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A b s t r a c t - - A  nonoverlapping domain decomposition method for optimization problems for par- 
tial differential equations is presented. The domain decomposition is effected through an auxiliary 
optimization problem. This results in an multiobjective optimization problem involving the given 
functional and the auxiliary functional. The existence of an optimal solution to the multiobjective 
optimization problem is proved as are convergence estimates as the parameters used to regularize 
the problem (penalty parameters) and to combine the two objective functionals tend to zero. An 
optimality system for the optimal solution is derived and used to define a gradient method. Conver- 
gence results are obtained for the gradient method and the results of some numerical experiments are 
obtained. Then, unregularized problems having vanishing penalty parameters are discussed. (~ 2000 
Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - O p t i m i z a t i o n  problems for partial differential equations, Nonoverlapping domain de- 
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1. I N T R O D U C T I O N  

We introduce a nonoverlapping domain decomposition method for the solution of optimization 
problems having partial differential equation constraints. The given optimization problem is 
turned into a multiobjective optimization problem through the use of an optimization based 
domain decomposition algorithm. 

The given optimization problem is defined with the usual ingredients: 

- state variables; 
- design or control variables that are available to effect the optimization; 
- an objective functional to be minimized which may depend on both the state and control 

variables; and 
- constraints in the form of partial differential equations relating the state and control 

variables. 
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The optimization problem to be solved is then to minimize the given objective functional over 
a suitable class of control variables, subject to the partial differential equation constraints being 
satisfied. 

The partial differential equation constraints are solved by a domain decomposition algorithm. 
Domain decomposition methods are characterized by two features which in fact serve to define 
specific methods. First, one must define the subdomain problems. The only aspect of their defini- 
tion that is not obvious is the coupling conditions between solutions in the different subdomains. 
It is through these coupling conditions that one ensures that the solution of the subdomain prob- 
lems are indeed solutions of the original problem. Here, we define the coupling conditions through 
an optimization based strategy. (The idea of using optimization based domain decompositions 
has been discussed in [1-7]. The specific approach we follow here is related to that of [2,3,5,7] 
and especially [6].) The second feature that characterizes domain decomposition methods is the 
iteration strategy used to update the data of the subdomain problems in terms of the solutions 
in other subdomains. Here, we examine a gradient method based update strategy. 

Thus, to solve the partial differential equation constraints by a domain decomposition algo- 
rithm, we set up an auxiliary optimization problem having auxiliary functional and auxiliary 
control variables. As a result, we have a multiobjective optimization problem to solve: first, we 
have to minimize the objective functional of the given optimization problem and second, we have 
to minimze the auxiliary functional introduced to effect the domain decomposition. We solve 
the multiobjective optimization problem by forming the weighted sum of the two functionals. 
This enables us to pose an optimization problem involving a single functional whose minimiza- 
tion simultaneously minimizes, in some sense, the given functional and forces the solution of the 
subdomain problems to satisfy the given partial differential equation constraints. 

Our discussion is based on the simple model problem of Poisson's equation; this is largely 
done for the sake of keeping the exposition simple. Most of what we say extends in an obvious 
manner, especially from an algorithmic viewpoint, to more complex and realistic problems. In 
fact, one of the virtues of the domain decomposition strategy we use is that it extends in a 
straightforward way to nonlinear problems; see, e.g., [7]. Also, the functional we use to effect the 
domain decomposition is but one example of the many that can be chosen for this purpose; in 
fact, it is not necessarily the best one to use, but it is the simplest to explain. Details about the 
use of other functionals can be found in [2,3]. 

The plan of the rest of the paper is as follows. In Section 2, we discuss optimization of 
regularized functionals. The existence of an optimal solution to the multiobjective optimization 
problem is proved; also, we derive convergence estimates as the parameters used to regularize 
the problem (penalty parameters) and to combine the two objective functionals tend to zero. 
An optimality system for the optimal solution is derived and used to define a gradient method 
for its solution. Convergence results are obtained for the gradient method. Then, in Section 3, 
unregularized problems having vanishing penalty parameters are discussed. Finally, the results 
of some numerical experiments are discussed in Section 4. 

2. O P T I M I Z A T I O N  O F  R E G U L A R I Z E D  F U N C T I O N A L S  

2.1. The  Model  Problems 

Let f / be  a bounded open set in R 2 with boundary F. Let u and f satisfy 

- A u  = f, in i2, 

u = O, on F. 
(i) 

Given U, let 

1~ "/ / f2dl2 ' Jr (u '  f) = 5 (u - U) 2 dfl + (2) 
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where 7 is a constant that  can be chosen to change the relative importance of two terms in (2). 

