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1 Introduction

Let (Ω,F1,F = (Ft)t∈[0,1],P) be a complete filtered probability space, Q be

an equivalent probability measure, and S = (Sjt ) be a J-dimensional mar-
tingale under Q. It is often important to know whether any local martingale
M = (Mt) under Q admits an integral representation with respect to S, that
is,

(1.1) Mt = M0 +

∫ t

0
HudSu, t ∈ [0, 1],

for some predictable S-integrable process H = (Hj
t ). For instance, in mathe-

matical finance, which is the topic of a particular interest to us, the existence
of such a martingale representation corresponds to the completeness of the
market model driven by stock prices S, see Harrison and Pliska [5].

A general answer is given in Jacod [7, Section XI.1(a)]. Jacod’s theorem
states that the integral representation property holds if and only if Q is
the only equivalent martingale measure for S. In mathematical finance this
result is sometimes referred to as the 2nd fundamental theorem of asset
pricing.

In many applications, including those in finance, the process S is defined
in terms of its predictable characteristics under P. The construction of a
martingale measure Q for S is then accomplished through the use of the
Girsanov theorem and its generalizations, see Jacod and Shiryaev [8]. The
verification of the existence of integral representations for all Q-martingales
under S is often straightforward. For example, if S is a diffusion process
under P with the drift vector-process b = (bt) and the volatility matrix-
process σ = (σt), then such a representation exists if and only if the volatility
matrix-process σ has full rank dP× dt almost surely.

In this paper we assume that the inputs are the random variables ξ > 0
and ψ = (ψj)j=1,...,J , while Q and S are defined as

dQ
dP

,
ξ

E[ξ]
,

St , EQ[ψ|Ft], t ∈ [0, 1].

We are looking for (easily verifiable) conditions on ξ and ψ guaranteeing the
integral representation of all Q-martingales with respect to S.

Our study is motivated by the problem of endogenous completeness in fi-
nancial economics, see Anderson and Raimondo [1]. Here ξ is an equilibrium
state price density, usually defined implicitly by a fixed point argument, and
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ψ = (ψj) is the random vector of the cumulative discounted dividends for
traded stocks. The term “endogenous” is used because the stock prices S
are now computed as an output of equilibrium.

We focus on the case when ξ and ψ are defined in terms of a weak solution
X to a d-dimensional stochastic differential equation. With respect to x the
coefficients of this equation satisfy classical conditions guaranteeing weak
existence and uniqueness: the drift vector b(t, ·) is measurable and bounded
and the volatility matrix σ(t, ·) is uniformly continuous and bounded and has
a bounded inverse. With respect to t our assumptions are more stringent:
b(·, x) and σ(·, x) are required to be analytic functions. We give an example
showing that the t-analyticity assumption on the volatility matrix σ cannot
be removed.

Our results complement and generalize those in Anderson and Raimondo
[1], Hugonnier, Malamud, and Trubowitz [6], and Riedel and Herzberg [18].
In the pioneering paper [1], X is a Brownian motion. The proofs in this
paper rely on non-standard analysis. In [6] and [18], among other conditions,
the diffusion coefficients b = b(t, x) and σ = σ(t, x) are assumed to be
analytic functions with respect to (t, x). In one important aspect, however,
the assumptions in [1], [6], and [18] are less restrictive. If ψ = F (X1), where
F = F j(x) is a J-dimensional vector-function on Rd, then these papers
require the Jacobian matrix of F to have rank d only on some open set.
In our framework, this property needs to hold almost everywhere on Rd.
We provide an example showing that in the absence of the x-analyticity
assumption on b and σ this stronger condition cannot be relaxed.

2 Main results

Let X be a Banach space and D be a subset of either the real line R or
the complex plane C. We remind the reader that a map f : D → X is
called analytic if for any x ∈ D there exist a number ε > 0 and a sequence
A = (An)n≥0 in X (both ε and A depend on x) such that

f(y) =
∞∑
n=0

An(y − x)n, y ∈ D, |y − x| < ε,

where the series converges in the norm ‖·‖X of X.
In the statements of our results, D = [0, 1] and X will be one of the

following spaces:

L∞ = L∞(Rd, dx) : the Lebesgue space of bounded measurable real-valued
functions f on an Euclidean space Rd with the norm ‖f‖L∞ , ess supx∈Rd |f(x)|.
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As usual, the term a measurable function is used for an equivalence
class of Borel measurable functions indistinguishable with respect to
the Lebesgue measure.

C = C(Rd) : the Banach space of bounded and continuous real-valued func-
tions f on Rd with the norm ‖f‖C , supx∈Rd |f(x)|.

We shall use standard notations of linear algebra. If x and y are vectors
in an Euclidean space Rn, then xy denotes the scalar product and |x| ,

√
xx.

If a ∈ Rm×n is a matrix with m rows and n columns, then ax denotes its
product on the (column-)vector x, a∗ stands for the transpose, and |a| ,√

trace(aa∗).
Let Rd be an Euclidean space and the functions b = b(t, x) : [0, 1]×Rd →

Rd and σ = σ(t, x) : [0, 1]× Rd → Rd×d be such that for all i, j = 1, . . . , d:

(A1) t 7→ bi(t, ·) is an analytic map of [0, 1] to L∞.

(A2) t 7→ σij(t, ·) is an analytic map of [0, 1] to C. For t ∈ [0, 1] and x ∈ Rd
the matrix σ(t, x) has the inverse σ−1(t, x) and there exists a constant
N > 0, same for all t and x, such that

(2.1) |σ−1(t, x)| ≤ N.

Moreover, there exists a strictly increasing function ω = (ω(ε))ε>0 such
that ω(ε)→ 0 as ε ↓ 0 and, for all t ∈ [0, 1] and all x, y ∈ Rd,

|σ(t, x)− σ(t, y)| ≤ ω(|x− y|).

Note that (2.1) is equivalent to the uniform ellipticity of the matrix-function
a , σσ∗: for all y ∈ Rd and (t, x) ∈ [0, 1]× Rd,

ya(t, x)y = |σ(t, x)y|2 ≥ 1

N2
|y|2.

Let X0 ∈ Rd. The classical results of Stroock and Varadhan [19, Theo-
rem 7.2.1] and Krylov [16, 13] imply that under (A1) and (A2) there exist
a complete filtered probability space (Ω,F1,F = (Ft)t∈[0,1],P), a Brownian

motion W , and a stochastic process X, both with values in Rd, such that

(2.2) Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, t ∈ [0, 1],
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and, moreover, all finite dimensional distributions of X are defined uniquely.
In view of (2.1), we can (and will) assume that the filtration F is generated
by X:

(2.3) F = FX .

In this case, P is defined uniquely in the sense that if Q ∼ P is an equivalent
probability measure on (Ω,F1) = (Ω,FX1 ) such that

Wt =

∫ t

0
σ−1(s,Xs)(dXs − b(s,Xs)ds), t ∈ [0, 1],

is a Brownian motion under Q, then Q = P.

Remark 2.1. With respect to x, (A1) and (A2) are, essentially, the minimal
classical assumptions guaranteeing the existence and the uniqueness of the
weak solution to (2.2). This weak solution is also well-defined when b and σ
are only measurable functions with respect to t. As we shall see in Exam-
ple 2.6, the requirement on σ to be t-analytic is, however, essential for the
validity of our main results, Theorems 2.3 and 2.5.

Remark 2.2. It is well-known that any local martingale M adapted to the
filtration FW , generated by the Brownian motion W , is a stochastic integral
with respect to W , that is, there exists an FW -predictable process H with
values in Rd such that

(2.4) Mt = M0 +

∫ t

0
HudWu ,M0 +

d∑
i=1

∫ t

0
H i
udW

i
u, t ∈ [0, 1].

The example in Barlow [2] shows that under (A1) and (A2) the filtration FW

may be strictly smaller than F = FX . Nevertheless, for every local martin-
gale M adapted to F the integral representation (2.4) still holds with some
F-predictable H. This follows from the mentioned fact that any Q ∼ P such
that W is a Q-local martingale (equivalently, a Q-Brownian motion) coin-
cides with P and the integral representation theorems in Jacod [7, Section
XI.1(a)].

Recall that a locally integrable function f on (Rd, dx) is weakly differ-
entiable if for any index i = 1, . . . , d there is a locally integrable function gi

such that the identity∫
Rd

gi(x)h(x)dx = −
∫
Rd

f(x)
∂h

∂xi
(x)dx
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holds for any function h ∈ C∞ with compact support, where C∞ is the
space of infinitely many times differentiable functions. In this case, we set
∂f
∂xi

, gi. The weak derivatives of higher orders are defined recursively.

