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General Ground Rules

• Vertex or variable set is [n] = {1, 2, . . . , n}.
• We look at what happens when n → ∞.
• Something happens with high probability, or whp , if it

happens with probability 1 − on(1).
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• We look at what happens when n → ∞.
• Something happens with high probability, or whp , if it

happens with probability 1 − on(1).
• For any k ≥ 1, a random k-set is chosen uniformly at

random from
([n]

k
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happens with probability 1 − on(1).
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• Random edges in graphs are k-sets when k = 2.
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General Ground Rules

• Vertex or variable set is [n] = {1, 2, . . . , n}.
• We look at what happens when n → ∞.
• Something happens with high probability, or whp , if it

happens with probability 1 − on(1).
• For any k ≥ 1, a random k-set is chosen uniformly at

random from
([n]

k

)

.

• Random edges in graphs are k-sets when k = 2.
• Duplications within k-sets won’t change any of our results

so we ignore them.
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A famous result

Let Gn,cn be a random graph with n vertices and cn random
edges for some constant c.

Theorem: (Erdős, Rényi, 1960)
Let C1 be the size of the largest component of Gn,cn.

• If c < 1
2 then whp C1 = O(log n).
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A famous result

Let Gn,cn be a random graph with n vertices and cn random
edges for some constant c.

Theorem: (Erdős, Rényi, 1960)
Let C1 be the size of the largest component of Gn,cn.

• If c < 1
2 then whp C1 = O(log n).

• If c > 1
2 then whp C1 = Ω(n).

• Furthermore, if c > 1
2 then whp C2 = O(log n).

The jump at c = 1
2 is called a phase transition .
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A famous result

Let Gn,cn be a random graph with n vertices and cn random
edges for some constant c.

Theorem: (Erdős, Rényi, 1960)
Let C1 be the size of the largest component of Gn,cn.

• If c < 1
2 then whp C1 = O(log n).

• If c > 1
2 then whp C1 = Ω(n).

• Furthermore, if c > 1
2 then whp C2 = O(log n).

The jump at c = 1
2 is called a phase transition .

A component of size Ω(n) is called a giant component .
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Susceptibility

Let G be a graph with connected components C1, . . . , Cr.
We define the susceptibility of G to be

X(G) =
1

n

r
∑

i=1

|Ci|2.
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Note: X(G) is the expected component size of a vertex chosen
uniformly at random.
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Let G be a graph with connected components C1, . . . , Cr.
We define the susceptibility of G to be

X(G) =
1

n

r
∑

i=1

|Ci|2.

Note: X(G) is the expected component size of a vertex chosen
uniformly at random.
Let e be a random edge in G.
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Susceptibility

Let G be a graph with connected components C1, . . . , Cr.
We define the susceptibility of G to be

X(G) =
1

n

r
∑

i=1

|Ci|2.

Note: X(G) is the expected component size of a vertex chosen
uniformly at random.
Let e be a random edge in G.

The probability that e joins Ci and Cj is |Ci| |Cj |
n2 .
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Susceptibility

Let G be a graph with connected components C1, . . . , Cr.
We define the susceptibility of G to be

X(G) =
1

n

r
∑

i=1

|Ci|2.

Note: X(G) is the expected component size of a vertex chosen
uniformly at random.
Let e be a random edge in G.

The probability that e joins Ci and Cj is |Ci| |Cj |
n2 .

If i 6= j then

X(G+e)−X(G) = 1
n (|Ci| + |Cj |)2− 1

n |Ci|2− 1
n |Cj |2
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Susceptibility

Let G be a graph with connected components C1, . . . , Cr.
We define the susceptibility of G to be

X(G) =
1

n

r
∑

i=1

|Ci|2.

Note: X(G) is the expected component size of a vertex chosen
uniformly at random.
Let e be a random edge in G.

The probability that e joins Ci and Cj is |Ci| |Cj |
n2 .

If i 6= j then

X(G+e)−X(G) = 1
n (|Ci| + |Cj |)2− 1

n |Ci|2− 1
n |Cj |2 = 2

n |Ci||Cj |.
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Susceptibility, continued

E[X(G + e) − X(G)] =
∑

i6=j

|Ci||Cj |
n2

2

n
|Ci||Cj |
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Susceptibility, continued

E[X(G + e) − X(G)] =
∑

i6=j

|Ci||Cj |
n2

2

n
|Ci||Cj |

E[X(G + e) − X(G)] =
2

n

(

r
∑

i=1

|Ci|2
n

)2

− 2

r
∑

i=1

|Ci|4
n3

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 5/33



Susceptibility, continued

E[X(G + e) − X(G)] =
∑

i6=j

|Ci||Cj |
n2

2

n
|Ci||Cj |

E[X(G + e) − X(G)] =
2

n

(

r
∑

i=1

|Ci|2
n

)2

− 2

r
∑

i=1

|Ci|4
n3

E[X(G + e) − X(G)] = 2
nX2(G) − o(1)
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Susceptibility, continued

E[X(G + e) − X(G)] =
∑

i6=j

|Ci||Cj |
n2

2

n
|Ci||Cj |

E[X(G + e) − X(G)] =
2

n

(

r
∑

i=1

|Ci|2
n

)2

− 2

r
∑

i=1

|Ci|4
n3

E[X(G + e) − X(G)] = 2
nX2(G) ⇒ f ′ = 2f2

Solving f ′ = 2f2 and f(0) = 1
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Susceptibility, continued