The  model problem we consider is as follows. 

PROBLEM 1. Minimize ,.Zy(u(f), f) over suitable functions f subject to (1). Later, we will make 
clear what  we mean by "suitable functions." 

We intend to solve Problem 1 by a domain decomposition technique. To this end, let f~ be 

parti t ioned into two open subdomains fil  and fi2 such that  f~ = ~1 U f~2. The interface between 

the two domains is denoted by F0 so that  F0 = ~1 N ~2. Let F1 = ~1 fq P and ['2 = ~2 N F. See 

the sketch in Figure 1. 

Figure 1. A subdivision of the domain ft into two subdomains fll and f22. 

Instead of constraint (1), we consider the problems defined over the subdomains: for i = 1 

and 2, 
- A u i  = f{, in f~i, 

ui = 0, on r~, (3) 

Oui = ( _ l ) i + l g  ' on F0, 
Oni 

where, for i = 1 or 2, ~ denotes the derivative in the direction of the outer normal to fli. In 

this paper,  we refer to g as the control. We also rewrite JT(.,  .) in terms of the two subdomains 

in the following form: 

lCy(Ul,U2,fl,f2) = -~ = (ui - U)2 df~ + -~ (4) 

where we view Ul and us as depending on f l ,  f2, and g through (3). Instead of Problem 1, we 
pose the following problem. 

PROBLEM 2. Given g, minimize /Cy(ul(fl ,  f2, g), u2(fl, f2, g), fl, f2) over suitable functions f l  

and f2 subject to (3). 

For an arbi t rary choice of the control g, the solutions ul and us of Problem 2 are not the same 
as the solution u of Problem 1 in the respective subdomains, i.e., ul ~ ulnl and us ~ ula2. This 
discrepancy is due to the fact that ,  for an arbi trary choice of g, we have that  Ul ~ us along F0, 

o4 even in a weak sense. On the other hand, there exists a choice of g, i.e., g = b-~-Tn~ ]ro = - Iro, 
such tha t  the solutions of Problem 2 coincide with the solution of Problem 1 on the corresponding 
subdomains. Thus, if we are to solve Problems 1 and 2, we must also find the "right" g so tha t  
Ul is as close as possible to u2 along the interface F0. One way to accomplish this is to minimize 

the functional 

~(Ul, u2) = [ (ul - u2) 2 dF. (5) 
J F  0 

Clearly, for given f l  and f2, there exists a minimizer of G(., .) such that  (3) is satisfied. 
Instead of (5), we can also consider the penalized or regularized functional 

l f r  5 fr  g2dF, ~ ( u l ,  us, g) = ~ ( u l  - u2)2dr + -~ 
o o 

(6) 
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where 5 is a constant that  can be chosen to change the relative importance of the two terms 

in (6). 
Thus, we are faced with the multiobjective optimization problem of minimizing the functionals 

/C~(.,.,., .) and G~(', ", ") over suitable functions f : ,  f2, and g, subject to (3). We combine the two 

functionals of (4) and (6) into the functional 

1 2i~1f n 3 " ~ f n  f2dft g,,,~,.y(Ul,U2,fl,f2,g) = -~ = (ui - U)2 df~ + 
(7) 

5 ~ f  r 1 f r  + 2  g2 dr + ~ (u: - u~) 2 dr, 
" ~  0 0 

where a is a constant that  can be chosen to change the relative importance of the contributions 
of the two functionals K:~ and G~. (We have redefined 5 by effecting the replacement 5/a by 5.) 
Then, instead of solving Problems 1 or 2, we solve the following problem. 

PROBLEM 3. Minimize ga,5,~(Ul (fl, f2, g), u2(fl, f2, g), f:, f2, g) over suitable functions f l ,  f2, 
and g subject to (3). 

In going from Problem 1 to Problem 3, we introduced the two parameters 5 and a. For 
any 5 > 0 and a > 0, the minimizers of go,~,~(.,.,.,., .) do not coincide with the minimizers 
of/C~(., . , . ,-).  We will study this discrepancy in Section 2.3 where we show convergence of the 

former to the latter as 5 ~ 0 and a ~ 0. 
The outline of the rest of this section is as follows. In Section 2.2, we give precise definitions 

of the optimization problems and prove that  optimal solutions exist. In Section 2.3, we show the 
convergence of optimal solutions as 5 --* 0 and a ~ 0. In Section 2.4, we derive an optimality 
system of equations from which optimal solutions may be determined. In Section 2.5, we study a 
gradient method for the solutions of the optimality system. Throughout this section, we consider 
the penalty parameter 3  ̀in the functional of (2), (4), and (7) to be a fixed, positive constant. We 
will consider the case of 3' = 0 in Section 3. 

