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Abstract

From the publish-subscribe systems of the early days of the Internet to the recent emergence
of Web 3.0 and IoT (Internet of Things), new problems arise in the design of networks centered
at producers and consumers of constantly evolving information. In a typical problem, each
terminal is a source or sink of information and builds a physical network in the form of a tree or
an overlay network in the form of a star rooted at itself. Every pair of pub-sub terminals that
need to be coordinated (e.g. the source and sink of an important piece of control information)
define an edge in a bipartite demand graph; the solution must ensure that the corresponding
networks rooted at the endpoints of each demand edge overlap at some node. This simple
overlap constraint, and the requirement that each network is a tree or a star, leads to a variety
of new questions on the design of overlapping networks.

In this paper, for the general demand case of the problem, we show that a natural LP
formulation has a non-constant integrality gap; on the positive side, we present a logarithmic
approximation for the general demand case. When the demand graph is complete, however, we
design approximation algorithms with small constant performance ratios, irrespective of whether
the pub networks and sub networks are required to be trees or stars.

Keywords: Approximation Algorithms, Steiner Trees, Overlay Networks, Publish-Subscribe Sys-
tems, Integrality Gap, VPN.

1 Introduction

In large Internet publishing systems, a variety of sources of information constantly refresh their con-
tent, while a set of subscribers continuously pull this updated information. The recent widespread
adoption of the “Internet of Things” and “Web 3.0” tools similarly involves the constant real-time
sharing of information between producers of relevant content and their corresponding consumers.
Common examples include syndication systems as well as distributed databases that contain infor-
mation originating at sources with sinks interested in the most up to date copies.

A natural approach to enable efficient information transfer in such systems is to build a cost-
effective collection of networks, one for each publisher and supplier: the publishers push their
updates to a set of locations via their respective networks, while the subscribers pull the information,
refreshed by multiple publishers, from these intermediate nodes using their own networks. Note



that each subscriber network needs only to overlap those publishers’ networks that are of interest.
Such interests are represented by an auxiliary bipartite demand graph with publishers on one side,
subscribers on the other, and edges (of interest) between the two. Since the individual networks
are being used for scatter/gather or push/pull operations (by publishers/subscribers respectively)
the two natural structures are: trees and overlay stars. Trees correspond to situations where
the entity (e.g. a pusher, such as Facebook, or a puller, such as the IRS) has sufficient network
presence to employ multicast/reverse-multicast while overlay stars correspond to point-to-point
communication.

This basic framework gives rise to a class of problems we have christened DON or Design of
Overlapping Networks. Given their relevance to developments in the Internet ecosystem, these
theoretical problems are significant from a practical perspective. Our central goal is to settle the
polynomial-time approximability for the most general DON problem, in which we have an arbitrary
demand graph, and arbitrary choice of tree or overlay star by each publisher/subscriber. In this
paper, we obtain a constant approximation for the special case when all subscribers are interested
in all publishers, and a logarithmic approximation for the general case. The latter approximation
is, in fact, with respect to the value of a natural linear programming relaxation of the problem. In
a contrasting result, we establish a non-constant integrality gap for this linear program. However,
the exact approximability status of the general DON problem remains tantalizingly open.

1.1 Problem Definition. In the general DON problem we are given an undirected graph G =
(V(G), E(G)) with non-negative costs on the edges ¢ : E — Z*, subsets of nodes P,S C V
(publishers and subscribers respectively), the type of network to be installed for each publisher
and subscriber, Type : P U S — {tree,star}, and an auxiliary demand graph D = (V (D), E(D)
where V(D) = PU S and E(D) C P x S specifying (publisher, subscriber) pairs whose networks
are required to overlap (intersect); the goal is to build a collection of networks satisfying the input
requirements. We assume that the edge costs form a metric: they are symmetric and satisfy the
triangle inequality. Any instance of the general DON problem can be split into four sub-instances.
When the type requirement Type is tree (resp., star) for all publishers and subscribers we refer
to the problem as tree-tree DON (resp. star-star DON). We also use tree-star DON to refer to
the two problem variants where on one side, say the publishers, we have rooted trees while on the
other, we have rooted stars. We use the prefixes general and complete to denote arbitrary and
complete demand graphs, respectively, as in general tree-tree DON or complete tree-star DON, etc.
Thus, the term general (complete) DON refers to the problem where the demand graph is arbitrary
(complete) and the type requirement may vary across terminals.

We denote the installed network by N = (V, Ex); P; denotes the network installed at publisher
p; and S; the network rooted at subscriber s;. Then, the multi-graph N = (Up,epP;) U (Us;e5S5;)
is the (multi-set) union of all the installed networks. The cost of N is the sum of the costs of
all the constituent networks, with each edge counted as many times as the number of individual
networks they are present in. Recall that the installed networks are operated autonomously by
each publisher and subscriber, and thus the cost of an edge needs to be multiplied by the number
of such independent networks that build and utilize it in their updates.

