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PUSHING UP THE MEASURABLE CARDINAL

HATM GATFMAN

The following work is done in ZF. Classes are to be
understood as given by some formula which defines them, and
statements concerning them should be taken as abbreviations

for schemas.

1. tet My = <Mb’RO’CO> be a relational system with a
binary relation R and a distinguished individual CO" Its

language has R (name of R and ¢ (name of ¢

O> O)
non-logical constants, it has also the eguality sign ‘=",

Let f My M, be an elementary embedding, M = <M1’Rl’cl>'
Ml is said to be definable within M if there are formulas

0

u(x), r(x,y), c(x) in the language of MO such that:

M o= {x:xe My & M, Foulx))

By = Hoy) s my b oxix,y))

¢, = the unique x such that My = c(x).

The mapping f is definsable in Mb if there is a formula

f(x,y) so that, for every x ¢ M_,

0
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f(x) = the unique y such that M, E £(x,y).

We will put O = (u,r,e,f) and refer to it as a self-

extending schema.

The property of being a self-extending schema amounts

to the satisfaction of a certain set of sentences in Mb.

These are the sentences which state that the binary

relation which is defined by - r is over Ml’

that c¢(x) holds exactly for one element, that f defines a
1-1 mapping of Mb into Mi which maps ¢ to the element

satisfying g(x), and all the sentences of the form

n

. 0
(1) ¥ %q57 00X 55005y, {i/~\1 £(x;5¥3) = [o(xy - x)) >0 (7751

Where ¢ 1is a formula with the free variables x X

17 %y
and mo is obtained from ¢ by simultaneously replacing
each R(u,v) by r(u,v), each ¢ by tve(v) ( = the unique

v such that ¢(v)) or any other elimination of that term
which amounts to the same, and restricting all quantifiers to
AY

u(x). Changes of bound variables are to be made, if necessary

to avoid clash of varisbles.

Note that, for all Yo7 oY, € Mi, we have

0
WoE ey Yy S Mk ey, ).
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Conseguently, one can apply O to any model M of the
same similarity type in which all the above mentioned sentences
hold, and get another model with an elementary embedding of
M into it. 1In particular one can apply it to every model which

is elementary equivalent to Mb.

CM 1is the model obtained by applying O to M and
OM : M—->0M 1is the elementary embedding which is defined by

T,

An elementary embedding g : M — N induces a natural
embedding of OM into ON, which turns out to be just the
restriction of g to OM. (Remember that the underlying set of
OM 1is a subset of M.) This is denoted by ‘0g'. The following

diagram is commutgtive:

Og
oM - ON
OM 1 1 ON
M - XN
g

For k « ¥ we define OkM “to be the result of iterating

0 k +times. That is:

O = Ky ook,

O
=
|
=
O
I

Let 1 %be an ordered set of n elements, n < &, and

let J Tbe a subset of I having k elements. TFor any given
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M, the elementary embedding OJ s OkM ->0'M is defined by
J

I

induction as follows.

OO 8= the identity mapping of M.
2

If I has n elements, n > 0, let i be its maximal element
in the given ordering, and put I' = I - {(i}. There are now two
cases.

(&) i¢ J. Then JCI' and Oj,; 1is defined as the

composition of the mappings

ofm 0 0™~ e o
J,I! n
oM

(b) i€ J. Thenmput J'=J - {i}. The mapping

0., -+ 04 5 0P M being defined, the mapping O : OM 5 oM
J', I J,1
is the one induced by it; that is, O = 00

J,I J,I'
If KCJCI, where I is finite and ordered, then one

gets:

The fact that OM : M—>0M is not onto is equivalent to
Mk dy [u(y) A ¥ x~ £(x,y)]. Hence if it holds in M it
holds also in every model which is elementary equivalent to it.

In this case O 1is said to be a proper self-extending schems.

If O is proper then one can show that O whenever

K,I # OJ,I
I 1is a finite ordered set, X,JC I, and K # J. '




Now let I = (I,<) be any ordered set. Given M, consider

the system of all mappings OK I where K CJ, and J is a
J
finite subset of I with the induced orderiﬁg. It forms a
I

directed system. TIts direct limit is defined to be oM

(the Ih power of O applied to M). Up to an isomorphism

OIM depends only on the order type of I. Thus, we get a
definition of OgM, where & 1is any order-type, which generalizes
OkM for k<«cw. If J CI and we take J with the induced

dJ. I

ordering then one has a natural embedding OJ :OM-0M,

I
2
which, again, generalizes the finite case.

