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ABSTRACT

We introduce and study online versions of two classical random structures.

The first is a variation on the classical random graph model, the second is the

satisfiability model.

We begin with the random graph. Let c be a constant and (e1, f1), (e2, f2), . . . ,

(ecn, fcn) be a sequence of ordered pairs of edges on vertex set [n] chosen uniformly

and independently at random. Let A be an algorithm for the online choice of one

edge from each presented pair, and for i = 1, . . . , cn let GA(i) be the graph on vertex

set [n] consisting of the first i edges chosen by A. We prove that all algorithms in

a certain class have a critical value cA for the emergence of a giant component in

GA(cn) (i.e. if c < cA then with high probability the largest component in GA(cn)

has o(n) vertices and if c > cA then with high probability there is a component

of size Ω(n) in GA(cn)). We show that a particular algorithm in this class with

high probability produces a giant component before 0.385n steps in the process (i.e.

we exhibit an algorithm that creates a giant component relatively quickly). The

fact that another specific algorithm that is in this class has a critical value resolves

a conjecture of Spencer. In addition, we establish a lower bound on the time of

emergence of a giant component in any process produced by an online algorithm

and show that there is a phase transition for the offline version of the problem of

creating a giant component.

Now we consider satisfiability. Given n Boolean variables x1, . . . , xn, a k-

clause is a disjunction of k literals, where a literal is a variable or its negation.

Suppose random k-clauses are generated one at a time and an online algorithm
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accepts or rejects each clause as it is generated. Our goal is to accept as many

randomly generated k-clauses as possible with the condition that it must be possible

to satisfy every clause which is accepted. When cn random k-clauses on n variables

are given, a natural online algorithm known as Online-Lazy accepts an expected

(1− 1
2k )cn + zkn clauses for some constant zk. If these clauses are given offline, it is

possible to do much better, an expected (1− 1
2k )cn + Ω(

√
c)n can be accepted. The

question of closing the gap between (1− 1
2k )cn+zkn and (1− 1

2k )cn+Ω(
√

c)n for the

online version was posed by Coppersmith, Gamarnik, Hajiaghayi, and Sorkin. We

show that for any k ≥ 1, any online algorithm will accept less than (1− 1
2k )cn+(ln 2)n

k-clauses whp, furthermore we show that this bound is asymptotically tight as

k → ∞.

We also introduce a new random model for random 2−SAT . It is well-known

that in the standard model there is a sharp phase transition, the probability of satis-

fiability quickly drops as the number of clauses exceeds the number of variables. The

location of this phase transition suggests that there is a direct connection between

the appearance of a giant in the corresponding 2n-vertex graph and satisfiability.

Here we show that the giant has nothing to do with satisfiability, and in fact the

expected degree of a randomly chosen vertex is the important parameter.



Chapter 1

THE ACHLIOPTAS PROCESSES

We begin with vertex set [n] = {1, 2, . . . , n}. We are primarily interested in

what happens as n → ∞, and we will say something happens with high probability,

or whp, if it happens with probability 1− o(1). A random edge is a pair of vertices

chosen uniformly at random from
(

[n]
2

)

.

We first examine Gn,cn, which is the graph with n vertices and cn random

edges for some constant c. It is well known, a classical result of Erdős and Rényi

[19], that for any c < 1
2

the largest component is of size O(log n) whp, and for

c > 1
2

there is a giant component (i.e. a component of size Ω(n)) whp. The c values

in which this huge jump in the largest component size occurs is called the phase

transition, or double-jump threshold.

Although we concentrate on c − 1
2

being a constant, there has also been a

significant amount of work done when c differs from 1
2

by less than a constant. It

has been shown in [4, 31, 34] and several other places that a phase transition still

exists in this much smaller window of time. If M = n
2
− s for n ≫ s(n) ≫ n2/3,

then whp the largest component of Gn,M has Θ(n2s−2 log(s3n−2)) vertices. On the

other hand, if M = n
2

+ s for s(n) ≫ n2/3, then whp the largest component of Gn,M

has 2(s+s)n
n+2s

± O(n2/3) vertices, where s satisfies

(

1 − 2s
n

)

exp
(

2s
n

)

=
(

1 + 2s
n

)

exp
(

−2s
n

)

.

Furthermore, all other components are either trees or unicyclic components, with

less than n2/3 vertices.
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Now we add a variation on the theme. Let c be a constant and let

(e1, f1), (e2, f2), . . . , (ecn, fcn)

be a sequence of pairs of edges on vertex set [n] chosen uniformly and independently

at random. We will examine algorithms which create random graphs by choosing

one edge from each of these cn pairs. We consider two versions:

• The online version, where pairs appear sequentially and the choice of edge

from the pair (et, ft) is made without knowledge of future edges.

• The offline version, where the choice of edge from the pair (et, ft) is made

with complete knowledge of the full set of edges.

The online version is called an Achlioptas process, after Dimitris Achliop-

tas. He asked if there exists a c > 1
2

and an online algorithm which chooses one edge

from each of cn presented pairs such that whp a graph without a giant component

is formed (this is often called the problem of avoiding a giant component). Recently,

a lot of work has been done on this problem. Here, the interesting case is c > 1
2

because otherwise the Erdős and Rényi result shows that the trivial algorithm which

always chooses edge ei will avoid a giant whp.

Bohman and Frieze introduced an online algorithm and proved that whp it

produces a graph with no giant component for any c < 0.535 [11]. Spencer and

Wormald claim that c = 0.89 can be achieved by an online algorithm [36]. Bohman

and Kim showed that the offline version of the avoiding a giant component problem

has a threshold at coff roughly equal to 0.976 [13]. (If c > coff then whp every

graph that consists of at least on edge from each pair (e1, f1), . . . , (ecn, fcn) has a

giant component and if c < coff then the whp there exists a choice of one edge

from each pair that produces a graph in which the largest component has size o(n).)

This threshold is strictly greater than an upper bound on the online version of the
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avoiding a giant component problem that was established by Bohman, Frieze and

Wormald [12]; in other words, there exist values of c for which any online algorithm

whp produces a graph with a giant but there exists a way to make an offline choice

of one edge from each pair that succeeds whp in producing a graph with no giant

component.

In this thesis we primarily do two things with these processes. First, we

analyze general processes and look at the largest component in the graph they

create. Second, we try to create a giant component in cn rounds of an Achlioptas

process for c as small as possible. The result of Erdős and Rényi shows that for any

c > 1
2

we can create a giant component whp by choosing ei for all i, and for any

c < 1
4

whp we can not create a giant even if we are allowed to choose all 2cn edges.

Thus, the question is interesting for c ∈ (1
4
, 1

2
).

We begin with general online processes. Let A be an online algorithm for

the choice of one edge from each presented pair (i.e. the choice of edge from the

pair (ei, fi) is made without knowledge of pairs (ej, fj) such that j > i). Let GA(i)

be the graph on vertex set [n] consisting of the first i edges chosen by A. This

produces a random graph process GA(1), GA(2), . . . , GA(cn). Note that this class

includes processes produced by algorithms that might be designed to influence the

emergence of a giant component in a variety of ways.

1.1 Size Algorithms

Now we discuss two broad classes of processes that were introduced by

Spencer [36]. A size algorithm A makes the choice between edges et+1 and ft+1

based on the sizes of the components in GA(t) that are joined by et+1 and ft+1.

We will denote et+1 = {ut+1, vt+1} and ft+1 = {xt+1, yt+1}, for t = 0, . . . , cn − 1.

We assume (for convenience) that ut+1, vt+1, xt+1, yt+1 is an ordered sequence of

vertices and let at+1, bt+1, ct+1, and dt+1 be the sizes of the components containing

ut+1, vt+1, xt+1, and yt+1, respectively, in GA(t).
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Formally, a size algorithm chooses the edge et+1 if the 4-tuple

(at+1, bt+1, ct+1, dt+1) (1.1)

lies in some fixed set (this subset of {1, 2, . . . }4 defines the algorithm) and chooses

fi otherwise.

Conjecture 1 (Spencer). Any size algorithm A has a critical value t0 such that

for any ǫ > 0, at c = t0 − ǫ the largest component of GA(cn) is O(log n), and at

c = t0 + ǫ the largest component of GA(cn) is Ω(n). Furthermore, at c = t0 + ǫ the

second largest component of GA(cn) is O(log n).

This is Conjectures 3 and 4 in [36]. The product rule, which accepts edge et+1 if

at+1bt+1 ≤ ct+1dt+1, is an example of a size algorithm. Very little is known about

the graph evolution given by the product rule, even the analysis of the location and

nature of the phase transition is open. It is natural to think that the product rule

is the optimal size algorithm with respect to avoiding a giant component (based on

the analysis introduced in Section 3.3), however this does not seem to be true [37].

A bounded size algorithm is a size algorithm that makes no distinction

between components larger than some fixed constant m. Formally, a bounded size

algorithm is defined by a fixed subset of the finite set

(1, 2, . . . ,m,m)4 ,

where we abuse notation by letting m denote ‘all integers larger than m’, and a

bounded size algorithm will choose edge et+1 or ft+1 depending on whether the

4-tuple (1.1) lies in this subset or not.

Spencer also made a sequence of conjectures regarding these processes [36].

The issues here are the existence, location and nature of a phase transition in the

size of the largest component of GA(t). For each bounded size algorithm there is

a natural candidate for the location of this critical value: the blow-up point in the
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differential equation for the sum of the squares of the component sizes (this quantity

is known as the susceptibility in statistical physics and is discussed in Section 3.3).

If A is a bounded size algorithm let this value be cA (the formal definition of cA is

given in Chapter 4).

Conjecture 2 (Spencer). Let A be the algorithm that takes et+1 if it joins two iso-

lated vertices in GA(t) and otherwise takes ft+1. If c < cA then whp all components

of GA(cn) have size O(log n).

Conjecture 3 (Spencer). Let A, cA be as from Conjecture 2. If c > cA then whp

GA(cn) has a component of size Ω(n).

Conjecture 4 (Spencer). Let A be any bounded size algorithm. If c < cA then whp

all components of GA(cn) have size O(log n), and if c > cA then whp GA(cn) has a

component of size Ω(n).

Conjectures 2, 3, and 4 are Conjectures 1,2 and 6, respectively, of [36]. The last con-

jecture from [36] guesses that any size algorithm can be approximated by bounded

size algorithms:

Conjecture 5 (Spencer). Given a size algorithm A, a restriction to K is a bounded

size algorithm that agrees with A when all 4 component sizes are less than K. For

any size algorithm A with critical value t0 and any positive δ, there exists K0 such

that all restrictions with K ≥ K0 have critical value within δ of t0.

1.2 Our Main Result

This is a general theorem that establishes the existence of a critical value for

the emergence of a giant component for a class of Achlioptas processes. We call an

algorithm A a bounded first-edge algorithm if it chooses between et+1 and ft+1

by observing the sizes of the components in GA(t) connected by et+1, making no

distinction between components larger than some fixed constant m. In other words,
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such an algorithm looks at the first edge in the pair of random edges and either

accepts it based on the sizes of the components involved or rejects it in favor of the

(not yet observed and therefore purely random) second edge. Note that the class of

bounded first-edge algorithms is contained in the class of bounded size algorithms.

We formally define a bounded first-edge algorithm A with a fixed set

SA ⊆ {1, 2, . . . }2,

such that

(i, j) ∈ SA, m < i and m < i′ ⇒ (i′, j) ∈ SA , and

(i, j) ∈ SA, m < j and m < j′ ⇒ (i, j′) ∈ SA

The algorithm A accepts et+1 if and only if (at+1, bt+1) ∈ SA (recall that at+1 and

bt+1 are the sizes of the components in GA(t) that contain the vertices in et+1).

Theorem 6. Let A be a bounded first-edge algorithm. There exists a constant cA

such that

(a) If c < cA then whp the largest component in the graph GA(cn) has O
(

(log n)n12/13
)

vertices, and

(b) If c > cA then whp the graph GA(cn) has a component of size Ω(n).

The algorithm in Conjectures 2 and 3 is a bounded first edge algorithm (defined by

SA = {(1, 1)}). Thus, Theorem 6 resolves Conjectures 2 and 3.

The proof of Theorem 6 is given in Section 4.1. The main tool in the proof

of Theorem 6 is the differential equations method for random graph processes (see

Theorem 18 in Chapter 3). The critical value cA is given by the blow-up point in the

differential equation for the sum of the squares of the component sizes, as predicted

above in Conjectures 2, 3, 4, 5.
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Spencer and Wormald independently proved Theorem 6(b), and they showed

that for any bounded size algorithm and any c < cA whp the largest component

in GA(cn) has O(log n) vertices [37]. Note that this resolves Conjecture 2, and this

is stronger than part (a) of Theorem 6, both in terms of the class of algorithms

considered and in the bound on the component sizes in part (a). They used an

exponential tail method, which roughly shows that the susceptibility is determined

by the smaller components only. Formally, for fixed positive integers K and c, we

say that a graph G on n vertices has a K, c component tail if

1
n
|{v : |C(v)| ≥ s}| ≤ Ke−cs,

where C(v) is the component in G containing vertex v.

This same exponential tail method was also used by Beveridge, Bohman,

Frieze, and Pikhurko [7]. Here they analyzed a two-player game where each player

is alternately presented with a pair of edges and chooses one of them, one players

objective is to create a giant and the others is to avoid one. They showed that the

product rule is an asymptotically optimal strategy for both players.

The machinery introduced in the proof of Theorem 6 can be applied to other

situations. Note that bounded first-edge algorithms are static, that is, they employ

the same rule throughout the process. The proof goes through, for example, for

certain algorithms that always make the choice between et+1 and ft+1 without ob-

serving ft+1 but allow the rule to change some bounded number of times during the

process. The main limitation of the proof of Theorem 6 is that it requires a supply

of chosen edges around the critical point that are purely random.

Since the critical value cA given in Theorem 6 is given by a blow-up point

in a system of differential equations, it can be estimated by numerically solving the

system. In Section 4.4 we estimate the critical points for two bounded first-edge

algorithms. The algorithm A1 accepts et+1 if neither ut+1 nor vt+1 is isolated in
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GA(t); that is,

SA1
= {(i, j) : i, j ∈ {2, 3, . . . }} .

This algorithm is designed to and creates a giant component relatively quickly.

Theorem 7. If c > 0.385 then whp GA1
(cn) has a component of size Ω(n).

In Section 4.4 we also estimate the critical value of the algorithm of Conjectures 2

and 3, which was introduced for the purpose of avoiding a giant.

1.3 Lower Bounds

Besides analyzing the performance of online algorithms, we establish a lower

bound on the online version of the creating a giant component problem and establish

a phase transition for the offline version of the problem. We show that all online

algorithms whp fail to create a giant for c slightly larger than 1
4

(recall that the

interesting interval for the online version of creating a giant component is 1
4

< c < 1
2
).

Theorem 8. If c < 0.2544 then for any Achlioptas process, whp all of the compo-

nents of the graph created in cn steps will be of size O(log n).

Finally, we consider the offline version of the problem of creating a giant

component. Here we are given pairs of random edges (e1, f1), . . . , (ecn, fcn), and we

try to create a giant by choosing one edge from each pair. In this case we establish

a phase transition.

Theorem 9. Let c be a constant and let (e1, f1), (e2, f2), . . . , (ecn, fcn) be a sequence

of ordered pairs of edges on vertex set [n] chosen independently and uniformly at

random. If c > 1
4

then whp there exists a collection of edges E such that |E ∩
{ei, fi}| ≤ 1 for all i and the graph ([n], E) has a component of size Ω(n).

Using exactly the same method of proof we were able to extend this to c > 1
2k

when

given k edges at a time, instead of just 2 edges at a time for any c > 1
4
.

8



Note that it follows from Theorems 8 and 9 that there exist values of c between

0.25 and 0.2545 for which any online algorithm whp produces a graph with no giant

but there exists an offline choice of one edge from each pair that succeeds whp in

producing a graph with a giant component (which is analogous to the problem of

avoiding a giant component [13]). Results similar to Theorem 8 and Theorem 9

were obtained independently by Flaxman, Gamarnik and Sorkin [21].