1.2 Results and Techniques. We present new algorithms and results for several DON prob-
lems.

1. We conjecture that a polynomial-time constant-factor approximation for general DON is



not achievable. We present in Section an Q(loglogn) integrality gap for a natural LP
relaxation of the general tree-tree DON; note that this result also extends to the general
DON problem. This integrality gap proof, which is our strongest technical contribution, is
based on a novel reduction from a well-studied LP relaxation for the group Steiner problem,
applied to a hypercube demand graph instance of DON.

On the positive side, we present an O(logn)-approximation algorithm for the general DON
problem in Section The main ingredient of our result is a constant-factor approximation
algorithm for tree-star DON on tree metrics, by a careful deterministic rounding of an LP
relaxation of the problem. The logarithmic approximation for general DON follows by ex-
tending to general metrics and combining with results for the star-star and tree-tree variants.

2. We next study the complete DON variants where the demand graph is complete. We give
constant-factor approximation algorithms for all three variants— tree-tree, star-star and tree-
star— which together yield a constant-factor approximation for complete DON. Unlike our
algorithm for general DON, all of our algorithms for the complete demand case are combi-
natorial; they combine structural characterizations of near-optimal solutions with interesting
connections to access network design and facility location problems.

(a) Our approximation factor for complete tree-tree DON in Section [3.1]is 4prg where ppg is
the best known approximation for the tree-star Access Network Design problem (which
is generalized by the Connected Facility Location or CFL problem). Thus prs < porr <
4 [3].

(b) Our approximation factor for complete star-star DON in Section is 4, where « is
the best approximation factor achieved for uncapacitated facility location, improves over
the result in [IJ.

(¢) For the complete tree-star-DON problem, we get a 4ppg-approximation in Section

1.3 Related Work. Data Dissemination Networks. Our formulation of DON generalizes
network data dissemination problems first studied in [I]. Using our terminology, the relevant re-
sults of [I] are O(log n)-approximation algorithms for general tree-tree DON and general star-star
DON, and a 14.57-approximation for the complete star-star DON. Our work improves the approx-
imation factor for complete star-star DON to under 6 (since the current best approximation for
uncapacitated facility location is 1.488 [I1]), and presents new results for many other DON prob-
lems. The star-star DON problem is also closely related to the minimum-cost 2-spanner problem
studied in [2, [10]. In particular, a greedy algorithm essentially along the same lines as an algorithm
of [2] yields an O(logn)-approximation for the star-star-DON problem even when the underlying
distances do not form a metric.

Network Design. There has been considerable work in network design, which is concerned
with the design of network structures that satisfy some connectivity properties and optimize some
underlying cost structure [20]. Well-known problems in this area include the minimum Steiner
tree [5], group Steiner tree [6], and general survivable networks [I9]. One key distinction between
many of these network design problems and DON is that the desired solution in DON is a collection
of networks (as opposed to a single network), and each edge contributes to the total cost of the
solution as many times as it occurs in the network collection. On the other hand, the goal in
many classical network design problems is to build a single network. Note that the problem of



building a single minimum-cost network such that every pair of nodes in a given demand graph is
connected in the network is exactly the generalized Steiner network problem, for which polynomial-
time constant-factor approximations exist.

Multicommodity facility location. Another stream of work has addressed the extension of
facility location problems to reach clients with additional restrictions on the facility opening costs,
to reach facilities more robustly [I8], or with the addition of services that facilities open to satisfy
the clients with various cost functions governing the installation of services and facilities [14, [16].
The work in [I2] arising from publisher-subscriber mechanisms is most closely related to our work,
and rather than use a network from each publisher, models the publisher as a commodity that
can be supplied at various nodes in the network by installing “facilities” of appropriate costs; the
subscribers build minimum-cost networks to reach these facility installations of the appropriate
publishers.

Access Networks and Connected Facility Location. Our algorithms for the complete DON
problem are connected to to the access network design and facility location problems. In a version
of the Access Network Design problem [I3], we are given an undirected graph, a root node and
nonnegative metric costs on the edges, along with a subset of terminal nodes. The goal is to design
a backbone network in the form of a tree or tour which is built with higher speed and higher
quality cables, while the terminals access the backbone using direct access edges. Thus the overall
network is a backbone rooted Steiner tree (or tour), with access networks that are stars arising
from the terminals and ending at the nodes of the backbone. We are given a cost multiplier x4 that
denotes the cost overhead factor for the backbone compared to the access network and the objective
to be minimized is the total cost u - c(backbone network T) + > = c(s). A pay = 3+ 2v/2-
approximation is presented for this problem [13] when the backbone is a ring and the access network
is a star. Subsequent work [8], (17, 3] present constant-factor approximations for other generalizations
and variants of this problem as well using LP rounding and primal-dual methods. The current best
approximation factor for the CFL generalization is pcpr < 4 [3], which also extends to tree-star
access network design, i.e. pay < porr < 4.