Let J ≥ d be an integer and the functions F j , G : Rd → R and f j , αj , β :
[0, 1]× Rd → R, j = 1, . . . , J , be such that for some N ≥ 0

(A3) The functions F j are weakly differentiable, e−N |·| ∂F
j

∂xi
,
(
e−N |x| ∂F

j

∂xi
(x)
)
x∈Rd ∈

L∞, i = 1, . . . , d, and the Jacobian matrix
(
∂F j

∂xi

)
i=1,...,d, j=1,...,J

has

rank d almost surely under the Lebesgue measure on Rd.

(A4) The functionG is strictly positive and weakly differentiable and e−N |·| ∂G
∂xi
∈

L∞, i = 1, . . . , d.

(A5) The maps t 7→ e−N |·|f j(t, ·) ,
(
e−N |x|f j(t, x)

)
x∈Rd , t 7→ αj(t, ·), and

t 7→ β(t, ·) of [0, 1] to L∞ are analytic.

We now define the random variables

ψj , F j(X1)e
∫ 1
0 α

j(t,Xt)dt +

∫ 1

0
e
∫ t
0 α

j(s,Xs)dsf j(t,Xt)dt, j = 1, . . . , J,

(2.5)

ξ , G(X1)e
∫ 1
0 β(t,Xt)dt,(2.6)

and state the main results of the paper.

Theorem 2.3. Suppose that (2.3) and (A1)–(A5) hold. Then the equivalent
probability measure Q with the density

dQ
dP

,
ξ

E[ξ]
,

and the Q-martingale

St , EQ[ψ|Ft], t ∈ [0, 1],

with values in RJ are well-defined and any local martingale M under Q is a
stochastic integral with respect to S, that is, (1.1) holds.

Remark 2.4. The t-analyticity condition on f j in (A5) cannot be relaxed
even if X is a one-dimensional Brownian motion, see Example 2.7 below.
By contrast, the x-regularity assumptions on the functions F j , G, and f j

in (A3), (A4), and (A5) admit weaker formulations with the L∞ space being
replaced by appropriate Lp spaces (with the power p > 1 different for each
of these functions). This generalization leads, however, to more delicate and
longer proofs and will be dealt with elsewhere.
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The proof of Theorem 2.3 will be given in Section 5 and will rely on
the study of parabolic equations in Section 4. In Section 3.2 we shall apply
Theorem 2.3 to the problem of endogenous completeness in an economy with
terminal consumption.

The following result, which, in fact, is an easy corollary of Theorem 2.3,
will be used in Section 3.3 to study the endogenous completeness in an
economy with intermediate consumption. For i = 1, . . . , d let the functions
γi = γi(t, x) on [0, 1]× Rd be such that

(A6) the maps t 7→ γi(t, ·) of [0, 1] to L∞ are analytic.

Theorem 2.5. Suppose that (2.3), (A1)–(A3), and (A5)–(A6) hold. Then
the equivalent probability measure Q with the density

dQ
dP

= exp

(∫ 1

0
γ(s,Xs)dWs −

1

2

∫ 1

0
|γ(s,Xs)|2ds

)
and the Q-martingale

St , EQ[ψ|Ft], t ∈ [0, 1],

with values in RJ are well-defined and any local martingale under Q is a
stochastic integral with respect to S.

Proof. By Girsanov’s theorem,

WQ
t = Wt −

∫ t

0
γ(s,Xs)ds

is a Brownian motion under Q. After this substitution the equation (2.2)
becomes

dXt =
(
b(t,Xt) + σ(t,Xt)γ(t,Xt)

)
dt+ σ(t,Xt)dW

Q
t , X0 = x.

The result now follows from Theorem 2.3, where we can assume ξ = 1, if
we observe that, similarly with b, each component of b̃ , b+ σγ defines an
analytic map of [0, 1] to L∞.

We conclude with a few counter-examples illustrating the sharpness of
the conditions of the theorems. Our first two examples show that the time
analyticity assumptions on the volatility coefficient σ = σ(t, x) and on the
functions f j = f j(t, x) in Theorems 2.3 and 2.5 cannot be relaxed. In both
cases, we take b(t, x) = α(t, x) = β(t, x) = γ(t, x) = 0 and G(x) = 1; in
particular, Q = P.
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Example 2.6. We show that the assertions of Theorems 2.3 and 2.5 can
fail to hold when all their conditions are satisfied except the t-analyticity of
the volatility matrix σ. In our construction, d = J = 2 and both σ and its
inverse σ−1 are C∞-matrices on [0, 1]×R2 which are bounded with all their
derivatives and have analytic restrictions to [0, 12)× R2 and (12 , 1]× R2.

Let g = g(t) be a C∞-function on [0, 1] which equals 0 on [0, 12 ] and is
analytic and strictly positive on (12 , 1]. Let h = h(t, y) be a non-constant
analytic function on [0, 1]× R such that 0 ≤ h ≤ 1 and

∂h

∂t
+

1

2

∂2h

∂y2
= 0.

For instance, we can take

h(t, y) =
1

2
(1 + e

t−1
2 sin y).

Define a 2-dimensional diffusion (X,Y ) on [0, 1] by

Xt =

∫ t

0

√
1 + g(s)h(s, Ys)dBs,

Yt = Wt,

where B and W are independent Brownian motions. Clearly, the volatility
matrix

σ(t, x, y) =

(√
1 + g(t)h(t, y) 0

0 1

)
has the announced properties and coincides with the identity matrix for
t ∈ [0, 12 ].

Define the functions F = F (x, y) and H = H(x, y) on R2 as

F (x, y) = x,

H(x, y) = x2 − 1− h(1, y)

∫ 1

0
g(t)dt.

As h(1, ·) is non-constant and analytic, the set of zeros for ∂h
∂y (1, ·) is at most

countable. Since the determinant of the Jacobian matrix for (F,H) is given
by

∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
= −∂h

∂y
(1, y)

∫ 1

0
g(t)dt,

it follows that this Jacobian matrix has full rank almost surely.
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Observe now that

St , E[F (X1, Y1)|Ft] = Xt,

Rt , E[H(X1, Y1)|Ft] = X2
t − t− h(t, Yt)

∫ t

0
g(s)ds,

which can be verified by Ito’s formula. As g(t) = 0 for t ∈ [0, 12 ], it follows
that St = Bt and Rt = B2

t −t on [0, 12 ]. Hence, the Brownian motion Y = W
cannot be written as a stochastic integral with respect to (S,R).

Example 2.7. This counter-example shows the necessity of the t-analyticity
assumption on f j = f j(t, x) in (A5). Let g = g(t) be a C∞-function on [0, 1]
which equals 0 on [0, 12 ], is analytic on (12 , 1], and is such that g(1) 6= 0. For
the functions

f(t, x) = −
(
g′(t)x+

1

2
g2(t)

)
eg(t)x,

F (x) = eg(1)x,

the conditions (A3) and (A5) hold except the time analyticity of the map
t → e−N |·|f(t, ·) of [0, 1] to L∞. This map belongs instead to C∞ and has
analytic restrictions to [0, 12) and (12 , 1].

Take X to be a one-dimensional Brownian motion:

Xt = Wt, t ∈ [0, 1],

and observe that, by Ito’s formula,

St , E[ψ|Ft] = eg(t)Wt −
∫ t

0

(
g′(s)Ws +

1

2
g2(s)

)
eg(s)Wsds,

where

ψ = F (X1) +

∫ 1

0
f(t,Xt)dt.

For t ∈ [0, 12 ] we have g(t) = 0 and, therefore, St = 1. Hence, any local
martingale M which is non-constant on [0, 12 ] cannot be a stochastic integral
with respect to S.

When the diffusion coefficients σij = σij(t, x) and bi = bi(t, x) and the
functions f j = f j(t, x) in (A5) are also analytic with respect to the state
variable x, the results in [6] and [18] show that in (A3) it is sufficient to
require the Jacobian matrix of F = F (x) to have rank d only on an open
set. The following example shows that in the case of C∞ functions this
simplification is not possible anymore.
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Example 2.8. Let d = J = 2 and let g : R → R be a C∞ function such
that g(x) = 0 for x ≤ 0, while g′(x) > 0 and g′′(x) is bounded for x > 0.