Section 4.2 consists of the proof of Theorem 8, and Section 4.3 consists of

the proof of Theorem 9. Finally, in Section 4.5 we mention a very simple Achlioptas

process that succeeds in creating a giant component for c < 0.46.
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Chapter 2

RANDOM K-SAT

Let {x1, x2, . . . , xn} be a set of n Boolean variables. The corresponding set

of literals is

X := {x1, x1, . . . , xn, xn},

A k-clause is a set of k literals from X. We say a clause is satisfied by an assignment

of the variables if and only if at least one of its literals is true. The question of

RANDOM k-SAT takes a family of k-clauses chosen at random and asks if there is

an assignment to the Boolean variables for which every clause is satisfied. We are

interested in what happens as n → ∞.

Notation 10. For any n,m and k, let Fk(n,m) denote a set of m random k-clauses,

where each k-clause is chosen uniformly at random from the set of all
(

kn
k

)

possible

k-clauses.

In Section 2.1, we consider random 2−SAT . While it appears that the struc-

ture of the corresponding graph, in particular the appearance of a giant component

in this graph, has a lot to do with satisfiability, we present results that indicate this

is not the case. In Section 2.2 we discuss Random k −SAT when k > 2. In Section

2.3 we introduce an online version of Random k − SAT , present previously known

results about this version, and present Theorem 16, which is an asymptotically

optimal upper bound.

10



2.1 k = 2

Random 2-SAT is well understood. The following was proven by Chvátal and Reed

in [15] and Goerdt in [23] for any fixed constant ǫ > 0:

1. F2(n, (1 − ǫ)n) is unsatisfiable whp.

2. F2(n, (1 + ǫ)n) is satisfiable whp.

There have also been several other results which strengthened this to the case where

ǫ = o(1). ([10, 38], and others), but from now on we will assume ǫ > 0 is a constant.

In [15], Chvátal and Reed define a bicycle as a formula with at least two

distinct variables x1, . . . , xs and clauses C0, C1, . . . , Cs that have the following struc-

ture: there are literals w1, . . . , ws such that each wr is either xr or xr, each Cr with

0 < r < s is {wr, wr+1}, and C0 = {u,w1}, Cs = {ws, v} with literals u, v chosen

from {x1, . . . , xs, x1, . . . , xs}. They prove that every unsatisfiable family of 2-clauses

contains a bicycle.

Each family of clauses F is easily seen to correspond to a graph GF on 2n

vertices, where each vertex of GF corresponds to a literal in F and each edge cor-

responds to a clause. It is well-known ([19], and many others) that GF undergoes

a major change right when the number of clauses exceeds n. When F has (1 − ǫ)n

clauses, the largest connected component of GF has O(log n) vertices and all com-

ponents are either trees or unicyclic, making a bicycle extremely unlikely. However,

when there are (1 + ǫ)n clauses, a giant component of size Ω(n) appears, this com-

ponent contains a lot of cycles and has a substantial 2-core.

It is very reasonable to think that the appearance of this complex component

has something to do with the first appearance of at least one bicycle, and therefore

the change in satisfiability. In [32], Molloy introduces several constraint satisfaction

problems where the probability of satisfiability dramatically changes with the ap-

pearance of a giant component in the natural n vertex graph (which is the graph
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considered here with the vertices for xi and xi identified). Here, we introduce a

natural random model in which there is no connection between the appearance of a

giant in GF and satisfiability.

Given any simple graph G on 2n vertices, we will make a family of clauses

S(G) by randomly assigning labels from X to the vertices, then each edge corre-

sponds to one clause. We would like to know the probability that S(G) is satisfiable

over the space of all possible assignments to the vertices. This question is equivalent

to the one with F2(n,m) if G is a random graph with m edges, however we allow

G to be anything (provided ∆(G) isn’t extremely large). This model does allow

clauses xi∧xi which are usually excluded in 2-SAT, however whp we will have O(1)

such clauses, which makes no difference in our results.

Note that S(G) is satisfiable if and only if there are exactly n vertices in G

which cover E(G) ∪ M , where M is a random perfect matching added to G. We

must take exactly one vertex from each edge in M for an edge cover of size n, and

these n vertices must cover every edge in G. Vertices in the edge cover are “true”,

while vertices out of the edge cover are “false”. We will primarily use this model, in

most cases we will expose one matching edge at a time by matching a given vertex

with a randomly chosen unmatched vertex.

Theorem 11. If G is a graph with 2n vertices, less than (1 − ǫ)n edges for some

ǫ > 0, and ∆(G) = o(n1/10

log n
), then S(G) is satisfiable whp.

This can be thought of as an extension of the result from Chvátal and Reed stated

above, in that case G would be a random graph with 2n vertices and up to (1− ǫ)n

edges. The necessity of a condition on ∆(G) is discussed in Section 5.4.

Our result in the case when there are (1 + ǫ)n edges requires an additional

condition, namely that enough of the edges come from vertices of a degree less than

O(log n).
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Notation 12. For all i ≥ 0, define di = di(G) as the number of vertices of degree i

in graph G.

Theorem 13. If G is a graph with 2n vertices and ∆(G) = o(n1/8), and there is

some ǫ > 0 and function τ ≤ c log n for some constant c < 3ǫ
16

such that

τ
∑

0

idi = (1 + ǫ)2n, (2.1)

then S(G) is not satisfiable whp.

This is also an extension of the Chvátal and Reed result because a random graph

with (1 + ǫ)n edges will whp satisfy (5.1) with τ equal to some sufficiently large

constant. Theorems 11 and 13 are proven in Section 5.2.

If there is a collection of high-degree vertices incident with more than ǫn

edges, the structure of the graph is much more important. However, we do believe

the following to be true:

Conjecture 14. Let ǫ > 0. There exists φ > 0 such that if G is a graph with 2n

vertices and more than (1 + ǫ)n edges, and ∆(G) ≤ nφ, then S(G) is not satisfiable

whp.

In section 5.5 we discuss some results that lead us to believe Conjecture 14 is true.

2.2 k ≥ 2

While Random 2-SAT has a threshold at c = 1, no such value is known for

k − SAT for any k > 2. In fact, it is not even known if such a value exists. In

[3], Achlioptas and Peres proved that for k ≥ 2, the threshold for satisfiability in

Random k-SAT is in the range c = 2k ln 2 − O(k).

Conjecture 15. (Satisfiability Threshold Conjecture) For each k there exists a

threshold density ck such that for any positive ǫ, for all c < ck − ǫ, Fk(n, (ck − ǫ)n)

is satisfiable whp, and Fk(n, (ck + ǫ)n) is not satisfiable whp.

13



The closest result to this conjecture is a theorem of Friedgut, proving that each n

has its own threshold ck(n), but these may not converge to a limit as n → ∞ [22].

When k = 3 the best knowledge that we currently have is that when c <

3.42 that F3(n, cn) is satisfiable whp [25], and when c > 4.6 that F3(n, cn) is not

satisfiable whp [18].

2.3 The Online Version

The question of MAX 2-SAT looks at F2(n,m) and asks for the maximum

expected number of clauses that can be satisfied. In [17], Coppersmith, Gamarnik,

Hajiaghayi, and Sorkin show that for k = 2 and c large the expected number is

3
4
cn +

(

λ2

√
c
)

n,

where λ2 ∈ (0.344, 0.510). It was also shown there that for any k ≥ 1 we can expect

(

1 − 1
2k

)

cn +
(

λ(k)
√

c
)

n

clauses to be satisfied, although bounds on λ(k) are unknown to within a factor of
√

k.

The online version of RANDOM MAX k-SAT was introduced by Copper-

smith, Gamarnik, Hajiaghayi, and Sorkin [17]. Here, cn clauses are presented one

at a time, and we must either accept or reject a clause when it is given with no

knowledge of future clauses. The goal is to accept as many clauses as possible so

that a valid assignment exists on the family of clauses that has been accepted. An

assignment is valid only if every single clause which was accepted is satisfied. This

can be done either with a fixed c or with c → ∞, here we primarily look at c fixed

but large.

It is very easy for an online algorithm to accept an expected (1 − 1
2k )cn out

of cn clauses; this is done by deciding on the values of the Boolean variables before

the clauses are given. Perhaps the most natural improvement of this is known as

14



Online-Lazy [17]. Here, we start out with all Boolean variables undetermined and

set them as the algorithm proceeds. We reject a clause only if all of its literals have

already been set false. Any clause which is accepted but has no literals true gets

one of its literals set to true immediately after acceptance. It was also shown in

[17] that Online-Lazy is optimal among algorithms which are forced to satisfy each

clause upon acceptance. As c → ∞, this accepts an expected (1 − 1
2k )cn + akn

clauses for some constant ak. Using the differential equations methods discussed in

[40] we are able to determine ak for small k:

k 1 2 3 4 5 10

ak 0.5 0.375 0.2842 . . . 0.2209 . . . 0.1765 . . . 0.0809 . . .

The derivation of these numbers is discussed in Section 6.2.

Since the offline version allows (1 − 1
2k )cn + Θ(

√
c)n out of cn clauses to be

accepted whp, this leaves a gap between (1− 1
2k )cn+akn and (1− 1

2k )cn+ Θ(
√

c)n,

which we close with the following:

Theorem 16. Fix any integer k ≥ 1, constant c > 0 and any online algorithm.

Given a random formula with cn k-clauses, whp the algorithm accepts fewer than
(

1 − 1

2k

)

cn +

(

ln 2

−2k ln
(

1 − 1
2k

)

)

n (2.2)

clauses.

This is proven in Section 6.1. The quantity in (2.2) is bounded above by (1− 1
2k )cn+

(ln 2)n for all k ≥ 1, and for k = 2 it gives an upper bound of 3
4
cn + 0.6024n.

Recall that Achlioptas and Peres proved that for k ≥ 2, the threshold for sat-

isfiability in Random k-SAT is in the range c = 2k ln 2−O(k). Therefore, there exists

a constant λ such that a naive online algorithm, which accepts the first (2k ln 2−λk)n

clauses then sets the variables and accepts each clause after this only if it is satisfied,

will accept an expected

(

1 − 1
2k

)

cn + (ln 2 − ok(1))n

15



out of cn clauses. So, Theorem 16 shows that this naive algorithm quickly ap-

proaches optimal as k grows.
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Chapter 3

THE DIFFERENTIAL EQUATIONS METHOD

This is a very powerful use of a quite simple idea. We present a general theo-

rem given by Wormald in [40]. The idea of approximation has existed in connection

with continuous processes essentially since the invention of differential equations by

Newton for approximation of the motion of bodies in mechanics. The first appli-

cation of this method to random graphs was by Karp and Sipser [26], where they

applied it to a greedy matching algorithm. Some results for discrete processes also

appeared before, for example Kurtz’s theorem [29].

To execute this method, we compute the expected changes in random vari-

ables of a process per unit, then regarding the variables as continuous we write down

the differential equations suggested by these expected changes. Then we use large

deviation theorems to show that with high probability the value of the variables is

close to the solution of the differential equations.

First we present the following Chernoff inequality in a form which will be very

convenient for us to use in the context of random graphs. This is also how it appears

as equation (2.6) in [24]: If X ∈ Bi(n, p), λ = np, ϕ(x) = (1 + x) log(1 + x) − x,

x ≥ −1, and ϕ(x) = ∞ for x < −1, and t ≥ 0, then

Pr(X ≤ E[X] − t) ≤ exp

(

−λϕ

(

− t

λ

))

≤ exp

(

− t2

2np

)

. (3.1)

We will also make use of an Azuma-Hoeffding type inequality for supermartin-

gales as discussed in [30, 40]: If Y0, Y1, Y2, . . . , Yt is a sequence of random variables
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such that E[Yi|Y1, Y2, . . . , Yi−1] ≤ Yi−1 and |Yi − Yi−1| ≤ λ for some constant λ and

all i ≤ t, then for all α > 0,

Pr(Yt − Y0 ≥ α) ≤ exp

(

− α2

2tλ2

)

(3.2)

The following are easily obtained from the Azuma-Hoeffding inequality: If {Xi}i≥0

is a sequence of random variables such that all differences Xk+1−Xk are independent

and |Xk+1 − Xk| ≤ z for all k ≥ 0, then

Pr(Xk − E[Xk] ≥ λ) ≤ exp

(

− λ2

8kz2

)

(3.3)

and

Pr(E[Xk] − Xk ≥ λ) ≤ exp

(

− λ2

8kz2

)

(3.4)

for all λ > 0.

3.1 A General Theorem

This is from Theorem 5.1 of [40].

Definition 17. Given a set S, we define the following two sets:

S∗ = {(x0, x1, x2, . . . ) : xi ∈ S}

S+ = {(x0, x1, x2, . . . , xt) : xi ∈ S, t ∈ {1, 2, . . . }}

We lay a fairly general setting. Suppose that we have a sequence of random processes

of the following form:

• S1, S2, . . . are sets.

• Ω1, Ω2, . . . are probability spaces and Ωn ⊆ S∗
n.

• yn : S+
n → R are functions defining a sequence of random variables for each

process.
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• Yn(0), Yn(1), . . . are such that Yn(t)(ω) = yn(ωt) for ω ∈ Ωn. Here, if ω =

(x0, x1 . . . , ), then ωt = (x0, x1, . . . , xt). We will drop the n in Yn(0).

Let Ft denote the σ-algebra on Ω generated by the partition in which α, ω ∈ S∗ are

in the same part if and only if αt = ωt.

We scale variable values and time by a factor of n because this gives them

a fixed limiting distribution. This is convenient when considering the solution of

the corresponding differential equations because there is only one set of equations

rather than different equations for each n.

Theorem 18. (Wormald) If f : R
2 → R is a function and D ⊆ R

2 is a bounded,

open, connected set such that

(0.) There exists a constant C0 such that

|y(ωt)| ≤ C0n for all ω ∈ Ω, t ≥ 0.

(i.) (boundedness hypothesis) There exists a function β = β(n) ≥ 1 such that

|y(ωt+1) − y(ωt)| ≤ β for all ω ∈ Ω

(ii.) (trend hypothesis) There exists a function λ = λ(n) = o(1) such that

( t
n
, Y (t)

n
) ∈ D ⇒

∣

∣

∣ E [Y (t + 1) − Y (t) | Ft] − f( t
n
, Y (t)

n
)
∣

∣

∣ ≤ λ

(iii.) (Lipschitz) f is continuous on D and satisfies a Lipschitz condition on D.

Then,

(a.) For (0, z0) ∈ D, the differential equation

dz

dt
= f(t, z)

has a unique solution z : R → R passing through z(0) = z0 and which extends

to points arbitrarily close to ∂D.
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(b.) For C a sufficiently large constant, there exists a constant k such that

Pr
(

∃ 0 ≤ t ≤ σn such that |Y (t) − nz
(

t
n

)

| > kλn
)

= O

(

β

λ
exp

{

−nλ3

β3

})

where

σ = sup {x : d∞(z(x), ∂D) ≥ Cλ}

3.2 Example - A naive number generator

Suppose that for some c < 1 we want to generate a random permutation

N1, N2, . . . , Ncn of numbers from the set [n] = {1, 2, . . . , n}, and we use the following

naive algorithm:

1. Let k = 0.

2. Choose a number r uniformly at random from [n].

Repeat this step until r /∈ {N1, N2, . . . , Nk}.

3. Let k = k + 1, Nk = r, and goto step 2.

Clearly choosing i numbers randomly won’t result in a list of i distinct elements,

there will be some repetition, but we would like to know how practical this algorithm

is as n → ∞.

We begin with an informal discussion that motivates the differential equation.

For any i = 0, 1, 2, . . . , let Ki be the value of k after exactly i random numbers have

been generated. We have K0 = 0 and

E[Ki+1 | Ki] = Ki + 1 − Ki

n
, (3.5)

as exactly n − Ki of the n possible numbers will cause an increase in k by exactly

one. Letting t = i
n
, ∆t = 1

n
, and k(t) = Ki

n
, we rewrite (3.5) as

k(t + ∆t) − k(t)

∆t
= 1 − k(t),
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assuming Ki+1 = E[Ki+1|Ki]. As n → ∞, and therefore ∆t → 0, this becomes

k′(t) = 1 − k(t), which with k(0) = 0 has solution k(t) = 1 − e−t.

Now we go through the analysis formally as an application of Theorem 18.