Virtual Private Network. The DON problems are also closely related to the VPN and asym-
metric VPN problems. The VPN problem can be solved exactly [7], while the asymmetric VPN
problem is NP-Hard but has a constant approximation [I5]. The VPN problems differ from DON
as each VPN problem instance seeks only one network, while a DON instance builds multiple
networks. Nevertheless, we are able to decompose an approximate solution for asymmetric VPN
into multiple networks, and obtain a useful approximation for the complete tree-tree DON problem
(Appendix . As we establish in Section however, a more direct approach yields a much better
approximation factor.

2 DON with General Demands

In this section, we consider approximation algorithms for the general DON problem. We present
in Section an Q(loglogn) integrality gap for a natural LP relaxation of the tree-DON problem
(with general demands). In Section[2.2] we present an O(log n)-approximation algorithm for general
DON.

2.1 Integrality Gap for Tree-Tree DON. In this section, we show that a natural LP for-
mulation for the tree-tree DON problem has super-constant integrality gap. We note that the



same lower bound on integrality gap extends to the appropriate LP for general DON. A natural
integer program, IPgr for the tree-tree DON problem is as follows (all variables are 0 — 1): we
let r € P U S denote a publisher or subscriber node that serves as the root of its tree N;; 2] is an
indicator variable that is 1 iff edge e € E(G) is in tree N,; y; is an indicator variable that is 1 iff
vertex h is in tree IN,; :c};’s is an indicator variable that is 1 iff vertex A is in both trees, IV, and Ng;
C will refer to a cut which is a subset of vertices of V(G) and E(C) will denote the edges between C
and its complement V(G) \ C. The integer program IPgy for the tree-tree DON has the following
nontrivial constraints.

min E CeZy

reV(D),ecE(G)
Y ozl o >yp VCreCheV(G)\C

z,? <yp Vr,seV(D),heV(G)
z >1 Y(r,s) € E(D)

IPpT

The first set of cut covering constraints enforce that the tree rooted at r is connected with all
nodes h for which y; is set to one. The third set enforces all pairs of terminals r, s in the demand
graph must meet in some hub vertex h, while the second set enforces that if a node h is used as a hub
for a pair, it is required to occur in both these trees. Relaxing the above integer program by allowing
the variables to take values in [0, 1] gives us the natural linear program LPgrt. Observe that the
feasible integral points of the linear program are exactly the solutions to the integer program.

Theorem 1 For every sufficiently large n, there exist instances of tree-tree DON with n = |V (G)]
for which LPgt has an Q(loglogn) integrality ratio.

Proof. Recall that the integrality ratio of a (minimizing) linear program is the minimum ratio
between any feasible integral point and the optimum fractional solution. Our proof will proceed by
a reduction from a linear program for the Group Steiner Tree (GST) problem.

Given a tree T with edge costs and a collection of groups of leaves, the Group Steiner Tree
problem is to find a minimum cost subtree such that at least one vertex from every group is
connected to the root. In [9] it was shown that a natural linear program for the GST problem
has an Q(log? n) integrality ratio even when the input metric costs ¢ arise from an underlying tree.
Similar to the linear program for the tree-tree DON problem we present the linear program LPgsT
as the relaxation of an integer program IPggt with 0 — 1 variables.



min E TeCe

ecE(T)
gnNC =¢ VC,recC

Zaje >1

e€E(C)

IPgsT

Here is an intuitive explanation of what the variables in IPggT represent: z. is an indicator
variable that is 1 iff edge e € E(T) is in the solution subtree; g;, 1 < i < k are the k groups and C
is a subset of vertices of V(G) referring to a cut and E(C) will denote the edges between C and its
complement V(G) \ C. The main cut covering constraints enforce that each group is connected to
the root node r.

As stated before [9] show that LPggt has an integrality ratio of Q(log? n) even on tree metrics
when k, the number of groups, is Q(n) where n = |V (T))|.

Given an instance, Tggr of LPggt with n = V(T') vertices and k groups, we transform it into
an instance, GDpr of LPgT with N = 2¥n = |V (G)| vertices in the host graph such that

e corresponding to every fractional solution, of value fggr, of LPgsT there is a fractional
solution of value fpr = QkaST to LPgT, and

e corresponding to every feasible integral point, of value Ig7, of LPgT there is a feasible integral
point of value Iggr = W to LPgT.

The transformation is intuitive: we take a “graph product” of the Group Steiner Tree instance
with a hypercube of dimension &, where k is the number of groups. In more detail, given the tree T’
for the Group Steiner Tree instance, the demand graph D is a hypercube of dimension k, with the
ith dimension of the hypercube being associated with group g;. The host graph G has 2¥ copies of
T, one for each vertex of the demand hypercube (where the demand edges go between the roots of
the corresponding trees). For every edge (r, s) in D in the ith dimension we connect pairwise with
zero-cost edges the leaves in group g; of the copy of T' corresponding to r, with the leaves in group
g; of the copy of T' corresponding to s.