E[X(G + e) − X(G)] =
∑

i6=j

|Ci||Cj |
n2
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n
|Ci||Cj |

E[X(G + e) − X(G)] =
2

n

(

r
∑

i=1

|Ci|2
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)2

− 2

r
∑

i=1

|Ci|4
n3

E[X(G + e) − X(G)] = 2
nX2(G) ⇒ f ′ = 2f2

Solving f ′ = 2f2 and f(0) = 1 gives f(x) = 1
1−2x ,
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Susceptibility, continued

E[X(G + e) − X(G)] =
∑

i6=j

|Ci||Cj |
n2

2

n
|Ci||Cj |

E[X(G + e) − X(G)] =
2

n

(

r
∑

i=1

|Ci|2
n

)2

− 2

r
∑

i=1

|Ci|4
n3

E[X(G + e) − X(G)] = 2
nX2(G) ⇒ f ′ = 2f2

Solving f ′ = 2f2 and f(0) = 1 gives f(x) = 1
1−2x ,

which blows up at x = 1
2 .
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A variation on the theme

Let c be a constant and let (e1, f1), (e2, f2), . . . , (ecn, fcn)
be a sequence of cn pairs of random edges on [n].
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one edge from each pair:
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be a sequence of cn pairs of random edges on [n].

We are going to examine two types of algorithms which choose
one edge from each pair:

• Offline Algorithms - All cn pairs are presented and then the
cn choices are made.

• Online Algorithms - Pairs appear sequentially.
◦ The choice between ei, fi is made upon presentation,

without knowledge of future edges.
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A variation on the theme

Let c be a constant and let (e1, f1), (e2, f2), . . . , (ecn, fcn)
be a sequence of cn pairs of random edges on [n].

We are going to examine two types of algorithms which choose
one edge from each pair:

• Offline Algorithms - All cn pairs are presented and then the
cn choices are made.

• Online Algorithms - Pairs appear sequentially.
◦ The choice between ei, fi is made upon presentation,

without knowledge of future edges.
◦ This is called an Achlioptas Process, named after

Dimitris Achlioptas who first posed the question of online
avoidance of a giant component.
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The interesting case for online avoidance is c > 1
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Avoiding a Giant Component

The interesting case for online avoidance is c > 1
2 .

• (2001) Bohman and Frieze gave an online algorithm which
avoids a giant whp for c < 0.535.
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Avoiding a Giant Component

The interesting case for online avoidance is c > 1
2 .

• (2001) Bohman and Frieze gave an online algorithm which
avoids a giant whp for c < 0.535.

• Spencer and Wormald claim they can achieve c < 0.89.
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• (2001) Bohman and Frieze gave an online algorithm which
avoids a giant whp for c < 0.535.

• Spencer and Wormald claim they can achieve c < 0.89.
• (2006) Bohman and Kim showed that the offline version has

a threshold coff ≈ 0.976:
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The interesting case for online avoidance is c > 1
2 .

• (2001) Bohman and Frieze gave an online algorithm which
avoids a giant whp for c < 0.535.

• Spencer and Wormald claim they can achieve c < 0.89.
• (2006) Bohman and Kim showed that the offline version has

a threshold coff ≈ 0.976:
◦ If c < coff then whp one can avoid a giant.
◦ If c > coff then whp one can not avoid a giant.

• (Bohman, Frieze, Wormald, 2004)
A giant can not be avoided online for c < 0.9668 < coff .
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Avoiding a Giant Component

The interesting case for online avoidance is c > 1
2 .

• (2001) Bohman and Frieze gave an online algorithm which
avoids a giant whp for c < 0.535.

• Spencer and Wormald claim they can achieve c < 0.89.
• (2006) Bohman and Kim showed that the offline version has

a threshold coff ≈ 0.976:
◦ If c < coff then whp one can avoid a giant.
◦ If c > coff then whp one can not avoid a giant.

• (Bohman, Frieze, Wormald, 2004)
A giant can not be avoided online for c < 0.9668 < coff .
This separates online and offline.
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General Online Processes

• Let A be an online algorithm for the choice of one edge from
each presented pair (ei, fi) without "future knowledge".

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 8/33



General Online Processes

• Let A be an online algorithm for the choice of one edge from
each presented pair (ei, fi) without "future knowledge".

• Let GA(i) be the graph this algorithm creates after i choices.
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General Online Processes

• Let A be an online algorithm for the choice of one edge from
each presented pair (ei, fi) without "future knowledge".

• Let GA(i) be the graph this algorithm creates after i choices.
• This produces a random graph process

GA(1), GA(2), . . . , GA(cn).
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and fi+1 based on the sizes of the components in GA(i).
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• Let GA(i) be the graph this algorithm creates after i choices.
• This produces a random graph process

GA(1), GA(2), . . . , GA(cn).
• A size algorithm A makes the choices between edges ei+1

and fi+1 based on the sizes of the components in GA(i).
• A bounded size algorithm is a size algorithm that makes no

distinction between components larger than some fixed
constant m.
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General Online Processes

• Let A be an online algorithm for the choice of one edge from
each presented pair (ei, fi) without "future knowledge".