If O is a proper self-extending schema then each element
of I will contribute at least one new element to OI(M) so
that the cardinality of OIM will be at least that of I. The

embeddings OJ I will then be proper whenever J # I.
b4 ;

Note that one can define OIM also in the case where I
is a class which is given by means of some formuls. Our claim
concerning the cardinality of OIM is to be interpreted then

by saying that one can define a 1-1 mapping of I into OIMQ
OR = class of all ordinals.

Every ordinal is to be identified with the set of its

predecessors, ordered in the usual way.

If weput I=q, for aqe OR, then the definition of
OOM and of the mappings OB o B < Q, as given here, is
>

equivalent to the following natural definition:

IV-R-5
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(@]
=

= M, OO o= identity mapping of M
J

ol -
0% M = oo™, 6 =0 _ °0
’ Y804l O% B,

O%lM.

for B< o, © identity mapping of 0

ol ol

For a=Ua>0, O°M = direct limit of | If

06,7 }5_<_7<oz‘
B < o then OR - is the natural embedding of OBM bnto the

gt

direct union, and Oa - identity mapping of OOM.

5

The definitions are equivalent in the sense that the systems
of models and mappings arising out of them are naturally
isomorphic. The exact character of the elements of OIM depends
on the way in which one choses representatives for the direct

union.

2. Consider now the system V = (V,e,c) where V is, so
to speak, the universe of ZF, ¢ is the membership relation,
and c¢ 1is a non-principal ultrafilter in the family of all

subsets of a cardinal .

Scott has shown that one can construct formulas, u(x), r(x,y),
c(x) and f(x,y), so that u(x) defines in V a class of
representatives for all the sequences of length | modulo G
r(x,y) defines the appropriate binary relation between them,
c(x) defines the representative of the sequence in which ¢
occurs everywhere, and f(x,y) the natural embedding of V into

its ultrapower.




In this way one gets a proper self-extending schema 0 for
the whole universe. Each instance of (1) becomes a theorem

of ZF.

By iterating this process any finite number of times one can

get formulas Hk(x), Ek(X’Y)’ Ek(x)’ £k k+l(x,y) which will
2
' th

define the kth universe and the elementéry embedding of the k

universe into the k + lth. These formulas are given by:
El(x) = E(X): Ei(XJY) =, E(X:Y): El(x) = E(X>

fo’l(X:Y) = _:_E_(X;Y)

n o, . : 0
. C
where is defined like YV, except that u s T 5 C

are used instead of wu, r, c, respectively.

One cen also give formulas £ 4(%,¥) defining the embedding
J

of the kth universe into the ﬁth, and, more generally, for every

finite ordered set I and every J C I one can construct a

formulsg £J I(x,y) which defines the mapping OJ
b 2

T
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For the sske of completeness one might add:

u(®) = (x=x%), r ey =xey, elx) = (x=g).

Note that the indices k,£ and J,I are extralinguistical
and not variables which occur in the formulas. Our aim is to
make them variables. That is, we have to construct formulas
u(k,x), r(k,x,y), c(k,x), £(J,I,x,y) so that the sentences
corresponding to (2) will be provable in ZF. For example,

we want to have:

7P vk <o v x [ulk + 1,x) e u(k,x) A (u(x))°®)]
(k) O
(where v is obtained from V¥ in the same way that
is obtained, except that here k is a new variable) and similar
statements concerning the other formulas as well as the

recursive conditions for OJ T
2

Now, one cannot use here straightforward induction on k
because the k + lth universe is defined in terms of the whole

of the kth universe and both are proper classes. Nevertheless

our aim can be achieved in the following way.

Let B be any limit ordinel such that ecf(B) > (i.e., B
has cofinality type > {W). Consider the system

R(B) = (R(p),e,c), where R(B) = set of all sets of rank < B.
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All the formulas u, r, ¢, { as well as all their components
are absolute for all such R(B)'s. By this we mean that if

W(xl°°°xn) is any component of one of the formulas then:

ZFhv s (B=UBA cf(B) > U -V x X € R(B)[w(xl---xn) e—awR(B)(x RE

1

where WR(B) is the relativization of ¥ to R(B). It is assumed
here that the representatives of the equivalence classes of the
ultrapower are chosen as the sets of equivalent elements of

minimal rank, and that U, r, ¢, f are the usual formalizations

of these concepts. The fact that cef(B) > L insures us that

R(B) 1is closed under the formation of sequences of length .