2.2.  T h e  E x i s t e n c e  o f  an O p t i m a l  S o l u t i o n  

For s > 0, we denote by HS(f~) the Sobolev space of functions having s square integrable 
derivatives with respect to f~. The norm on HS(f~) is denoted by II' I]~. We have that  H°(f~) = 
L2(f~). We will make use of the subspace 

g01(a) = {v E H i ( a )  : v = 0 on F}.  

A weak formulation corresponding to (1) is given by: seek u C H01(f~) such that  

a(u,v) = (f ,v)a ,  Vv • H~(f~), (8) 

where 
a(u,v) = £ Vu. V, da and (f,v)a = £ fvda. 

It is well known that  the bilinear form a(., .) is coercive and continuous. Then, the existence of 
a unique solution of (8) follows from the Lax-Milgram Theorem. Also, that  theorem yields the 
continuous dependence on data, i.e., there exist a constant C > 0 such that  

Ilull:,a ___ Cllfll0,a. (9) 

Next, we give a precise definition of an optimal solution, i.e., a minimizer of fir(u, f ) .  Let the 
admissibility set be defined by 

/dad = { (u , f )  G H01(~) x L2(a) such that  (S) is satisfied and ,]:~(u,f) < oc}. (10) 
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Then, (u*, f*) is called an optimal solution if there exists e > 0 such that 

J.y(u*, f*) < J.y(u, f) ,  

for all (u, f )  • L~ad satisfying 

181 

(11) 

for some (u*, f*)  E Uad. Now, by the process of passing to the limit, we have that (u*,f*)  
satisfies (8). Then, the fact that the functional J~(., .) is lower semicontinuous implies that  

J ~ ( u , f )  = lim infJ~  (u(n~),f (~))  _> J~(u* f* ) .  inf 
(u, f ) E/Y/ad i"-* O0 

Hence, J.~(u*,f*) = inf(~,Z)eu~d J ~ ( u , f )  so that (u*, f*) is an optimal solution. Uniqueness 
follows from the convexity of the functional and the admissibility set and the linearity of the 
constraints. | 

We will make use of an auxiliary problem involving the functional 

fr 92 dr, (13) J~,~(u, f ,g)  = J.y(u, f )  + -~ o 

Ou where ~ - g on F0. The auxiliary problem is defined as follows. 

PROBLEM 1.5. Minimize J.y,6(u, f ,g )  over suitable functions f subject to (1). 

Now, we examine the existence of an optimal solution that minimizes J~,~(u, f, g). The admis- 
sibility set is now defined by 

Vad = ~ ( u , f , g )  • H i ( a  ) x L2(f/) x L2(F0) such that (8) is 
k (14) } satisfied and J~,a(u, f ,g )  < oc and g = ~ along F0 • 

THEOREM 2. There exists a unique optimal solution (u ~, f~, g~) • Y~d for Problem 1.5. 

PROOF. The proof follows along the lines of the proof of Theorem 1. | 

Similarly, we examine the existence of an optimal solution that minimizes the functional 
$a,a,~(ul, u2, f l ,  f2, g). Assume Ul, u2 satisfy (3). Then, a weak formulation corresponding to (3) 
is given by 

al(Ul,V) = ( f ,v )a ,  + (g,v)ro, Vv • gl~ (a l ) ,  (15) 

a~(u2,v) = (f ,v)a2 - (g,V)ro, Vv • Hl~2 (a2). (16) 

u u*, in 
f(n,) _., f*, in L:(~) ,  

u (n~) -~ u*, in L2(~), 

II u -  u*]11 + ] I f -  f 'H0 -< e. (12) 

The existence and uniqueness of optimal solutions is easily proven using standard arguments. 

THEOREM 1. There exists a unique optimal solution (u*, f*) C ~/ad for Problem 1. 