• Let GA(i) be the graph this algorithm creates after i choices.
• This produces a random graph process

GA(1), GA(2), . . . , GA(cn).
• A size algorithm A makes the choices between edges ei+1

and fi+1 based on the sizes of the components in GA(i).
• A bounded size algorithm is a size algorithm that makes no

distinction between components larger than some fixed
constant m.

• A bounded first-edge algorithm is a bounded size algorithm
that chooses between ei+1 and fi+1 only by looking at the
sizes of the components in GA(i) connected by ei.
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Conjectures by Spencer (2001)

Conjecture 1:
Any size algorithm A has a critical value t0 such that :
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Conjectures by Spencer (2001)

Conjecture 1:
Any size algorithm A has a critical value t0 such that :

• If c = t0 − ǫ then whp the largest component of GA(cn) has
O(log n) vertices.
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Conjectures by Spencer (2001)

Conjecture 1:
Any size algorithm A has a critical value t0 such that :

• If c = t0 − ǫ then whp the largest component of GA(cn) has
O(log n) vertices.

• If c = t0 + ǫ then whp the largest component of GA(cn) has
Ω(n) vertices, and all other components are of size
O(log n).
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Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
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Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
(cA = 1

2 in the Erdős and Rényi model)
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Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
(cA = 1

2 in the Erdős and Rényi model)

Conjecture 2: Let A1 be the bounded size algorithm that takes
ei+1 if and only if it joins two isolated vertices in GA1

(t).
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(cA = 1

2 in the Erdős and Rényi model)

Conjecture 2: Let A1 be the bounded size algorithm that takes
ei+1 if and only if it joins two isolated vertices in GA1

(t).
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then whp GA1

(cn) has a component of size Ω(n).
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Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
(cA = 1

2 in the Erdős and Rényi model)

Conjecture 2: Let A1 be the bounded size algorithm that takes
ei+1 if and only if it joins two isolated vertices in GA1

(t).

• If c > cA1
then whp GA1

(cn) has a component of size Ω(n).

• If c < cA1
then whp all components of GA1

(cn) have size
O(log n).
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Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
(cA = 1

2 in the Erdős and Rényi model)

Conjecture 3:

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 11/33



Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
(cA = 1

2 in the Erdős and Rényi model)

Conjecture 3: Let A be the any bounded size algorithm .
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Conjectures by Spencer, continued

We can model the susceptibility for any bounded size algorithm
A using a differential equation, and it has a blow-up point cA.
(cA = 1

2 in the Erdős and Rényi model)

Conjecture 3: Let A be the any bounded size algorithm .
• If c > cA then whp GA(cn) has a component of size Ω(n).

• If c < cA then whp all components of GA(cn) have size
O(log n).
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Theorem 1

If A is a bounded first-edge algorithm, cA exists such that
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Theorem 1

If A is a bounded first-edge algorithm, cA exists such that

1. If c < cA then whp the largest component in the graph
GA(cn) has O

(

n12/13 log n
)

vertices.
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If A is a bounded first-edge algorithm, cA exists such that

1. If c < cA then whp the largest component in the graph
GA(cn) has O

(

n12/13 log n
)

vertices.

2. If c > cA then whp GA(cn) has a component of size Ω(n).

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 12/33



Theorem 1

If A is a bounded first-edge algorithm, cA exists such that

1. If c < cA then whp the largest component in the graph
GA(cn) has O

(

n12/13 log n
)

vertices.

2. If c > cA then whp GA(cn) has a component of size Ω(n).

Notes:

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 12/33



Theorem 1

If A is a bounded first-edge algorithm, cA exists such that

1. If c < cA then whp the largest component in the graph
GA(cn) has O

(

n12/13 log n
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vertices.
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Notes:
• Spencer and Wormald independently proved Theorem 1,

allowing for A to be any bounded size algorithm and
showed that the largest component in (1.) is O(log n) whp .
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• The main tool in our proof is the differential equations
method.
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Theorem 1

If A is a bounded first-edge algorithm, cA exists such that

1. If c < cA then whp the largest component in the graph
GA(cn) has O

(

n12/13 log n
)

vertices.

2. If c > cA then whp GA(cn) has a component of size Ω(n).

Notes:
• Spencer and Wormald independently proved Theorem 1,

allowing for A to be any bounded size algorithm and
showed that the largest component in (1.) is O(log n) whp .

• The main tool in our proof is the differential equations
method.

• The critical value cA is the given by the blow-up point in the
differential equation for the susceptibility.
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Another Algorithm

Note: If trying to create a giant as fast as possible, then the
interesting case is c ∈ (1

4 , 1
2).
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• If c < 1
4 then selecting all 2cn edges won’t make a giant whp .
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Another Algorithm

Note: If trying to create a giant as fast as possible, then the
interesting case is c ∈ (1

4 , 1
2).

• If c < 1
4 then selecting all 2cn edges won’t make a giant whp .

• If c > 1
2 then selecting ei every time makes a giant whp .

Given pair (ei, fi), accept ei = {ui, vi} if and only if neither
ui nor vi is an isolated vertex.
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Note: If trying to create a giant as fast as possible, then the
interesting case is c ∈ (1

4 , 1
2).

• If c < 1
4 then selecting all 2cn edges won’t make a giant whp .