One can therefore apply the schema 0 to R(B) and get the
ultrapower of R(B8) modulo c. Moreover, since R(B) is a set
one can use the definitions by induction to construct formulas
u(p,k,x), r(B,k,%,5), c(B,k,x), £(B,J,I,x,y) which define the
corresponding notions for the case where we start with R(B).

Note also that B 1is a variable. Now put

ulk,x) = 38 (B =UBA cf(B) > A u(p,k,x))

EN:IE

£(k:X:Y) UB A ef(B) >pu A E(B:k:X}Y)}

S_\k:x) E B {B

1l
Il

UB A ef(B) > A c(B,k,x))

H
¥ o
o
[n
e
]
o
e
S
!

=dp{g=Us

1l

IB A cf(B) > 1 A £(B,J,1I,%,y))
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With these definitions one can prove as theorems of ZF
all the recursive conditions corresponding to (2) as well as

the recursive conditions for the mappings OJ T
)

To show this one uses the above-mentioned absoluteness
of all the formulas which are employed, as well as the fact
that for limit ordinals 7,B having cofinality types > U,
if 7y >p then OkR(B) is the subsystem of OkR(V) which
is defined in OkR(V) by: rank (x) < B> where P is the
image of B wunder the elementary mapping of R(7?) into
OkR(7). The mappings OJ,I for the systems obtained from

R(B) are the restrictions of those obtained by starting from

R(7).

Now having defined the kth universe and the mappings
OJ,I where k, J, I are variables one can go on and define in
the usual way the universe OIV, where I is any ordered
class. By this we mean that, given any formula 7w(x,y), which
might contain additional free variables as parameters, one can
construct formulas Eﬂ(x), zm(x,y), gm(x), gm(x,y), having as

additional variables the parameters of 1w, and prove in ZF

the schema which amounts to the following statement:

If 7(x,y) 1is an ordering of its field then gm(u,v)
is an elementary embedding of V into the universe which is

defined by EﬂJ EWJ and EW




Moreover for any two formulas Wi(X’Y) Wé(x,y) and any

formula p(u,v), one can construct a formula f (u,v)
—7Tl,7T2,Q
and prove in ZF the schema which amounts to the following

statement:

It Wi, i =1,2 are orderings of their respective fields

and P 1is an isomorphism of the first into the second then

f is an elementary embedding of the universe V into
=T, T,50 .

12 1
VT_Q

2

Similarly, all the other properties of the mappings OJ T
2
where J C I, and I = (I,<), can be expressed by means of

schemas which are provable in ZF.

In particular, given a formula #(x,y) which is assumed
to define some ordering, and letting P,d, range over the
field of this ordering, one can construct formulas Eﬂ(p,x),
zﬂ(p,x,y), Eﬁ(p,x) and £m§p,q,x,y), which define the universes
of the form O pV, where Ip is the class {x : x < p}, and

I I
the embeddings O Py -0 v for P<q.

All the properties of this system can be proved in ZF.
By this, we mean, again, that certain sentences which depend on
T are provable. For instance the sentence expressing the

following statement:

If 7 is an ordering of its field, then, for every p in

its field which has a successor p + 1, and for every x,
0,(p)
u(p + 1,%) emu (p,x) A (u(x)) ,

0.(p)
(where T is obtained from V¥ in the usual way, namely,

IV-R-11
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replacing every x € y by zﬂ(p,x,y) etc.)

or the statement:

v

If 7 1is an ordering of its field, then for every g in
its field which is a limit element and every vy, Eﬂ(q,y) —
Jp,x [M(p,9) A u(p,%) A £ (D,0,%,7)].

I
(Actually, the universe 0 p+lV is not really the one

obtained from OIpV by an application of 0. Both are defined
as direct limits and their elements depend on the way in which
the representatives are chosen. However, natural isomorphisms
exist here, and they can be obviously defined by a formula having
P as a parameter. Thus, we prefer to overlook this point of

pedantry) .

2. From now on assume that |L is a measurable cardinal
and that c¢ is p-additive. In this case, as it is well known,

OV is well«founded.

The schema which corresponds to the following theorem is

provable in ZF.

THEOREM. If I 1is any well-ordered class then OIV is

well-founded.