It is easy to see that fpr = 2¥ fagr for the above transformation - observe that replicating the
fractional solution to LPgsT in each of the 2F copies of T is a valid fractional solution to LPg.

For the other direction, i.e., to see IggT = W first observe that for edge (r,s) in
dimension ¢ of the demand hypercube, at least one of the trees corresponding to r or s must
cross dimension ¢ and the only way to cross dimension ¢ is along a 0-cost edge connecting two
corresponding group g; leaves. Now note that any tree 7" in an integral solution to LPgt can
be transformed into a subtree of T' by keeping an edge in T if 7" contains the corresponding edge
in any copy of T in GG. Let the subtree of T so obtained be called the retract of T'. Tt is easy
to see that if 77 ever crosses dimension j then a leaf in group g; is connected to the root of T in
its retract and that the cost of a retract is never more than the cost of the original 7. By our
earlier observation for any edge (r,s) in dimension 7 at least one of the two retracts, that of the
tree corresponding to r or corresponding to s must connect a node in group g; to the root. Hence



if we select a node in D at random and take its retract then any given group is connected with
probability at least 1/2 and it has expected cost IQB;,CT. Thus if we take the union of 1+ log k retracts

chosen uniformly at random then the resulting subgraph of T' has expected cost 137“2# and the

probability any given group is not connected to the root is less than % Since there are k groups this

means there exists a subgraph of T', connecting the root to every group, of cost at most W

Ipr(1+logk)
2k :

)
ie., IosT =

From fpr < 2% fasr and Igsy < PBZUHEE it follows that It > 16t (1 4 log k). By [9], when

k = 6(n) we have that % = Q(log?n) from which it follows that % = Q(lﬁ)ggzgl) = Q(logn)

but the size of the transformed instance is N = 2Fn, ie., n = Q(log’ﬁ)gN). In other words, the
. . I log N
integrality gap 7L = Qlogn) = Q(log(logol%)g]v)) = Q(loglog N) O

2.2 O(logn) approximation. We next show that the general DON problem can be approx-
imated to within an O(logn) factor in polynomial time. As discussed in Section [l} the general
DON problem can be split into three problems: tree-tree DON, star-star DON, and tree-star DON.
In previous work, O(logn)-approximation algorithms have been developed for tree-tree DON and
star-star DON [I]. We now present an O(logn)-approximation for tree-star DON, implying an
O(log n)-approximation for general DON.

Our O(logn)-approximation for tree-star DON is obtained by deriving a constant-factor ap-
proximation for the special case of tree metrics, and invoking the standard reduction from general
metrics to tree metrics [4]. Our constant-factor approximation algorithm, which rounds an LP re-
laxation, essentially generalizes a result of [I2] on multicommodity facility location from a uniform
facility cost case to the case where the facility costs form a tree metric.

Theorem 2 The tree-star DON problem with general demands on tree metrics can be approximated
to within a constant factor in polynomial time. This implies an O(logn)-approzimation algorithm
for general DON on general metrics.

Due to space constraints, we defer the algorithm and the proof of Theorem [2] to Appendix [A]

3 DON with Complete Demands

In this section, we present constant factor approximation algorithms for the DON problem when
the demand graph is complete. We obtain this result by deriving constant-factor approximations
for the three variants—tree-tree, star-star and tree-star— in the following subsections.

3.1 Complete tree-tree DON. The complete tree-tree DON problem has an interesting con-
nection to the asymmetric VPN problem [I5], which we can exploit to obtain a constant-factor
approximation. As we discuss this reduction and explain in Appendix [B] however, the approxima-
tion we obtain using the best known asymmetric VPN algorithm is 49.84. Here, we present a more
direct approximation algorithm for which we are able to establish a much better approximation
factor.

Theorem 3 There is a 4prs-approximation algorithm for complete tree-tree DON, where prg is
the best factor for the tree-star access network design problem.



In the rest of this subsection, we give a proof of Theorem Given N*, an optimal solution,
let us denote the publisher and subscriber networks by Pi, Ps, ..., P, and S1,S52,...,5; where we
index the nodes so that we have ¢(P) < ¢(P) < -+ < ¢(FPg) and ¢(S1) < ¢(S2) < -+ < ¢(S5)).
Let c¢p and cg denote the total cost of the publisher and subscriber trees. Let s; be the subscriber
whose network is S; and let p; be the publisher whose network is P;. Note that feasibility requires
that P; NS # 0 for all 4, j. Let us also assume without loss of generality that ¢(P;) < ¢(S1)

The key transformation of the optimal solution is a reconfiguration of the subscriber networks
where we replace each tree S; for j # 1 by the direct edge from subscriber node j to subscriber
node 1 concatenated with the subscriber tree Si. In other words, we set S} = {(s;,s1)} U S for
every subscriber s; # s1. Let us assign 57 = Sj.