We fit Definition 17 by defining Sn = {1, 2, . . . , n}, Ωn as the probability space on

sequences of numbers from the set Sn, f(t, k) = 1 − k, D = R
2, and yn(ωt) equals

the number of numbers that appear in ωt. The conditions of Theorem 18 are easily

seen to hold with C0 = 1, β = 1, and λ = 1
n1/4 is sufficiently large to ensure that the

probability in Theorem 18 is o(1). Therefore, by Theorem 18, whp

Ki = (1 − e−i/n)n ± O(n3/4) for all i.

So, for example, if we want a permutation of 1
2
n of the numbers from [n], we see

that whp, generating µn random numbers for µ > ln 2 is sufficient, while µ < ln 2

is not.

3.3 Another example - Random Graphs

Here we look at the classical Gn,m random graph where m = cn for some

constant c < 1
2
. For any vertex v, define s(v) to be the size of the component

containing v. Also, define

X =
∑

v∈V

s(v)

Note that X is the sum of the squares of the component sizes, and it is also n times

the expected component size of a randomly chosen vertex. We look at the series of

random variables X0, X1, X2, . . . , where Xi is the value of X after exactly i random

edges have been added. Certainly X0 = n, as s(v) = 1 for all v.
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Claim 19. Assume that all components are of size O(log n). Then, we have

E[Xi+1 − Xi | Xi] = 2X2
i − o(1). (3.6)

Proof: Let e = {u, v} be the (i + 1)-st randomly chosen edge, and let Yu, Yv be the

sizes of their two components. If Yu, Yv are in different components then we have

Xi+1 − Xi = (Yu + Yv)2 − Y 2
u − Y 2

v = 2YuYv, (3.7)

because Xi is the sum of the squares of the component sizes. If they are in the same

component then Xi = Xi+1 because no component sizes are changed by adding a

loop.

In general, we have

E[Xi+1 − Xi|Xi] = E[2YuYv|Xi] + E[Xi+1 − Xi − 2YuYv|Xi]

by linearity of expectation. The first summand is 2X2
i because Xi is the expected

component size of a randomly chosen vertex.

The second summand is 0 if u, v are in different components by (3.7), however

if they are in the same component then Xi+1 − Xi = 0. In this case, it takes value

between −2C2 and 0, where C = O(log n) is the size of the largest component in

the graph. By our assumption, u and v are in the same component with probability

O( log n
n

), so we can bound the second summand with −O(log n)2O( log n
n

) = −o(1),

this yields (3.6).

2

Again we begin with an informal discussion. Letting t = i
n
, ∆t = 1

n
, and

x(t) = Xi

n
, letting n → ∞, and assuming Xi+1 − Xi = E[Xi+1 − Xi|Xi], we can

rewrite (3.6) (dropping the o(1) term) as x′(t) = 2x(t)2. Along with x(0) = X0

n
= 1

we have solution x(t) = 1
1−2t

.

To fit Definition 17, we have Sn as the set of all possible edges in
(

[n]
2

)

, Ωn as

the set of sequences of edges from the set of these edges, yn(ωt) is X of the graph
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given by the edges in ωt, λ = 1
n1/4 , β = log3 n, and f(t, x) = 2x2. The domain D is

[0, 1
2
− ǫ]× [0, 1

ǫ
] where ǫ > 0 is some small constant, because 1

2
is the blow-up point

of the differential equation.

All of the conditions of Theorem 18 are easy to verify except for the bounded-

ness hypothesis. For the sake of our example, we will also assume that the maximum

component is of size O(log n) when c < 1
2
, as the Erdős and Rényi result has shown

us occurs whp. This also makes the boundedness hypothesis easy to verify because

O(log2 n) is an upper bound on the change, and therefore all conditions of Theorem

18 hold. Therefore, whp we have

Xi =
1

1 − 2i/n
n ± O(n3/4) for all i.

The actual value of Xi isn’t too important, what matters is that it is finite when

i = cn for c < 1
2
. This isn’t a proof, but it’s at least some intuition for why there

is a major change after c = 1
2
. We revisit this example more formally in Chapter 4,

where we use susceptibility to show when a giant component occurs as a result of

execution of different algorithms for choosing random edges.

The use of this differential equation was suggested by Svante Janson. As we

will see in Chapter 4, this also provides motivation for the product rule.

23



Chapter 4

CREATING A GIANT COMPONENT

Let A be a fixed bounded first edge algorithm. For notational convenience

we work with SA in a slightly different form. We introduce the symbol ℓ which

represents ‘all integers larger than m,’ and we work with

SA ⊆ ([m] ∪ {ℓ})2

where (i, ℓ) ∈ SA if A accepts et+1 when at+1 = i and bt+1 > m, etc. We assume

without loss of generality that SA 6= ([m] ∪ {ℓ})2 (note that if SA = ([m] ∪ {ℓ})2

then A always chooses et+1 and we have the standard random graph). We will show

(roughly) that the sum of the squares of the component sizes of GA(cn) is bounded

for c < cA but goes to infinity as c approaches cA. Furthermore, we will show that

for c < cA the ‘large’ components do not make a significant contribution to the sum

of the squares of the component sizes. Part (b) of Theorem 6 then follows from an

application of Lemma 20.

Lemma 20. Let G be a graph on n vertices and let τ be a constant such that G has

yin vertices in components of size i for i = 1, 2, . . . , τ , and y1 + · · ·+ yτ = 1. If η is

a constant such that

2η

τ
∑

i=1

iyi > 1, (4.1)

then the graph obtained by adding ηn random edges to G will whp have a component

of size Ω(n).
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Note that the summation in (4.1) is the sum of the squares of the component sizes of

G. This quantity is also the expected component size of a vertex chosen at random,

which is known as the susceptibility in statistical physics. The proof of Lemma 20

is given at the end of this section.

We track m + 2 random variables over the evolution of the process using the

differential equations method for random graph process (we follow the notation and

use a variation of a general theorem of Wormald, who gives an excellent treatment of

this method [39]). For x = 1, . . . , n let Yx(i) be the number of vertices in components

of size x in GA(i). Furthermore, define

X(i) =
n
∑

x=1

xYx(i)

Z(i) =
n
∑

x=1

x2Yx(i).

Note that X gives the sum of the squares of the component sizes while Z gives

the sum of the cubes of the component sizes. We track the random variables

Y1, Y2, . . . , Ym, X, Z and show that Y1, Y2, . . . , Ym, X are concentrated around an

expected trajectory. We will only give an upper bound the growth of Z over the

course of the algorithm. The relationship between the sum of the squares of the

components sizes and the sum of the cubes of the component sizes near the critical

value is also a key feature of a recent result of Aldous and Pittel [4] on the emergence

of the giant component in a version of the random graph in which both vertices and

edges appear as the process evolves.

We define a set of m + 2 functions on R
m+2. For (z1, . . . , za, zX , zZ) ∈ R

m+2

set

zℓ = 1 − z1 − · · · − za

ρ =
∑

(x,y)∈SA

zxzy.
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For w = 1, . . . ,m define

fw (z1, . . . , za, zX , zZ) =
∑

(x,y)∈SA:x+y=w

zxzyw

−
∑

(x,y)∈SA:y=w

zxzww −
∑

(x,y)∈SA:x=w

zyzww

+ (1 − ρ)w

[

w−1
∑

x=1

zxzw−x − 2zw

]

.

Further define

ξw = wzw ζw = w2zw for w = 1, . . . ,m

ξℓ = zX −
m
∑

x=1

ξx ζℓ = zZ −
m
∑

x=1

ζx

and

fX(z1, . . . , za, zX , zZ) =
∑

(x,y)∈SA

2ξxξy + (1 − ρ)2z2
X

fZ(z1, . . . , za, zX , zZ) =
∑

(x,y)∈SA

(3ξxζy + 3ξyζx) + (1 − ρ)6zXzZ .

Note that f1, . . . , fm, fX , fZ are continuous and satisfy a Lipschitz condition on any

bounded domain.

We are interested in the solution of the system of differential equations

dzx

dt
= fx(z1, . . . , zm, zX , zZ) x ∈ [m] ∪ {X,Z}

with initial condition

z1(0) = 1, z2(0) = · · · = zm(0) = 0, zX(0) = zZ(0) = 1.

Note that f1, . . . , fm do not depend on zX or zZ . The solution of the system

dzx

dt
= fx(z1, . . . , zm, zX , zZ) = fx(z1, . . . , zm), x ∈ [m]

z1(0) = 1, z2(0) = · · · = zm(0) = 0

(4.2)

can be viewed as a collection of function on the non-negative reals.
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Claim 21. The solution of (4.2) satisfies

0 < z1(t) < 1 and z2(t), . . . , zm(t), zℓ(t) > 0

for t > 0 in some neighborhood of 0.

A proof of Claim 21 is given at the end of this section. Since

dzℓ

dt
≥ 0 and

(z1, . . . , zm, zℓ) ∈ (0, 1)m+1 ⇒ dzx

dt
≥ −4xzx for x ∈ [m],

it follows from Claim 21 for any T > 1/4 there exists a constant δ > 0 such that

z1(t), z2(t), . . . , zm(t), zℓ(t) > δ for t ∈ (1/4, T ). (4.3)

With the functions z1, z2, . . . , zm in hand we can write

dzX

dt
= fX(z1, . . . , za, zX , zZ) = g1(t) + g2(t)zX + g3(t)z

2
X (4.4)

where g1, g2, g3 are bounded, smooth functions of t defined on [0, +∞). The differ-

ential equation (4.4) has a unique solution zX(t) passing through zX(0) = 1. Note

that this function blows up at some point (to see this, it may be easier to work with

ξℓ instead of zX). We define cA to be this blow-up point. With zX(t) in hand we

can write
dzZ

dt
= fZ(z1, . . . , za, zX , zZ) = g4(t) + g5(t)zZ (4.5)

where g4 and g5 are smooth, bounded, non-negative functions of t on intervals of the

form [0, s) where s < cA. It follows that the unique solution zZ(t) of (4.5) passing

through zZ(0) = 1 exists for 0 ≤ t < cA. In other words zX and zZ blow up at the

same point in time, cA. Finally, we note that it follows immediately from (4.3) that

there exists a constant δ > 0 such that

z1(t), z2(t), . . . , zm(t), zℓ(t) > δ (4.6)
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for 1/4 ≤ t ≤ 2cA.

We add a small wrinkle to the graph process GA(1), GA(2), . . . to produce

G′
A(1), G′

A(2), . . .. Set r(n) = n1/13. If A calls for the acceptance of an edge {x, y}
at round i and x or y is in a component of size greater than r(n) then the edge is

not added to the process (and no edge is added to the graph in the round). This

produces the slightly altered graph process G′
A(1), G′

A(2), . . .. The random variables

Y ′
1 , . . . Y

′
m, X ′, Z ′ refer to this altered graph process (i.e. Y ′

x(i) is the number of

vertices in G′
A(i) in components of size x, etc).

Lemma 22. Let 0 < s < cA be fixed. With probability 1 − O(n4/13 exp(−n1/13)) we

have

Y ′
x(i) = nzx(i/n) + O

(

n12/13
)

∀x ∈ [m]

X ′(i) = nzX(i/n) + O
(

n12/13
)

, and

Z ′(i) ≤ nzZ(i/n) + O
(

n12/13
)

uniformly for all 0 ≤ i ≤ sn.

The proof of Lemma 22 is given below.

In order to complete the proof of Theorem 6 we must make an observation

about the relationship between GA(i) and G′
A(i). Note that G′

A(i) is not simply a

subgraph of GA(i): the edges we neglect in the formation of G′
A may influence future

decisions. We use the symbol ∆ to denote symmetric difference.

Lemma 23. Let 0 < s < cA be fixed.

Pr

[

|E (GA(sn)) ∆E (G′
A(sn))| = O

(

n log n

r2(n)

)]

= 1 − o(1).

Proof. For i = 1, . . . , sn let L(i) be the set of vertices x ∈ [n] such that the com-

ponent of G′
A(i) containing x has more than r(n) vertices. Let D(i) be the set of

vertices x ∈ [n] such that the component of GA(i) containing x is different than the
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component of G′
A(i) containing x and the size of at least one of these components is

at most m. Let B be the set of rounds i ≤ sn such that

E(GA(sn)) ∩ {ei, fi} 6= E(G′
A(sn)) ∩ {ei, fi}.

Let A be the event that there exists i < sn such that |L(i)| > Kn
r2(n)

, where

K = 2zZ(s). Note that it follows from Lemma 22 that the probability of A is

exponentially small. We have

Pr(i + 1 ∈ B) ≤ 4
|L(i)| + |D(i)|

n
.

Furthermore, |D(i + 1)| ≤ |D(i)| + 3m. We have

E[|D(i + 1)|] ≤
n
∑

k=0

Pr[D(i) = k]

(

k +
12m(k + Kn/r2(n))

n

)

+ nPr(A)

= E[|D(i)|]
(

1 +
12m

n

)

+
12Km

r2(n)
+ nPr(A)

≤ E[|D(i)|]
(

1 +
12m

n

)

+
24Km

r2(n)

for n sufficiently large. It follows that

E[|D(i)|] ≤ 24Km

r2(n)

i
∑

j=0

(

1 +
12m

n

)j

=
2Kn

r2(n)

[

(

1 +
12m

n

)i+1

− 1

]

.

A similar calculation gives the bound E[|B|] = O (n/r2(n)).

Let c < cA. The largest component in G′
A(cn) has at most 2r(n) vertices. It

then follows from Lemma 23 that whp the largest component in GA(cn) is of size

O(n log n/r(n)). This establishes part (a) of Theorem 6.

4.1 Proof of Part (b) of Theorem 6

Let ǫ > 0 and c = cA + ǫ. Let K1 be a constant such that

ǫδ2K1 > 1. (4.7)
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(Recall that δ is defined in (4.6).) There exists t < cA and a constant K2 such that

zX(t) > K1 + 3 and zZ(t) < K2 − 1.

It follows from Lemma 22 that whp we have

X ′(tn) > (K1 + 2)n and Z ′(tn) < K2n.

Thus
∞
∑

x=K2

xY ′
x(tn) ≤ 1

K2

∞
∑

x=K2

x2Y ′
x(tn) <

1

K2

Z ′(tn) < n.

It follows that
K2
∑

x=1

xY ′
x(tn) > (K1 + 1)n.

Now, it follows from Lemma 23 that o(n) of the components in G′
A(tn) intersect

edges in E (GA(tn)) ∆E (G′
A(tn)). Therefore,

K2
∑

x=1

xYx(tn) > K1n.

We note that
(

i
n
, Y1(i)

n
, . . . , Ym(i)

n

)

follows (i/n, z1(i/n), . . . , zm(i/n)) well past the

critical value.

Lemma 24. Let 0 < s < 2cA be fixed. With probability

1 − O

(

n1/4 exp

(−n1/4

8m3

))

we have

Yx(i) = nzx(i/n) + O
(

n3/4
)

for all x ∈ [m], uniformly for all 0 ≤ i ≤ sn.

Lemma 24 follows from a routine application of Theorem 5.1 of [39]. It follows from

Lemma 24 and (4.6) that the probability that fi is chosen by A is at least δ2 for

i = tn, . . . , cn. Therefore, whp at least

3

4
δ2(c − t)n >

3

4
δ2ǫn
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edges fi such that tn < i < cn are chosen by A. As these are purely random edges,

part (b) of Theorem 6 follows from an application of Lemma 20.

It remains to prove Lemma 20, Claim 21, and Lemma 22.

Proof of Lemma 22. We apply Theorem 5.1 of [39]. Let D be the domain

D = [0, cA] × [0, 1]m × [0, 2zX(s)] × [0, 2zZ(s)].

The stopping time T is the smallest i for which
(

i

n
,
Y ′

1(i)

n
, . . . ,

Y ′
m(i)

n
,
X ′(i)

n
,
Z ′(i)

n

)

does not lie in the domain D.

For note keeping purposes we set

Y ′
ℓ (i) =

2r(n)
∑

x=m+1

Y ′
x(i) = n −

m
∑

x=1

Y ′
x(i)

Y ′
r (i) =

2r(n)
∑

x=r(n)+1

Y ′
x(i)

X ′
ℓ(i) =

2r(n)
∑

x=m+1

xY ′
x(i) = X ′(i) −

m
∑

x=1

xY ′
x(i)

X ′
r(i) =

2r(n)
∑

x=r(n)+1

xY ′
x(i)

X ′
x(i) = xY ′

x(i), Z ′
x(i) = x2Y ′

x(i) for x = 1, . . . ,m

p(i) =
∑

(x,y)∈SA

Y ′
x(i)Y ′

y(i)

n2
.

