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Abstract

In this paper we discuss modeling and simulation of two dimensional grain boundary evolution at different
scales, with emphasis on their relations. The motivation is the need to reduce the high computational complex-
ity of detailed models on one hand, and the additional physical insight offered by multiscale representations on
the other hand. Both are essential to our understanding of polycrystalline materials, facilitating the construc-
tion of new tools with predictive capabilities. The smallest scale model in this study is a Monte-Carlo Potts
model which is followed by a curvature driven model, governed by the Mullins Equation together with the
Herring Condition at triple junctions. Spatial coarse-graining results in a model that uses representation of the
grain boundaries in terms of their end points and a constant curvature, that is able to capture size distribution
function quite accurately at a fraction of the cost. Temporal coarse graining, in which grains are represented in
terms of area and number of sides, is governed by a stochastic process, offering new statistical quantities that
characterize evolution of large networks. The models are studied from coarse graining view point, facilitating
the construction of tools with predictive capabilities which are essential for engineering applications.

1 INTRODUCTION

Most technologically useful materials arise as poly-
crystalline microstructures, composed of myriads of
small crystallites, called grains, separated by their in-
terfaces, called grain boundaries. The orientations
and arrangements of the grains and their network of
boundaries are implicated in many properties across
wide scales, for example, functional properties, like
conductivity in microprocessors, and lifetime proper-
ties, like fracture toughness in structures.

In this paper we discuss modeling and simulation of
grain growth at several scales. The most commonly
used computer simulation model of grain growth is
the Monte-Carlo (MC) model. In fact, the model has
been applied to the study of a variety of subcontin-
uum processes, such as grain growth in one phase, two
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phase, directional grain growth, recrystallization, etc.
Monte-Carlo model exploits a random scheme aimed
at reducing the Hamiltonian of the system associated
with the grain interfaces. Another approach uses as a
starting point a mesoscale description of grain bound-
ary evolution in using partial differential equations
(PDE). These are the Mullins Equation of curvature
driven growth with the Herring Condition at triple
junctions. Detailed simulation using a large number
of grains, that is required for good statistical analysis,
is computationally expensive either by MC or PDE
based models. Thus, coarse graining techniques are
essential for dealing with questions of engineering sig-
nificance. In addition, we are faced with more basic
questions regarding such large interacting networks of
grains or grain boundaries. These include the question
of predictability in these systems and the role of sim-
ulation in determining robust statistical properties.
Although the MC and PDE models are defined
in a very different manner, especially in that one is
stochastic and the other is deterministic, an exten-
sive comparison of the two models [14] has revealed
that in the large scale limit, the Monte-Carlo model
approaches the PDE model both for the behavior of
individual grains, and for the evolution of the size dis-
tribution functions. More specifically, as the underly-
ing lattice used by the Monte-Carlo model is refined
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or equivalently as the microstructure coarsens, the
behavior of the MC approaches the curvature driven
growth defined by the Mullins Equation and the Her-
ring Condition. Thus, the PDE model can be viewed
as the large scale limit of MC.

The computational complexity of these detailed
models gave rise to investigation of more efficient rep-
resentation that is useful in the study of the size dis-
tribution function. We have approached the problem
from two different directions leading to two classes of
models. The first involves a coarse representation of
grain boundaries (GB) involving only their end points,
which are also triple junctions, and a single curvature
variable per GB. The model is governed by a system
of ODEs instead of PDEs as the original model, and
its computational complexity is by far smaller, yet its
results are very close to the full detailed model.

