 
is a normal K-ultrafilter, q¢', on some ordinal, o, such that 

p+ < o < 2u 5 , and such that all Ulttx(K,q¢') are well- founded (29 = 

20 , and 2On+ 1 = 22,°. , ). 

Proof. Let i0,,, be i~',~ "]I (K) ~ Ult ( j  I (K),q¢) = ]I(K). q¢('~) (see 
Defini t ion 2.10) is a normal Jl (K)-ultrafilter on r = i0, o (]l(O+)), 
and for all x e 9~(T) n ]I (K), x eq¢ ~'°) i f f  :1 m V n > m 

[ion(Jl(o+)) e x ] .  Hence,q,¢ ~'°) e M 1 , since it is definable from the 

countable  set, {ion(Jl(p+)):n < 6o }. Furthermore,  all 
Ultot(] 1 (K) ,q¢( ' ) )  are well-founded by Theorem 2.1 1 and Lemma 

10.3. 

] l ( r )  _> r. Thus, M 1 satisfies that  there is a normal j l (K)-ul t ra-  

filter, q¢ ' ,  on some ordinal o, such that  ]~(O +) < o <_ ]l (r) and such 
that  all Ulto~(] 1 (K),q¢ ' )  are well-founded. 
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Since ]1 is elementary, we shall have the desired conclusion once 
p+ + 

we know that r < 2~. Now ]1 (P+) < ( 2 )  <_ 2~, so 
1" = iotofjl(p+)) < (2/1(a+)) + _< 2~. 

We were not very carefifl about getting the best bound for o, 
but this will not matter. 

We now launch into the main body of the proof. The plan is as 
follows: We shall fix a sequence of ~r limit cardi~nals, ~ ,  and attempt 
to prove that the sequence of cardinal filters on ~ is strong (see 
Definitions 5.4, 5.5). That this be true does not seem too surprising 
in view of Solovay's Theor,em 5.6. However, now we do not know 
that we have ,t + 1 measurable cardinals, bu~ only one strongly 
compact cardinal. Nevertheless, the desired result will eventually 
be obtained by Lemma 10.4 and iterated ultrapowers. 

First, an cxercise in cardinal arithmetic to justify the next defi- 
nition. 

10.5. Lemma. Let  ~ be any cardinal. 

(i) There are arbitrarily large cardinals, ~ such that f3 ° = 13; 
( i i ) / f /3  a = ~ then (~+)tx =/3+. 

106. Definition. For the rest of this section f i x  ¢r < ~. Also, f i x  

cardinals Ou , 7un, hu for  ta < rr, n < o:,, stwh that: 

(i) (~/u0~ exp (2~ u ) = 7~0 ; 
(ii) "ru,n+~, = (Tun) + ; 

(ii~) X u = s u p { % n  "n < ~ } ;  
(iv) p u >  sup {Xv:v< ~};  po > g; 

(v) (Or) '~ = p~. 

1G.7. Definition 
(i) For l~ < 7t, let 5r u be the cardinal f i l ter on X u ; 

(ii) L a t a = { ' y ~ n : ~ < ~ ^  l _ < n < w } ;  
(iii) L[a] is the univers,,, constructed f rom a under the usual defini- 

tion o f  construction f rom a set o f  ordinals. 
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Note that ~ is definable from a, so that L[ff]  c_ L[a] .  In our 
effort to prove that ff is strong, we shall use normal L[a]-ultra- 
filters on ordinals, ou, situated between Pu and "/m0- 

10.8. Lemma. For each i~ < ~r, there is a ou a n d q ¢  u such that 

(pu)+ < o u < 2~ u , c~ u is a normal L[a]-ultrafilter on o~, and all 
Ulta(L[a] ,qCu) ore weli-Jounded. 

Proof. We wisq to apply Lemma 10.4 with L[a] as K and Pu as p. 
To cbec;, ih : ,  ' l (L[a]  ) =]z(L[a]) ,  we oeed only show that 

]t(a) = 12(a), ana, since a is of length ~.~r < x, we need only show 
that ] l (%n)  = ]2(3'~n) for ~, < ~r, I _< n < ¢.o. This is clear from Lemma 
10.2 (ii) for v < ta since then %n < (Ou) +" Now for v >_ g, 

]l(%n) = sup {h(/j) : ~j < %n } (l = 1,2),  since %n is :'egular and 
> (pu) +. By Definition 10.6 ( i i)and Lemma 10.5 (ii), each ]t(~) < 

< ((%,n- l )(°u)+) + = 3%. Hence, h(%n ) = "/,n (l = 1,2). 
We similarly check that Ult,~(]: ( L [ a ] ) , q ¢ ) =  ] l (L[a]  ). 
Hence, let % be the o andq~ u theq¢'  of Lemma 10.4. 