Note that p(i) gives the probability that the edge et+1 is chosen. Note further that

concentration of X ′
ℓ(i) and Y ′

ℓ (i) around some expected trajectory will follow from

the concentration results we obtain for Y ′
1(i), Y ′

2(i), . . . , Y ′
a(i), X ′(i). We will not

establish concentration of Y ′
r (i) or X ′

r(i). However, by bounding Z ′(i) we will have

a trivial upper bound on Y ′
r (i) and X ′

r(i).
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We are now ready to consider the expected changes in our random variables

that result from one step of the process. We use hi to denote the history of the

process up to time i (this is just the sequence of edges e1, f1; e2, f2; . . . ; ei, fi). For

1 ≤ u ≤ m we have

E[Y ′
u(i + 1) − Y ′

u(i)|hi] =
∑

(x,y)∈SA:x+y=u

Y ′
x(i)Y ′

y(i)u

n2

−
∑

(x,y)∈SA:y=u

Y ′
x(i)Y ′

u(i)u

n2
−

∑

(x,y)∈SA:x=u

Y ′
u(i)Y ′

y(i)u

n2

+ (1 − p(i))u

[

u−1
∑

v=1

Y ′
v(i)Y ′

u−v(i)

n2
− 2

Y ′
u(i)

n

]

− 1(u/2,u/2)∈SA

Y ′
u/2(i)u

2/2

n2
+ 21(u,u)∈SA

Y ′
u(i)u2

n2

+ 1(u,ℓ)∈SA

Y ′
u(i)Y ′

r (i)u

n2
+ 1(ℓ,u)∈SA

Y ′
u(i)Y ′

r (i)u

n2

+ (1 − p(i))u

[

−1u even

Y ′
u/2(i)u/2

n2

+2
Y ′

u(i)u

n2
+ 2

Y ′
u(i)Y ′

r (i)

n2

]

The first three lines of this expression give the expected change in Y ′
u under the

assumption that ei+1 and fi+1 neither fall within a connected component nor touch

a component of size greater than r(n) (the first two lines give the change when ei+1

is chosen while the third line gives the change when fi+1 is chosen). The other lines

account for the these other possibilities. It follows that for i < T we have
∣

∣

∣

∣

E[Y ′
u(i + 1) − Y ′

u(i)|hi] − fu

(

Y ′
1(i)

n
, . . . ,

Y ′
m(i)

n
,
X ′(i)

n
,
Z ′(i)

n

)∣

∣

∣

∣

= O

(

1

n

)

+ O

(

Y ′
r (i)

n

)

= O

(

1

n

)

+ O

(

1

r(n)2

)

.

(4.8)

Note that we use the fact that i < T implies Z ′(i) < 2zZ(s)n and therefore Y ′
r (i) =

O(n/r(n)2).
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The expected changes for X ′ and Z ′ are more delicate. The key to the

calculation for X ′ is the following observation: If H is an arbitrary graph with

connected components C1, . . . Cm, we set X(H) =
∑m

i=1 |Ci|2 and we add a single

random edge to H to form the graph H+ then the expected value of X(H+)−X(H)

is
∑

i6=j

|Ci||Cj|
n2

2|Ci||Cj| = 2
X2(H)

n2
− 2

m
∑

i=1

|Ci|4
n2

. (4.9)

The idea is that 2X2/n2 will be the main term and, so long as no large components

have appeared, the other term is just a small error (this reasoning is attributed to

Janson [36]). We have

E[X ′(i + 1) − X ′(i)|hi] =
∑

(x,y)∈SA

2X ′
x(i)X ′

y(i)

n2
+ (1 − p(i))

2X ′(i)2

n2

−
∑

x:x 6=ℓ,(x,x)∈SA

2x3Y ′
x(i)

n2
− 1(ℓ,ℓ)∈SA

r(n)
∑

x=a+1

2x3Y ′
x(n)

n2

− (1 − p(i))

r(n)
∑

x=1

2x3Y ′
x(i)

n2

−
∑

(x,y)∈SA:x=ℓ

2X ′
y(i)X ′

r(i)

n2
−

∑

(x,y)∈SA:y=ℓ

2X ′
x(i)X ′

r(i)

n2

+ 1(ℓ,ℓ)∈SA

2X ′
r(i)

2

n2
+ (1 − p(i))

−4X ′(i)X ′
r(i) + X ′

r(i)
2

n2

The second and third lines account for the sum of the fourth powers of the component

sizes as pointed out in (4.9). The fourth and fifth lines account for the fact that

we drop edges that touch components that have more than r(n) vertices. It follows

that for i < T we have
∣

∣

∣

∣

E[X(i + 1) − X(i)|hi] − fX

(

Y ′
1(i)

n
, . . . ,

Y ′
m(i)

n
,
X ′(i)

n
,
Z ′(i)

n

)∣

∣

∣

∣

= O

(

r(n)

n

)

+ O

(

X ′
r(i)

n

)

= O

(

r(n)

n

)

+ O

(

1

r(n)

)

.

(4.10)
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Note that we use the fact that i < T implies both Z ′(i) = O(n) and Y ′
r (i) =

O(n/r(n)2).

For Z ′, we note that if H is an arbitrary graph with connected components

C1, . . . Cm, we define Z(H) to be
∑m

i=1 |Ci|3 and we add a single random edge to H

to form the graph H+, then the expected value of Z(H+) − Z(H) is

∑

i6=j

|Ci||Cj|
n2

(

3|Ci|2|Cj| + 3|Ci||Cj|2
)

= 6
X(H)Z(H)

n2
− 6

m
∑

i=1

|Ci|5
n2

≤ 6
X(H)Z(H)

n2
.

It follows that we have

E[Z ′(i + 1) − Z ′(i)|hi] ≤
∑

(x,y)∈SA

3X ′
x(i)Z ′

y(i) + 3X ′
y(i)Z ′

x(i)

n2

+ (1 − p(t))
6X ′(t)Z ′(t)

n2
.

Note that we do not have to take into account the edges that touch vertices in

components having r(n) or more vertices, as doing so would only result in a stronger

upper bound. Also note that this function is increasing in Z ′(i). We have

E[Z ′(i + 1) − Z ′(i)|hi] ≤ fZ

(

Y ′
1(i)

n
, . . . ,

Y ′
m(i)

n
,
X ′(i)

n
,
Z ′(i)

n

)

. (4.11)

We now apply Theorem 5.1 of [39] (conforming to the notation there as much

as possible). We set

β(n) = 8r(n)3 = 8n3/13, λ(n) =
1

r(n)
=

1

n1/13
and γ(n) = 0.

Note that the boundedness hypothesis follows from the fact that we do not add edges

that touch the component that have r(n) or more edges. The trend hypothesis for

variable Y ′
1 , . . . , Y

′
m, X ′ follows from (4.8) and (4.10). Note that we have only a

one-sided trend hypothesis for Z ′. A minor alteration of the proof of Theorem 5.1

in [39] can account for this because
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(a) zZ does not appear in any of the functions other than fZ , and

(b) fZ is increasing in zZ .

It follows from (a) that a one-sided bound on Z ′ does not influence the bounds for

any other variable. It follows from (b) that having only a one-sided bound on Z ′

suffices to establish a one-sided bound on Z ′ in future iterations.

Finally, we note that in our application of Theorem 5.1 of [39] we violate one

of the stated conditions: There is not a constant C0 such that |yl(hi)| < C0n for all

hi. However, this condition is not necessary as we have γ(n) = 0.

Proof of Lemma 20. Let G = ([n], E) and E ′ ⊆
(

[n]
2

)

be a set of ηn edges chosen

uniformly at random. Let C1, . . . , Cκ be the connected components of G. Let H be

the graph with vertex set {vC1
, . . . , vCκ} and an edge between vertices vCi

and vCj

if there is an edge in E ′ between components Ci and Cj. We have

Pr (deg(vC) = i) =

(

2ηn

i

)(

1 − |C|
n

)2ηn−i( |C|
n

)i

.

It follows that whp H has

dn(i) :=
τ
∑

k=1

akn

k

(2ηk)i

i!
e−2ηk + o

(

n2/3
)

(4.12)

vertices of degree i for each i ≤ O(log n/ log log n) and no vertices of higher degree.

If we condition on the degree sequence, then we can view H as a graph

chosen uniformly at random from the collection of all graphs having the given degree

sequence. When (4.12) holds we apply a theorem of Molloy and Reed on the giant

component in graphs with a fixed degree sequence. Following the notation of [33],

we set

λi =
τ
∑

k=1

ak

k

(2ηk)i

i!
e−2ηk
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and D = dn(1), dn(2), . . .. If (4.12) holds then we have

Q(D) =
∑

i≥1

i(i − 2)λi

=
∑

i≥1

i(i − 2)

[

τ
∑

k=1

ak

k

(2ηk)i

i!
e−2ηk

]

= 2η

[

τ
∑

k=1

(2ηk − 1)ak

]

> 0.

It follows from Theorem 1(a) of [33] that whp H has a component of size Ω(n).

Therefore, G + E ′ has a component of size Ω(n).

Proof of Claim 21. It follows from a simple induction argument that

z
(i)
k (0) = 0 for i = 0, . . . , k − 2 and 2 ≤ k ≤ m. (4.13)

Define wk = 1 − z1 − z2 − · · · − zk for k = 1, . . . ,m. Note that zℓ = wm. Again by

induction we have

w
(i)
k (0) = 0 for i = 0, . . . , k − 1 and 1 ≤ k ≤ m. (4.14)

It follows from (4.13) and (4.14) that for all δ > 0 there exists ǫ > 0 such that

|zk(t)| <
δ

(k − 2)!
tk−2 for 0 ≤ t ≤ ǫ and 2 ≤ k ≤ m (4.15)

|wk(t)| <
δ

(k − 1)!
tk−1 for 0 ≤ t ≤ ǫ and 1 ≤ k ≤ m (4.16)

Let m′ be the smallest integer greater or equal to 2 such that there does not exist

(x, y) ∈ SA such that x + y = m′. Another inductive argument gives (choosing ǫ

sufficiently small)

zk(t) = Θ(tk−1) for 0 ≤ t ≤ ǫ and 1 ≤ k < m′ (4.17)

wk(t) = Θ(tk) for 0 ≤ t ≤ ǫ and 1 ≤ k < m′ − 1. (4.18)
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Note that this gives the full Claim if m′ ≥ m + 2.

Suppose that m′ ≤ m + 1. A careful analysis of ρ (using (4.15), (4.17) and

(4.18)) gives

1 − ρ = Θ
(

tm
′−2
)

for 0 ≤ t ≤ ǫ.

It then follows that

zk(t) > 0 for m′ ≤ k ≤ m and 0 < t ≤ ǫ.

Finally,

zℓ(t) > 0 for 0 < t < ǫ.

4.2 Online Lower Bound

Let c be a constant and let (e1, f1), (e2, f2), . . . , (ecn, fcn) be a sequence of

ordered pairs of edges on vertex set [n] chosen independently and uniformly at

random. Define

f(d) =
3 + 8d − 8de−4d − 14de−12d + 14de−16d

20 − 8e−4d − 14e−12d + 14e−16d
. (4.19)

Note that f(d) has a local maximum when d ≈ 0.019974, where f(d) ≈ .2545.

We will prove Theorem 8 by showing that for any c > 0, if there exists

d ∈ (0, c) such that c < f(d) (i.e. if c ≤ .2545 . . .) then any online algorithm for

the sequential choice of one edge from each presented pair (ei, fi), i = 1, 2, . . . , cn,

whp will create a graph whose components are all of size O(log n). To do this, we

will use the fact that online algorithms usually cannot make “good” choices early

in the process. For small i, there is a good chance that all four vertices from (ei, fi)

are appearing for the first time. In this case any online algorithm must make an

essentially arbitrary choice, which could be a costly mistake if, for example, fi is an

isolated edge in the graph consisting of all 2cn edges but ei is a bridge in the giant

component.

37



Fix some constant d ∈ (0, c). We will determine its value later. Divide the

process into two parts, the first dn pairs and the last (c − d)n pairs. Given the

pairs (e1, f1), . . . , (ecn, fcn), we create an auxiliary graph G on vertex set [n] using

the following steps:

(i.) For all i < dn, if all four vertices in (ei, fi) are occurring for the first time in

the process, then randomly eliminate one of the edges with probability 1
2
.

(ii.) Take all remaining edges, including the last 2(c − d)n edges, and let this be

the edge set of G.

In other words, G will contain every edge except for some that were chosen with

probability 1
2
. It follows from symmetry that for any fixed algorithm A, the probabil-

ity that A produces a giant is bounded above by the probability that G has a giant.

Indeed, if we condition on the first dn rounds of the process then there is a permuta-

tion of [n] that maps the graph produced by A in the first dn rounds to a subgraph

of the graph consisting of the edges in G that come from (e1, f1), . . . , (edn, fdn).

In order to analyze G we consider a slightly different probability space. Let

a1, b1, c1, d1; a2, b2, c2, d2; . . . be a sequence of vertices chosen uniformly and inde-

pendently at random from [n] with replacement (e.g. we allow ui = vi). Setting

ei = {ai, bi} and fi = {ci, di}, we get a sequence of pairs of random edges. Of course,

this model allows loops and multiple edges, but since the expected number of each

over the cn rounds of our process is bounded by an absolute constant, whp the total

number of loops and multiple edges is at most log(n). Thus, we can accommodate

these flaws in the process by adding an extra log(n) rounds (which have no impact

on the rest of argument).

The following is a variation of the branching process proof of the classical

giant component results for Gn,p which is given in [24, p. 109]. We generate an

upper bound on the size of the component of G containing a fixed vertex v with the

following process.
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We begin by observing the locations of all appearances of v in the sequence

a1, b1, c1, d1; a2, b2, c2, d2; . . .. Note that we have not yet observed any whole edge

and, conditioning on these locations, the rest of the random vertices in the sequence

are uniform in [n] \ {v}. The edge-partners of each occurrence of v are now active

positions (we still haven’t looked at the vertices in these positions). An active

position in round i such that i ≤ dn is called an early active position. An active

position in round i such that i > dn is called a late active position.

Now, if the first appearance of v is in round i and i ≤ dn then we reveal the

other vertices in round i. Let x be the edge-partner of v in this round and let y

and z be the other two vertices that appear in this round. We check to see if there

is appearance of vertices x, y or z before round i. In particular, we determine the

first occurrence of a vertex from the set {x, y, z}. If x, y and z do not appear before

round i then we delete this active position with probability 1
2
. If x is the first vertex

from the set {x, y, z} to appear and its first appearance occurs before round i then

the position remains active and we call it a heavy active position. If y or z is the

first vertex from the set {x, y, z} to appear then the position remains an early active

position. The vertices x, y and z are now sussed and the vertex v is saturated.

Note that so-far this process has simply determined the degree of v and checked to

see if the edge containing the first occurrence of v is deleted in the formation of G

while revealing as little information about the random graph as possible.

Now suppose that after some number of steps in this process we have given

sets of saturated and sussed vertices, and sets of early, heavy, and late active po-

sitions. The saturated vertices are vertices in the component containing v whose

complete neighborhood has already been determined, and the active positions cor-

respond to vertices in the component containing v for which we have not yet ob-

served the full neighborhood. We now consider the vertex, say vertex u, in an

arbitrary active position π. We reveal all other occurrences of u in the sequence
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a1, b1, c1, d1; a2, b2, c2, d2; . . . and the edge-partners of all occurrences of u (other than

the edge-partner of π which is an already saturated vertex) become active positions

(early or late depending on the round in which they occur). If π is an early or heavy

active position then we may have already checked to see if the first occurrence of

u is in a deleted edge and we cannot make that check again. If π is a late active

position and the first occurrence of u is in a round i such that i ≤ dn, then we suss

out the other vertices in round i. If all vertices appearing in round i are making

their first appearance, then we delete the active position in round i with probability

1
2
. If, on the other hand, the edge-partner of the first occurrence of u appears before

any of the other vertices that appear in round i then this position becomes a heavy

active position. This step is repeated until the set of active positions is exhausted.