Note that the modified subscriber trees are still feasible since the original subscriber tree Sy
intersects every publisher tree. We now bound the cost of the additional edge from subscriber j to
the subscriber 1, the root of Sy.

Lemma 1 For every subscriber j # 1, we have c¢;1 < 3¢(S;).

Proof. To see this, note that by taking the path from j in S; to its intersection with P; and
following it to the intersection of P} and S7 and continuing along S to the subscriber node 1, we
have found a path from j to 1 of cost no more than the sum of the costs of S;, P; and S;. However,
since ¢(Sj) > ¢(S1) > ¢(P1), the length of this path is at most 3¢(S;). 0

Given that every subscriber contains the tree S1, it is particularly simple to design the publisher
network P/ (for publisher p;) that needs to reach this tree: it will simply be a direct edge that
represents the shortest path from the publisher p; to the tree S;. The union of all such direct edges
gives a collection of stars that end at the subscriber tree S;. Furthermore since the subscriber tree
Sy is going to be used by every subscriber node, its cost must be counted |S| = [ times in the
objective.

The resulting problem of finding the best tree for S is exactly the tree-star access network
design problem [I3] with the root being subscriber 1, the multiplier M = |S| and the terminals
being R = P, the publisher nodes. Given an optimal solution N* for the complete tree-tree
DON problem, we thus have a solution to the tree-star access network instance of cost at most
c(P*) +|S| - ¢(S1). We thus have the following lemma.

Lemma 2 For the correct choice of the subscriber node 1 as the root with multiplier |S| and
terminals P, there is a solution to the tree-star access network design problem of cost at most
C?+|S|'C(Sl). O

Proof of Theorem The approximation algorithm tries every subscriber node as the root of
the tree-star access network problem formulated above. By adding the direct edge from each other
subscriber to this root, and extending the backbone tree with each such edge, we get a solution
to the complete tree-tree DON problem. The algorithm keeps the solution of smallest total cost
among all choices of the root subscriber node. The total cost of the solution is the sum of the cost
of the tree-star access network design problem and the sum of the costs of the direct edges from the
subscribers to the root. By Lemma [1} the latter cost is no more than three times the cost of the
tree (with the multiplier of —S—) in the solution to the tree-star access network design problem.
By [2| and the prg-approximation factor for the tree-star access network design problem, we thus
obtain a total cost of at most 4prgs(cp + |S|-¢(S1)) which is at most 4p7g times the cost of N*. O



It is not hard to extend the above methods to the case when the input terminals are partitioned
into more than two subsets, say R = PLUPU. . .UP; and the demand graph is the complete k-partite
graph between these k subsets. By considering the partition that has the cheapest tree network
in the optimal solution to be in P;, the above argument can be adapted to give a constant-factor
approximation. We omit the details in this extended abstract.

3.2 Complete star-star DON. In this section, we present a constant-factor approximation for
complete star-star DON.

Theorem 4 There is a 4a-algorithm for complete star-star DON, where « is the best approrimation
achievable for metric uncapacitated facility location.

Our algorithm and the proof of Theorem [] are based on an argument that there exists a constant-
factor approximate solution that has a special structure; our algorithm then computes a constant-
factor approximate solution with this special structure.

Given a solution where the publisher network is Py, Ps, . .., P, and subscriber network is Sy, 5o, . . .

let P; be the publisher network of smallest cost and S7 be the subscriber network of smallest cost
without loss of generality. Also, let o(F;) denote the set of nodes (which we refer to as hubs for
P;) in the star for the ith publisher. Likewise, let o(.S;) be the set of nodes in the star for the jth
subscriber. Thus, we can refer to solutions using the maps defined by ¢ and denote the optimal
one by o*. The next lemma shows a near-optimal solution with a very simple structure.

Lemma 3 There exists a solution o such that c(o) < 4c(0*)), and either o(S;) = o(S;) for all
pairs of subscriber networks S;, Sj and |o(P;)| =1 for each publisher network P; or o(FP;) = o(Pj)
for all pairs of publisher networks P;, P; and |o(S;)| =1 for each subscriber network S;.

Proof. Without loss of generality, let ¢(P;) < ¢(S1). Since each subscriber star intersects all
publisher stars, we have d(s;,s1) < ¢(S;) + ¢(P1) + ¢(S1) < 3¢(S;). Let Cy denote the set of
publishers that share any hub with p;. Let po denote the least-cost publisher not in C;. Let Cy be
the set of all publishers not in C; that share any hub with ps. In general, let p;;; be the least-cost
publisher not in (J;;; Ci. Let Cj11 denote the set of all publishers not in J;<;<; Ci that share
any hub with p; 1. Let h; denote any hub in o*(s1) N o*(p;).