For the re:st of this section, o,, andeS- u will be as in Lemma 10.8. 
Also, iut~ will be the embedding from Ulta(L[a] ,qCu) into 
Ulta(L[a] ,c~q u) defined byC~ u. 

10.9. Lemma. Let  a < k u , v < rr. 

(i) i~c~(Xv)=: ;kv; i~a(~')= ~; 
(ii) F o r x e ' ~ ( ; k ) n L [ a ]  n i ~ a ( L [ a ] ) ,  x e 7  i f f x e i  u ( 7  n 

v v 00~ v 

n L[a]); 

(iv) i~a(~ n L[CYl)= n Ltff ] .  

Proof. (iii) and (iv) follow from (i) and (ii). 

i~ot(Tvn) = 7vn when a < ~/un by Theorem 3.9 (iii), using Defini- 
tion I0.6 t;a~,, ,.,_o"a T_.,,mma, 10.8. Hence (i) and (ii). 

10.10. Lemma. ff n Lif t]  is, in L[ff] ,  a sequence o f  normal  ultra- 
filters on ~ .  
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Proof. We show first that they are ultrafilters, next that they are 
t-complete,  and finally that they are normal. 

If ~7, n L[~]  is not an ultrafilter, let b be the f~st (in order of  
construction from ~) of the subsets, x, of Xj, in L [ ~ |  such that 
x 4 5~u and 0t u - x) ¢ ~7,,. Then by Lemma 10.9, i~o~(b) = b for all 

< k u . Also, i~,.run(O u) = "Yun for 1 _< n < ¢o. Thus, 3,un e b iff 
o u e b for 1 <_ n < ¢o, so b e 5r u or (h~, - b )  e 9r,,, a contradiction. 

Similarly, if 5r..¢ c~ L[~)] is not Xu-complete in L [ ~ ] ,  let 
<b~ : ~ < 5) e L[ be the firstcounter-example to Xu-complete- 
ness. Thus, each b~ e ~ r  buf r~ {b~ : ~ < 6 } ¢ 5ru, and ~ < 3'~m for 
some m.  i~ot((b ~ • ~ < ~)) = (b~ " ~ < 5) for each a < ~u" Also. for 

n >_ m ,  i.rum.ru n (~) = ~ for ~ < 6 and i.r~,m.run('Yum) = 3,ut., so 
'~un e b~ iff "/urn e b~. Thus, { 7un : n >_ m }  ~ b~ for each ~, so 
n { b~: ~. < 8 } e ~ r ,  a contradiction. 

Similarly, suppose (b~ : ~ < Xu) e L[5 r ] is the fi, rst counter- 
example to normality o t 'g run  L [ ~ ] .  Then each o e 9" u and b~ = 
n { b n : r /<  ~ } for limit ,~. As before, {~'un : n >_ m } c bt whenever 

< ~lum, so each "~um e b.ru m , so { ~ : ~ e b~ } e 7 u , a contradiction. 

By somewhat more careful computation of  cardinal bounds, we 
could have put somewhat less stringent conditions on ~ than those 
in Definition [0.6. This does not seem worthwhile, however, in 
view of Solovay's Theorem 5.6, which implies (after we have gone 
through Lemma 10.10 with one sequence of length lr + 1 ) that we 
in fact could have been very free in ciaoosing ~.  

Even without Solovay's theorem we have: 

10.11. Theorem. I f  there is a s trongly  c o m p a c t  cardinal, ~:, then 
f o r  any ordinal  rr, there is a transitive m o d e l  M o f  ZFC with  ~t 
measurable cardinals. M rn¢~v be taken to be e i ther  a class contain-  
ing all the ordinals, or a set. 

Proof. For ~r< ~, takeM = L[~ ]  and use Lemma 10.10. Or, if we 
want a set, apply Lemma 10.10 to a sequence of length rr + 1, and 
take M = Li ~]  n R(~,,). 



222 K.Kunen, Some applications of iterated ultrapowers in set theory 

For an arbitrary ~r, let c~ be a g-complete free ultrafilter on g. 
For a suitable U l t a ( V , ~ ) ,  i0a(g) > ~r, and apply the above within 
Ulta(V, q~). 

§ 11. Saturated ideals 

Solovay [ 17] has shown that if a cardinal, g, has a ~-saturated 
g-complete nontrivial ideal, where X < g, then g is measurable in 
s~)me sub-model of the universe. In this section w'z z P.a!!, by meth- 
ods similar to those of § 1 O, extend this result to g+-saturated 
ideals. 