Before turning to a thoroughly rigorous analysis of this process, it will be

helpful to note that it can be loosely modelled with a branching process in which

there are three types of offspring: types 1,2 and 3 corresponding to late, early and

heavy active positions, respectively. Note that the probability that a late active

position generates an early active position that is deleted can (roughly speaking) be

bounded from below by

1
2

(

1 −
(

1 − 1
n

)4dn
)

(

1 − 3
n

)4dn ≈ 1 − e−4d

2e12d
=: p.

Furthermore, the probability that a late active position generates a heavy active

position is (roughly speaking) at most

1
3

(

1 −
(

1 − 1
n

)4dn
)(

1 −
(

1 − 3
n

)4dn
)

≈ 1
3
(1 − e−4d)(1 − e−12d) =: q.

The i, j position in the matrix

A =











4(c − d) 4d − p q

4(c − d) 4d 0

4(c − d) 4d + 1 0










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gives the expected number of offspring of type j of an animal of type i in this multi-

type branching process. The largest eigenvalue of A is less than 1 if and only if

c < f(d), where f(d) is defined in (4.19). Since this branching process dies out with

probability one (see [6, page 186]) if the largest eigenvalue of the matrix A is less

than one, we expect c < f(d) to imply that whp the component of G containing v

is small.

We now make a rigorous argument. Let ǫ > 0 be a constant such that

4c + 4(c − d)(2q − p) + 8ǫ < 1,

note that such a constant exists as the condition we impose on c in the statement

of the theorem is equivalent to c < (1
4

+ d(2q − p))/(1 + 2q − p)). Also, set

m :=
4(4c + ǫ)

ǫ2
log n.

We consider the first m steps in the process. We begin by noting that it may

happen that when we reveal the vertex in some position we will find that it has

already been sussed (note that the vertices in some of the early active positions and

all of the heavy active positions have already been sussed but this fact is built-in to

the process). This ‘bad’ event occurs with probability at most 3m
n−m

at each position.

Since the number of positions that we inspect is at most 4m, the probability that

the bad event occurs more than 1 time in the process is at most
(

4m
2

)

( 3m
n−m

)2 = o( 1
n
).

Furthermore, when this bad event occurs it introduces at most 2 ‘extra’ active

positions, which will have no affect on the rest of the argument. We henceforth

assume that no vertex that is revealed has been previously sussed.

It may also happen that the first appearance of some vertex that is revealed

in a late active position is in a round that also contains a previously viewed ver-

tex (either saturated or sussed). Of course, this event will change the probability

of both the deletion of this active position and the probability that this position

becomes a heavy active position. The probability of this event is at most 3
n−4m
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times the number of rounds that hold previously viewed vertices. Since the proba-

bility that there exists a vertex that appears more than 2 log n times in the sequence

a1, b1, c2, d1; a2, b2, c2, d2; . . . is o( 1
n
), the probability of this second type of ‘bad’ event

in any step of the process is at most 12m log n
n−4m

. Again, we see that we may assume

that this event occurs at most once during the process, with no consequence for the

rest of the proof.

Let X be the number of late active positions that are introduced in the first

m steps of the process. Since the number of late active positions introduced in

any one of these steps is dominated by Bi
(

4(c − d)n, 1
n−m

)

, X is dominated by

Bi
(

4(c − d)mn, 1
n−m

)

. It follows from the Chernoff bound ([24], p. 26), that

Pr
(

X ≤ (4(c − d) + ǫ)m
)

= 1 − o( 1
n
). (4.20)

Note that we do not necessarily saturate all of the late active positions during the

first m steps of the process: if there are many active positions it may be the case

that some of the late active positions are left over after the mth step. Let X ′ be the

number of late active positions that are actually saturated during the first m steps.

Let Z be the number of heavy active positions that are generated during this

process. The probability that a late active position generates a heavy active position

is at most

1
3

(

1 −
(

1 − 1
n−4m

)4dn
)(

1 −
(

1 − 3
n−4m

)4dn
)

= q + O
(

m
n

)

So, conditioning on (4.20), Z is dominated by Bi
(

(4(c − d) + ǫ)m, q + O
(

m
n

)

)

. It

follows from the Chernoff bound that

Pr
(

Z < (4(c − d)q + 2ǫ) m
)

= 1 − o
(

1
n

)

. (4.21)

It remains to bound the number of early active positions that are generated in

the first m steps of the process. The probability that a late active position generates

an early active position that is deleted is at least

1
2

(

1 −
(

1 − 1
n

)4dn−8dm log n
)

(

1 − 3
n−4m

)4dn
= p − O

(

m log n
n

)
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Let W be the number of deleted early positions in the first m steps of the process.

W dominates Bi
(

X ′, p − O(m log n
n

)
)

, and hence

Pr
(

W ≥ X ′(p − ǫ)
)

= 1 − o
(

1
n

)

. (4.22)

Let Y be the sum of m i.i.d. Bi
(

4dn, 1
n−4m

)

random variables. We have

Pr
(

Y ≤ (4d + ǫ)m
)

= 1 − o( 1
n
) (4.23)

The number of early active positions that are generated (and not deleted) in this

process is dominated by Y + Z − W .

Now, in the event the component containing v has more than m vertices, the

process does not terminate until after the mth step and we have

m ≤ X ′ + Z + (Y + Z − W ). (4.24)

It follows from (4.20), (4.21), (4.22) and (4.23) that, with probability 1 − o( 1
n
), the

right hand side of (4.24) is at most

X ′(1 − p + ǫ) + 2m(4(c − d)q) + 4dm + 5ǫm

≤ 4(c − d)(1 − p)m + 2m(4(c − d)q) + 4dm + 8ǫm

< m.

Thus, the probability that the component containing v has more than m vertices is

o( 1
n
), and the probability that G contains a component having more than m vertices

is o(1), and we have proved Theorem 8.

4.3 Offline Phase Transition

Fix c > 1
4

and suppose (e1, f1), . . . , (ecn, fcn) are pairs of random edges. In

this section we prove that there exists a set E of edges such that |E ∩ {ei, fi}| ≤ 1

for i = 1, . . . , cn and the graph ([n], E) has a component of size Ω(n).

Let G be the graph with vertex set [n] and all 2cn edges. For any tree T

within graph G, we will say that T survives if there is no i ∈ {1, 2, . . . , cn} such
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that {ei, fi} ⊆ E(T ). In other words, T survives if no two edges in T were paired

together. Clearly, if T is a tree in G which survives, then it is possible to make

choices so all of T ends up in the final graph.

If T is a tree in G with t vertices, let φ(t) be the probability that it survives.

A straightforward calculation shows

φ(t) =
t−2
∏

i=1

2cn − 2i

2cn − i
=

t
2
−1
∏

j=1

2cn − t − 2j

2cn + 1 − 2j
=

t
2
−1
∏

j=1

(

1 − t + 1

2cn + 1 − 2j

)

.

Bounding using the first and last terms in the product and using e−2x ≤ 1−x ≤ e−x

for small x leads to

exp
(

− t2

2cn−t

)

≤ φ(t) ≤ exp
(

− t2

4cn
+ O( t

n
)
)

. (4.25)

With high probability, there exists a surviving tree with ⌊n1/3⌋ vertices because

φ(⌊n1/3⌋) → 1 and whp G has a component of size Ω(n) ≥ ⌊n1/3⌋.
If T is a surviving tree, we will say that T is maximal if there is no edge

e such that T ∪ {e} is a surviving tree. So, if T is maximal then for every edge

{u, v} ∈ E(G) such that u ∈ T and v /∈ T , necessarily {u, v} is paired with some

edge in T , otherwise we could add it to T and create a larger surviving tree. Define

T = {t : log2 n ≤ t ≤ (c − 1
4
)2n } (4.26)

We will prove:

Pr(∃ a maximal surviving tree with size t ∈ T ) → 0. (4.27)

Since ⌊n1/3⌋ ∈ T , (4.27) establishes the existence of a surviving tree of size at least

(c − 1
4
)2n whp.

For the remainder of this section, note that any given edge appears in G with

probability 2cn

(n
2)

= 4c
n−1

. Since the appearance of fixed edges makes others less likely,

we can say

Pr(a set of j edges appears) ≤ ( 4c
n−1

)j.
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Lemma 25. Let P = Pr(T maximal|T survives), where T is a tree on Kn with t

vertices. We have

P ≤ t exp
(

− 4c
n−1

t(n − t)
[

1 − t
c(n−1)

− t
2cn−t

]

+ O
(

t
n

)

)

. (4.28)

Proof. To find the probability that T is maximal, note that there are t(n− t) edges

“leaving” T . Every one of these edges must either be left out of G or be paired

with an edge from T . The probability that an edge is paired with something in T is

bounded above by t
2cn−t

. In the following sum, j is the exact number of the t(n− t)

edges “leaving” T that appear in G:

P ≤
t−1
∑

j=0

(

t(n−t)
j

)

( 4c
n−1

)j( t
2cn−t

)j(1 − ρ)t(n−t)−j,

where ρ is a lower bound on the probability that a fixed edge appears in G, condi-

tioned on all edges that have been observed. The probability ρ will take its smallest

possible value when 2(t − 1) edges have already been observed to exist in G while

possibly zero edges have been left out. We can say

ρ ≥ 2cn − 2(t − 1)
(

n
2

)

− 2(t − 1)
≥ 4c

n − 1
− 4t

(n − 1)2
.

Now we will find the maximum possible value of P . We avoid the sum by finding

the maximum and multiplying by t.

P ≤ t exp
(

−t(n − t)
(

4c
n−1

− 4t
(n−1)2

) )

· max
0≤j<t

(

t(n − t) 4c
n−1

exp( 4c
n−1

− 4t
(n−1)2

) t
2cn−t

e

j

)j

.

The function (λe/j)j is maximized at j = λ with maximum value exp(λ). After

this and substituting exp( 4c
n−1

− 4t
(n−1)2

) = 1 + O( 1
n
), then factoring out 4c

n−1
, we get

(4.28).

Let Et be the expected number of maximal surviving trees with t vertices.

In order to prove (4.27), it is sufficient to show nEt → 0 for any t ∈ T . First let
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us find the probability pT that a given tree T with t vertices becomes a maximal

surviving tree.

pT = Pr(T ⊆ G) Pr(T survives|T ⊆ G) Pr(T maximal|T survives)

It is easy to see that Pr(T ⊆ G) ≤ ( 4c
n−1

)t−1 ≤ n
4c

( 4c
n−1

)t. We have an upper bound

for Pr(T survives|T ⊆ G) from (4.25). Combining these with (4.28),

pT ≤ n
4c

( 4c
n−1

)t t exp
(

− 4c
n−1

t(n − t)
[

1 − t
c(n−1)

− t
2cn−t

]

− t2

4cn
+ O

(

t
n

)

)
)

.

Since there are
(

n
t

)

tt−2 ≤ 1
t2

(ne)t trees on Kn with t vertices, we have Et ≤ 1
t2

(ne)tpT ,

so

nEt ≤ n2

4ct
(4ce)t

{

exp
(

− 4c
n−1

(n − t)t
[

1 − t
c(n−1)

− t
2cn−t

]

− t2

4cn
+ o(t)

)}

,

leading to

nEt ≤ exp (2 log n + t log(4ce))

· exp
(

− 4c
n−1

(n − t)t
[

1 − t
c(n−1)

− t
2cn−t

]

− t2

4cn
+ o(t)

)

.

We have 2 log n = o(t). Take a factor of t out of the exponent, then let t = αn.

nEt ≤ exp
(

log(4ce) − 4c(1 − α)
[

1 − α
c
− α

2c−α

]

− α
4c

+ o(1)
)t

.

The inside is increasing over all values of α ≥ 0 provided c > 1
4
, and it is negative

whenever α < (c − 1
4
)2. Therefore, nEt → 0 whenever t ∈ T . We have proved

Theorem 9.

4.4 Two Algorithms

We begin with the bounded first-edge algorithm A1. Using the notation of

Section 2 we have m = 1 and SA1
= {(ℓ, ℓ)}. In words, A1 chooses edge ei if it
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includes no isolated vertices and otherwise chooses edge fi. For this algorithm we

have

dz1

dt
= −2z1(2z1 − z2

1)

dzX

dt
= 2(zX − z1)

2 + 2z2
X(2z1 − z2

1)

with initial conditions z1(0) = 1, zX(0) = 1. In order to get an upper bound on

the critical value cA1
, we approximate the solution by implementing Euler’s method,

being sure to underestimate zX . (The program for our approximation, written in

C++, is available at http://www.math.cmu.edu/∼tbohman.)

Let z̃1 and z̃X denote our approximations. We use the standard Euler’s

method for z̃1. For z̃X we set

z̃X(t + h) = z̃X(t) + hφ(z̃X , z̃1) − 2ǫ, where

φ(z̃x, z̃1) = 2 max
(

z̃X − z̃1 − 2 ǫ
h
, 0
)2

+ 2z̃2
X(2z̃1 − z̃2

1 − 2ǫ
h

),

h is the step size, and ǫ accounts for the computational rounding errors. For our

approximation we take h = 10−7, and ǫ = 10−12 suffices. We claim that we have the

following

(a.) z̃X(t) < zX(t)

(b.) z̃X(0.3847) > 104 , and

(c.) z1(t) > 1/2 for t ∈ [0, 0.385].

It then follows from Lemmas 20 and 22 that cA1
< 0.3847+0.0001 < 0.385. In order

to establish these claims we first note that

(d.) e(t) := |z1(t) − z̃1(t)| ≤ 2ǫ
h

for t ∈ [0, 0.4].

To see this, let f1(z1) = −2z1(2z1 − z2
1). Since |z′′1 (t)| ≤ 4.2 and |f1(z1(t)) −

f1(z̃1(t))| ≤ 3e(t) for all t ∈ [0, 0.4], we have

e(t + h) ≤ (1 + 3h)e(t) + 2.1h2 + ǫ.
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This leads to (d.). We note that (d.) together with observation of z̃1 suffices to

establish (c.). Of course, (b.) follows from the observation of z̃X alone. It remains

to prove (a.). To this end, we first note that

(e.) z′′X(t) > 0 for all t > 0.

We have

z′′X = 2(zX − z1)(z
′
X − z′1) + 2zXz′Xz1(2 − z1) + 2z2

X(1 − z1)z
′
1,

and therefore we may use −2 ≤ z′1 ≤ 0, zX ≥ 1, and z1 ≥ 1
2

to get

z′′X ≥ 2(1 − z1)[z
′
X + 1

2
zXz′X − 2z2

X ] ≥ 3
2
z′X − 2z2

X .

It is easy to see from the original differential equation that z′X ≥ 3
2
z2

X whenever

z1 ≥ 1
2
, thus z′′X ≥ 1

4
z2

X > 0. Finally, we note that

(f.) z̃X(t) ≤ zX(t) implies φ(z̃X(t), z̃1(t)) < z′X(t).

Claim (a.) now follows from zX(0) = z̃X(0), (e.) and (f.).

We now turn to the algorithm of Conjecture 3 and apply our machinery to

determine the existence and location of a phase transition. Let the bounded first-

edge algorithm A2 defined by m = 1 and SA2
= {(1, 1)}. In words, this algorithm

chooses edge ei if it is an isolated edge and otherwise chooses fi. For this algorithm

we have

dz1

dt
= −2z1(t)

2 − 2z1(t)(1 − z1(t)
2)

dzX

dt
= 2z1(t)

2 + 2z2
X(t)(1 − z1(t)

2)

Using the methods above to approximate the solution of this system of differential

equations we have zX(.5882) > 104. This implies cA2
< .589.

We close this section by noting that simulations suggest that there the Achliop-

tas processes the chooses the edge from the pair (ei, fi) that results in the largest
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increase in the sum of the squares of the component sizes creates a giant compo-

nent in as few as 0.34n rounds. However, this algorithm is not a not a first-edge

algorithm: it depends on all four vertices in ei ∪ fi. For such an algorithm it is a

considerable challenge to bound the errors in the numerical simulations.

4.5 A simple Achlioptas process.

In this section we give a simple Achlioptas process that succeeds whp in

creating giant for any c > 3
√

6
16

.

Begin by fixing a set S ∈
(

[n]
αn

)

for some α ∈ (0, 1). During each round, choose

only edges which are in
(

S
2

)

. If two such edges are presented, choose one at random.