The other approach involves a temporal coarsening
and it is motivated by observations made on the be-
havior of grains in the PDE model at large time scales.
Following the evolution of single grains we have found
that their dynamics can be viewed as a combination of
a deterministic growth (or decay) of grain size (follow-
ing the n-6 rule), together with a stochastic behavior
governing the number of edges. Two events in the evo-
lution of a grain, in two dimension, call for a stochastic
description. The first is edge flipping and the second is
the disappearance of small grains. Statistical analysis
on large samples of grains revealed possible rules gov-
erning the stochastic process. This led us to consider
models that describe grains in terms of area and num-
ber of edges, where the network connectivity is omit-
ted, and its implication on the evolution is replaced by
a stochastic description. The stochastic model (SM)
is valid at scales comparable to the average time inter-
val between events (flipping and disappearance) and
is limited to studying grain size and number of edges,
and may not address important questions such as tex-
ture, and grain boundary characterization. However,
it serves us as an important exercise in coarse grain-
ing, and the lessons learned from it can be applied to
more general questions in grain growth. Probabilities
used in this model are computed by simulation of de-
tailed model, which in our case was the PDE based
model. The stochastic model is significantly less ex-
pensive than any of the detailed models, MC or PDE
curvature driven models, therefore allowing the sim-
ulation of much larger number of grains leading to
more accurate statistical properties. At a higher level
than the stochastic model, we are dealing with prob-
ability densities, describing ensemble of large grains.
Evolution equations for distribution of grain size and
number of edges can be easily derived. While the ver-
tex model, which we view as a spatial coarse graining

model, still posses information regarding configuration
of grains, angles at triple junctions, etc., the stochastic
model has only statistical properties.

There are many open questions regarding the rela-
tion between the models. Do the statistics of critical
events in the vertex model follow that of the PDE
model? Do the MC model and the PDE model have
the same statistics in terms of critical events? Fur-
thermore, common distribution functions studied in
material sciences, such as, size distribution, texture,
and grain boundary characterization are only a few of
the statistical properties that characterize these com-
plex networks of evolving grains and grain boundaries.
The study of multiscale modeling in this context al-
lows a more detailed understanding of these complex
models, and further insight into predictability issues
in such large systems.

Numerical results are given and compared for the
different models. In all models we focus on constant
mobility and energy, which is the simplest case on
which we can explain the processes and demonstrate
the ideas.

2 MONTE-CARLO (MC) MODEL

In MC simulation [1] [13], the microstructure is
mapped onto a discrete lattice and each lattice site
1 is assigned a spin number S;. The GB is defined
to lie between sites of different orientations and the
Hamiltonian describing the grain boundary energy is

H=-J Z (651‘57‘ -1) (1)
<ij>

where the sum < 4,7 > is over all pairs of nearest
neighbor sites and ¢ is the Kronecker delta. The ki-
netics of the boundary motion are simulated by em-
ploying a Monte-Carlo technique. A lattice site ¢ and
a new trial orientation S} are chosen at random where
the transition probability is given by

e AH/ksT A >0
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AH being the change of energy caused by the change
in orientation, kp is the Boltzmann constant, and T’
is the temperature.

An attractive feature of the MC model is its sim-
plicity, especially with regard to topological events in-
cluding grain boundary flipping and grain disappear-
ance, which are automatically performed without in-
troducing extra mechanisms. However, the fact that
the underlying lattice discretizes the grain interiors
as well as the GBs places high memory and CPU re-
quirements. In practice, an accelerated MC algorithm
called N-Fold Way is often used [5].



3 PDE MODEL

The partial differential equation (PDE) model used
here [7] [8] [9] is a boundary tracking model, that does
not require discretizing grains, but only their bound-
aries. It offers an attractive alternative to MC models
since it deals with quantities of lower dimension. It
is based on surface energy density function o(6, @),
where « is the mismatch angle between neighboring
grains, and 6 defines the normal by n = (cos#6, sin ).
The model is curvature driven and is given by the
Mullins Equation,

d*c
vn:u<(w+a>n (3)

that governs the evolution of each grain boundary,
where x is the curvature. In this equation p is the
mobility of the GB. These equations are supplemented
with a boundary condition at triple junction, the Her-
ring Condition,
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where n;, b; are the unit normal and tangential vec-
tors at the triple junction. One derivation of these

equations is based on the total GB energy,
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where [F = %. This energy is equal to the amount
of work required to create an infinitesimal amount of
new surface. It can be shown that equation (3) with
boundary condition (4), can be seen as a steepest de-
scent direction for the total energy. This also forms
the basis of our discretization scheme.
Using the notation
do

T=—
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the discrete evolution equation are given by,
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where the index j refers to grain boundary, and k
refers to a node on this GB. The scaling 2/ |;L'§: =

v’-“(t) (Tk,j+l/2 _Tk,j—1/2), (7)

w?_1| makes the correspondence to the continuous ve-
locity obvious. These equations are supplemented by
an approximation of the Herring Condition. The evo-
lution is done in two steps: the first evolves all nodes
corresponding to GB internal points, and the second
moves the triple junctions according to the Herring
Condition.