PROOF. Clearly, ~/ad is not empty. Let {u (n), f(n) } be a minimizing sequence in/Aad, i.e., 

J~ (u(n) , f  (n)) = inf J~(u , f ) .  lira 
n---*c~ (u,f)E/Aad 

Then, from (10), we have that the sequence {f(~)} is uniformly bounded and hence, from (9), so 
is {u (n) }. Thus, there exists a subsequence {u (ud, f(n~)} such that 
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where, for i = 1, 2, 

ai(u,v) = / Vu .  VvdfL 
i 

The existence of a unique solution of (15) and (16) follows from the Lax-Milgram Theorem. Also, 
that  theorem yields the continuous dependence on data, i.e., there exist constant C > 0 such that  

Ilu~ll~,n, _< c(llfllo,a, + Ilgll0,ro). (17) 

Let the admissibility set be defined by 

W~d = {(Ul,U2, f l , f2,g)  e Hl~(a l  ) x Hl~2(a2) x L2(al)  × L2(a2) 
(is) 

x L2(r0) such that  (15) and (16) are satisfied and £a,6,~(ul, u2, f l ,  f2, g) < oc}. 

a , 6 , " /  . a,6,~,, ~:a,6,'~, THEOREM 3. There exists a unique optimal solution (u 1 , a2 , J1 , fff,6,~, ga,6,-y) G Llad Of 
Problem 3. 

PROOF. Again, the proof follows along the lines of the proof of Theorem 1. | 

2 .3 .  C o n v e r g e n c e  w i t h  Vanish ing  P a r a m e t e r  

Functional (13) contains the penalty parameter 5 that  controls the relative importance of the 
two terms. Clearly, for finite values of 6, solutions of Problem 1.5 will not be the same as that  
for Problem 1. In the next theorem, we show that,  as 5 -* 0, optimal solutions of Problem 1.5 
converge to the solution of Problem 1. 

THEOREM 4. For each 5 > O, let (u 6, f6, 96) denote the optimal solution satisfying of Problem 1.5. 
Let (u*,f*) denote the optimal solution solution of Problem 1. Then, ][u 6 - u * l l l , f ~  ~ 0 and 

[If 6 - f* [[0,a --* 0 as 5 --* 0. 

PROOF. Let 9" = ~--~nt°u* [ro. Suppose {(u 6, f6, gh)} is a sequence of optimal solutions and 5 ~ 0. 
Then, we have that  

fl'r,6 (u6,f6,g 6) <- fl, y,6(u*,f*,g*), VS, 

i.e., 

0 6 - u) ~ ea  + ~ ~ (¢)2 e r  
o 

o 

=&(~*'f*)+7 0")~ at' v~. 
o 

Then, I[f6][ and 119611 are uniformly bounded. So is I[u6l[ by (9). Hence, as 5 --~ 0, there exists 
a subsequence which converges to some 02, ] ,~)  E H(~(f~) x L2(f~) x L2(Fo). By passing to the 
limit, we have 

f~ 

Then, 

i.e., 

,:T~,6 u , f , g  ~ & ( u * , f * ) - t - ~  (g*)2dr, 
o 

Vh, 

~ , ~ ' - ,  + 5  _< &(u*,f*) + v~. 
0 

We obtain :]'~(~z, f)  < J(u*, f*) as 5 --~ O, and thus, a = u* and ] = f*. | 

Functional (7) also contains the penalty parameter a. Thus, we next show that,  as a --~ 0, 
solutions of Problem 3 converge to the solution of the auxiliary problem, Problem 1.5. 
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(~ a,5,'~ . a,5,~ Ca,5,'y ¢a,5,7 THEOREM 5. For each a > 0 and 5 > 0, le t  k t, 1 , ~2 , ~1 , ~ 2 , ga,&-~ ) d e n o t e  an op t ima]  

so lu t ion  sat is~ing P r o b l e m  3. Let ( u ~ , f ~ , g  ~) denote the so lu t ion  o f  P r o b l e m  1.5. Then, for 

i = 1,2, Ilu7 'a'~ - u~l~,ll~,~, -~ o as a -~ o, 

* = u~]n, for i = 1, 2. Suppose (u~ '&'r, u a'̀ ~'n" ¢a,~,7 P R o o f .  Let u~ 2 , f [ '* '~ ,  J2 , ga,~,~) is a sequence of 
optimal solutions of Problem 3 and a ~ 0. Then, we have that 