If no such edges are presented, choose neither.

In each round, the probability that we choose an edge from
(

S
2

)

is 2α2 − α4.

Furthermore, in each round, any edge in
(

S
2

)

is equally likely. Therefore, whp we

will take (2α2 − α4 + o(1))cn edges at random from
(

S
2

)

. So whp we have a giant

component whenever

(2α2 − α4 + o(1))cn > 1
2
αn. (4.29)

To optimize (4.29), divide by α and note that the left side is minimized when α2 = 2
3
.

Therefore, we create a component of size Ω(n) whp whenever c > 3
√

6
16

= 0.459 . . . .
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Chapter 5

OFFLINE SATISFIABILITY

First we restate the theorems.

Theorem 11. If G is a graph with 2n vertices, less than (1 − ǫ)n edges for some

ǫ > 0, and ∆(G) = o(n1/10

log n
), then S(G) is satisfiable whp.

Theorem 13. If G is a graph with 2n vertices and ∆(G) = o(n1/8), and there is

some ǫ > 0 and function τ ≤ c log n for some constant c < 3ǫ
16

such that

τ
∑

0

idi = (1 + ǫ)2n, (5.1)

then S(G) is not satisfiable whp.

5.1 When d0 is small

The proof of Theorem 13 will use the following. If G has few isolated vertices,

then it is not satisfiable provided at least some ratio of the vertices have degree 2

or more.

Theorem 26. If G is a 2n vertex graph such that

∑

i≥2

di >> n7/8∆1/2 + n1/2d
1/2
0 (5.2)

then S(G) is not satisfiable whp.

Note that in this case ∆ = o(n1/4) and d0 = o(n) are implied since
∑

i≥0 di = 2n.

Proof of Theorem 26 Suppose that G is any graph with 2n vertices. Begin by

iteratively removing any edges which join two vertices of degree at least 3. Note
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that this doesn’t change n or (5.2), and when finished it will allow us to say that G

satisfies

(a.) Every edge in G is incident with at least one vertex of degree 1 or 2.

Now define functions α(n) and µ(n) which satisfy the following:

(b.) ∆(G) ≤ n1/4

α2(n)
.

(c.) d0 ≤ n
α2(n)

.

(d.) Either (b.) or (c.) is satisfied with equality.

(e.) d1 = 2n(1 − µ(n)).

(f.) α(n)µ(n) → ∞ as n → ∞.

Existence of α(n) is clear from the conditions of Theorem 26, and (e.) defines µ(n).

To show that (5.2) also implies (f.), note that

αµ ≥ α

2n

∑

i≥2

di >> αn−1/8∆1/2 + αn−1/2d
1/2
0 ≥ 1,

with the last inequality coming from (d.).

First, we will pick any non-isolated vertex v0 from G. Start by setting v0

false, we are going to prove that whp, this will lead to a contradiction. To do this,

we are going to expose the matching of G one edge at a time and simultaneously

keep track of the following three sets:

• T is the set of “active” true vertices, vertices which must be true but are not

yet matched. Our contradiction will be a matching edge within T . Initially

T = N(v0) since v0 is false, and T 6= ∅ when we start because v0 is a non-

isolated vertex.
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• U is the set of all unmatched vertices which are considered “free” because at

least one of their neighbors was set, or because they are isolated. Initially U

will be the set of all isolated vertices along with N(N(v0)).

• V is the set of all other unmatched vertices not in T ∪ U . Initially

V = X \ T \ U .

Notation 27. For any vertex v, we will write N2(v) = N(N(v)) − v.

So, T ∪U ∪V is the set of currently unmatched vertices. As long as T 6= ∅ we

are going to select v ∈ T and match it with a randomly chosen unmatched vertex

v. Then N(v) must be true so it goes to T , and N2(v) will be declared “free”. This

is the precise algorithm we will follow.

1. Start with i = 0 and initial sets T0, U0, V0 described above.

2. While Ti 6= ∅ and i ≤ α(n)
√

n:

Pick any vertex vi ∈ Ti and match it with a random vertex vi ∈ Ti∪Ui∪Vi−vi.

Then update T, U, V as follows:

• If vi ∈ Ti then STOP, we have our contradiction.

• If vi ∈ Ui then Ti+1 = Ti − vi, Ui+1 = Ui − vi ∪ N(vi).

• If vi ∈ Vi then Ti+1 = Ti ∪ N(vi) − vi, Ui+1 = Ui ∪ N2(vi),

Vi+1 = Vi \ N2(vi) \ N(vi) − vi.

• i = i + 1.

3. STOP (Note that either Ti = ∅ or i ≥ α(n)
√

n.)

Note that in this algorithm the graph we work with at step i is the graph induced

by Ui ∪ Vi.
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We note some bounds on |Ui| and |Vi| in the course of the algorithm. For

any vertex u, we have N2(u) ≤ 2∆ from (a.). Therefore, |Ui+1| − |Ui| ≤ 2∆ for all

i, and since i ≤ α(n)
√

n through our process, we have

|Ui| ≤ 2i∆ + |U0| ≤ 2n3/4

α(n)
+

n

α(n)2
= O

(

n

α2(n)

)

,

Similarly, |Vi| − |Vi+1| ≤ 3∆ for all i and |V0| ≥ 2n − 2∆, therefore for all i

|Vi| ≥ 2n − 3(i + 1)∆ ≥ 2n − o(n3/4).

Now we look at |Ti|. We have |Ti+1| < |Ti| only if vi ∈ U , and in this case |Ti+1| =

|Ti| − 1. We have

Pr (|Ti+1| < |Ti|) ≤ |Ui|
|Ti ∪ Vi ∪ Ui| − 1

≤
O
(

n
α2(n)

)

2n − o(n3/4)
= O

(

1

α2(n)

)

.

Now, if vi ∈ Vi then |Ti+1|−|Ti| = |N(vi)|−1, therefore we increase |Ti| if deg(vi) > 1.

Define

pL = max
i

Pr(deg(vi) = 1 | vi ∈ Vi).

The number degree 1 vertices in V never increases through the process because any

vertex which loses an edge is immediately “free”, therefore if a vertex of degree 1 is

created it would move from V to U . Thus, we have

pL ≤ d1

mini |Vi|
≤ 2n(1 − µ(n))

2n − o(n3/4)
= 1 − µ(n) + o(n−1/4).

So,

Pr(|Ti+1| − |Ti| ≥ 1) ≥ (1− pL)
|Vi|

|Ti ∪ Vi ∪ Ui|
≥

[

µ(n) − o(n−1/4)
] 2n − o(n3/4)

2n

≥ µ(n) − o(n−1/4).

Lemma 28. With high probability

(i.) |Ti| 6= 0 for all i ≤ α(n)
√

n.
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(ii.) If j = ⌊√nα(n)⌋ then |Tj| ≥ µ(n)
2

j.

We prove this below, for now assume it is true. So, whp our algorithm will

end either with vi ∈ Ti or with i > α(n)
√

n, not with Ti = ∅. If it ends with

vi ∈ Ti we are done, if not then Lemma 28 implies that whp we will finish with

|T | ≥ µ(n)α(n)
2

√
n. In this case it is extremely likely that a matching edge will occur

within T , the probability of no such edge can be bounded above by

|T |
∏

i=1

(

1 − |T | − i

2n

)

≤ exp



− 1

2n

|T |−1
∑

i=1

|T | − i



 = exp

(

−Ω

( |T |2
n

))

≤ exp
(

−Ω(µ(n)2α(n)2)
)

= o(1).

Thus, from Lemma 28 we can say that whp we will have a matching edge within

T , therefore we have our contradiction.

We have

Pr(S(G) satisfiable) ≤ Pr(∃ satisfying assignment with v0 false)

+ Pr(∃ satisfying assignment with v0 false),

therefore

Pr(S(G) satisfiable) ≤ Pr(∃ satisfying assignment with v0 false)

+ Pr(v0 is isolated)

+ Pr(∃ satis. assignment with v0 false and not isol.).

The first and third summands on the right-hand side are o(1) because of our contra-

diction, and the second is 1
n
o(n) = o(1) because there are only o(n) isolated vertices

in G. Thus, Pr(S(G) is satisfiable) = o(1).

2

Proof of Lemma 28 We first note that {|Ti|}i≥0 can be thought of a series of

random variables whose differences aren’t quite independent, but clearly there is a

series {Xi}i≥0 of random variables such that Xi+1−Xi are independent for all i ≥ 0,

and the following are all true:
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1. {|Ti|}i≥0 majorizes {Xi}i≥0, i.e. Xi ≤ |Ti| for all i ≥ 0.

2. X0 = |T0| ≥ 1 because we chose a non-isolated vertex to start.

3. ∆ ≥ Xi+1 − Xi ≥ −1 for all i ≥ 0.

4. Pr(Xi+1 < Xi) = O
(

1
α2(n)

)

.

5. Pr(Xi+1 ≥ Xi + 1) = (1 − o(1))µ(n).

Let P1 be the probability that Xi = 0 for some i ≤ α(n)
√

n. Furthermore, define

p< = Pr(X1 < X0) and p> = Pr(X1 > X0). A simple recursion gives us

P1 ≤ p< + (1 − p< − p>)P1 + p>P 2
1 ,

which leads to

0 ≤ (p< − p>P1)(1 − P1).

Certainly P1 < 1, therefore

P1 ≤ p<

p>

≤
O
(

1
α2(n)

)

(1 − o(1))µ(n)
= O

(

1
α(n)2µ(n)

)

= o(1).

Now, define P2 as the probability that (i.) is true and (ii.) is false. Since

E [Xi+1 − Xi] ≥ (1 − o(1))µ(n) − O
(

1
α(n)2

)

= (1 − o(1))µ(n)

for all i ≤ j, we have E[Xj] ≥ (1 − o(1))µ(n)j. So,

P2 ≤ Pr
(

E[Xj] − |Xj| ≥ µ(n)
3

j
)

= Pr
(

|Xj| − E[Xj] ≤ −µ(n)
3

j
)

.

Condition (3.) above allows us to use (3.4):

P2 ≤ exp

(

−µ(n)2j

72∆2

)

= exp
(

−Ω(α(n)5µ(n)2)
)

= o(1).

Since P1 + P2 = o(1), we know that (i.) and (ii.) are true whp. 2
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5.2 Proof of Theorem 13

Suppose that G is a graph with 2n vertices and ∆(G) = o(n1/8). Also, assume

there is some ǫ > 0 and some function τ ≤ c log n for some constant c < 3ǫ
16

such

that
τ
∑

i=0

idi = (1 + ǫ)2n.

Notation 29. For any number x, we will write x+ = x + o(1).

Let δ be some small positive function satisfying

exp
(

−τ [2+

ǫ
+ φ]

)

> δ > n−3/8+φ

for some φ > 0, a fixed constant, we know such a δ exists because of our assumption

on τ .

If v is an isolated vertex in G, then any optimal assignment algorithm can set

v to be false and v to be true. This defines a procedure which is commonly called

pure literal elimination. We are going to do pure literal elimination on G and

show that whp it leads to a graph which is not satisfiable whp by Theorem 26.

Notation 30. We will write di as a function of s, since it will change throughout

the process.

(a.) Set s = 0.

(b.) While d0(s) > 0 and s < (1 − δ)n:

Step s: Choose any isolated vertex v, and then randomly choose its match

v from all other vertices. Make v false and v true, then delete both vertices

from the graph, along with any edges incident with v.

Increment s by 1.

First, we will show that the ratio between the number of edges and the

number of vertices is likely not to decrease too much. Define

DT
s :=

T
∑

i=0

idi(s)
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for any integer T ≤ τ , and

Vs :=
∑

i≥0

di(s) − 1.

Note that at any time Vs = 2n−2s−1. This will be the size of the “pool” of vertices

that we have to choose from for v.

Furthermore, define s1 to be the step when the above process stops.

Notation 31. Let d(s) = {d0(s), d1(s), d2(s), . . . } be the entire degree sequence at

step s.

Lemma 32. For any i ≥ 0 and s < s1, we have

VsE[di(s + 1) − di(s) | d(s)] = (i + 1) (di+1(s) − di(s)) − Vs1i=0.

Lemma 33. With high probability, for all s < (1 − δ)n and s < s1, we have

τ
∑

i=2

di(s) ≥ ǫVs

1+τ
. (5.3)

Let s2 denote the first step s in which (5.3) does not hold, if such a step

exists, and let s = min{s1, s2} (If s2 does not exist then s = s1.). We will continue

our process beyond s = s for the sake of defining a martingale, but the graph (and

hence the degree sequence) will not change after this point.

Lemma 34. With high probability, s < (1 − δ)n.

Lemmas 33 and 34 show that whp, either we will stop because (5.3) does

not hold or there is some number s < (1 − δ)n such that s steps of pure literal

elimination will lead to a graph with Vs ≥ 2δn vertices, d0 = 0, ∆ = o(n1/8), and
∑

i≥2 di ≥ Ω(Vs

τ
). Theorem 26 shows this is not satisfiable whp whenever n is

sufficiently large with respect to δ = δ(T, ǫ) and δ ≥ n−1/2. It remains only to prove

the Lemmas.
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Proof of Lemma 32 First, fix any i ≥ 1. To make notation easier, let Si, Si+1 be

the set of all vertices of degree i, i + 1, respectively, and let wi, wi+1 be arbitrary

vertices in their respective sets. We have

E[di(s + 1)− di(s) | d(s)] = E[|Si(s + 1) \Si(s)| | d(s)]−E[|Si(s) \Si(s + 1)| | d(s)].

Choose an arbitrary wi ∈ Si(s). We have

Pr(wi ∈ Si(s) \ Si(s + 1)) = Pr(v = wi or v ∈ N(wi)) =
i + 1

Vs

Thus,

E[Si(s) \ Si(s + 1) | d(s)] = |Si|
(

i + 1

Vs

)

= di

(

i + 1

Vs

)

Now, the only way a vertex is in Si(s + 1) \ Si(s) is if it had degree i + 1 and it lost

a neighbor. Therefore,

Pr(wi+1 ∈ Si(s + 1) \ Si(s)) = Pr(v ∈ N(wi+1)) =
|N(wi+1)|

Vs

=
i + 1

Vs

Thus,

E[Si(s + 1) \ Si(s) | d(s)] = |Si+1|
(

i + 1

Vs

)

= di+1

(

i + 1

Vs

)

When i = 0, the only difference is that E[S0(s + 1) \ S0(s)] is one less because pure

literal elimination randomly matches a degree 0 vertex.

2

Proof of Lemma 33 We will examine the series of variables {Dτ
i

Vi
}i≥0. First to

bound the expected change. Lemma 32 gives

VsE[Dτ
s+1 − Dτ

s | d(s)] =
τ
∑

i=1

i(i + 1) (di+1(s) − di(s)) ,

for all s, therefore

VsE[Dτ
s+1 − Dτ

s | d(s)] = −2
τ
∑

i=1

idi(s) + τ(τ + 1)dτ+1(s) ≥ −2Dτ
s
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because dτ+1 ≥ 0. Since Vs is known and Vs+1 = Vs − 2, we use this to get

E

[

Dτ
s+1

Vs+1

− Dτ
s

Vs

| d(s)

]

=
E[Dτ

s+1Vs − Dτ
s (Vs − 2) | d(s)]

Vs(Vs − 2)

=
VsE[Dτ

s+1 − Dτ
s | d(s)] + 2Dτ

s

Vs(Vs − 2)
≥ 0,

for all s during our process. So, for all s we have

E

[

Dτ
s

Vs

]

≥ Dτ
0

V0

= 1 + ǫ. (5.4)

Now to bound the actual difference. Each step deletes at most one non-isolated

vertex, therefore |Dτ
s+1 − Dτ

s | ≤ 2∆. Furthermore, Dτ
s ≤ Vs∆.

∣

∣

∣

∣

Dτ
s+1

Vs+1

− Dτ
s

Vs

∣

∣

∣

∣

≤
∣

∣Dτ
s+1 − Dτ

s

∣

∣

Vs − 2
+

2Dτ
s

Vs(Vs − 2)
≤

2∆ + Dτ
s

Vs

Vs − 2
≤ 3∆

Vs − 2

for all s.