Let p;» be an arbitrary publisher in C;. We first obtain the following equation d(p;-, p;) < 2¢(Pjr)
(owing to a shared hub and the fact that ¢(P;) < ¢(Pj)). By construction, for any two distinct p;
and p;, we have o*(p;) N o™*(p;) = 0; i.e., p; and p; do not share any hubs. Note that this may not
be true of all pairs of publishers in C; x Cj.

We now consider two cases. In the first case when ¢(P;) < d(s1,h;), we have all subscribers
meet all the publishers in cluster C; at p;. Consider any subscriber s;. It meets p; at some hub, say
h; Its increase in cost for meeting p; now is at most costy«(p;) < d(s1,h;), which equals one leg
of s1’s star. Since two different p;’s do not share any hubs, the hé-’s (for a given i) are all different.
Hence, the total increase in cost for s; is at most _; d(s1, h;), which is at most ¢(S1).

If ¢(Pj) > d(s1, hj), then we will have all publishers in C}, go to s;. Fix a publisher p;- in Cj. Its
total cost is at most d(pf;, pj) + c(P5) +d(s1, hj) < d(p};, pj) +2¢(P;) < 4c(Pj). All the subscribers
also go to s; to handle this case. We have d(s;, s1) < ¢(S;) + ¢(P1) + ¢(S1) < 3¢(5)).

So overall, we obtain a blowup of at most 4 in the cost for each publisher and each subscriber.
We have proved that there exists a solution of cost at most 4 - OPT in which every subscriber’s



star connects to exactly the same set of hubs and every publisher’s star is just a line to one of the
hubs. O

Proof of Theorem Using Lemma (3|, we now give a polynomial-time 4a-algorithm where « is
the best approximation achievable for the uncapacitated facility location problem.

Our algorithm considers all possible choices for Si, a linear number (where by symmetry S;
could be on either side). For a given choice of S7, we formulate an uncapacitated facility location
problem, with the set of publishers as the clients, and the potential facility locations being the
publishers and S7. The cost of opening a facility at any of these nodes is the sum of the distances
of all the subscribers to that node. Given a solution to this facility location problem, we obtain a
solution to the complete star-star DON problem as follows: each publisher’s star is a singleton edge
to the facility it is assigned to; each subscriber’s star consists of edges to all the open facilities.

We solve all the linear number of facility location problems, and then the corresponding problems
with the roles of subscribers and publishers reversed, and take the best solution. This yields the
desired approximation. O

3.3 Complete tree-star DON. We now present a constant factor approximation for complete
tree-star DON. Without loss of generality, let us suppose that the publishers will build trees, and
the subscribers will build stars. The main idea is to show that either the appropriately defined
complete star-star DON solution or complete tree-tree DON solution is within a constant factor of
optimal.

Let N* be an optimal solution. Let the trees be indexed P, Ps, ... P, and the stars S1,...S5¢
such that ¢(Py) < --- < ¢(Pg) and ¢(S1) < -+ < ¢(Sk).

First consider the case where c¢(P;) > ¢(S1). Note that every P; and S; must have a non-empty
intersection. Now for every tree P; we can redirect it to Py and then make a copy of P;. So we will
let: P = {(pj,p1)}U P

This solution is feasible because P; must intersect all the stars. These additions to the solution
cost at most 3¢c(N*), as seen in lemma |1} Now all the stars can simply take an edge which is the
shortest edge to the tree.

The approximation algorithm from this point follows the tree-tree case exactly. In this case, we
get that the final solution has cost at most 4pprsc(IN*). Where prg is the best constant approxi-
mation for the tree-star access problem.

Next consider the case that ¢(S1) > ¢(P1). We will now choose p;’s in a similar fashion to the
complete star-star DON problem. Let p; be the publisher with the smallest cost tree. Let Cy be all
the publishers whose trees meet p;’s tree. Now let po be the smallest tree which does not intersect
p1’s tree. Let Cp be all the publishers not in C; who meet po’s tree. Likewise p;y1 will be the
smallest tree not in Ui<;<;C;. Let Cj4q be all the publishers which intersect p;y1’s tree not in
Ui<i<;Ci-

Now from hereon, the proof follows that for the complete star-star DON case. Hence we have
a solution within a constant factor of optimal where all the stars go to s; (the subscriber with star
S1), and some of the publishers; P,,e,. Each tree goes to the nearest node in S U P,pep. This
establishes the following lemma.

Lemma 4 The complete tree-star DON has an O(1)-approzimate solution in which either all the
subscribers go to some hubs and each tree goes to the nearest hub among a set of one subscriber
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and some publishers, or where all the publisher trees are identical and all the subscribers go to the
closest node in that tree. O

For solving the complete tree-star DON problem, we apply our constant-factor approximation

algorithm for the complete tree-tree DON instance, together with our constant-factor algorithm for
the complete star-star DON instance, and take the better of the two. This completes our argument
showing that complete tree-star DON can be approximated to within a constant factor.
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An O(log n)-approximation for DON with general demands

In this section, we will present a constant approximation algorithm for tree-star DON on tree
metrics and establish Theorem [21

We first present a linear programming relaxation for the problem. Let T' denote the given tree

which is our metric. For a publisher j and an edge e of T, let 2l represent the extent to which j’s
tree uses e. For a subscriber i and leaf node v, let y! denote the extent to which i’s star visits v.