(~ a,5,'Z 72a,5,7 Ca,~i,'y ~¢a,5,"f _a 5"Z'~ 5 5 
Sa,5,~ ~,al , 2 ' J1  'd2 'Y ' ' ] -~ Sa,5,'~ (?£1'u2 ' fS l ' f52 ' g ' )  = ~7,5 ( u * , f ' , g * ) ,  

so that  

~ o 

(u~ - u~) 2 dr < J~,, (u ~, f*, g * )  
o 

a We have t i l =  u2 on F0 a.e. since fro(Ul - u~) 2 -~ 0 as a --* 0 so that  

* for i = 1,2. We thus obtain ui = ui 

2.4. The Optimality System 

We use the Lagrange multiplier rule to derive an optimality system of equations for the solution 
of Problem 3. For the linear, positive definite problem we are considering, the applicability of the 
Lagrange multiplier rule is easily shown; see, e.g., [8]. For simplicity of notation, throughout this 

section, we denote the functional and optimal solution of Problem 3 by C and (ul, u2, f l ,  f2, g), 
respectively, suppressing the the explicit indication of the dependence on the parameters or, 5, 

and 7. 
We define the Lagrangian 

~ ( U l ,  U2, f l ,  f2,  g,/~1, ~2) : ~(Ul ,  U2, f l ,  f 2 , g )  
2 2 

Next, we apply the necessary conditions for finding stationary points o f / : .  Setting to zero the 
first variations with respect to ,kl and ,~2 yields the constraints 

a l ( U l , V )  = ( f , v ) n l  + (g,V)ro, 

a2(u2,  v) = ( f ,v )n :  - (g,V)ro, 

Vv C Hr11(f~l), (19) 

Vv c H#2(f~2 ). (20) 

(f,v)o, + (O,V)i,o , Vv e HI , ( f~I ) ,  

- (O,v)r0,  Vv  E Hr12(f~2). 

Then, ]lfia'~"~ll for i = 1,2 and Ilga'~'~ll are uniformly bounded, and, by (17), so are Ilu~'~'~ll for 

i = 1,2. Hence, as a -~ 0, there exists a subsequence which converges to some (Ul, u2, ]1, ]2, g) e 
g ~ , ( ~ l )  x H~2(f i2  ) x L 2 ( f h )  x L2(~2)  x L2 ( r0 ) .  By passing to the limit, we have 
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Setting to zero the first variations with respect to Ul and u2 yields the adjoint equations 

al(~,/~l)---- (Ul - U , ~ ) f ~ ,  + l ( u l - - U 2 , ~ ) C o ,  V ~ C  H l l ( ~ , ) ,  (21) 

a2((,A2) = (u2 - U,()a~ - al---(Ul - u2,()ro, Y~ e H~-2 (f~2). (22) 

Finally, setting to zero the first variations with respect to g, f l ,  and f2 yields the optimality 
conditions 

1 
(g,r)ro = - ~ ( r ,  A1 - A2)ro, Vr c L2(F0), (23) 

( f , W ) a  1 = - -~(W, /~ l )a l  , Vil) e L2(f~l), (24) 
$ 

(f,w)n2 = - l ( w ,  A2)n:, Vw e L2(122). (25) 

To summarize, solutions of Problem 3 may be determined by solving the optimality system 
(19)-(25). Note that this system is coupled, i.e., the constraint equations for the state variables 
depend on the unknown controls, the adjoint equations for the Lagrange multipliers depend on 
the state, and optimality conditions for the controls depend on the Lagrange multipliers. 

The optimality system (19)-(25) may also be derived in a direct manner using sensitivity 
derivatives instead of the Lagrange multiplier rule. Problem 3 is equivalent to the problem of 

o~ oe o f g  are determining f l ,  f2, and g such that  £ is minimized. The first derivatives o°/~, of~, o9 
defined through their actions on variations f l ,  f2, and !) as follows: 

N , B  ---- E ( U i  -- U,~i)f~, -~ (Ul - u2,?£1 - U2)Fo -I- (~(g,1))Fo, 
i=1 

(26) 

where  ~1 E H1 (•1) and u2 E H1~2(a2 ) are the solutions of 

al(51,v) = (1),V)ro, Vv E Hrll(al) ,  (27) 

= V v  e (28) 

= ( u , - U , • l ) a l +  ( U l - U 2 , a l ) r o + 7  f l , f l ) a  1, 

where 121 E Hrll ( fh)  is the solution of 

al(~l,V) = ( • , v )  Vv E H~ , (a l )  

and 

where ~i2 E H~2 (Ft2) is the solution of 

f~2 

Now, let A1 and A2 denote the solution of (21) and (22), respectively. Set ~ = ul in (21), ~ = ~2 
in (22), v = )h in (27), and v = A2 in (28). Combining the results yields 

(1), AI -- A2)ro = (ul - U, ul)nl + (u2 - U, g2)n: + l ( u l  - u2,~l -- ?~2)Fo 
(7 
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so that, substituting in (26), we have that 

/ 0 C  - /  
~-g,g = (~,AI - A2)ro +5(g ,g)ro ,  V~ • L2(F0). (29) 

Using similar arguments, we have 

VA • L: (~I ) ,  (30) 

and 

Vj~ • L2(~2). 