Define the diffusion processes X and Y on [0, 1] by

Xt = Bt,

Yt =

∫ t

0
g′′(Xs)ds+Wt,

where B and W are independent Brownian motions. Clearly, the diffusion
coefficients of (X,Y ) satisfy (A1) and (A2).

Define the functions F = F (x, y) and H = H(x, y) on R2 as

F (x, y) = y,

H(x, y) = y − 2g(x),

and the function f = f(t, x, y) on [0, 1]× R2 as

f(t, x, y) = −g′′(x).

Observe that the determinant of the Jacobian matrix for (F,H) is given by

∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
= 2g′(x),

and, hence, this Jacobian matrix has full rank on the set (0,∞)× R.
A simple application of Ito’s formula yields

St , E[F (X1, Y1) +

∫ 1

0
f(s,Xs, Ys)ds|Ft] = Wt,

Rt , E[H(X1, Y1)|Ft] = Wt − 2

∫ t

0
g′(Xs)dBs.

Hence, any martingale in the form

Mt =

∫ t

0
h(Xs)dBs,

where the function h = h(x) is different from zero for x ≤ 0, cannot be
written as a stochastic integral with respect to (S,R).

3 Endogenous completeness

In this section, Theorems 2.3 and 2.5 will be applied to the problem of
endogenous completeness in financial economics.

As before, the uncertainty and the information flow are modeled by
the filtered probability space (Ω,F1,F = (Ft)t∈[0,1],P) with the filtration F
generated by the solution X to (2.2).
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3.1 Financial market with exogenous prices

Recall first the “standard” model of mathematical finance, where the prices
of traded securities are given as model inputs or, in more economic terms,
exogenously.

Consider a financial market with J + 1 traded assets: a bank account
and J stocks. The bank account pays the continuous interest rate r = (rt)
and the stocks pay the continuous dividends θ = (θjt ) and have the prices
P = (P jt ), where t ∈ [0, 1] and j = 1, . . . , J . We assume that P is a
continuous semimartingale with values in RJ and∫ 1

0
(|rt|+ |θt|)dt <∞.

We shall use the abbreviation (r, θ, P ) for such a model.
The wealth of a (self-financing) strategy evolves as

(3.1) Vt = v +

∫ t

0
ζu(dPu + θudu) +

∫ t

0
(Vu − ζuPu)rudu, t ∈ [0, 1],

where v ∈ R is the initial wealth and ζ = (ζjt ) is the predictable process
with values in RJ of the number of stocks such that the integrals in (3.1)
are well-defined. This balance equation can be written more compactly in
terms of discounted values:

Vte
−

∫ t
0 rudu = v +

∫ t

0
ζudSu, t ∈ [0, 1],

where, for j = 1, . . . , J ,

Sjt , P jt e
−

∫ t
0 rudu +

∫ t

0
θjse
−

∫ s
0 rududs, t ∈ [0, 1],

denotes the discounted wealth of the “buy and hold” strategy for jth stock,
that is, the strategy where we start with one unit of such a stock and reinvest
the continuous dividends θ = (θt) in the bank account.

It is common to assume that the family Q of the equivalent martingale
measures for S is not empty:

Q = Q(r, θ, P ) , {Q ∼ P : S is a Q-martingale} 6= ∅.

This is equivalent to the absence of arbitrage if one is allowed to sell short
both the bank account and the stock until the maturity; see [4].

The following property is the primary focus of our study.

11



Definition 3.1. The model (r, θ, P ) is called complete if for any random
variable µ such that |µ| ≤ 1 there is a self-financing strategy such that

|Vte−
∫ t
0 rudu| ≤ 1, t ∈ [0, 1], and V1e

−
∫ 1
0 rudu = µ.

Recall, see Harrison and Pliska [5] and Jacod [7, Section XI.1(a)], that
for a (r, θ, P )-model with Q 6= ∅ the completeness is equivalent to any of the
following conditions:

1. there exists only one Q ∈ Q;

2. if Q ∈ Q then any Q-local martingale is a discounted wealth process
or, equivalently, is a stochastic integral with respect to S.

3.2 Economy with terminal consumption

Consider an economy with a single (representative) agent. We assume that
the agent consumes only at maturity 1 and denote by U =

(
U(x)

)
x>0

his
utility function for terminal wealth.

(B1) The utility function U = U(x) is twice weakly differentiable on (0,∞)
and U ′ > 0. Moreover, it has a bounded relative risk aversion, that is,
for some constant N > 0,

1

N
≤ A(x) , −xU

′′(x)

U ′(x)
≤ N, x ∈ (0,∞).

Note that (B1) implies that U is strictly increasing, strictly concave, and
continuously differentiable, that it satisfies the Inada conditions:

lim
x↓0

U ′(x) =∞ and lim
x→∞

U ′(x) = 0,

and that its asymptotic elasticity is strictly less than 1:

lim sup
x→∞

xU ′(x)

U(x)
< 1.

Given an (r, θ, P )-market, a basic problem of financial economics is to
determine an optimal investment strategy V̂ (v) of the agent starting with
the initial capital v > 0. More formally, if

V(v) , {V ≥ 0 : (3.1) holds for some ζ}
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denotes the family of positive wealth processes starting from v > 0, then
V̂ (v) is defined as an element of V(v) such that

(3.2) ∞ > E[U(V̂1(v))] ≥ E[U(V1)] for all V ∈ V(v),

where we used the convention:

E[U(V1)] , −∞ if E[min(U(V1), 0)] = −∞.

We are interested in an inverse problem: given a terminal wealth Λ for
the agent and final dividends Θ = (Θj) for the stocks find a price process
P = (P jt ) such that P1 = Θ and, in the (r, θ, P )-market, V̂1(v) = Λ for
some initial wealth v > 0. We particularly want to know whether the family
Q(r, θ, P ) is a singleton and, hence, the (r, θ, P )-model is complete. Since
the price process P is now an outcome, rather than an input, the latter
property is referred to as an endogenous completeness.

We make the following assumptions:

(B2) The interest rate rt = β(t,Xt), t ∈ [0, 1], where the function β =
β(t, x) satisfies (A5).

(B3) The continuous dividends θ = (θjt ) and the terminal dividends Θ =
(Θj) are such that, for t ∈ [0, 1] and j = 1, . . . , J ,

θjt = f j(t,Xt)e
∫ t
0 α

j(s,Xs)ds,

Θj = F j(X1)e
∫ 1
0 α

j(s,Xs)ds,

where the functions F j = F j(x) satisfy (A3) and the functions f j and
αj satisfy (A5).

(B4) The terminal wealth Λ = eH(X1), where the function H = H(x) on Rd
is weakly differentiable and ∂H

∂xi
∈ L∞, i = 1, . . . , d.

Note that a function H = H(x) on Rd satisfies (B4) if and only if it is
Lipschitz continuous, that is, there is N ≥ 0 such that

|H(x)−H(y)| ≤ N |x− y|, x, y ∈ Rd.

For j = 1, . . . , J denote

(3.3) ψj , Θje−
∫ 1
0 rudu +

∫ 1

0
θjue
−

∫ u
0 rsdsdu,

the cumulative values of the discounted cash flows generated by the stocks.
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Theorem 3.2. Let (2.3), (A1)–(A2), and (B1)–(B4) hold. Then there
exists a continuous process P = (P jt ) with the terminal value P1 = Θ such
that, in the (r, θ, P )-market, for some initial capital v0 > 0 the optimal
terminal wealth V̂1(v0) in (3.2) equals Λ and such that the set of martingale
measures Q = Q(r, θ, P ) is a singleton; in particular, the (r, θ, P )-market is
complete.

Further, P = (P jt ), Q ∈ Q, and v0 are unique and given by

Pt = Ste
∫ t
0 rudu −

∫ t

0
e
∫ t
s ruduθsds, t ∈ [0, 1],(3.4)

dQ
dP

=
U ′(Λ)e

∫ 1
0 rudu

E[U ′(Λ)e
∫ 1
0 rudu]

,(3.5)

v0 = EQ[Λe−
∫ 1
0 rudu],(3.6)

where, for ψ = (ψj) from (3.3),

(3.7) St , EQ[ψ|Ft], t ∈ [0, 1].

Proof. It is well-known, see [9, Theorem 3.7.6] and [11, Theorem 2.0], that
for the utility function U = U(x) as in (B1) and a complete market with
unique Q ∈ Q the optimal terminal wealth equals Λ if and only if (3.5)
holds. Clearly, the martingale property of the discounted wealth process
of an optimal strategy yields (3.6). Hence, it remains only to verify the
completeness of the (r, θ, P )-market with P = (P jt ) given by (3.4).