Define β(n) = n−φ/2 to be a small positive function, and fix any s < (1−δ)n.

We use the above with (5.4), (3.2), s < n, and Vs ≥ 2δn to get

Pr

(

Dτ
s

Vs

≤ (1 + ǫ) − β(n)

)

≤ exp

(

− 1

2s

[

β(n)Vs

3∆

]2
)

≤ exp

(

− 1

2n

[

n−φ/22δn

3n1/8

]2
)

= exp
(

−2
9
n3/4−φδ2

)

< exp
(

−2
9
nφ
)

.

So, the probability that this is true for any s < (1− δ)n can be bounded from above

by n exp(−2
9
nφ) = o(1). Therefore, whp we have

0 ≤ Dτ
s − (1 + ǫ)Vs + β(n)Vs = Dτ

s − Vs − (1 − o(1))ǫVs.

whp for all s < (1 − δ)n, this yields

τ
τ
∑

i=2

di(s) ≥
τ
∑

i=2

(i − 1)di(s) ≥ Dτ
s − Vs ≥ (1 − o(1))ǫVs =

ǫVs

1+
.

2
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Proof of Lemma 34 We will examine the random variables {d0(i)
Vi

}i≥0. First, we

bound the difference for all s. Here we use Vs+1 = Vs−2 and |d0(s+1)−d0(s)| ≤ ∆.
∣

∣

∣

∣

d0(s + 1)

Vs+1

− d0(s)

Vs

∣

∣

∣

∣

=

∣

∣

∣

∣

d0(s + 1) − d0(s)

Vs − 2
+

2d0(s)

Vs(Vs − 2)

∣

∣

∣

∣

= O

(

∆

Vs

)

.

Now we look at the expected change. First using Lemma 32:

E

[

d0(s + 1)

Vs+1

− d0(s)

Vs

| d(s)

]

=
d1(s) + d0(s) − Vs

Vs(Vs − 2)
≤ −∑τ

i=2 di(s)

Vs(Vs − 2)
.

Now we can use Lemma 33 and Vs = 2(n− s)−1 (for s < s) to say that whp either

s < s or

E

[

d0(s + 1)

Vs+1

− d0(s)

Vs

| d(s)

]

≤ − ǫ

2+τ(n − s)

holds for all s < (1−δ)n. Although the differences in {d0(i)
Vi

}i≥0 are not independent,

and the process stops if d0(s) = 0, the “2+” function clearly leaves room for a series

of random variables {Xi}i≥0 such that the differences Xi+1−Xi are independent for

all i ≥ 0, and the following are true whp for all s ∈ [0, (1 − δ)n]:

1. Either d0(s) = 0 or s2 < s < s1 or Xs ≥ d0(s)
Vs

.

2. X0 = d0(0)
V0

≤ 1.

3. |Xs+1 − Xs| = O( ∆
Vs

).

4. E[Xi+1 − Xi] ≤ − ǫ
2+τ(n−s)

.

So,

E [Xs] ≤ X0 −
ǫ

2+τ

s
∑

r=1

1

n − r
≤ 1 +

ǫ

2+τ
log
(

1 − s

n

)

for all s provided n is sufficiently large. So, if δ < exp(−2+τ
ǫ

− φτ), we will have

s < (1 − δ)n satisfying E[Xs] < − ǫφ
2+ , a constant. This allows us to use (3.3), so for

any function α(n) → ∞,

Pr(Xs > 0) ≤ exp

[

−Ω

(

Vs

∆
√

s

)2
]

≤ exp

[

−Ω

(

δn

n1/8
√

n

)2
]
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≤ exp
(

−Ω(n2φ)
)

= o(1).

Therefore, whp we have s1 < (1 − δ)n or s2 < (1 − δ)n. In either case we have

s̄ < (1 − δ)n.

5.3 Proof of Theorem 11

Suppose that G is any graph with 2n vertices and ǫ > 0 satisfies the following:

1. G has less than (1 − ǫ)n edges.

2. ∆(G) ≤ n1/10

α(n)
where α(n) = 5

ǫ2
log n.

To make notation easier, we will define

i∗ :=
⌊

∆2α(n)
⌋

First we choose any vertex v0 ∈ G and set it false, a set T will give rise to a process

similar to section 5.1. However, now that the expected degree is less than 1, we will

show that whp there will be no contradiction, we will most likely finish with T = ∅
instead of an edge within T or i > i∗.

Here is the exact procedure we will follow. Since we only need an upper

bound on |T |, there is no need to keep track of a set U like in section 5.1.

1. Choose any vertex v0, set i = 0, T0 = N(v0), V = X \ N(v0) \ v0.

2. While Ti 6= ∅ and i ≤ i∗:

Pick any vertex vi ∈ Ti and match it with a random vertex vi ∈ Ti ∪ Vi − vi.

• If vi ∈ Ti then STOP, we have a contradiction.

• If vi ∈ Vi then Ti+1 = Ti ∪ N(vi) − vi, Vi+1 = Vi \ N(vi) − vi.

• i = i + 1.

3. STOP, either Ti = ∅ or i ≥ i∗.
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The only thing that can raise the expected degree of vi above 1−ǫ is deleting

isolated vertices, as deletion of any other vertices will also delete edges. However,

we have

|Vi| > 2n − (i∗ + 1)∆ − (∆ + 1) = 2n − O(i∗∆) ≤ 2n − o(n).

Since we start with at least ǫn isolated vertices and won’t lose more than o(n) of

them, we know that the increase in expected degree must be small, namely

E[|N(vi)|] ≤ 1 − ǫ + o(1)

for all i ≥ 0. So, we bound E[|Ti|] with the following:

E[|Ti| | Ti−1] = |Ti−1| − 1 + [1 − ǫ + o(1)] = |Ti−1| − ǫ + o(1). (5.5)

Much like the proof of Lemma 28, we take the random variables {|Ti|}i≥0, and note

that the o(1) term in (5.5) clearly leads to a series random variables {Xi}i≥0 such

that for all i in our process we have Xi ≥ |Ti|, |Xi+1 − Xi| ≤ ∆, and all differences

Xi+1−Xi are independent. Furthermore, the Xi variables can “continue” even after

Ti = ∅ and our process stops, so we have

E[Xi] ≤ −ǫi + ∆ + o(i) for all i ≤ i∗. (5.6)

For any vertex v ∈ V (G), we have defined a process which begins by setting

v false and continues keeping track of set T (as defined in the proof of Theorem 26)

until either T = ∅, vi ∈ T , or i = i∗. Let Ev be the event that this process does

not end with T = ∅, and define Zv to be the set of all vertices which appear in the

corresponding T at any time.

Lemma 35. For any v ∈ V (G), Pr(Ev) = O(n−3/5).

Lemma 36. If u is fixed and u is chosen randomly from V (G), then

Pr(Eu ∧ Eu) = o( 1
n
).

Lemmas 35 and 36 are proven below.
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Consider an instance not in the union

⋃

u

Eu ∧ Eu.

By Lemma 36, the probability of such an instance is 1− o( 1
n
)O(n) = 1− o(1) by the

union bound. Therefore this deterministic entity has a satisfying assignment. (We

can iteratively choose a pair of vertices u, u and set one of them false because this

instance is not in Eu ∧ Eu.) So, we are done once we prove Lemmas 35 and 36.

Proof of Lemma 36 Assume Zu is fixed. When we choose v (the partner of v) we

need v /∈ Zu and N(v)∩Zu = ∅. The probability of a problem is bounded above by

(∆ + 1)|Zu|
n

= O

(

∆2i∗
n

)

.

for any randomly chosen u ∈ V (G), whether Eu is true or not. We make i∗ choices

in the formation of Zu, so the probability of a problem is bounded from above by

O

(

∆2i2∗
n

)

= O

(

∆6α(n)2

n

)

= O

(

n−2/5

α(n)4

)

= o(n−2/5)

Therefore,

Pr(Zu ∩ Zu 6= ∅|Eu) = o(n−2/5) (5.7)

Define A = Au,u to be the event that Zu ∩ Zu = ∅. We have

Pr(Eu ∧ Eu) = Pr(Eu)
[

Pr(Eu|A,Eu) Pr(A|Eu) + Pr(Eu|A,Eu) Pr(A|Eu))
]

≤ Pr(Eu)
[

Pr(Eu|A,Eu) + Pr(A|Eu)
]

.

For the second term, note that being given A,Eu ensures that the process starting

at u avoids Zu at all times. Therefore, the exact same proof of Lemma 35 with

G − Zu in place of G tells us that Pr(Eu|A,Eu) = O(n−3/5). So, using Lemma 35

and (5.7) we see that

Pr(Eu ∧ Eu) ≤ O(n−3/5)
[

O(n−3/5) + o(n−2/5)
]

= o( 1
n
).
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2

Proof of Lemma 35 We will prove that all of the following are true with probability

1 − O(n−3/5):

(a.) |Ti| = 0 for some i ≤ i∗.

(b.) |Ti| ≤ 2i∗α(n) for all i ≤ i∗.

(c.) No edges will occur within T .

We have i∗ >> ∆, so (5.6) tells us that E[Xi∗ ] ≤ − ǫ
1+ i∗. We use (3.3) with this and

the fact that |Xi+1 − Xi| ≤ ∆ for all i ≥ 0:

Pr((a.) false) ≤ Pr(Xi∗ > 0) ≤ exp

(

− ǫ2i∗
8+∆2

)

≤ exp

(

−ǫ2α(n)

8+

)

= exp

(

− ǫ2

8+

5

ǫ2
log n

)

= n−5/8+ ≤ n−3/5.

For (b.), it is easy to see that

Xi > 2i∗α(n) ⇒ Xi − E[Xi] ≥ i∗α(n),

because E[Xi] ≤ ∆ + o(1) << i∗α(n). So, by (3.3):

Pr (Xi > 2i∗α(n)) ≤ exp

(

−(i∗α(n))2

8∆2i

)

≤ exp
(

−1
8
α(n)3

)

= o( 1
n
)

for all i ≤ i∗, therefore the probability of this happening for any i ≤ i∗ is actually

o(n−4/5). Finally, if (b.) is true then we have for all i ≤ i∗

Pr(vi ∈ Ti) =
|Ti|

|Ti| + |Vi| − 1
=

|Ti|
2n − o(n)

<
Xi

n
<

2i∗α(n)

n
.

Therefore, the probability that (b.) is true and (c.) is false is bounded by

i∗
∑

i=0

Pr(vi ∈ Ti) ≤
(

2i∗α(n)

n

)

i∗ = O

(

∆4α(n)3

n

)

= O

(

n−3/5

α(n)

)

.

2
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5.4 Why The Maximum Degree Condition is Needed

If the maximum degree is large, then the satisfiability depends much more

on where the large degree vertices are matched and less on the actual graph. One

example of this is a graph G which is the union of Kα
√

n and 2n − α
√

n isolated

vertices. Note that S(G) is not satisfiable if and only if two or more of the matching

edges end up within the complete graph Kα
√

n. So,

Pr(S(G) is satisfiable)

=

α
√

n−1
∏

i=0

2n − α
√

n − i

2n − 1 − 2i
+

(

α
√

n

2

)

1

2n − 1

α
√

n−1
∏

i=2

2n − α
√

n − (i − 2)

2n − 1 − 2i

≈
(

1 +
α2

4

) α
√

n−1
∏

i=2

2n − α
√

n − (i − 2)

2n − 1 − 2i
.

By taking the logarithm of the product and using log(1 − x) ≈ −x for x ≈ 0, we

can approximate the value of the product, and we arrive at the following:

Pr(S(G) is satisfiable) ≈
(

1 +
α2

4

)

exp

(

−α2

4

)

Thus, G has about α2n edges, but the probability of satisfiability of S(G) does not

have a threshold, it is a smooth function of α.

5.5 Concerning Conjecture 14

Here we present evidence which leads us to believe that Conjecture 14 should

be true.

5.5.1 Two Examples

Here we present two vastly different graphs G1, G2 with (1 + ǫ)n edges but

which violate (5.1), and both S(G1) and S(G2) are not satisfiable whp.

Graph G1: Fix log n << α(n) ≤ nφ. Let Gα be any α(n)-regular graph with

2(1 + ǫ)n
α

vertices. Let G1 be Gα plus 2n − |VGα | isolated vertices. We give the
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following “informal” argument to show that S(G1) is satisfiable whp:

Match all vertices which start out isolated, those which are matched may be “deleted”

because they are no longer relevant. We will be left with an induced subgraph of

Gα, say G′
α, where v ∈ V (Gα) exists in G′

α with probability |V (Gα)|
2n−1

≈ 1+ǫ
α

. Also,

e ∈ E(Gα) makes it to G′
α only if both of its vertices survive, which happens with

probability close to
(

1+ǫ
α

)2
. So, whp G′

α has about 2(1 + ǫ)2 n
α2 vertices and whp

|E(G′
α)|

|V (G′
α)| ≈

(

1+ǫ
α

)2 |EGα|
(

1+ǫ
α

)

|VGα |
=

(

1 + ǫ

α

)

α

2
=

1 + ǫ

2
.

Also, we can most likely say a lot more about the degrees of the vertices. It is

extremely unlikely that Gα has many high-degree vertices, in fact whp G′
α satisfies

(5.1) with τ equal to some sufficiently large constant, therefore G1 is not satisfiable

whp by Theorem 13.

Graph G2: Again fix log n << α(n) ≤ nφ, and assume that φ < 1
4
. Take (1 + ǫ)n

α

disjoint stars, each with α leaves, then add (1 − ǫ)n − (1 + ǫ)n
α

isolated vertices to

make G2. We can use a procedure similar to that of Section 5.1, starting at any

non-isolated vertex and stopping if i ≥ √
n. With stars we know exactly what we

are working with, for any vi we have a clearly defined N(vi), N2(vi), and we know

that declaring N2(vi) “free” doesn’t assume anything, leaves whose parent is deleted

are indeed isolated. It is easy to see that for all i ≤ α3 (since each step involves

moving at most α + 1 vertices) we have

|Ui| ≤ (1 − ǫ) n + o(n) and |Vi| ≥ (1 + ǫ) n − o(n).

If vi ∈ Ti for any i we are done. Otherwise, |Ti| behaves as follows:

|Ti+1| − |Ti| =



























−1 prob. 1−ǫ
2

− o(1)

+α − 1 prob. 1
α

(1+ǫ
2

− o(1))

0 otherwise
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The first of the three cases above corresponds to when vi ∈ Ui, so the only change

to T is vi is removed. The second case corresponds to when vi ∈ Vi and vi is a star

center, therefore vi gets removed from T and α leaves get added. The third case is

when vi ∈ Vi is a leaf, therefore vi is removed from T but the center of the respective

star is added.

Regardless of our what our non-isolated starting vertex is, for some constant

c we have Pr(|T⌊√n log n⌋| >>
√

n) ≥ c because on every step the expected change in

|T | is a positive constant. Since whp |T | >>
√

n forces an edge within T , whp we

have unsatisfiability.

5.5.2 Starting With Bounded Degree

Suppose we run the pure literal algorithm on a graph with a bounded degree

sequence whose degree sum exceeds its number of vertices. Here we show that as

step s approaches n in the pure literal algorithm, the degrees fall exponentially. It

seems likely that this should continue even if the degree is not bounded. If this is

the case, then Conjecture 14 is true because we can begin by running the pure literal

algorithm, then creating a graph which will meet the conditions Theorem 13.

During the pure literal algorithm, we started with s = 0 and we increased

s until it was something close to n. If we let t = s
n

and vi(t) = 1
n
di(s) for all i,

then we can look at this as a function of t, as t goes from 0 to 1. If the maximum

degree starting out is a constant T , then we can use Lemma 32 along with methods

discussed in Chapter 3 to create a system of differential equations, which whp is

accurate within O(n−1/2). Here is what the system looks like for T = 4, the pattern

should be clear.

2(1 − t)

















v′
1(t)

v′
2(t)

v′
3(t)

v′
4(t)

















=

















−2 2 0 0

0 −3 3 0

0 0 −4 4

0 0 0 −5

































v1(t)

v2(t)

v3(t)

v4(t)

















. (5.8)
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This can be solved using the diagonalization MΛM−1 of the square matrix. In this

case Λii = −(i + 1) for all i, and M is an upper triangular matrix defined by

Mi,j =











(−1)i+j
(

j
i

)

i ≤ j

0 otherwise

.