1 1.1. Definition. For the rest of this section, g is an uncountable 

cardinal and 9 is a normal, g-complete, g+-saturated, non-trivial 

ideal on g. 

g must be regular. Also, assuming 9 to be normal is no loss in 
generality, since Solovay [ 17] shows that the existence of any 
g-complete, g+saturated, non-trivial ideal on g implies the existence 

of a normal one. 
We shall eventually show (Theorem 11.12)that  9 n L [ g ]  is, in 

L[ 9 ] ,  a prime ideal, so that g is measurable in L[ 9 ] .  
We first describe some ideas due to Solovay [ 17]. The material 

through Lemrna 11.5 is taken from there, with slightly changed 

notation. 

1 1.2. Def in i t ion  
(i) c~3 is the Boolean algebra, 5~(g)/g; 

(ii) I f  x e 5~(g). [x] is the equivalence class o f  x in 93. 

93 has *.he g+-chain condition. Also, by a theorem of Tarski, CB is 
complete. We use the standard notation regarding the 93-valued rod- 
verse, V(~) (see Scott-Solovay [ 14]). It is convenient to extend the 
v notation to proper classes, Thus, 
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1 1.3. Def'mition. I f  C is a proper class, ~ is the~-valued sub-class 

o f  V (q°) defined by 

1 1.4. Definition. ~ is the object in V (q~) such that ~91~ ~(~)  n 
n ~I~ = 1, and, for each x e 9(g),  ~fc e ~ l  = [::]. 

It is easy to see that,  with value I, 9/sat isf ies  ( i ) - ( i v )  of  Defini- 
v 

t ion 1.1 (with M = V), even though it may not satisfy (v). Thus, 
within V (~),  one may,  as in Definit ion 2.8, form the ultrapowers 
Ult l(ff ,cg~ and the embedding,  i~"  '~-~ Ult 1 ( '~,9/) .  Of  course, 
since condit ion (v) is lacking, it is not  clear how to iterate ultra- 
powers by ~ .  

V 

1 1.5. l .emma. ~ U I t I ( V , ~ )  is well-founded] = 1. 

Now, before showing that  r is measurable in L[ 9 ] ,  we first 
prove that some larger ?~ is measurable in an inner model.  The fol- 
lowing is analogous to Definit ions 1 0.6 and 1 0.7. 

1 1.6. Definition. For the rest of this section, 
(i) Let 7n (n < ~ )  be an increasing sequence o f  cardinals such 

that cf(~/n) > h: and 7n = ' ~ n  ; 
(ii) k = sup { 7n : n < co } ; 

(iii) 5 r is the filter on'k  defined by x e 5 r i f fZim Vn  > m[~,~ e x] ; 

(iv) a = { Tn : n < co}; 
(v) q¢ is the object in V (~) such that [q¢=  9/c~ L[~] ~ = 1. 

Analogously to Lemma 10.8, we have 

~ 1.7. Lemma.  ~q~ is a normal  L[J l -u l t raf i l te r  on K ] = 1. 

Proof. By normali ty  of  d, I[x eq~ll = [[~ e t01 (2)]] for any 
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x e 7~(~:) n L [a ] .  The lemma then follows from the fact tha 

lit01 ta) = all = 1. 

Although the fact that  Ultl(L[Y] ,q¢) is, with value 1, well- 
founded follows from Lemma 11.5, it is not immediately obvious 
that  all Ul ta(L[~]  ,caP) are well-founded, so we cannot  proceed im- 
mediately as in Lemma 10.10. What we shall do instead is to first 
prove (Lemma 11.10) thatqO is 2-valued. The proof  is like ~he 
uniqueness p roof  for  0-models in § 6. 

11.8. Def in i t ion  
( i ) / ior  = : ~ + ~  .(~+~) (~ < % ) ;  

(ii) ~in+l, ¢ = ~l~n+ w .(~+1) (~ < qCn+l ); 
(iii) 6,.,~. = ~x+o~ .(~'+1) (~" e ORD);  
(iv) A = {6n t .  n < co A ~'< 3'n} U { ~ttot" ~'e ORD}.  

Note that  ~i~tl (5) = ~ = 1 for each 6 e A. 