Define the function

G(x) , U ′(eH(x)), x ∈ Rd,

and observe that

∂ lnG

∂xi
=
U ′′

U ′
(eH)eH

∂H

∂xi
= −A(eH)

∂H

∂xi
∈ L∞,

by the boundedness of A and ∂H
∂xi

. This implies the existence of N ≥ 0 such
that

e−N |·|

(
G+

d∑
i=1

|∂G
∂xi
|

)
∈ L∞,

which, in particular, yields (A4).
Since e−N |·|(G+eH+|F |) ∈ L∞ for some N ≥ 0, we deduce the existence

of N ≥ 0 such that

U ′(Λ)(1 + Λ + |ψ|) ≤ eN(1+supt∈[0,1]|Xt|).
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As the diffusion coefficients b = b(t, x) and σ = σ(t, x) are bounded, the
random variable supt∈[0,1]|Xt| has all exponential moments. It follows that

E[U ′(Λ)(1 + Λ + |ψ|)] <∞,

and, in particular, P , Q, v0, and S are well-defined by (3.4)–(3.7).
By construction, Q ∈ Q(r, θ, P ). With (A4) verified above, the assump-

tions of Theorem 2.3 for Q and S hold trivially. The results cited after
Definition 3.1 then imply that the (r, θ, P )-market is complete and that Q
is the only martingale measure.

We conclude this section with an important corollary of Theorem 3.2.
Theorem 3.3 below yields dynamic completeness of all Pareto equilibria in an
economy where M investors trade in the exogenous bank account paying the
interest rate r and in the endogenous stocks paying the continuous dividends
θ and the terminal dividends Θ. The economic agents have utility functions
Um = Um(x), m = 1, . . . ,M , and they collectively possess the terminal
wealth Λ. A result of this kind plays a crucial role in the proof of the
existence of a continuous-time Arrow-Debreu-Radner equilibrium, see [1],
[6], and [18].

Theorem 3.3. Let (2.3), (A1)–(A2), and (B2)–(B4) hold. Suppose each
utility function Um, m = 1, . . . ,M , satisfies (B1). Fix w ∈ (0,∞)N and
define the function

(3.8) U(x) , sup
x1+···+xM=x

M∑
m=1

wmUm(xm), x ∈ (0,∞).

Let the price process P be defined by (3.4), (3.5), and (3.7). Then the
(r, θ, P )-market is complete.

Proof. The result is an immediate consequence of Theorem 3.2 as soon as
we verify that U satisfies (B1). This follows from the well-known identity
for the relative risk-aversions:

M∑
m=1

x̂m(x)

Am(x̂m(x))
=

x

A(x)
, x ∈ (0,∞).

Here x̂1(x) > 0, . . . , x̂m(x) > 0 are the arguments of maximum in (3.8)
and Am is the relative risk-aversion of Um. The arguments leading to this
equality will be recalled in the proof of Lemma 3.6.
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3.3 Economy with intermediate consumption

Consider now an economy where a single (representative) agent consumes
continuously on [0, 1]. We denote by u(t, x) : [0, 1]× (0,∞)→ R the agent’s
utility function for intermediate consumption and assume that

(B5) u = u(t, x) is analytic in t and 3-times weakly differentiable in x.
Moreover, ux > 0 and uxx < 0 and t 7→ a(t, ·), t 7→ 1

a(t,·) , t 7→ p(t, ·),
and t 7→ q(t, ·) are analytic maps of [0, 1] to L∞, where

a(t, x) , −xuxx(t, x)

ux(t, x)
,

p(t, x) , −xuxxx(t, x)

uxx(t, x)
,

q(t, x) , −∂ lnux(t, x)

∂t
= −uxt

ux
(t, x),

are, respectively, the relative risk aversion, the relative prudence, and
an “impatience” rate of the utility function u.

Note that (B5) implies that u(t, ·) is twice continuously differentiable, strictly
increasing, and strictly concave and that there is a constant N > 0 such that

(3.9) a(t, x) +
1

a(t, x)
+ |p(t, x)|+ |q(t, x)| ≤ N, (t, x) ∈ [0, 1]× R.

Recall the formulation of the investment problem with continuous con-
sumption in a given (r, θ, P )-market. Let η = (ηt) be a non-negative adapted
process such that

∫ 1
0 ηtdt < ∞. The wealth process of a strategy with the

consumption process η is defined as

(3.10) Vt = v +

∫ t

0
ζu(dPu + θudu) +

∫ t

0
(Vu − ζuPu)rudu−

∫ t

0
ηudu,

or, in discounted terms,

Vte
−

∫ t
0 rsds = v +

∫ t

0
ζudSu −

∫ t

0
ηue
−

∫ u
0 rsdsdu, t ∈ [0, 1].

Here, as before, v and ζ = (ζjt ) stand, respectively, for the initial wealth and
the process of the number of stocks. We consider the optimization problem

(3.11) E[

∫ 1

0
u(t, ηt)dt]→ max, η ∈ W(v),
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where W(v) denotes the family of consumption processes obtained from the
initial wealth v, that is,

W(v) , {η ≥ 0 : (3.10) holds for some V ≥ 0 and ζ},

and we have used the convention:

E[

∫ 1

0
u(t, ηt)dt] , −∞ if E[

∫ 1

0
min(u(t, ηt), 0)dt] = −∞.

As in the previous section, we study an inverse problem to (3.11): given
a consumption process λ = (λt) for the agent and final dividends Θ = (Θj)
for the stocks, find an interest rate process r = (rt) and a price process
P = (P jt ) such that P1 = Θ and, in the (r, θ, P )-model, the upper bound
in (3.11) is attained at λ = (λt) for some initial wealth v > 0. We are
particularly interested in the completeness of the resulting (r, θ, P )-market.

(B6) The consumption process λt = eg(t,Xt), t ∈ [0, 1], where the function
g = g(t, x) on [0, 1]×Rd is analytic in t and twice weakly differentiable

in x. Moreover, t 7→ ∂g
∂t (t, ·), t 7→

∂g
∂xi

(t, ·), and t 7→ ∂2g
∂xi∂xj

(t, ·) are
analytic maps of [0, 1] to L∞ for all i, j = 1, . . . , J .

Theorem 3.4. Suppose that (2.3), (A1)–(A2), (B3), and (B5)–(B6) hold.
Then there exist a bounded process r = (rt) and a continuous process P =
(P jt ) with the terminal value P1 = Θ such that, in the (r, θ, P )-market, the
set of martingale measures Q is a singleton and, for some initial wealth
v0 > 0, the consumption process λ = (λt) solves (3.11).

The interest rate process r = (rt) and the density process Z = (Zt) of
Q ∈ Q are uniquely determined from the decomposition

ux(t, λt) = ux(0, λ0)Zte
−

∫ t
0 rsds, t ∈ [0, 1].(3.12)

The price process P = (Pt) is unique and given, in terms of r = (rt) and Q,
by (3.4), (3.7), and (3.3). Finally, the initial wealth v0 is unique and given
by

(3.13) v0 = EQ
[∫ 1

0
e−

∫ t
0 ruduλtdt

]
<∞.

Proof. The well-known results on optimal consumption in complete markets,
see [9, Theorem 3.7.3], imply that for a utility function u = u(t, x) as in (B1)
and a complete (r, θ, P )-market with unique Q ∈ Q, a non-negative process
λ = (λt) solves (3.11) if and only if (3.12) holds. Moreover, the initial wealth
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of an optimal strategy yielding the consumption process λ = (λt) is given
by (3.13).

The function

w(t, x) , ux(t, eg(t,x)), (t, x) ∈ [0, 1]×Rd,

is analytic in t and twice weakly differentiable in x. Further, there is N > 0
such that the second derivatives ∂2w

∂xi∂xj
are bounded by eN |x|. Although the

second derivatives are not continuous, a version of Ito’s formula from Krylov
[14, Theorem 2.10.1] can still be applied to

Yt , ux(t, λt) = ux(t, eg(t,Xt)) = w(t,Xt), t ∈ [0, 1],

yielding

(3.14) dYt = Yt(−β(t,Xt)dt+ γ(t,Xt)dWt).