For
the

leaf node u, subscriber i and publisher j such that (i, 7) is in the demand graph, let 259 denote
extent to which j meets 7 at u. Let d(u,v) denote the distance between u and v under the tree

metric; abusing notation somewhat, let d(e) denote the distance between the two endpoints of the
edge e. Then, we have the following LP.

minimize Z] . ( )+, u yid(i, u)

subject to
7> Yo € Py x4 for all 7, j, e
S > 1 for all (,7) in demand graph
yi; > xh for all 4, 7, u
zh ,yu,ze >0 for all 7, j, u, e

We now present our algorithm. We introduce some useful notation first. Let Y’ denote the sum

of y¢,, over all leaves w in the subtree rooted at v. Similarly, let X, I denote the sum of x4/ , over
all leaves w in the subtree rooted at v

1. Solve the above LP to obtain a fractional solution (z,y, 2).

2. For every subscriber i:
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e For every node v such that Y’ > 1/3 and there is no child ¢ of v such that Y > 2/3: we
mark node v.

e For each marked node v such that no ancestor of v is marked, we add v to o(v); we refer
to v as a type-C hub for i.

e For every node v such that (a) there is no ancestor of v that is a type-C hub for i, and
(b) there are two children ¢; and ¢; of v such that Y >1/3 and Y/, > 1/3, we add v
to o(v); we refer to v as a type-A hub for 7.

e For every node v that is an ancestor of a type-C hub, we define W} to be sum, over
every child ¢ of v that is not an ancestor of a type-C hub, of Y.

e For every path p from the root or a type-A hub node to a descendant type-A hub or
type-C hub node: we divide p into minimal contiguous segments such that the sum of
Wi, over all v in the segment, is at least 1/3; for each such segment, we create a type-B
hub for i at the lowest node in the segment.

e The star network for ¢ connects i to each type-A, -B, and -C hub.
3. For every publisher j, the tree network consists of all edges e such that Z > 1 /3.
We prove Theorem [2| by establishing the following two lemmas.

Lemma 5 For any edge (i,7) in the demand graph, the tree of publisher j overlaps with the star
of subscriber i at least one node.

Proof. Fix publisher j and subscriber i such that (7, ) is an edge in the demand graph. Consider
some subtree rooted at a node ro such X,/ is at least 1/3 in the LP solution, while for any child ¢
of 1o, X2 < 1/3. Suppose (19,71, ...,7f) denote the path from ry to the root of the tree.

We first show that if there is a type-C hub at a node 7, then the tree of publisher j includes
node 7. By our algorithm’s choice of locating type-C hubs, it follows that iji . < 2/3. Therefore,
publisher j meets subscriber i less than 2/3 in the subtree rooted at r,_1. We consider two cases.
If j is in the subtree rooted at r;_y, then for the edge e = (rp—1,7%), 2> 1/3. Otherwise, since
Xy > Xy > 1/3, again we have 2! > 1/3. Thus, in both cases, we ensure that the tree for
publisher j contains 7.

We next show that if there is a type-A or type-B hub for i at a node 75 and there are no hubs
for i at any ry, 0 < g < k, then the tree for j must include 7. Since there is no type-A hub at any
rg, 0 < g < k, each 4 has at most one child that has a descendant with a type-C hub; if there were
two such children, then r, would have a type-A hub. Furthermore, there must be a type-C hub in
the subtree rooted at rg; if not, then the first ancestor of r¢ to have a hub would have a type-C hub,
which would contradict our assumption. So suppose there is a type-C hub in the subtree rooted at
19, say under the child r_; of ry. Then, it must be the case that the sum of ng, over 0 < g <k, is
at most 1/3, since otherwise we would have a type-B hub at r,. Furthermore, by the definition of
70, Xf;’_jl < 1/3. This implies that j meets ¢ to an extent of 1/3 outside the subtree rooted at ry_q
and at least 1/3 inside the subtree rooted at r,_1. Thus, regardless of where j is located for edge
e = (rg—1,7%), we will have 2 >1 /3, ensuring that the tree for publisher j contains ry. O

Lemma 6 The total cost of the tree and star networks is at most a constant factor times the LP
optimal.
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Proof. An edge e is added to the tree of publisher j exactly when 2 >1 /3. Therefore, the cost
of the tree network of j is within the cost for j in the LP.