As it turns out, (M−1)ij = |Mij| for all i, j. The solution to this system is

















v1(t)

v2(t)

v3(t)

v4(t)

















= Mdiag
[

M−1d(0)
]

















(1 − t)

(1 − t)3/2

(1 − t)2

(1 − t)5/2

















, (5.9)

where diag(w) for any vector w is the diagonal matrix W where Wii = wi for all i.

(Again the pattern should be clear for any T , not just T = 4.)

To see that this is indeed the solution, let µ(t) be the last vector on the

right-hand side of (5.9). Note that 2(1 − t)µ′(t) = Λµ(t), where Λ is defined above.

Using this, it is easy to see that (5.8) is satisfied.

So, if the largest degree is bounded to start, then so are the binomial coeffi-

cients, thus we have

vi(t) = Θ
(

(1 − t)(i+1)/2
)

for all i. This implies that for any N , there exists τ > 0 such that by time 1 − τ ,

whp we have
di(τ)

di+1(τ)
> N.

Although it seems much more difficult to prove, we believe that this nice distribution

will continue even if the starting degree is larger than a constant T . If this is the

case, then Conjecture 14 is true.
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Chapter 6

ONLINE SATISFIABILITY

Here we will prove the following:

Theorem 16. Fix any integer k ≥ 1, constant c > 0 and any online algorithm.

Given a random formula with cn k-clauses, whp the algorithm accepts fewer than

(

1 − 1

2k

)

cn +

(

ln 2

−2k ln
(

1 − 1
2k

)

)

n

clauses.

Notation 37. We will use Jk to denote an arbitrary k-tuple (j1, . . . , jk).

To generate k-clauses, first we will select Jk randomly from {1, 2, . . . , n},

with replacement, then we will choose one of the 2k corresponding clauses, each

with probability 1
2k . For example, if k = 3 and we choose j1 = 9, j2 = 1, j3 = 5, then

we would select one of the following 8 clauses:

{x9, x1, x5}, {x9, x1, x5}, {x9, x1, x5}, {x9, x1, x5},

{x9, x1, x5}, {x9, x1, x5}, {x9, x1, x5}, {x9, x1, x5},

each with probability 1
8
. We will also assume that j1, . . . , jk are all distinct, because

as n → ∞ the expected number of clauses where this is not the case is o(n).

Therefore, rejecting all of these clauses would not change Theorem 16.

A simple Argument: We first present this short proof which shows that whp, no

more than (1− 1
2k )cn+2k+1n out of cn random k-clauses can be accepted. Although
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it is weaker than Theorem 16, it is still a huge improvement over the previously

best-known bound of (1− 1
2k )cn + Θ(

√
c)n, and a similar idea is used in Section 6.1

in our proof of Theorem 16.

Suppose an online algorithm accepts more than

(1 − 1
2k )cn + 2k+1n (6.1)

out of cn random k-clauses. Note that (6.1) requires c to be large (i.e. beyond the

phase transition).

Notation 38. After an online algorithm has seen exactly i clauses, let Ai be the set

of accepted clauses, and define Si to be the set of valid assignments.

|S0| = 2n because every assignment is valid before any clauses are accepted.

Furthermore, Si ⊆ Si−1 for every i, with equality if clause i is rejected because

this does not change the set of valid assignments. For a valid assignment to exist,

|Si| ≥ 1 is necessary. Call a clause bad if accepting it would make

|Si| ≤ (1 − 1
2k )|Si−1|.

For every i and every j1, . . . , jk, at least one of the 2k clauses is bad because the 2k

corresponding possibilities for Si−1 \ Si partition Si−1. Therefore, for all i,

Pr(clause i is bad) ≥ 1
2k ,

so from (3.3) with z = 1, k = cn, and
√

n << λ << n0.51 we see that whp at least

1
2k cn − o(n.51) out of cn clauses will be bad. Assuming (6.1) is so forces an overlap

of size (2k+1 − o(1))n between the sets of bad and accepted clauses, so

|Scn| ≤ |S0|
(

1 − 1
2k

)(2k+1−o(1))n ≤ 2n
[

e−2+o(1)
]n

< 1

whp, a contradiction.
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6.1 Constant Improvement

Suppose a positive integer k and constant c > 0 are both fixed, and fix some

online algorithm. Define Ai = |Ai| for all i = 0, 1, 2, . . . , cn, so Ai is the number of

clauses that the algorithm accepts out of the first i given. We will show that if all

accepted clauses are satisfied, then whp

Acn −
(

1 − 1
2k

)

cn ≤
(

ln 2

−2k ln
(

1 − 1
2k

)

)

n. (6.2)

As discussed previously, clauses will be generated by first choosing the k-tuple

Jk = (j1, j2, . . . , jk) randomly from {1, 2, . . . , n}k, then by choosing one of the 2k

corresponding clauses, each with probability 1
2k .

Define a clause as a bad clause if choosing it would make |Si+1| ≤ e−2|Si|,
and define Jk as a bad k-tuple if one of the corresponding 2k clauses is bad.

(Note that no k-tuple can have more than one bad clause.) Furthermore, for i =

1, 2, . . . , cn, define Fi as an indicator variable which takes value 1 if both of the

following are true:

• Clause i corresponds to some bad k-tuple Jk.

• If clause i is the bad clause corresponding to Jk, then it will be accepted.

6.1.1 Proof Sketch

Any algorithm can “stop thinking” at any point by picking an assignment of

the variables and taking only clauses that are satisfied by that assignment (which

occurs with probability 1 − 1
2k ), so we would like to look at

Bi = Ai − (1 − 1
2k )i,

the number of clauses taken “beyond” the number that come easily. For any Jk,

there are two possibilities, either the algorithm will take all 2k of its corresponding

clauses, or it will turn down at least one. In the latter case, we will assume nothing
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other than |Si| ≤ |Si−1|, however in this case we also have that the expected change

in Bi is at most 0 because the probability of rejection is at least 1
2k .

The other case is more interesting. Here we know for sure that Bi = Bi−1+ 1
2k .

However, we will show that the expected value of ln |Si| − ln |Si−1| in this case is

ln
(

1 − 1
2k

)

or less. So, each time the algorithm tries to increase Bi, it pays for it

with a decrease in ln |Si|. In particular, we can define the following random variable:

Yj := ln |Sj| − 2k ln
(

1 − 1
2k

)

Bj.

Notation 39. Fi is the filtration defined by the first i clauses that appear.

Here E[Yi − Yi−1|Fi−1] ≤ 0 for all i, and therefore Ycn ≤ Y0 + o(n) should be

true. Since ln |Scn| ≥ 0 is necessary, this would give

−2k ln
(

1 − 1
2k

)

Bcn ≤ Ycn ≤ Y0 + o(n) ≈ n ln 2.

From here (6.2) is immediate. The only flaw in this argument comes because Yi−Yi−1

is unbounded from below, otherwise this would be a proof.

To get around this, we note that if Yi << Yi−1 then a bad clause was taken.

So, we will introduce random variable Xi = Yi + ln(1− 1
2k )(F1 + · · ·+Fi). The more

the algorithm “tries” to increase Bi, the more likely it is that Fi = 1, and in this

case it pays a penalty which guarantees Xi ≤ Xi−1−2. If it makes no such attempt,

then we still have E[Xi −Xi−1|Fi−1] ≤ 0, and we also have a bound on |Xi −Xi−1|.
Putting the two cases together gives a probable lower bound on X0 − Xcn which is

proportional to F1 + · · ·+Fcn. We then show that whp this sum is either very small

or proportional to Bcn, which allows us to bound Bcn.

6.1.2 Proof of Theorem 16

Let Gi = F1 + · · · + Fi and define

Xi := ln |Si| − 2k ln
(

1 − 1
2k

) [

Bi − 1
2k Gi

]

.

The following Lemmas are proven below:
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Lemma 40. Let Jk be a k-tuple such that E[Ai − Ai−1|Jk,Fi−1] = 1. Then,

E [ln |Si| − ln |Si−1| | Jk,Fi−1] ≤ ln
(

1 − 1
2k

)

.

Lemma 41. For all i = 1, 2, . . . , cn:

1. If Fi = 1 then Xi ≤ Xi−1, and if clause i is bad (which occurs with probability

at least 1
2k ), then

Xi ≤ Xi−1 − 2. (6.3)

2. If Fi = 0 then |Xi − Xi−1| ≤ 3.4 and E[Xi|Fi = 0,Fi−1] ≤ Xi−1.

Lemma 42. Let λ = 2 + 2c0.51. With high probability,

Xcn ≤ X0 − 2
2k Gcn + λn0.51. (6.4)

Because X0 = ln |S0| = n ln 2 and ln |Scn| ≥ 0 is necessary for a valid assign-

ment to exist, Lemma 42 shows that whp

−2k ln
(

1 − 1
2k

) [

Bcn − 1
2k Gcn

]

≤ n ln 2 − 2
2k Gcn + o(n).

Since
[

ln
(

1 − 1
2k

)

+ 2
2k

]

Gcn ≥ 0 for all k ≥ 1, whp

−2k ln
(

1 − 1
2k

)

Bcn ≤ n ln 2 + o(n).

Dividing this by −2k ln
(

1 − 1
2k

)

shows that (6.2) holds whp. It remains only to

prove the Lemmas.

Proof of Lemma 40: Since E[Ai−Ai−1|Jk,Fi−1] = 1, any of the 2k possible clauses

corresponding to Jk will be accepted by the algorithm. Therefore, they correspond

to 2k different possibilities for Si−1 \ Si, and these 2k sets partition Si−1. So, for

some constants λ1, . . . , λ2k ≥ 0 such that Σλi = 1, we have

E [ln |Si| − ln |Si−1| | Jk,Fi−1] =
1

2k

2k
∑

l=1

ln(1 − λl)
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because each of the 2k clauses occur with probability 1
2k . By Jensen’s inequality,

this is bounded from above by

ln





1

2k

2k
∑

i=1

(1 − λi)



 = ln





1

2k



2k −
2k
∑

i=1

λi







 = ln

(

2k − 1

2k

)

.

2

Proof of Lemma 41: We have

Xi − Xi−1 = (ln |Si| − ln |Si−1|) − 2k ln
(

1 − 1
2k

) [

Ai − Ai−1 − 1 + 1
2k − 1

2k Fi

]

.

(6.5)

First assume Fi = 1. Putting this and Ai − Ai−1 ≤ 1 into (6.5) gives

Xi − Xi−1 ≤ ln |Si| − ln |Si−1| ≤ 0,

with the last inequality true because Si ⊆ Si−1. Since Fi = 1, clause i corresponded

to a bad k-tuple, therefore the algorithm chose a bad clause with probability 1
2k ,

and this choice makes ln |Si| − ln |Si−1| ≤ ln(e−2) = −2.

Now assume Fi = 0, in this case we know that the algorithm did not accept

a bad clause, so 0 ≥ ln |Si| − ln |Si−1| > −2. This with 0 ≤ Ai −Ai−1 ≤ 1 and (6.5)

show

|Xi − Xi−1| ≤ 2 − 2k ln
(

1 − 1
2k

)

≤ 3.4

for all k ≥ 1.

For an arbitrary k-tuple Jk there are 2k possible clauses, so either E[Ai −
Ai−1|Jk,Fi−1] = 1 or E[Ai − Ai−1|Jk,Fi−1] ≤ 1 − 1

2k . In the latter case, E[Xi −
Xi−1|Jk,Fi−1] ≤ 0 follows from (6.5) and |Si| ≤ |Si−1|, and in the former case it

follows from (6.5) and Lemma 40.

Since E[Xi − Xi−1|Jk,Fi−1] ≤ 0 for an any k-tuple Jk, we have E[Xi −
Xi−1|Fi−1] ≤ 0. 2

Proof of Lemma 42: We have

Xcn − X0 =
∑

{0<i≤cn:Fi=0}
(Xi − Xi−1) +

∑

{0<i≤cn:Fi=1}
(Xi − Xi−1).
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Let us write these two sums as Σ0, Σ1, respectively.

Sum Σ0 adds at most cn random numbers, and from Lemma 41 we know each

number has absolute value less than 3.4 and expected value non-positive. Thus, we

can use (3.2):

Pr (Σ0 ≥ n0.51) ≤ exp

(

− (n0.51)2

2(cn)(3.4)2

)

≤ exp
(

− 1
24c

n0.02
)

= o(1).

Let Z be the number of times that the algorithm chooses a bad clause. Equation

(6.3) from Lemma 41 shows Σ1 ≤ −2Z. So, whp

Xcn ≤ X0 + n0.51 − 2Z.

If Gcn ≤ n0.51 then Z ≥ 0 shows (6.4). Otherwise, we can use Lemma 41 and (3.3):

Pr
(

Z ≤ 1
2k Gcn − G0.51

cn

)

≤ exp

(

− (G0.51
cn )2

8Gcn(1)2

)

= exp
(

−1
8
G0.02

cn

)

= o(1),

so whp

Xcn ≤ X0 + n0.51 − 2
(

1
2k Gcn − G0.51

cn

)

≤ X0 − 2
2k Gcn + n0.51 + 2G0.51

cn ,

then Gcn ≤ cn shows (6.4). 2

6.2 More about Online-Lazy

Define Di as the number of variables that are set after the algorithm sees i

clauses. Therefore, if ℓ is a randomly chosen literal after i clauses then Pr(ℓ true) =

Pr(ℓ false) = Di

2n
. So, we have D0 = 0 and

E[Di+1 − Di] =
(

1 − Di

2n

)k −
(

Di

2n

)k
,

this is the probability that none of the k literals are true minus the probability that

all of them are false, because in this case we accept the clause and set one of the

variables. Now, define Bi as we did in Section 6.1 as the number of clauses accepted

minus (1 − 1
2k )i. We have B0 = 0 and

E[Bi+1 − Bi] = 1
2k −

(

Di

2n

)k
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since a clause is accepted unless every literal chosen is false. Now, if we let t = i
n
,

∆t = 1
n
, and d(t) = 1

n
Di, we can rewrite the first equation as

E[d(t+∆t)−D(t)
∆t

] =
(

1 − 1
2
d(t)

)k −
(

1
2
d(t)

)k
.

As was discussed in Chapter 3, we can rewrite this as

d′(t) =
(

1 − 1
2
d(t)

)k −
(

1
2
d(t)

)k
,

and for any fixed k the solution d(t) is such that |d(t) − 1
n
Dtn| = O(

√
n) whp for

all t. Similarly, we can rewrite the other equation as

b′(t) = 1
2k −

(

1
2
d(t)

)k
,

and b(t) is the function that interests us because ak = limt→∞ b(t).

So, for example when k = 2, solving this system with initial conditions

d(0) = 0, b(0) = 0 gives d(t) = 1 − e−t, b(t) = 1
8
e−2t − 1

2
e−t + 3

8
, and a2 = 3

8
. The

values for any other k are obtained in a similar manner, although for k > 4 we must

solve the equations numerically.

6.3 Future Work

Perhaps the most natural question is to find the largest zk for which there

exists an online algorithm that accepts (1 − 1
2k )cn + zkn out of cn clauses for any

k > 1. (The k = 1 case is trivial, a greedy algorithm is easily seen to be optimal.)

For k = 2, we analyzed an algorithm which appears to improve the 0.375 from

Online-Lazy to about 0.453, and Theorem 16 gives an upper bound of 0.6024. The

optimal algorithm and the exact value of the constant zk are still unknown for any

k > 1, although here we did show that as k → ∞, zk → ln 2.

When k = 2 there seems to be a very different situation when c is close to

1, i.e. if there are (1 + ǫ)n clauses for some small ǫ > 0. The case of random

2-SAT when ǫ is o(1) has been analyzed [38, 10]. When ǫ > 0 is a constant, the
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offline version must reject an expected Ω( ǫ3

− ln ǫ
n) clauses [17], but whether the online

version is closer to this or closer to Ω(ǫn) remains a mystery.

There is a natural 2n-vertex graph which corresponds to any set of 2-clauses,

and whp a giant component of size Ω(n) appears in this graph exactly when the

probability of satisfiability goes to 0 [19, 15]. However, as was shown in [28], this is

a coincidence. Whether or not an optimal algorithm uses the giant component in

the online case remains to be seen.
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