3.1 Critical Events

Equations (3),(4) are valid as long as the network con-
nectivity is unchanged. During the evolution there are
instances where grains or grain boundaries disappear.
We refer to these as critical events where we perform
network connectivity changes that are consistent with
energy dissipation.

Grain boundary flipping: When the length of
a grain boundary becomes 0, it disappears, and its
two triple junctions become one quadruple-junction, a
point where four grain boundaries meet. Triple junc-
tions are typically the only stable junctions, and there-
fore the quadruple-junction instantly splits into two
new triple junctions connected by an infinitesimally
small new grain boundary. The split is consistent with
decreasing of energy, maintaining the dissipative qual-
ity of the evolution. The edge flipping event is shown
in figure (1).

>< ” X i
Figure 1: Edge flipping event

Grain disappearance: As a small grain shrinks, it
eventually becomes a point at which three, four or five
grain boundaries meet, see figure (2). This applies to
grains with 3,4 or 5 edges. The area of a grain with six
or more grain boundaries does not decrease as follows
from the Von Neumann-Mullins (n — 6) rule [10],

d s
aA(t) = gau(n - 6), (8)

which holds for a curvature-driven system with con-
stant energy o, and constant mobility x4, and that sat-
isfies the Herring Condition at triple junctions.

The newly formed multi-junction instantly splits
into triple junctions, one after the other (quadruple
junctions split into two triple junctions, the junctions
with five incoming grain boundaries first split into a
triple junction and a quadruple junction, and the lat-
ter immediately splits into two triple junctions). The
choice of the order in splitting the edges is done in a
way compatible with steepest descent for the energy.



Figure 2: Grain disappearance event

Figure 3: The circular GB connecting vertices i and j
is parametrized by its half-angle a;;.

4 VERTEX MODEL (VM)

The computational complexity of the above described
models and the fact that only statistical information
is required suggests looking at coarse grained models.
A natural simplification of grain boundaries is to rep-
resent GB in terms of end points, the triple junctions,
as well as one parameter for curvature. This brings
us to a family of models called vertex models which
have an extensive literature. Here we focus on a par-
ticular model that we have developed and that fits
within the context of coarse graining of the detailed
models described before. In this model [15], GBs form
circular arcs. The GB connecting vertices ¢ and j is
parametrized by its half-angle a;; (see figure 3). By
definition, we have a;; = —ay;.

Similar to the PDE model, the proposed vertex al-
gorithm is divided into two alternating steps: moving
vertices and moving GBs. In the vertex step, instead
of solving the Herring Condition which imposes a non-
local effect on the grain boundaries, we impose a ver-
tex motion defined by line tensions,
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Figure 4: A domain pattern in the simulation of VM.
A=20. p=1.

where A is the vertex mobility and R, is the linear
operator that rotates a vector by ;. This model, in
addition to being a coarse-graining of the PDE model
can be viewed as an extension of the Soares et al. ver-
tex model [12] that allows only straight edges. Equa-
tion (9) is integrated using the forward Euler method.
The new GB is obtained by interpolating a circle to
the fixed midpoint of the old arc and the two new
vertices.

In the GB step, the vertices are fixed and the dis-
placement of the GB is determined from moving the
midpoint of the arc by the Mullins Equation of cur-
vature driven growth. Denoting the velocity of the
midpoint of the GB connecting vertices 7 and j by
v;, and using the fact that the radius of curvature is
|ri;|/2sin a5, we get,

m 2sinoy; o,
o =, (10)
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where f is the boundary mobility and n;} is the nor-
mal to the circular GB at the midpoint. By sym-
metry, nj} = —Rg /z(l:ﬁ) Finally, like all models
that employ the grain boundaries as a fundamental
data structure, the equations of motion have to be
supplemented with the two topological events: grain
boundary flipping and grain disappearance.

Figure 4 shows microstructure configuration pro-
duced by VM with the vertex mobility A = 20 and the
boundary mobility 4 = 1. The configuration is prac-
tically indistinguishable from those obtained from the
PDE model.