• If c > 1
2 then selecting ei every time makes a giant whp .

Given pair (ei, fi), accept ei = {ui, vi} if and only if neither
ui nor vi is an isolated vertex.

This algorithm is designed to create a giant component relatively
quickly, and indeed it does:
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Another Algorithm

Note: If trying to create a giant as fast as possible, then the
interesting case is c ∈ (1

4 , 1
2).

• If c < 1
4 then selecting all 2cn edges won’t make a giant whp .

• If c > 1
2 then selecting ei every time makes a giant whp .

Given pair (ei, fi), accept ei = {ui, vi} if and only if neither
ui nor vi is an isolated vertex.

This algorithm is designed to create a giant component relatively
quickly, and indeed it does:

Theorem 2: If c > 0.385 then whp this algorithm will create a graph
with a component of size Ω(n).
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A Difference Between Online and Offline

Theorem 3: If c < 0.2544 then for any Achlioptas process, whp all
of the components of the graph created in cn steps will be of
size O(log n).
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Theorem 3: If c < 0.2544 then for any Achlioptas process, whp all
of the components of the graph created in cn steps will be of
size O(log n).

Theorem 4: If c > 0.25 then whp there is a way to choose one
edge from each pair and create a graph with a component of
size Ω(n).
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A Difference Between Online and Offline

Theorem 3: If c < 0.2544 then for any Achlioptas process, whp all
of the components of the graph created in cn steps will be of
size O(log n).

Theorem 4: If c > 0.25 then whp there is a way to choose one
edge from each pair and create a graph with a component of
size Ω(n).

Theorem 4: If c > 1
2∗2 then whp there is a way to choose one edge

from each 2− tuple and create a graph with a component of size
Ω(n).
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A Difference Between Online and Offline

Theorem 3: If c < 0.2544 then for any Achlioptas process, whp all
of the components of the graph created in cn steps will be of
size O(log n).

Theorem 4: If c > 0.25 then whp there is a way to choose one
edge from each pair and create a graph with a component of
size Ω(n).

Theorem 4b: If c > 1
2k then whp there is a way to choose one edge

from each k − tuple and create a graph with a component of size
Ω(n).
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For some fixed n, we take Boolean variables

{x1, x2, . . . , xn}.
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k-SAT Formulas

For some fixed n, we take Boolean variables

{x1, x2, . . . , xn}.

Then, k-clauses are chosen from the literals

{x1, x2, . . . , xn, x1, x2, . . . , xn}

An assignment must exist to the Boolean variables which
satisfies every clause.
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Random k-SAT

• A randomly generated k-clause is one whose k literals are
chosen uniformly at random from all 2n possibilities.
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• A randomly generated k-clause is one whose k literals are
chosen uniformly at random from all 2n possibilities.

• For any constant c, let Fk(cn) be a family of cn randomly
generated k-clauses.
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Random k-SAT

• A randomly generated k-clause is one whose k literals are
chosen uniformly at random from all 2n possibilities.

• For any constant c, let Fk(cn) be a family of cn randomly
generated k-clauses.

Theorem: (Chvátal, Reed, 1992) As n → ∞,

• If c < 1 then Pr [F2(cn) is satisfiable ] → 1.

• If c > 1 then Pr [F2(cn) is satisfiable ] → 0.
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Random k-SAT

• A randomly generated k-clause is one whose k literals are
chosen uniformly at random from all 2n possibilities.

• For any constant c, let Fk(cn) be a family of cn randomly
generated k-clauses.

Theorem: (Chvátal, Reed, 1992) As n → ∞,

• If c < 1 then Pr [F2(cn) is satisfiable ] → 1.

• If c > 1 then Pr [F2(cn) is satisfiable ] → 0.

c = 1 is called the threshold density for k = 2.
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Threshold Density

Satisfiability Threshold Conjecture
For each k > 2 there exists a threshold density ck such that:

• If c < ck then Fk(cn) is satisfiable with high probability.

• If c > ck then Fk(cn) is not satisfiable with high probability.
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Threshold Density

Satisfiability Threshold Conjecture
For each k > 2 there exists a threshold density ck such that:

• If c < ck then Fk(cn) is satisfiable with high probability.

• If c > ck then Fk(cn) is not satisfiable with high probability.

Theorem: (Friedgut, 1999)
For each k and n there exists a threshold density function ck(n).
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• If c < ck then Fk(cn) is satisfiable with high probability.

• If c > ck then Fk(cn) is not satisfiable with high probability.

Theorem: (Friedgut, 1999)
For each k and n there exists a threshold density function ck(n).

• For a given k, each n may have its own threshold ck(n).
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For each k > 2 there exists a threshold density ck such that:
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• If c > ck then Fk(cn) is not satisfiable with high probability.

Theorem: (Friedgut, 1999)
For each k and n there exists a threshold density function ck(n).

• For a given k, each n may have its own threshold ck(n).
• These thresholds may not converge to a limit as n → ∞.
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Threshold Density

Satisfiability Threshold Conjecture
For each k > 2 there exists a threshold density ck such that:

• If c < ck then Fk(cn) is satisfiable with high probability.

• If c > ck then Fk(cn) is not satisfiable with high probability.

Theorem: (Friedgut, 1999)
For each k and n there exists a threshold density function ck(n).