(Here, by a well-founded relation, we mean a relation which
has no descending chain of power Nb. Since we assume the axiom
of regularity it can be easily proved that in a well-founded class

every given non-empty subclass has g minimal element. )




Note that it is enough to prove the theorem for countable
I's. If there exists s descending infinite chain in OIV,
then, since 0'V is a direct limit of systems 0%, k <w,
every element will be contributed by some OJV where
JCTI and J is finite. Hence a countable descending chain in
OIV would imply an existence of an isomorphic copy of it in

some OJV where J CI and J is countable.

Note also that if any universe U which is elementary
equivalent to V is assumed to be well-founded one can easily
deduce the same fact about OU. This is so because the order
type of the ordinals in OV can be easily seen to be OR. Hence,
one has a formula which defines in V an isomorphism of QV
into V. The same formulas will define in U an isomorphism
of OU into U implying that OU must be well-founded as

well.

The only difficult point in the proof (which we will not
present here) is to show that if OBV is well-founded for all

P< @ where « is some limit countable ordinal, so is OOV.

From now on assume that i = (I,<) is a well-ordered class
(that is, we are given a formula, which might also have parameters,
end which is assumed to define a well-ordered relation). With no
loss of generality we might assume that if T is a set then
I =qa for some ¢ OR, and that otherwise OR is an initial

segment of T.

IV-R-13
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I ¥
Let V_ = (V_,e ,c) be 0 PV where Ip={x:x<p},

D PP
(p e I). 1In particular, Vo = V.
Let f : V.- V_ be the elementary embedding of V
psa Y q p

into Vq, (p<aq).

Let M (M), that is, up is the cardinal which

corresponds to L in the pth universe, and let ORp be the class

of the ordinals of Vb.
The following results hold:

(I) If p<gq then (up,ep) is isomorphic to a proper initial

segement of € ).
g <U«q; q>

(That is a formula with parameters p, g can be constructed,

which will define the required isomorphism).
(IT) {x: x ¢ ul} has higher power than L.

IIT For O the classes X : XE€ and ({x :
(111) <P ( ) besxe i)
are equinumerous (that is, a formuls having p as a parameter

and defining the 1-1 correspondence can be constructed) .

(IV) If p is & limit element of I then (up,ep) is the
union of all its initial segments which are the isomorphic

copies of (uq,eq) where q < p.

(V) (ORa,ea) is isomorphic to (OR,e) for all o ¢ OR.
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Note that if {x : x < p} = OR then (up,ep) is isomorphie
to (OR,e). (This follows from (I), (III), and(IV)). Hence in
the ORth universe the measurable cardinal { is actually

equal to OR.

The pth universe in relation to V can be pictured as

follows:

v
P
/ OR
/ P
§ \
OR 7 OR <, v
\
p < CR . P > OR

However, the mapping f maps OR onto & cofinal

O,p
subclass of ORp.

One gets the following theorem:
THEOREM. = Given any formula 7(x,y) one can construct

formulas defining a universe Vﬁ_ and an elementary embedding of

V into it, and a formula_ o(u,v), so that in ZF one can prove:
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If 7(x,y) defines a well-ordering then V. is well-founded

and 0o(x,y) 1is an isomorphic embeddingdf the well-ordered

class defined by 7 1into the ordinals of VW.

Further results can be gotten by considering the systems
R = (R € where R (x) = HI' € R(x)}.
oK) = (R(K) e ) (%) = by 2V F oy e R(x))
These are all models of ZF, and the mappings fp q map
2
R elementarily into R :
p(Ho) y ()
For these systems one can give a truth definition in ZF.
By considering the constructible part of Rp(up) one arrives
at a theorem which parallels the last one except that now the

*
universe, say, Vv‘ satisfies also V =1L and a truth

definition can be given for it.

I
Still further results can be obtained by applying O p

not to V but to some countable elementary submodel of R(B)
wvhere B =UPRB and cf(B) >WU. One still gets systems, say
Vﬁ, in which ORﬁ (the class of ordinals) is arbitrary high.

#

The cardinals p? which correspond to |L are now spaced in a
much finer way. It turns out that {x : x eﬁuﬁ} has the same

cardinality as Ip.

Note that such a countable model amounts actually to a
certain set of natural numbers. One can start the whole
process of expansion and keep it going, just by throwing this

set of natural numbers into the constructible universe.