The functions β = β(t, x) and γi = γi(t, x), i = 1, . . . , d, on [0, 1] × Rd are
given by

β = q(t, eg) + a(t, eg)

∂g
∂t

+

d∑
k=1

∂g

∂xk
bk +

1

2

d∑
k,l,m=1

σkmσlmckl

 ,

γi = −a(t, eg)
d∑

k=1

∂g

∂xk
σki,

where we omitted the common argument (t, x) and

ckl = (1− p(t, eg)) ∂g

∂xk
∂g

∂xl
+

∂2g

∂xk∂xl
.

The assumptions of the theorem imply that β = β(t, x) and γi = γi(t, x),
i = 1, . . . , d, satisfy the conditions (A5) and (A6), respectively.

From (3.14) we deduce that a local martingale Z such that Z0 = 1 and
a predictable process r = (rt) are uniquely determined by (3.12) and are
given by

Zt = exp

(∫ t

0
γ(s,Xs)dWs −

1

2

∫ t

0
|γ(s,Xs)|2ds

)
,

rt = β(t,Xt).

Since γ = γ(t, x) is bounded on [0, 1] × Rd, we obtain that Z is, in fact, a
martingale and, hence, is a density of some Q ∼ P. Given r = (rt) and Q
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we define P = (P jt ) and S = (Sjt ) by (3.4) and (3.7), respectively. By con-
struction, Q ∈ Q(r, θ, P ). Observe now that the conditions of Theorem 2.5
hold trivially for these Q and S. Hence the (r, θ, P )-market is complete and
Q is its only martingale measure.

Finally, from (B6) we deduce the existence of N ≥ 0 such that

λt = eg(t,Xt) ≤ eN(1+|Xt|),

which, in view of the boundedness of the functions β and γi and of the
diffusion coefficients bi and σij , easily yields the finiteness of v0 in (3.13).

We conclude with a criteria for dynamic completeness of Pareto equilibria
in the case of intermediate consumption. Consider an economy populated
by M investors who trade in the bank account and the stocks; both are
defined endogenously. The stocks pay the continuous dividends θ and the
terminal dividends Θ. The economic agents jointly consume with the rate
λ = (λt) and have the utility functions um = um(t, x), m = 1, . . . ,M .

We are interested in the validity of the assertions of Theorem 3.4 when
the function u = u(t, x) is given by

(3.15) u(t, x) , sup
x1+···+xM=x

M∑
m=1

wmum(t, xm), (t, x) ∈ [0, 1]× (0,∞),

for some w ∈ (0,∞)M . The delicacy of the situation is that the t-analyticity
of u does not follow automatically from the t-analyticity of um, m = 1, . . . ,M .
We consider two special cases:

(B7) For every m = 1, . . . ,M the function um = um(t, x) satisfies (B5) and
is jointly analytic in (t, x).

(B8) For every m = 1, . . . ,M the function um = um(t, x) is given by

um(t, x) = e−ν(t)Um(x), (t, x) ∈ [0, 1]× (0,∞),

where ν = ν(t) is an analytic function on [0, 1] and the function Um =
Um(x) satisfies (B1) and has a bounded relative risk-prudence:

−N ≤ −xU
′′′(x)

U ′′(x)
≤ N, x ∈ (0,∞),

for some N > 0.
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Theorem 3.5. Assume (2.3), (A1)–(A2), (B3), and (B6). Suppose also
that the utility functions um = um(t, x) satisfy either (B7) or (B8). Fix
w ∈ (0,∞)M and define u = u(t, x) by (3.15). Then the assertions of
Theorem 3.4 hold.

The result is an immediate corollary of Theorem 3.4 and the following

Lemma 3.6. Assume the utility functions um = um(t, x) satisfy either (B7)
or (B8) and let w ∈ (0,∞)M . Then for u = u(t, x) defined by (3.15) condi-
tion (B5) holds true.

Proof. We shall focus on the case when (B7) holds. The proof under (B8)
is analogous. Denote by am, pm, and qm the coefficients for um from (B5).

Condition (B5) for um implies that

lim
x↓0

umx (t, x) =∞, lim
x→∞

umx (t, x) = 0.

It follows that the upper bound in (3.15) is attained at unique x̂(t, x) =
(x̂m(t, x))m=1,...,M determined by

M∑
m=1

x̂m(t, x) = x,(3.16)

wmumx (t, x̂m(t, x)) = wMuMx (t, x̂M (t, x)), m = 1, . . . ,M − 1.(3.17)

On [0, 1]× (0,∞)× (0,∞)M define the functions

hm(t, x, y) = wmumx (t, ym)− wMuMx (t, yM ), m = 1, . . . ,M − 1,

hM (t, x, y) =

M∑
m=1

ym − x.

Clearly,
hm(t, x, x̂(t, x)) = 0, m = 1, . . . ,M,

and

∂hm

∂yl
(t, x, x̂(t, x)) = wmumxx(t, x̂m(t, x))1{l=m}, m, l = 1, . . . ,M − 1,

∂hm

∂yM
(t, x, x̂(t, x)) = −wMuMxx(t, x̂M (t, x)) m = 1, . . . ,M − 1,

∂hM

∂ym
(t, x, x̂(t, x)) = 1, m = 1, . . . ,M.
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As umxx < 0 the Jacobian matrix of h1(t, x, ·), . . . , hm(t, x, ·) at x̂(t, x) has a
full rank. Since the functions hm are analytic in (t, x, y) the implicit function
theorem yields that the functions x̂m are analytic in (t, x), see Krantz and
Parks [12, Theorem 2.3.5]. Moreover, standard computations in the implicit
function theorem show that

(3.18)
∂x̂l

∂x
(t, x) =

x̂l

al(t, x̂l)
/

(
M∑
m=1

x̂m

am(t, x̂m)

)
.

Since

u(t, x) =
M∑
m=1

wmum(t, x̂m(t, x)),

the function u is analytic in (t, x). Hence, to complete the proof it only
remains to verify (3.9) for this function.

Accounting for (3.16) and (3.17) we obtain

ut(t, x) =

M∑
m=1

wmumt (t, x̂m),

ux(t, x) = wmumx (t, x̂m), m = 1, . . . ,M.

By differentiating these equalities a necessary number of times with respect
to x and accounting for (3.18) we arrive to the identities:

1

a(t, x)
=

M∑
m=1

1

am(t, x̂m)

x̂m

x
,

p(t, x) =

M∑
m=1

pm(t, x̂m)

(
a(t, x)

am(t, x̂m)

)2 x̂m

x
,

q(t, x) =

M∑
m=1

qm(t, x̂m)
a(t, x)

am(t, x̂m)

x̂m

x
,

which readily imply (3.9).

4 A time analytic solution of a parabolic equation

The proof of Theorem 2.3 will rely on the study of a parabolic equation in
Theorem 4.4 below.
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For reader’s convenience, recall the definition of the classical Sobolev
spaces Wm

p on Rd where m ∈ {0, 1, . . .} and p ≥ 1. When m = 0 we get the

classical Lebesgue spaces Lp = Lp(Rd, dx) with the norm

‖f‖Lp ,

(∫
Rd

|f(x)|pdx
) 1

p

.

When m ∈ {1, . . .} the Sobolev space Wm
p consists of all m-times weakly

differentiable functions f such that

‖f‖Wm
p
, ‖f‖Lp +

∑
1≤|α|≤m

‖Dαf‖Lp <∞

and is a Banach space with such a norm. The summation is taken with
respect to multi-indexes α = (α1, . . . , αd) of non-negative integers, |α| ,∑d

i=1 αi and

Dα ,
∂|α|

∂xα1
1 . . . ∂xαd

d

.

Recall also that a function h = h(t) : [0, 1] → X with values in a Banach
space X is called Hölder continuous if there is 0 < γ < 1 such that

sup
t∈[0,1]

‖h(t)‖X + sup
0≤s<t≤1

‖h(t)− h(s)‖X
|t− s|γ

<∞.

For t ∈ [0, 1] and x ∈ Rd consider an elliptic operator

A(t) ,
d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
+ c(t, x),

where aij , bi, and c are measurable functions on [0, 1]× Rd such that

(C1) t 7→ aij(t, ·) is an analytic map of [0, 1] to C, t 7→ bi(t, ·) and t 7→ c(t, ·)
are analytic maps of [0, 1] to L∞. The matrix a is symmetric: aij = aji,
uniformly elliptic: there exists N > 0 such that

ya(t, x)y ≥ 1

N2
|y|2, (t, x) ∈ [0, 1]× Rd, y ∈ Rd,

and is uniformly continuous with respect to x: there exists a decreasing
function ω = (ω(ε))ε>0 such that ω(ε)→ 0 as ε ↓ 0 and for all t ∈ [0, 1]
and y, z ∈ Rd

|aij(t, y)− aij(t, z)| ≤ ω(|y − z|).
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Let g = g(x) : Rd → R and f = f(t, x) : [0, 1] × Rd → R be measurable
functions such that for some p > 1

(C2) the function g belongs to W1
p and t 7→ f(t, ·) is a Hölder continuous

map from [0, 1] to Lp whose restriction to (0, 1] is analytic.