As the time step At goes to zero, the above discrete



model approaches a system of ODEs governing the
evolution of r; and o;;. In addition to the governing
equation for r; simply defined by (9), one can deduce
the governing equation for a;; by differentiating the
geometric relation implied by the circular GB shapes,

cos aij = ﬁ : ﬁ (11)
and obtain,
by = L[_4p,sina,~j(1 +cosaij)
73] e
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Such an analytical form opens the door for mathemat-
ical analysis. It also has immediate numerical impli-
cations. For example, the algorithm described above
can be rewritten in terms of solving the differential
system simultaneously for both r; and «;; using stan-
dard higher order ODE schemes such as the fourth
order Runge-Kutta method.

Vertex models in general have been developed with
a primary goal to relax the high CPU and memory
requirements of the more detailed simulation models.
In comparison with the Soares et al. model, our system
has one more equation for the additional parameter
a;; per GB and thus the extra computational load is
minimal. In fact, the present vertex model is about
10 to 100 times faster than the PDE model depending
on the accuracy requirement on the PDE model.

5 STOCHASTIC MODEL (SM)

Physical and engineering questions regarding grain
growth involve distribution functions, and actual grain
configurations is of less significance with respect to
material properties. This calls for models that de-
scribe directly the evolution of quantity of inter-
est such as texture, grain boundary characterization,
size distribution, etc. This, however, is a hard task
which we approach by considering the formulation of
a stochastic process describing grain growth on large
time scales. Grain size distribution is accessible exper-
imentally, and allows for calibration of models, and is
thus the focus here.

The model described in this section allows us to ac-
celerate computationally expensive algorithm on one
hand, and to gain new insight into mesoscale pro-
cesses. The model is build on the detailed PDE model,
using statistical analysis. It sheds new light on the
details of grains evolution in terms of their area and

number of facets. It can be viewed as a temporal
coarse graining of the PDE model and its motivation
goes back to the goal of simulation, being statistical
in nature.

The main observation that led to the construction
of the stochastic process describing grain size distri-
bution is the following. Single grain evolution follows
a deterministic evolution for a while, the (n — 6) rule,
which is interrupted at certain times that seem ran-
dom, by a change in the number of edges as a result
of critical events. A stochastic process is constructed
for time scale of the order of the mean time between
critical events, which is significantly larger than the
time scale used in the PDE, the MC, or the Vertex
Models. The full process involves a deterministic be-
havior following the n — 6 rule, for isotropic energy
and mobility, together with a random events related
to flipping edges, or disappearance of grains. As a re-
sult of the critical events some grains may lose edges,
while others may gain edges. Although we have used
the detailed PDE model to build the stochastic model,
other detailed models could as well serve that purpose.
Since in the stochastic model there is no network con-
nectivity the details of the critical events must be done
with some care.

Grain boundary flipping: In this event two
grains lose an edge and two grains gain an edge, see
figure 1. Using the PDE model we collect statistics
regarding this event. The simulation time in the PDE
model to collect this statistics is not very large, com-
pared to a full simulation, say to reach self-similarity
in the size distribution function.

Simulation with the detailed PDE model reveals
that the probability that a grain with n edges will
lose an edge due to flipping in a short time interval,
is proportional to the interval length, and inversely
proportional to some power of the average area.

Grain disappearance: As a small grain shrinks,
it eventually becomes a point at which three, four or
five grain boundaries meet. The disappearance of a
grain causes several other grains to lose or gain edges.

e If a 3-edge grain disappears, then three grains lose
an edge.

e If a 4-edge grain disappears, then two grains lose
an edge.

e If a 5-edge grain disappears, then one grain gain
an edge, and two grains lose an edge.

The event of a grain disappearing is a direct result
of its size shrinking to zero, so we do not regard it as
a random event. Its effect on other grains is consid-
ered as random. As in the flipping event, the grains



that gain, or lose an edge, are selected according a
probability computed from the PDE model.

Implementation. We begin in this model with IV
grains where each has an area denoted by A;, j =
1,..., N, and number of edges denoted by n;, j =
1,...,N. Note than N changes during simulation, due
to grain disappearance.