• For a given k, each n may have its own threshold ck(n).
• These thresholds may not converge to a limit as n → ∞.
• Friedgut used Fourier Analysis in his proof of this theorem.
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Things we do know

Theorem: (Achlioptas, Naor, Peres, 2003)
For k ≥ 1, there exist constants α and β such that

• If c < 2k ln 2 − αk then Fk(cn) is satisfiable whp .

• If c > 2k ln 2 − βk then Fk(cn) is not satisfiable whp .

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 19/33



Things we do know

Theorem: (Achlioptas, Naor, Peres, 2003)
For k ≥ 1, there exist constants α and β such that

• If c < 2k ln 2 − αk then Fk(cn) is satisfiable whp .

• If c > 2k ln 2 − βk then Fk(cn) is not satisfiable whp .

Theorem: (Kaporis, Kirousis, Lalas, 2002)

F3(3.42n) is satisfiable with high probability.
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Things we do know

Theorem: (Achlioptas, Naor, Peres, 2003)
For k ≥ 1, there exist constants α and β such that

• If c < 2k ln 2 − αk then Fk(cn) is satisfiable whp .

• If c > 2k ln 2 − βk then Fk(cn) is not satisfiable whp .

Theorem: (Kaporis, Kirousis, Lalas, 2002)

F3(3.42n) is satisfiable with high probability.

Theorem: (Dubois, Boufkhad, Mandler, 2000)

F3(4.6n) is not satisfiable with high probability.
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Online Version

• We are given cn randomly chosen k-clauses, one at a time.
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Online Version

• We are given cn randomly chosen k-clauses, one at a time.
• Accept or reject each clause as it is presented with no

knowledge of what is coming.
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Online Version

• We are given cn randomly chosen k-clauses, one at a time.
• Accept or reject each clause as it is presented with no

knowledge of what is coming.
• ALL clauses taken must be satisfied.

Question: What is the maximum expected number of clauses that
an algorithm can accept?
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Online Version

• We are given cn randomly chosen k-clauses, one at a time.
• Accept or reject each clause as it is presented with no

knowledge of what is coming.
• ALL clauses taken must be satisfied.

Question: What is the maximum expected number of clauses that
an algorithm can accept?

(either c is fixed or c → ∞)
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Easy

There is an online algorithm which accepts an expected
(1 − 1

2k )cn clauses.
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Easy

There is an online algorithm which accepts an expected
(1 − 1

2k )cn clauses.

Begin by setting all variables to true, then accept any clause
which doesn’t have everything false.
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Easy

There is an online algorithm which accepts an expected
(1 − 1

2k )cn clauses.

Begin by setting all variables to true, then accept any clause
which doesn’t have everything false.

So, if k = 2 then accept {•, •}, {•, •}, {•, •}, and reject {•, •}.
This accepts an expected 3

4cn clauses.
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Online-Lazy

Given: ( k = 2) Accept? Set to:

{•, •} ,{•, •} , {•, •} Yes {•, •}, {•, •} , {•, •}
{•, •} No

{•, •},{•, •}, {•, •}, {•, •}, {•, •} Yes
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Online-Lazy

Given: ( k = 2) Accept? Set to:

{•, •} ,{•, •} , {•, •} Yes {•, •}, {•, •} , {•, •}
{•, •} No

{•, •},{•, •}, {•, •}, {•, •}, {•, •} Yes

This accepts an expected 3
4cn + 3

8n clauses as c → ∞.

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 22/33



Online-Lazy

Given: ( k = 2) Accept? Set to:

{•, •} ,{•, •} , {•, •} Yes {•, •}, {•, •} , {•, •}
{•, •} No

{•, •},{•, •}, {•, •}, {•, •}, {•, •} Yes

This accepts an expected (1 − 1
2k )cn + akn clauses as c → ∞.

k 1 2 3 4 5 10

ak 0.5 0.375 0.2842 . . . 0.2209 . . . 0.1765 . . . 0.0809 . . .
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Offline Version

Here we look at all cn clauses and take as many as possible.
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Offline Version

Here we look at all cn clauses and take as many as possible.

For the equivalent offline problem, we expect to take
(1 − 1

2k )cn + Θ(
√

c)n out of cn clauses.
(Coppersmith, Gamarnik, Hajiaghayi, Sorkin, 2004)
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Offline Version

Here we look at all cn clauses and take as many as possible.

For the equivalent offline problem, we expect to take
(1 − 1

2k )cn + Θ(
√

c)n out of cn clauses.
(Coppersmith, Gamarnik, Hajiaghayi, Sorkin, 2004)

Therefore, an optimal online algorithm is somewhere between
(1 − 1

2k )cn + akn and (1 − 1
2k )cn + Θ(

√
c)n .
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Offline Version

Here we look at all cn clauses and take as many as possible.

For the equivalent offline problem, we expect to take
(1 − 1

2k )cn + Θ(
√

c)n out of cn clauses.
(Coppersmith, Gamarnik, Hajiaghayi, Sorkin, 2004)

Therefore, an optimal online algorithm is somewhere between
(1 − 1

2k )cn + akn and (1 − 1
2k )cn + Θ(

√
c)n .