Theorem 4.1. Let p > 1 and suppose the conditions (C1) and (C2) hold.
Then there exists a unique measurable function u = u(t, x) on [0, 1] × Rd
such that

1. t 7→ u(t, ·) is a Hölder continuous map of [0, 1] to Lp,

2. t 7→ u(t, ·) is a continuous map of [0, 1] to W1
p,

3. t 7→ u(t, ·) is an analytic map of (0, 1] to W2
p,

and such that u = u(t, x) solves the parabolic equation:

∂u

∂t
= A(t)u+ f, t ∈ (0, 1],(4.1)

u(0, ·) = g.(4.2)

The proof is essentially a compilation of references to known results. We
first introduce some notations and state a few lemmas.

Let X and D be Banach spaces. By L(X,D) we denote the Banach space
of bounded linear operators T : X → D endowed with the operator norm.
A shorter notation L(X) is used for L(X,X). We shall write D ⊂ X if D
is continuously embedded into X, that is, the elements of D form a subset
of X and there is a constant N > 0 such that ‖x‖X ≤ N‖x‖D, x ∈ D. We
shall write D = X if D ⊂ X and X ⊂ D.

Let D ⊂ X. A Banach space E is called an interpolation space between
D and X if D ⊂ E ⊂ X and any linear operator T ∈ L(X) whose restriction
to D belongs to L(D) also has its restriction to E in L(E); see Bergh and
Löfström [3, Section 2.4].

The following lemma will be used in the proof of item 2 of the theorem.

Lemma 4.2. Let D, E, and X be Banach spaces such that D ⊂ X, E is an
interpolation space between D and X, and D is dense in E. Let (Tn)n≥1 be a
sequence of linear operators in L(X) such that limn→∞‖Tnx‖X = 0 for any
x ∈ X and limn→∞‖Tnx‖D = 0 for any x ∈ D. Then limn→∞‖Tnx‖E = 0
for any x ∈ E.
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Proof. The uniform boundedness theorem implies that the sequence (Tn)n≥1
is bounded both in L(X) and L(D). Due to the Banach property, E is a
uniform interpolation space between D and X, that is, there is a constant
M > 0 such that

‖T‖L(E) ≤M max(‖T‖L(C), ‖T‖L(D)) for any T ∈ L(X) ∩ L(D);

see Theorem 2.4.2 in [3]. Hence, (Tn)n≥1 is also bounded in L(E). The
density of D in E then yields the result.

Let A be an (unbounded) closed linear operator on X. We denote by
D(A) the domain of A and assume that it is endowed with the graph norm
of A:

‖x‖D(A) , ‖Ax‖X + ‖x‖X.
Then D(A) is a Banach space. Recall that the resolvent set ρ(A) of A is de-
fined as the set of complex numbers λ for which the operator λI − A :
D(A) → X, where I is the identity operator, is invertible; the inverse
operator is called the resolvent and is denoted by R(λ,A). The bounded
inverse theorem implies that R(λ,A) ∈ L(X,D(A)) and, in particular,
R(λ,A) ∈ L(X).

The operator A is called sectorial if there are constants M > 0, r ∈ R,
and θ ∈

(
0, π2

)
such that the sector

(4.3) Sr,θ , {λ ∈ C : λ 6= r and |arg(λ− r)| ≤ π − θ}

of the complex plane C is a subset of ρ(A) and

(4.4) ‖R(λ,A)‖L(X) ≤
M

1 + |λ|
, λ ∈ Sr,θ.

The set of such sectorial operators will be denoted by S(M, r, θ). Sectorial
operators are important, because when their domains are dense in X they
coincide with generators of analytic semi-groups, see Pazy [17, Section 2.5].

The following lemma will enable us to use the results from Kato and
Tanabe [10] to verify item 3 of the theorem.

Lemma 4.3. Let X and D be Banach spaces such that D ⊂ X and let
A = (A(t))t∈[0,1] be closed linear operators on X such that D(A(t)) = D
for all t ∈ [0, 1]. Suppose A : [0, 1] → L(D,X) is an analytic map, and
there are M > 0, r < 0, and θ ∈

(
0, π2

)
such that A(t) ∈ S(M, r, θ) for all

t ∈ [0, 1].
Then there exist a convex open set U in C containing [0, 1] and an ana-

lytic extension of A to U such that A(z) ∈ S(2M, r, θ) for all z ∈ U and the
function A−1 : [0, 1]→ L(X,D) is analytic.
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Proof. If A ∈ S(M, r, θ), then for λ ∈ Sr,θ

‖R(λ,A)‖L(X,D(A)) = ‖R(λ,A)‖L(X) + ‖AR(λ,A)‖L(X) ≤M + 1,

where we used (4.4) and the identity AR(λ,A) = λR(λ,A) − I. As A :
[0, 1]→ L(D,X) is a continuous function, the Banach spaces D and D(A(t)),
t ∈ [0, 1], are uniformly equivalent, that is, there is L > 0 such that
‖x‖D(A(t)) ≤ L‖x‖D and ‖x‖D ≤ L‖x‖D(A(t)) for every t ∈ [0, 1] and ev-
ery x ∈ D. It follows that one can find N > 0 such that

(4.5) ‖R(λ,A(t))‖L(X,D) ≤ N, λ ∈ Sr,θ, t ∈ [0, 1].

Since r < 0, the operator A(t) is invertible for every t ∈ [0, 1]. As
A : [0, 1] → L(D,X) is analytic, the inverse function B = A−1 : [0, 1] →
L(X,D) is well-defined and analytic. Clearly, there is an open convex set U
in C containing [0, 1] on which both A and B can be analytically extended.
Then B = A−1 on U , as AB is an analytic function on U with values in
L(X) which on [0, 1] equals the identity operator. Of course, we can choose
U so that for any z ∈ U there is t ∈ [0, 1] such that

(4.6) ‖A(z)−A(t)‖L(D,X) ≤
1

2N
,

where the constant N > 0 is taken from (4.5).
Fix λ ∈ Sr,θ and take t ∈ [0, 1] and z ∈ U satisfying (4.6). By (4.5)

and (4.6)

‖(A(z)−A(t))R(t, A(t))‖L(X) ≤
1

2
.

Hence the operator I − (A(z)−A(t))R(t, A(t)) in L(X) is invertible and its
inverse has norm less than 2. Since

λI −A(z) = (I − (A(z)−A(t))R(t, A(t)))(λI −A(t)),

we obtain that the resolvent R(λ,A(z)) is well-defined and

‖R(λ,A(z))‖L(X) ≤
2M

1 + |λ|
.

This completes the proof.

Proof of Theorem 4.1. It is well-known that under (C1) for every t ∈ [0, 1]
the operator A(t) is closed in Lp and has W2

p as its domain:

(4.7) D(A(t)) = W2
p.
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Moreover, the operators (A(t))t∈[0,1] are sectorial with the same constants
M > 0, r ∈ R, and θ ∈

(
0, π2

)
:

(4.8) A(t) ∈ S(M, r, θ), t ∈ [0, 1].

These results can found, for example, in Krylov [15], see Section 13.4 and
Exercise 13.5.1.

It will be convenient for us to assume that that the sector Sr,θ defined
in (4.3) contains 0 or, equivalently, that r < 0. This does not restrict
any generality as for s ∈ R the substitution u(t, x) → estu(t, x) in (4.1)
corresponds to the shift A(t)→ A(t)+s in the operators A(t). Among other
benefits, this assumption implies the existence of inverses and fractional
powers for the operators −A(t); see Section 2.6 in [17] on fractional powers
of sectorial operators.

From (C1) we clearly deduce the existence of M > 0 such that for any
v ∈W2

p

(4.9) ‖(A(t)−A(s))v‖Lp ≤M |t− s|‖v‖W2
p
, s, t ∈ [0, 1].