Thus, the first-order necessary conditions oE oE = 0, and oE = 0, ~ ~ = 0 yield that 

(31) 

~ ( g , ~ ) r o  = - (~,  ~1 - ~ 2 ) r o ,  

" Y ( f l , / 1 ) .  1 : - -  (]1,~1)121 , 

Y~ • L2(Fo), 

v L  • L2(~1), 

V f2 • L2(~2), 

which are same as (23)-(25). 

REMARK. Equation (29)-(31) yield an explicit formula for the gradient of £, i.e., 

0E 
= T f l  -[- /~ 1, ofi 

OE 
= 7f2 + A2, 

o12 
OC 
- -  = @ + (A~ - A2)lro, Og 

where A1 and A2 are determined from f and g through (19)-(22). Thus, one has in hand the 
information needed if one were to use a gradient-based method, e.g., a method that requires C 
and oc ac oc for a given approximation of f l ,  f2, and g, to solve our optimization problem. 

Ofl  ' Of~ ' Og 
We now consider one such method. 

2 . 5 .  A G r a d i e n t  M e t h o d  

The simple gradient method we consider is defined as follows. Given a starting guess f}o), f(o), 
and g(O), let / / : 1 >  = : - ~  ~ , f o r ~ =  1 ,2 , , , , ,  (32) 

\ g(n+l) g(n) ~ -~g 

where a is a step size. Combining with (29)-(31) yields, for n = 1, 2 , . . . ,  

_ A n )  _ ~ ( n )  \ ) ( )  ..1., ) ( "+'> s}°> 
_ A n )  _ ~ ( n )  

= -- (2 7J2 ~- A2 

\ g ( n + l )  g(n) (~g(n) _{_ (/~n) _ . ~ n ) )  Fo 
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or 

g(n+i)  / ( i --(~c~)g (n) --Of (.~n) _ )~n)) Fo 

where A~ n) and A~ n) are determined by (21) and (22) with fl, f2, and g replaced by f}n)) 
and g(n). 

In summary, the simple gradient algorithm we consider is given as follows. 

ALGORITHM 1. 

1. Choose a, f}o), f(o), and g(O). 
2. For n = 0,1,2). . . ,  

(a) determine u~ n) and u~ n) from 

Ol ( . : , v )  : (:°> + °' . l  (.,>, 

o. ( ¢ > , v )  _- ( : , -> ,v )o .  - o, 

~), 

(b) determine .~n) and A(n) from 

(~') - u~')) ~)  r ° , 

- -  2 J r o  ' 

(c) determine f}n+l)) f~n+l), and g(n+l) from 

( f}~+ l ) )  ( (I - 7a)f} ") -~A~ n) 

The following result which can be found in, e.g., [9], is useful in determining sufficient conditions 
for the convergence of the gradient method of Algorithm 1. 

THEOREM 6. Let X be a Hilbert space equipped with the inner product (., ")x and norm ]] • []x. 
Suppose A4 is a functional on X such that 

1. M has a local minimum at ~ and is twice differentiable in an open ball B centered at ~; 

2. I (M"(u) , (x ,y)) l  <_ Mllxllxllyilx, Vu e S , x  e X , y  e X; 
3. ] {M"(u) , ( x , z ) ) ]  > mllzll~, Vu • B , x  • X ,  

where M and m are positive constants. Let R denote the Riesz map. Choose x (°) sufficiently 

close to ~ and choose a sequence Pn such that 0 < p. <_ pn <_ p* < 2 m / M  2. Then the sequence 
x (n) detlned by 

x (n) = x (n-l) - pnRN['  (x (~-1)) for , n ~--- 11  2 )  . . . )  

converges to &. 