Theorem: (K,05)
Any online algorithm accepts less than (1 − 1

2k )cn + ln 2n

clauses with high probability.
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A naive algorithm
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A naive algorithm

1. Begin by accepting every possible clause for as long as
possible.
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A naive algorithm

1. Begin by accepting every possible clause for as long as
possible.

2. When given the first clause that can’t be accepted, reject it
and set all the variables.
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A naive algorithm

1. Begin by accepting every possible clause for as long as
possible.

2. When given the first clause that can’t be accepted, reject it
and set all the variables.

3. Accept all remaining clauses if and only if they are satisfied
by our assignment.
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A naive algorithm

1. Begin by accepting every possible clause for as long as
possible.

2. When given the first clause that can’t be accepted, reject it
and set all the variables.

3. Accept all remaining clauses if and only if they are satisfied
by our assignment.

Claim: With high probability this will accept

(

1 − 1
2k

)

cn + (ln 2 − ok(1))n

out of cn clauses.
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A naive algorithm

1. Begin by accepting every possible clause for as long as
possible.

2. When given the first clause that can’t be accepted, reject it
and set all the variables.

3. Accept all remaining clauses if and only if they are satisfied
by our assignment.

Claim: With high probability this will accept

(

1 − 1
2k

)

cn + (ln 2 − ok(1))n

out of cn clauses.

Corollary: The naive algorithm is asymptotically optimal.
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Proof of Claim:
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted.
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted. Theorem, ANP, 03
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted. Theorem, ANP, 03

• (1 − 1
2k )(c − λ)n − O(

√
n) of the remaining clauses will be

accepted.
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted. Theorem, ANP, 03

• (1 − 1
2k )(c − λ)n − O(

√
n) of the remaining clauses will be

accepted. each of (c − λ)n clauses accepted with probability 1 − 1

2k
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted. Theorem, ANP, 03

• (1 − 1
2k )(c − λ)n − O(

√
n) of the remaining clauses will be

accepted. each of (c − λ)n clauses accepted with probability 1 − 1

2k

Total number of clauses accepted by naive algorithm:
= λn +

(

1 − 1
2k

)

(c − λ)n − O(
√

n)
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Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted. Theorem, ANP, 03

• (1 − 1
2k )(c − λ)n − O(

√
n) of the remaining clauses will be

accepted. each of (c − λ)n clauses accepted with probability 1 − 1

2k

Total number of clauses accepted by naive algorithm:
= λn +

(

1 − 1
2k

)

(c − λ)n − O(
√

n)

=
(

1 − 1
2k

)

cn +
(

1
2k λ − O( 1√

n
)
)

n
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• (1 − 1
2k )(c − λ)n − O(

√
n) of the remaining clauses will be

accepted. each of (c − λ)n clauses accepted with probability 1 − 1

2k

Total number of clauses accepted by naive algorithm:
= λn +

(

1 − 1
2k

)

(c − λ)n − O(
√

n)

=
(

1 − 1
2k

)

cn +
(

1
2k λ − O( 1√

n
)
)

n

=
(

1 − 1
2k

)

cn +
(

ln 2 − αk
2k − O( 1√

n
)
)

n
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Proof of Claim:

Let λ = 2k ln 2 − αk.
Both of the following are true with high probability:

• The first λn clauses will be accepted. Theorem, ANP, 03

• (1 − 1
2k )(c − λ)n − O(

√
n) of the remaining clauses will be

accepted. each of (c − λ)n clauses accepted with probability 1 − 1

2k

Total number of clauses accepted by naive algorithm:
= λn +

(

1 − 1
2k

)

(c − λ)n − O(
√

n)

=
(

1 − 1
2k

)

cn +
(

1
2k λ − O( 1√

n
)
)

n

=
(

1 − 1
2k

)

cn +
(

ln 2 − αk
2k − O( 1√

n
)
)

n

=
(

1 − 1
2k

)

cn + (ln 2)n − ok(1)n
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Proof of Theorem Sketch Fix k = 3
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Proof of Theorem Sketch Fix k = 3

Theorem: Any online algorithm cannot accept

7
8cn + (ln 2)n + o(n)

clauses with high probability.
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Proof: Let Si be the set of valid assignments after i clauses.
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Proof of Theorem Sketch Fix k = 3

Theorem: Any online algorithm cannot accept

7
8cn + (ln 2)n + o(n)

clauses with high probability.

Proof: Let Si be the set of valid assignments after i clauses.

So, |S0| = 2n
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Theorem: Any online algorithm cannot accept

7
8cn + (ln 2)n + o(n)

clauses with high probability.

Proof: Let Si be the set of valid assignments after i clauses.

So, |S0| = 2n and Si ⊆ Si−1, with equality if clause i is rejected.
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Theorem: Any online algorithm cannot accept

7
8cn + (ln 2)n + o(n)

clauses with high probability.

Proof: Let Si be the set of valid assignments after i clauses.

So, |S0| = 2n and Si ⊆ Si−1, with equality if clause i is rejected.

Let Bi be the number of clauses accepted minus 7
8cn, i.e. the

number accepted “beyond" what we can get easily.
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Proof of Theorem Sketch Fix k = 3

Theorem: Any online algorithm cannot accept

7
8cn + (ln 2)n + o(n)

clauses with high probability.

Proof: Let Si be the set of valid assignments after i clauses.