We next consider the costs of the subscriber stars. There are three parts to it. First is the
distance to the type-A hubs. If a type-A hub for 7 is created at a node r, then there exist two
children ¢; and ¢z of r such that Yci1 and YC’2 are both at least 1/3. Clearly, i is either not in the
subtree rooted at c¢; or not in the subtree rooted at cy. In either case, the cost for ¢ in the LP
solution for reaching the fractional hubs in one of ¢; or ¢y is at least d(i,r)/3. Adding this over all
the type-A hubs yields a cost that is at most 3 times the LP cost for 3.

If a type-C hub is created at a node r, then we consider two cases: the LP cost associated with
the fractional hubs under the subtree at r is at least d(¢,7)/3.

If a type-B hub is created at a node r, then consider the sequence of ancestors a of r, whose
Wi add up to 1/3. The cost of i reaching the fractional hubs in the LP that contribute to these
Wi is at least d(i,r)/3.

The fractional hubs against which we have charged the type-C and type-B hubs are different,
so the cost for the type-B and type-C hubs is at most 3 times the LP cost for ¢, yielding an
O(1)-approximation for the overall total cost. O

B Alternate Algorithm for Complete Tree-Tree DON using VPNs

We use results from the asymmetric VPN problem [7, [I5] and show how it gives an approximation
for complete tree-tree DON. First we introduce the VPN problem. Given a graph G, with edge
costs ¢, and marginals for each vertex, the VPN problem is to build a network of minimum cost
such that for any set of pairwise demands which obey the marginals, the flow can be routed on
our network. A set of pairwise demands obeys the marginals if the demands a vertex is involved
in does not exceed its marginal. One crucial distinction between VPN and the DON problems is
that while the VPN problem seeks the design of a single network, DON problems seek networks for
every node involved.

Now we define asymmetric VPN. Here the flows are directed, and each vertex has two marginals,
one for how much can flow out of the node, and one for how much can flow into the node. We
restrict to the case where the terminals allow 1 flow out of the node and no flow in, sources, or they
allow 1 flow into the node, and no flow out, sinks.

It turns out that for asymmetric VPN, there is always a tree solution which is within a constant
factor of an optimal solution [I5]. We now use this tree solution to get a solution for complete
tree-tree DON.

Lemma 7 Given a complete tree-tree DON problem, consider an asymmetric VPN problem with
the same input as the DON problem, with the subscribers as sources, and the publishers as sinks.
Then, any tree solution for the asymmetric VPN problem can be transformed into a solution of the
same cost for the complete tree-tree DON problem.

Proof. Let T be the tree which is a solution to asymmetric VPN. Since our solution to asymmetric
VPN is a tree which is adjacent to all the publishers and subscribers, then every edge in the tree
induces a partition of the terminal nodes.

Consider any edge e € T; we decide which trees use e. Let Si, Py be the subscribers and
publishers respectively on one side of the partition; likewise let So, P> be the remaining subscribers
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and publishers respectively. Now let ¢ = min(|Si],|P2|) and b = min(|P1],|S2|). Now a valid
demand matrix would be to require a unit flow from a elements of S to a elements of P, and to
require a unit flow from b elements of Sy to b elements of P;. These a + b flows must all cross e
since T is a tree, therefore e has multiplicity at least a + b.

Now if |Si| < |P|, then we assign e to be in the trees for the elements of S;, otherwise e is
in the trees for the elements of P». Likewise if |Sa| < |P1| we assign e to be in the trees for the
elements of Sy, otherwise e is in the trees for the elements of P;. The number of times we use e is

min(|S1], |[P|) +min(|Sa[, [P1]) = a + b

So, we don’t overuse e.

We next need to show that the edges assigned to a node form a tree. Since the original structure
was a tree, we only need to show that the edges assigned to a terminal ¢ are connected. Without
loss of generality, suppose that a copy of e was assigned to be in T for s € S;. Let @ be the path
in the tree T from e to s. Let ¢ € Q. Let V' be the vertices on the same side as s of the partition
formed by removing €’ from T. We know that SNV’ C S;. Likewise we know that P, C PN V'C.
Since |S1] < |Py| (because e € Ty), then we know |S N V'] < |PNV'C|. So, ¢ is assigned to be in
the tree for nodes in S N V’. Therefore we have that Q C T. Therefore e is connected to s. Hence
the graphs formed by our assignment scheme are connected.

Lastly, we must show that for every s € S and p € P then T and T}, intersect. Consider s € S
and p € P. Let Q be the path in T from p to s and e be an edge in (). When we look at the
51,99, P1, P, formed by removing e, then either s € S; and p € P, or s € So or p € P;. Without
loss of generality, assume s € S; and p € P». Then e is assigned to be in either the tree for all
elements of S or for all elements in . So e is in either T or T},. Since T and 7T}, are connected
subtrees of the same tree, and Q C T's UT), then T and T}, meet at some vertex in (). Therefore,
all demands are satisfied and this is a valid solution to the complete tree-tree DON problem. O

This provides an 49.84 approximation algorithm for the complete tree-tree DON problem.
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