We examine the second derivatives of S to determine the constants M and m. We have 

Og 2 , ( ~ , g )  = } - - ~ ( u ~ , ~ ) a ,  + - ( u l  - u2 ,~1  - ~2)ro + ~ ( g , ~ ) r o ,  
i = 1  O" 

o:;,(L)Sl =(al,a,).,+~(a:,al)ro+~(s:,a)~, 
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Then, 

( f l ,  f2 ,  g)  

82£ 

02g 

8f20fl 
82g 

8gO fl 

82£ 82£ 
8flSf2 8flag 

82£ 828 
8f~ 8f28g 
Beg 82g 

8gS f 2 8g 2 

(!) 
---~ < 82~ fl)} n u / 82~ f2)l-~ / 82~ fl)} ~i 2 . (fl. \ 8f-~f 2 (fl. \ ,flSg. (fl. g)) -[- ( 82~ ' 8f28f1' (f2, 

/ 8 2 £  (f2, f2) )  02g ) )  + + ( ~ 2 0 g , ( f 2 , g ) l + /  82£ , 
\sf ' \ 8gO fl (g' fl 

/ 82E f2)) /82c g)) 
+ ,(g, + \ sg2'(g' 

---- (Ul -~- lt1,~t1 -}- ?-tl)~, ~- (?£2 + ?~2,?~2 + lt2)f12 

Jr- --I(Ul -- U2 -~- ?~1 -- ?~2, Ul -- U2 -~- Ul -- ?£2)Fo~f(fl,  1 1 ) a l  -~- ~ ( f 2 ,  f2)122 ~- 5(g ,  g)Fo 
(7 

> mllxll 2, 

where m = min{'~, 5}. Thus, the conditions of Theorem 6 hold for Algorithm 1. 
Of course, other, more practical gradient-based algorithms can be defined. For example, the 

step length a could be changed at each iteration, e.g., through a line search in the direction of 
the negative gradient, or a conjugate gradient method may be used. 

3. O P T I M I Z A T I O N  W I T H O U T  P E N A L I Z A T I O N  

In Section 2, we introduced two regularizing or penalty parameters, 7 and 5, which substantially 
simplified the analyses. However, the use of these parameters detracts from the performance of 
gradient-type methods and, in any case, must be chosen with care. Furthermore, they prevent 
convergence to the true goals of the optimization problem which should involve the minimization 
of unpenalized functionals. Therefore, in this section, we consider domain decomposition methods 
for the optimization of unpenalized functionals. 

3.1. T h e  M o d e l  P r o b l e m s  

The functional in (2) contains the penalty parameter ~/. Since the goal of our model problem is 
to find u as close as possible to a given U, we would rather minimize the unpenalized functional 

Y(u) = 2 ~(u-U)2 dfl (33) 

subject to (1). Thus, we consider a model problem. 

PROBLEM 4. Minimize the functional J(u(f)) defined in (33) over suitable functions f subject 
to the constraints in (1). 

We rewrite the functional if(u) in terms of the two subdomains as 

l ~-~ /a (ui - U)2 d~. (34) 

Then, instead of Problem 4, we consider the following. 
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PROBLEM 5. Minimize the functional JC(ul(fl, f2), u2(fl ,  f2)) over suitable functions f l  and f2 
subject to the constraints in (3). 

Similar to Section 2 and for the same reason, for an arbitrary choice of the control g, the 
solutions Ul and u2 of Problem 5 are not the same as the solution u of Problem 4 in the respective 
subdomains. Thus, if we are to solve Problem 4 through Problem 5, we must also find the "right" g 
so that  ul is as close as possible to u2 along the interface P0. One way to accomplish this is to 
minimize the unpenalized functional (5). 

Thus, we again face a multiobjective optimization problem in which we now wish to find f l ,  f2, 
and g such that both the functionals ~(., .) of (5) and K;(., .) of (34) are minimized subject to (3). 
We combine the two functionals into the functional 

JCa(Ul, u2) = 7 (ui - U) 2 da  + ~ ( U l  - -  U2) 2 dr,  
i = l  d ~"~ i o 

(35) 

where a is a constant that  can be chosen to change the relative importance of the contributions 
of the two functionals K: and ~. The multiobjective minimization problem is then given by the 
following. 

PROBLEM 6. Minimize the functional 5va (U, 1 (fl ,  f2, g), u2 (fl ,  f2, g)) over suitable functions f l ,  f2, 
and g subject to the constraints in (3). 