So, |S0| = 2n and Si ⊆ Si−1, with equality if clause i is rejected.

Let Bi be the number of clauses accepted minus 7
8cn, i.e. the

number accepted “beyond" what we can get easily.
Note that Bi+1 − Bi ≤ 1

8 .
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Proof of Theorem Sketch Fix k = 3

Theorem: Any online algorithm cannot accept

7
8cn + (ln 2)n + o(n)

clauses with high probability.

Proof: Let Si be the set of valid assignments after i clauses.

So, |S0| = 2n and Si ⊆ Si−1, with equality if clause i is rejected.

Let Bi be the number of clauses accepted minus 7
8cn, i.e. the

number accepted “beyond" what we can get easily.
Note that Bi+1 − Bi ≤ 1

8 .

Need to show Bcn ≤ n ln 2 + o(n) with high probability.
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Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:
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Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
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Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 27/33



Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Case 2: Accept all clauses.
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Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Case 2: Accept all clauses. Bi ≤ Bi−1 + 1
8 is always required.
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Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Case 2: Accept all clauses. Bi ≤ Bi−1 + 1
8 is always required.

E [ |Si| ] ≤ 7
8 |Si−1| comes from Jensen’s Inequality.
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Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Case 2: Accept all clauses. Bi ≤ Bi−1 + 1
8 is always required.

E [ |Si| ] ≤ 7
8 |Si−1| comes from Jensen’s Inequality.

Define Yi := ln |Si| − 23 ln(1 − 1
8)Bi.
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Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Case 2: Accept all clauses. Bi ≤ Bi−1 + 1
8 is always required.

E [ |Si| ] ≤ 7
8 |Si−1| comes from Jensen’s Inequality.

Define Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

Note: We have E[Yi] ≤ Yi−1 in either case.
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Proof sketch Fix k = 3

Any step of the algorithm will fit one of these two cases:

Case 1: Be “non-ambitious" and turn down any “beyond" clauses.
Here we will only assume Bi ≤ Bi−1 and |Si| ≤ |Si−1|.

Case 2: Accept all clauses. Bi ≤ Bi−1 + 1
8 is always required.

E [ |Si| ] ≤ 7
8 |Si−1| comes from Jensen’s Inequality.

Define Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

Note: We have E[Yi] ≤ Yi−1 in either case.

This means Ycn ≤ Y0 + o(n) is true whp .
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Proof sketch Fix k = 3

Yi := ln |Si| − 23 ln(1 − 1
8)Bi.
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Proof sketch Fix k = 3

Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

B0 = 0 and |S0| = 2n ⇒ Y0 = n ln 2.
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Proof sketch Fix k = 3

Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

B0 = 0 and |S0| = 2n ⇒ Y0 = n ln 2.

|Scn| ≥ 1

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 28/33



Proof sketch Fix k = 3
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|Scn| ≥ 1 ⇒ Ycn ≥ 23 ln(1 − 1
8)Bcn
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Proof sketch Fix k = 3

Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

B0 = 0 and |S0| = 2n ⇒ Y0 = n ln 2.

|Scn| ≥ 1 ⇒ Ycn ≥ 23 ln(1 − 1
8)Bcn ≥ Bcn.
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Proof sketch Fix k = 3

Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

B0 = 0 and |S0| = 2n ⇒ Y0 = n ln 2.

|Scn| ≥ 1 ⇒ Ycn ≥ 23 ln(1 − 1
8)Bcn ≥ Bcn.

Bcn ≤ Ycn

whp

≤ Y0 + o(n) = n ln 2 + o(n).
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Proof sketch Fix k = 3

Yi := ln |Si| − 23 ln(1 − 1
8)Bi.

B0 = 0 and |S0| = 2n ⇒ Y0 = n ln 2.

|Scn| ≥ 1 ⇒ Ycn ≥ 23 ln(1 − 1
8)Bcn ≥ Bcn.

Bcn ≤ Ycn

whp

≤ Y0 + o(n) = n ln 2 + o(n).

�
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Suppose k = 2.

Satisfiability and the Giant Component in Online Variants of the Classical Random Models – p. 29/33



More about offline

Suppose k = 2.

Theorem: (Chvátal, Reed, 1992)
c = 1 is the threshold for satisfiability of F2(cn).
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More about offline

Suppose k = 2.

Theorem: (Chvátal, Reed, 1992)
c = 1 is the threshold for satisfiability of F2(cn).

{x1, x2} {x2, x4} {x1, x3} {x2, x3} {x2, x4} {x3, x4}

x1 x2 x3 x4

x1 x2 x3 x4

2n vertices

cn edges
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More about offline

Suppose k = 2.

Theorem: (Chvátal, Reed, 1992)
c = 1 is the threshold for satisfiability of F2(cn).

Theorem: (Erdős, Rényi, 1960)
c = 1 is the threshold for appearance of a giant component in
the random graph with 2n vertices and cn edges.
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More about offline

Suppose k = 2.

Theorem: (Chvátal, Reed, 1992)
c = 1 is the threshold for satisfiability of F2(cn).

Theorem: (Erdős, Rényi, 1960)
c = 1 is the threshold for appearance of a giant component in
the random graph with 2n vertices and cn edges.