11.9. i .emma.  Let  x e 9 ( ~ )  n L [a ] .  Then there is a f ini te  subset, F, 

o f  g u A and a formula,  ~o, o f  set  theory such that 

x = {/j < ~ : L t a ]  I = so(/j, F,  a)} 

Proof.  Let 4 be the class of  elements of  L[a]  which are first order 
definable in L[a]  from a and some finite subset of  A u x. Then 
A -< L [ a ] .  Fur thermore ,  A is isomorphic to L[a]  since each 3'n is 
qcn is the % th ordinal in A. Let j be the isomorphism: A ~ L [ a ] ,  
and let y e A be such that  x = ](y).  Then for some ~0, F,  

p "" {/j : L[al  I = ~o(~, F,  a)} , 

and, s ince / i s  the id: '~tity on ~, 

x =  { ~ <  ~:  L[al ~ so(~ ,F ,a)}  . 
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1 1.10. Lemma. l f x  e 9 ( to )n  L[a ] ,  [[~ eC~] is either 0 or 1. 

. q £  ~" 

Proof. Since [:~ eq¢]  = I[~ e tol(X)],  it follows, if we write x as in 
Lemma 1 1.9, r:hat [~ eq~] = 1 if L[a] ~ ~0(K, F, a), 0 otherwise. 

From now on, we identify3~ with {x e 50(~) c~ L[al"  Ux eq:l l  -- 
= 1}. Thus, C~ - {x e 9(~:) n L[al"  g - x  e 9}.  We may nosy forget 
about V(~) .q¢  is a normal L[a]-uitrafil ter on ~, and, since 9 is 
~:-complete, arbitrary countable intersections of element,s of C~ are 
non-empty, so that ali Ulttx(L[a] ,q¢) are well-founded. Thus, we 

may prove, as we did Lcmma 1 0.1 0, 

11.11. Lemma. 5 r M L[g:] is, in L[g:],  a normal ultrafil,ter on X. 

It follows immediately by Theorem 6.9 that there is a to-model 

M, with q0 the normal ultrafilter on ~ in M. Since q¢ is the dual 
filter to 9 n M i n M ,  M =  L[9 ]  and 9 n  L[9 ]  is, in L [ 9 ] ,  alaor- 

real prime ideal. 
We remark finally that if z is any bounded subset of t~, the 

above would through exactly the same for L[ 9, z ] ,  since z would 
be fixed by any elementary embeddings we considered. Thus, 

1 1.1 2. Theorem. I f  9 is a normal, K-complete, ~c+-saturated, non- 

trivial ideal on ~, and z is a bounded  subset o f  ~, then 9 c', L[ 9, z] 

is, in L[ 9, z], a normal prime ideal on ~. 

There are many open questions concerning to-saturated and t< +- 
saturated ideals. We can show (by methods of § 10 in [7] ) that  it 
is consistent that ~: = 2 ~ 0 and carries g ~:-saturated ideal, but no 
X-saturated ideals for X < ~c. However, it is not known whether ~: 
can be strongly inaccessiblz and carry a h:-saturated ideal with.out 

being measurable. 
Even less is known about K+--sa~urated ideals. For example, it is 

not known whether 601 can h~',ve an co2-saturated ideal, or even 
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whether  the iaeal on ~1 dual to the closed u:abounded filter can 
be ~2-sa tura tea .  Some indication of  the diffi,:ulty of  these prob- 
lems is given by 

11.13. T h e o r e m . / f ~  = ~+ and K has a ~+-saturated ~-complete 
non-trivial ideal, 9, then Solovay 's Ot (see [ 9 ] ,  D2040)  exists. 

Proof.  As before, we assume 9 is normal.  

i~  (~) is, with value 1, greater than ~, but still tile successor car- 
dinal to ~ in Ult 1 ('v', q/).  Since q5 has the x ÷ chain condition, ~:÷ is 

.q/ '." + v • 
a cardinal in L, I t l (V,  q/),  so llz01(x) = ( ~ )  ~ = 1. Thus, there is a 
tc+-model. Since i~( tc)  > x ÷(M) (where i ~  :M ~ Ul t l (M,q~)) ,  Theo- 
rem 6.7 implier, that  tc ÷(M) < ~÷. 

Since q~ has cardinality K, ~[q~ e Ult I (V, 9/)]1 = 1. By elementari ty 
of  i ~ ,  there is a p-model,  N, fc~r some p such that  p÷(N) < ~. If  z is 
a subset of  p÷(N) which codes the normal ultrafil ter on p in N, we 
have, by Theorem 1 1.12, that  

L[z,  9 ]  ~ [~: is measurable and there is a !D-model] , 

so 0 t exists by Theorem 9.4. 
In fact,  we can show by a somewhat  more complicat,ed argument  

that ,  under  the hypothesis  of  this theorem, there is; an inner model 
with 2 measurable cardinals. 
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