Conditions (4.7), (4.8), and (4.9) for the operators A = A(t) and condi-
tion (C2) for f and g imply the existence and uniqueness of the classical
solution u = u(t, x) to the initial value problem (4.1)–(4.2) in Lp; see Theo-
rem 7.1 in Section 5 of [17]. Recall that u = u(t, x) is the classical solution
to (4.1) and (4.2) if u(t, ·) ∈ W2

p for t ∈ (0, 1], the map t 7→ u(t, ·) of
[0, 1] to Lp is continuous, the restriction of this map to (0, 1] is continuously
differentiable, and the equations (4.1) and (4.2) hold.

To verify item 1 we use Theorem 3.10 in Yagi [20] dealing with maxi-
mal regularity properties of solutions to evolution equations. This theorem
implies the existence of constants δ > 0 and M > 0 such that

(4.10) ‖∂u
∂t

(t, ·)‖Lp ≤Mtδ−1, t ∈ (0, 1],

provided that the operators A = A(t) satisfy (4.7)–(4.9), the function f is
Hölder continuous as in (C2), and for some 0 < γ < 1

(4.11) g ∈ D((−A(0))γ),

where D((−A(0))γ) is the domain of the fractional power γ of the operator
−A(0) acting in Lp. The inequality (4.10) clearly implies the Hölder conti-
nuity of u(t, ·) : [0, 1]→ Lp and, hence, to complete the proof of item 1 we
only need to verify (4.11).
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Since g ∈W1
p, we obtain (4.11) if

W1
p ⊂ D((−A(0))γ), γ ∈ (0,

1

2
).

This embedding is an immediate corollary of the classical characterization
of Sobolev spaces Wm

p as the domains of (1−∆)m/2 in Lp:

Wm
p = D((1−∆)m/2), m ∈ {0, 1, . . .},

where ∆ ,
∑

i
∂2

∂x2i
is the Laplace operator, and the fact that for 0 < α < β <

1 and sectorial operators A and B such that D(B) ⊂ D(A) and such that the
fractional powers (−A)α and (−B)β are well-defined we have D((−B)β) ⊂
D((−A)α). These results can be found, respectively, in [15, Theorem 13.3.12]
and [20, Theorem 2.25]. This finishes the proof of item 1.

Another consequence of the maximal regularity properties of u given in
[20, Theorem 3.10] is that the map u(t, ·) : [0, 1] → W2

p is continuous if
g ∈W2

p = D(A(0)). We shall apply this result shortly to prove item 2.
For t ∈ [0, 1] define a linear operator T (t) on Lp such that for h ∈ Lp the

function v = v(t, x) given by v(t, ·) = T (t)h is the unique classical solution
in Lp of the homogeneous problem:

(4.12)
∂v

∂t
= A(t)v, v(0, ·) = h.

Actually, T (t) = U(t, 0), where U = (U(t, s))0≤s≤t≤1 is the evolution system
for A = A(t); see Pazy [17, Chapter 5]. However, we shall not use this
relation. Of course, the properties established above for u = u(t, x) will
also hold for the solution v = v(t, x) to (4.12). It follows that for any
h ∈ Lp the map t 7→ T (t)h is well-defined and continuous in Lp and if
h ∈W2

p then the same map is also continuous in W2
p. Recall now that W1

p

is an interpolation space between Lp and W2
p, more precisely, a midpoint in

complex interpolation, see, for example, Bergh and Löfström [3, Theorem
6.4.5]. Since W2

p is dense in W1
p, Lemma 4.2 yields the continuity of the

map t 7→ T (t)h in W1
p.

Observe now that u = u(t, x) can be decomposed as

u(t, ·) = T (t)g + w(t, ·),

where w(t, ·) is the unique classical solution in Lp of the inhomogeneous
problem:

∂w

∂t
= A(t)w + f, w(0, ·) = 0.
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Since w coincides with u in the special case g = 0, the map t 7→ w(t, ·) is
continuous in W2

p and, hence, also continuous in W1
p. This completes the

proof of item 2.
Finally, let us prove item 3. To simplify notations suppose that the map

f = f(t, ·) : [0, 1] → Lp is actually analytic; otherwise, we repeat the same
arguments on [ε, 1] for 0 < ε < 1. The condition (C1) implies the analyticity
of the function A = A(t) : [0, 1]→ L(W2

p,Lp). Let U be an open convex set
in C containing [0, 1] on which there is an analytic extension of A satisfying
the assertions of Lemma 4.3. We choose U so that f = f(t, ·) : [0, 1]→ Lp
can also be analytically extended on U . Theorem 2 in Kato and Tanabe [10]
now implies the analyticity of the map t 7→ u(t, ·) in Lp. However, as

u(t, ·) =
(
A(t)

)−1
(
∂u

∂t
− f(t, ·)),

and since, by Lemma 4.3, the L(Lp,W
2
p)-valued function

(
A(t)

)−1
on [0, 1]

is analytic, the map t 7→ u(t, ·) is also analytic in W2
p.

The proof is completed.

In the proof of our main Theorem 2.3 we actually need Theorem 4.4
below, which is a corollary of Theorem 4.1. Instead of (C2) we assume that
the measurable functions g = g(x) : Rd → R and f = f(t, x) : [0, 1]×Rd →
R have the following properties:

(C3) There is a constant N ≥ 0 such that e−N |·| ∂g
∂xi

(·) ∈ L∞ and for any

p ≥ 1 we have t 7→ e−N |·|f(t, ·) is a Hölder continuous map from [0, 1]
to Lp whose restriction to (0, 1] is analytic.

Fix a function φ = φ(x) such that

(4.13) φ ∈ C∞(Rd) and φ(x) = |x| when |x| ≥ 1.

Theorem 4.4. Suppose the conditions (C1) and (C3) hold. Let φ = φ(x)
be as in (4.13). Then there exists a unique continuous function u = u(t, x)
on [0, 1]× Rd and a constant N ≥ 0 such that for any p ≥ 1

1. t 7→ e−Nφu(t, ·) is a Hölder continuous map of [0, 1] to Lp,

2. t 7→ e−Nφu(t, ·) is a continuous map of [0, 1] to W1
p,

3. t 7→ e−Nφu(t, ·) is an analytic map of (0, 1] to W2
p,

and such that u = u(t, x) solves the Cauchy problem (4.1) and (4.2).
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Proof of Theorem 4.4. From (C3) we deduce the existence of M > 0 such
that

| ∂g
∂xi
|(x) ≤MeM |x|, x ∈ Rd,

and, therefore, such that

|g(x)− g(0)| ≤M |x|eM |x|, x ∈ Rd.

Hence, for any N > M and any function φ = φ(x) as in (4.13)

e−Nφg ∈W1
p, p ≥ 1.

Hereafter, we choose the constant N ≥ 0 so that in addition to (C3) it also
has the property above.

Define the functions b̃i = b̃i(t, x) and c̃ = c̃(t, x) so that for any t ∈ [0, 1]
and any v ∈ C∞

Ã(t)
(
e−Nφv

)
= e−NφA(t)v,

where

Ã(t) ,
d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑
i=1

b̃i(t, x)
∂

∂xi
+ c̃(t, x).

It is easy to see that b̃i and c̃ satisfy the same conditions as bi and c in (C1).
From Theorem 4.1 we deduce the existence of a measurable function ũ =
ũ(t, x) which for any p > 1 complies with the items 1–3 of this theorem and
solves the Cauchy problem:

∂ũ

∂t
= Ã(t)ũ+ e−Nφf, ũ(0, ·) = e−Nφg.

For p > d, by the classical Sobolev’s embedding, the continuity of the map
t 7→ ũ(t, ·) in W1

p implies its continuity in C. In particular, we obtain that

the function ũ = ũ(t, x) is continuous on [0, 1]× Rd.
To conclude the proof it only remains to observe that u = u(t, x) complies

with the assertions of the theorem for p > 1 if and only if ũ , e−Nφu has
the properties just established. The case p = 1 follows trivially from the
case p > 1 by taking N slightly larger.

5 Proof of Theorem 2.3

Throughout this section we assume the conditions and the notations of The-
orem 2.3. We fix a function φ satisfying (4.13). We also denote by L(t) the
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infinitesimal generator of X at t ∈ [0, 1]:

L(t) =
1

2

d∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
,

where a , σσ∗ is the covariation matrix of X. The proof is divided into
several lemmas.