Question: Is there a correlation?
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Our Model

• Let G be any simple graph with 2n vertices and cn edges.
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• Let G be any simple graph with 2n vertices and cn edges.
• Make a family of clauses S(G) by randomly assigning
{x1, x1, x2, x2, . . . , xn, xn} to the 2n vertices, so each edge
in G corresponds to one clause.
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• Let G be any simple graph with 2n vertices and cn edges.
• Make a family of clauses S(G) by randomly assigning
{x1, x1, x2, x2, . . . , xn, xn} to the 2n vertices, so each edge
in G corresponds to one clause.

• We would like to know the probability that S(G) is satisfiable
over the space of all possible assignments to the vertices.
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• Let G be any simple graph with 2n vertices and cn edges.
• Make a family of clauses S(G) by randomly assigning
{x1, x1, x2, x2, . . . , xn, xn} to the 2n vertices, so each edge
in G corresponds to one clause.

• We would like to know the probability that S(G) is satisfiable
over the space of all possible assignments to the vertices.

• This question is equivalent to Random 2 − SAT with n

variables and cn clauses if G is a random graph, but we
allow G to be anything, provided ∆(G) isn’t too large.
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Our Model

• Let G be any simple graph with 2n vertices and cn edges.
• Make a family of clauses S(G) by randomly assigning
{x1, x1, x2, x2, . . . , xn, xn} to the 2n vertices, so each edge
in G corresponds to one clause.

• We would like to know the probability that S(G) is satisfiable
over the space of all possible assignments to the vertices.

• This question is equivalent to Random 2 − SAT with n

variables and cn clauses if G is a random graph, but we
allow G to be anything, provided ∆(G) isn’t too large.

Notation: For any graph G, ∆(G) is the maximum degree and
di(G) is the number of vertices of degree i (i ≥ 0).
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There is no correlation!
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There is no correlation!

Suppose G is a graph with 2n vertices and ǫ > 0 is any constant.
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There is no correlation!

Suppose G is a graph with 2n vertices and ǫ > 0 is any constant.

Theorem: If G has less than (1 − ǫ)n edges and ∆(G) = o(n1/10

log n ),

then S(G) is satisfiable whp .
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There is no correlation!

Suppose G is a graph with 2n vertices and ǫ > 0 is any constant.

Theorem: If G has less than (1 − ǫ)n edges and ∆(G) = o(n1/10

log n ),

then S(G) is satisfiable whp .

Theorem: If ∆(G) = o(n1/8) and there is some function
τ = o(log n) such that

τ
∑

i=0

idi(G) = (1 + ǫ)2n

then S(G) is not satisfiable whp .
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There is no correlation!

Suppose G is a graph with 2n vertices and ǫ > 0 is any constant.

Theorem: If G has less than (1 − ǫ)n edges and ∆(G) = o(n1/10

log n ),

then S(G) is satisfiable whp .

Theorem: If ∆(G) = o(n1/8) and there is some function
τ = o(log n) such that

τ
∑

i=0

idi(G) = (1 + ǫ)2n

then S(G) is not satisfiable whp .

Conjecture: If G has more than (1 + ǫ)n edges then there exists φ

such that if ∆(G) = o(nφ) then S(G) is not satisfiable whp .
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Questions for the Future

• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
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Questions for the Future

• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
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Questions for the Future

• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
◦ We have z2 between 0.453 and 0.624.
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• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
◦ We have z2 between 0.453 and 0.624.
◦ As k gets large, zk → ln 2.
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2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
◦ We have z2 between 0.453 and 0.624.
◦ As k gets large, zk → ln 2.

• Does satisfiability in online 2 − SAT correspond with the
appearance of a giant component in the corresponding
2n-vertex graph?
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Questions for the Future

• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
◦ We have z2 between 0.453 and 0.624.
◦ As k gets large, zk → ln 2.

• Does satisfiability in online 2 − SAT correspond with the
appearance of a giant component in the corresponding
2n-vertex graph?

• When c = 1 + ǫ, the number of rejected clauses is
somewhere between O(ǫ)n and O(ǫ3)n. Where is the truth?
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Questions for the Future

• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
◦ We have z2 between 0.453 and 0.624.
◦ As k gets large, zk → ln 2.

• Does satisfiability in online 2 − SAT correspond with the
appearance of a giant component in the corresponding
2n-vertex graph?

• When c = 1 + ǫ, the number of rejected clauses is
somewhere between O(ǫ)n and O(ǫ3)n. Where is the truth?

• Find the constant for Random 3 − SAT , if it exists.
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Questions for the Future

• Find the largest zk for which there exists an online algorithm
that accepts (1− 1

2k )cn+ zkn out of cn clauses for any k > 1.
◦ When k = 1 a greedy algorithm is easily seen to be

optimal.
◦ We have z2 between 0.453 and 0.624.
◦ As k gets large, zk → ln 2.

• Does satisfiability in online 2 − SAT correspond with the
appearance of a giant component in the corresponding
2n-vertex graph?

• When c = 1 + ǫ, the number of rejected clauses is
somewhere between O(ǫ)n and O(ǫ3)n. Where is the truth?

• Find the constant for Random 3 − SAT , if it exists.
• Solve the conjecture!
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Thank you!
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Thank you!

I will stop now.
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Thank you!

I will stop now.

You’re welcome.
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Thank you!

I will stop now.

You’re welcome.

Are there any questions?
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