3.2. A Grad ient  M e t h o d  

We define the gradient method 

0Y 

/ -<,o 
\ g(,+l) \ g(') / 0Y 

- £  

, for n = 1 ,2 , . . . ,  (36) 

to solve Problem 6, where c~n is a step size. 
The first derivatives ~ ,  ~-~h' and ~ can be defined through their actions on variations 

]1, ]2, and ~ of the control functions: 

(o o,A\ 0/1 / = (Ul - U , ~ l ) a ,  + ~ ( u l  - u2,~l)ro,  

(O'T'a,]2~ ~ ( U l  U2, U2)ro - ~  / = (u2 - u , ~ 2 M  - - , 

< 0 ~  ^ \  2 
+ 

i=1 

(37) 

(3s) 

(39) 

where, for i = 1 and 2, ui E Hrl~(f~i) is the solution of 

Vv C H ~ ( f ~ ) ,  (40) 

and t~i E H 1 r~ (fti) is the solution of 

a~ ( e , , v )  = ( - 1 )  ~+t (~,V)r  ° , v v  c H ~ , ( a d .  (41) 
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Now, for i = 1 and 2, consider the adjoint problems 

- A A i = u i - U ,  inf~i, A i = 0 ,  o n F i ,  

0A~ 
= ( - - 1 ) i + 1  1- - (Ul  - -  U2), on r0, 

Oni (7 

or, in weak form, 

a i ( ~ , ) ~ i )  = ( U l  - U , ~ ) f ~  i -t- ( - 1 ) i + 1 1 ( u l  - u 2 , ~ ) r o ,  V~ E H~(ft{) .  (42) 

Using (37)-(42), one can obtain 

/= 

Then, the gradient method is given as follows: starting with an initial guess f~0), ~(0), and g(0) J 2  

for the control functions, for n 0, 1, 2, first solve for the states - (~) i -- 1, 2, from . . .  ~ 'U, i , 

ai (u!'~),v~ = (f~n),v) + (g(n),v) Vv E H~ (~i),  (43) 
\ ~ ] ~ ro ' 

then solve for the adjoint states -.i , i = 1,2, from 

and then update  the control functions according to 

/ ( ) 
(44) 

4 .  N U M E R I C A L  E X P E R I M E N T S  

We now report  on some experiments with the gradient algorithms of Sections 2.5 and 3.2. Let 

the domain ~ be the square {(x, y) : 0 < x < 1, 0 < y < 1}; ~ is divided into the two subdomains 

f~l = {(x,y)  : 0 < z < 1/2, 0 < y < 1} and f~2 = {(x,y) : 1/2 < x < 1, 0 < y < 1} having 
the interface F0 = {(x,y) : x  = 1/2, 0 < y < 1}. The finite element spaces are chosen to consist 
of the s tandard continuous, piecewise quadratic polynomial spaces based on triangular meshes. 

The computat ions were carried out for a target solution U = (x - 1)y sin x cos(Try/2) which is 
feasible so tha t  the solution of Problem 4 is u = U and f = - A U .  This setup allows us to test 
the convergence of the various algorithms with respect to various parameters.  

For the gradient algorithm of Section 2.5, is necessary to adjust the parameters  a,  5, ~, and a 
so tha t  satisfactory convergence results can be obtained while still obtaining good agreement 
with the exact solution. We choose -~ and 5 to be small so that  we do not over penalize the 
functional. Then a can be chosen so that  the gradient method converges. Calculations have been 
performed for various values for the parameters  and a tolerance 10 -5 in the stopping criterion 
for the gradient method. First, we examine the convergence to the exact solutions for fixed 
parameters  5 -- 10 -5, "y = 10 -7, and a = 1.4; the rates of convergence (with respect to the grid 
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Table 1. Convergence of solution using the penalized functional with respect to the 
grid size for different values of the step size a in the gradient method. 

(x 

1 

3 

5 

6 

7 

L 2 Rate H 1 Rate 

2.66 1.98 

2.49 1.98 

2.60 1.98 

2.55 1.98 

2.90 1.99 

Table 2. Convergence of gradient method using the penalized functional with respect 
to different values of the step size a in the gradient method and for different grid 
sizes. 

1 1 
a h = -  h -  

4 8 

1 13 13 

3 4 4 

5 7 8 

6 16 17 

7 188 262 

8 diverges 

size h) for different step sizes a in the gradient  method  are given in Table 1. We see tha t  the H 1 

rate of convergence is exact ly what  we expect with piecewise quadrat ic  finite e lement  spaces; the 

L 2 rate  is somewhat  more erratic. 

Next,  we examine  the number  of i terat ions required for convergence of the gradient  i terat ion.  

Again,  5 = 10 -5,  7 = 10-7, and a = 1.4. The  number  of i terat ions is given in Table 2 for various 

values of a ,  the step size in the gradient  method,  and for two values of the grid size h. We see 

t ha t  too large a step size results in divergence and tha t  there is an opt imal  step size; moreover, 

the number  of i terat ions  seems unaffected by the grid sizes h. 

Results  for the gradient  method  for the unpernal ized  funct ional  (see Section 3.2) are similar. 
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