Lemma 5.1. There exist unique continuous functions u = u(t, x) and vj =
vj(t, x), j = 1, . . . , J , on [0, 1]× Rd and a constant N ≥ 0 such that

1. For any p ≥ 1 the maps t 7→ e−Nφu(t, ·) and t 7→ e−Nφvj(t, ·) are

(a) Hölder continuous maps of [0, 1] to Lp;

(b) continuous maps of [0, 1] to W1
p.

(c) analytic maps of [0, 1) to W2
p.

2. The function u = u(t, x) solves the Cauchy problem:

∂u

∂t
+ (L(t) + β)u = 0, t ∈ [0, 1),(5.1)

u(1, ·) = G,(5.2)

3. The function vj = vj(t, x) solves the Cauchy problem:

∂vj

∂t
+ (L(t) + αj + β)vj + uf j = 0, t ∈ [0, 1),(5.3)

vj(1, ·) = F jG.(5.4)

Proof. Observe first that (A2) on σ = σ(t, x) implies (C1) on the covariation
matrix a = a(t, x). The assertions for u = u(t, x) and, then, for vj = vj(t, x),
j = 1, . . . , J , follow now directly from Theorem 4.4, where we need to make
the time change t→ 1− t.

Hereafter, we denote by u = u(t, x) and vj = vj(t, x), j = 1, . . . , J , the
functions defined in Lemma 5.1.

Lemma 5.2. The matrix-function w = w(t, x), with d rows and J columns,
given by

(5.5) wij(t, x) ,

(
u
∂vj

∂xi
− vj ∂u

∂xi

)
(t, x), i = 1, . . . , d, j = 1, . . . , J,

has rank d almost surely with respect to the Lebesgue measure on [0, 1]×Rd.
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Proof. Denote

g(t, x) , det(ww∗)(t, x), (t, x) ∈ [0, 1]× Rd,

the determinant of the product of w on its transpose, and observe that the
result holds if and only if the set

A , {(t, x) ∈ [0, 1]× Rd : g(t, x) = 0}

has the Lebesgue measure zero on [0, 1]× Rd or, equivalently, the set

B , {x ∈ Rd :

∫ 1

0
1A(t, x)dt > 0}

has the Lebesgue measure zero on Rd.
From Lemma 5.1 we deduce that the existence of a constant N ≥ 0 such

that for any p ≥ 1 the map t 7→ e−Nφg(t, ·) from [0, 1) to W1
p is analytic and

the same map of [0, 1] to Lp is continuous. Taking p ≥ d, we deduce from
the classical Sobolev embedding of W1

p into C that this map is also analytic
from [0, 1) to C. It follows that if x ∈ B then g(t, x) = 0 for all t ∈ [0, 1)
and, in particular,

lim
t↑1

g(t, x) = 0, x ∈ B.

Since

‖g(t, ·)− g(1, ·)‖Lp = ‖g(t, ·)− det(ww∗)(1, ·)‖Lp → 0, t ↑ 1,

the Lebesgue measure of B is zero if the matrix-function w(1, ·) has rank d
almost surely. This follows from the expression for w(1, ·):

wij(1, ·) = G
∂(F jG)

∂xi
− F jG∂G

∂xi
= G2∂F

j

∂xi
,

and the assumptions (A3) and (A4) on F = (F j) and G.

Recall the notations ψj , j = 1, . . . , J , and ξ for the random variables
defined in (2.5) and (2.6).

Lemma 5.3. The processes Y and Rj, j = 1, . . . , J , on [0, 1] defined by

Yt , e
∫ t
0 β(s,Xs)dsu(t,Xt),

Rjt , e
∫ t
0 (α

j+β)(s,Xs)dsvj(t,Xt) + Yt

∫ t

0
e
∫ s
0 α

j(r,Xr)drf j(s,Xs)ds,
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are continuous uniformly integrable martingales with the terminal values
Y1 = ξ and Rj1 = ξψj. Moreover, for t ∈ [0, 1],

Yt = Y0 +
d∑

i,k=1

∫ t

0
e
∫ s
0 β(r,Xr)dr

(
∂u

∂xi
σik
)

(s,Xs)dW
k
s ,(5.6)

Rjt = Rj0 +
d∑

i,k=1

∫ t

0
e
∫ s
0 (α

j+β)(r,Xr)dr

(
∂vj

∂xi
σik
)

(s,Xs)dW
k
s

+

∫ t

0

(∫ s

0
e
∫ r
0 α

j(q,Xq)dqf j(r,Xr)dr

)
dYs.

(5.7)

Proof. From the continuity of u and vj on [0, 1]×Rd we obtain that Y and
Rj are continuous processes on [0, 1]. The expressions (5.2) and (5.4) for
u(1, ·) and vj(1, ·) imply that Y1 = ξ and Rj1 = ξψj .

Let N ≥ 0 be the constant in Lemma 5.1. Choosing p = d + 1 in
Lemma 5.1 we deduce that the maps t 7→ e−Nφu(t, ·) and t 7→ e−Nφvj(t, ·)
of [0, 1) to W2

d+1 are continuously differentiable. This enables us to use a
variant of the Ito formula due to Krylov, see [14, Section 2.10, Theorem 1].
Direct computations, where we account for (5.1) and (5.3), then yield the
integral representations (5.6) and (5.7).

In particular, we have shown that Y and Rj are continuous local mar-
tingales. It only remains to verify their uniform integrability. By Sobolev’s
embeddings, since t 7→ e−Nφu(t, ·) and t 7→ e−Nφvj(t, ·) are continuous maps
of [0, 1] to W1

d+1, they are also continuous maps of [0, 1] to C. This implies
the existence of c > 0 such that

sup
t∈[0,1]

(|Yt|+ |Rjt |) ≤ e
c(1+supt∈[0,1]|Xt|).

The result now follows from the well-known fact that, for bounded bi and
σij , the random variable supt∈[0,1]|Xt| has all exponential moments.

Proof of Theorem 2.3. Let Y and R be the processes defined in Lemma 5.3.
This lemma implies, in particular, that

E[|ξ|+
J∑
j=1

|ξψj |] <∞,

and, hence, the probability measure Q and the Q-martingale S = (Sj) are
well-defined. Since ξ > 0, the measure Q is equivalent to P and Y is a
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strictly positive martingale. Observe that

St , EQ[ψ|Ft] =
E[ξψ|Ft]
E[ξ|Ft]

=
Rt
Yt
, t ∈ [0, 1].

From (5.6) and (5.7) we deduce, after some computations, that

(5.8) dSjt = d
Rjt
Yt

= e
∫ t
0 α

j(s,Xs)ds 1

u2(t,Xt)

d∑
i,k=1

(wijσik)(t,Xt)dW
Q,k
t ,

where the matrix-function w = w(t, x) is defined in (5.5) and

WQ,k
t ,W k

t −
d∑
l=1

∫ t

0

(
1

u

∂u

∂xl
σlk
)

(t,Xt)dt, k = 1, . . . , d, t ∈ [0, 1].

By Girsanov’s theorem, WQ is a Brownian motion under Q. Note that

the division on u(t,Xt) is safe as the process u(t,Xt) = Yte
−

∫ t
0 β(s,Xs)ds,

t ∈ [0, 1], is strictly positive.
As we have already observed in Remark 2.2, any P-local martingale is a

stochastic integral with respect to W . This readily implies that any Q-local
martingale M is a stochastic integral with respect to WQ. Indeed, since
L , YM is a local martingale under P, there is a predictable process ζ with
values in Rd such that

Lt = L0 +

∫ t

0
ζudWu , L0 +

d∑
i=1

∫ t

0
ζiudW

i
u

and then

dMt = d
Lt
Yt

=
1

Yt

d∑
i=1

(
ζit − Lt

d∑
k=1

(
1

u

∂u

∂xk
σki
)

(t,Xt)

)
dWQ,i

t .

In view of (5.8), to conclude the proof we only have to show that the
matrix-process ((w∗σ)(t,Xt))t∈[0,1] has rank d on Ω× [0, 1] almost surely un-
der the product measure dt×dP. Observe first that by (2.1) and Lemma 5.2
the matrix-function w∗σ = (w∗σ)(t, x) has rank d almost surely under the
Lebesgue measure on [0, 1]×Rd. The result now follows from the well-known
fact that under (A1) and (A2) the distribution of Xt has a density under
the Lebesgue measure on Rd, see [19, Theorem 9.1.9].

33



Acknowledgments

We thank Frank Riedel for introducing us to the topic of endogenous com-
pleteness. It is a pleasure to thank our colleagues William Hrusa, Giovanni
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