Grain disappearance: Let D, be the total num-
ber of grains having n edges that have disappeared in
the last time step. The total number of grains that
lose edges as a result of these disappearance events
is D = 3D3 + 2D, + Dj5, (discussion above). Let
pP, n=4,5,... be the fraction of the n-edge grains
that will lose an edge. The probability p? can be in-
terpreted as a conditional probability that an n-edge
grain loses an edge, given that an edge was lost in the
system, and have ) - 4p£ = 1. We pick randomly
pPD grains from the n-edge population and reduce
the number of edges of each by 1, this is done for
n =4,5,.... The numbers pZ2 are calculated from the
detailed PDE model.

Edge flipping: This event is governed by a set
of probabilities ¢, that a grain with n-edges loses an
edge, during a prescribed time interval. Let M,, be
the total number of n-edge grains. We choose ran-
domly g, M,, grains out of the n-edge population, for
n = 4,5,..., and reduce their number of edges by
1. The total number of grains that have lost edges
by this process is M = ) ., q,My, and this is the
same number of grains that gain edges due to flip-
ping. This is done according to a fixed proportion as
in the disappearance case. Let pZ be the fraction of
n-edge grains that will gain an edge due to flipping.
Again this quantity can be interpreted as the condi-
tional probability that an n-edge grain gains an edge
due to flipping, given that a flipping occurred. We im-
plement this by picking Mp[ grains from the n-edge
population and increase their number of edges by 1,
and do it forn =3,....

Again, the number P are calculated using the
PDE model. To summarize, the algorithm is per-
formed in three steps,

1. Aj(t + At) = A]'(t) + a(n]—(t) — 6)At
2. Perform Grain disappearing events

3. Perform grain flipping events

6 SIMULATION RESULTS
6.1 PDE vs. MC

We have carried out an extensive comparison of the
PDE and MC for the isotropic case of grain boundary

energy and mobility [14]. For the MC simulations, we
use a triangular lattice, and we choose a low temper-
ature T such that kgT/J = 0.1 in order to prevent
grains nucleation. The total number of different spins
Q is set to 100. It is shown that the Von Neumann-
Mullins (n — 6) rule is approached by individual MC
grains in an average sense and also as the underly-
ing lattice gets finer. It is also argued that the rel-
ative grain size distribution (the distribution of the
relative grain area * = A/ < A > where A is the
grain area and < A > is the mean grain area) of the
MC model approaches that of the PDE model as the
microstructure evolves, or equivalently, as the lattice
becomes finer. A comparison of the scaling size dis-
tributions generated by the two models is shown in
figure 5. Since they are practically indistinguishable
from each other, we will only use the PDE model for
the comparative study of the coarse grained models
discussed later.

— PDE
—©- Monte-Carlo

Figure 5: Self-similar relative grain size distributions
in PDE and MC simulations.

6.2 SM vs. PDE

We have performed simulation of the PDE model in
order to define the probabilities PP, ¢,, PF, required
for the simulation of the stochastic model (SM). These
probabilities are not time invariant, as was assumed
by Fradkov et. al. [2] [3] [4]. This is expected since
the disappearance event for example, becomes less fre-
quent as the average area increases. Similar observa-
tion holds for edge flipping.

Simulations with the stochastic model were com-
pared to the PDE model. The size distribution com-
parison is shown in figure 6. This shows good agree-
ment of the two models. Edge distribution compari-
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Figure 6: Area

son is shown in figure 7. The agreement here is not as
good as for the area distribution and will be studied
further elsewhere.

Initial Edge Distribution
+ PDE Model

* Stochastic Model

Figure 7: Edge distribution

6.3 VM vs. PDE

In order to study how well the coarse grained repre-
sentation used in the vertex model is able to maintain
certain statistics of the more detailed PDE model, we
carried out computer simulations of VM with differ-
ent ratios of the vertex mobility A and the boundary
mobility u. We choose the Voronoi digram as the ini-
tial state and use the periodic boundary condition to
minimize finite size effects. The boundary mobility
is set to 1 in all simulations and the vertex mobility
A varies. We first present results for A = 20. Sim-
ulations revealed that the grain size statistics hardly
change as A is larger than 10, we picked A = 20 to
represent the large vertex mobility limit.

With A = 20, we find that not only the mean grain
area in VM simulations grows linearly with a similar
rate to the PDE model, but the equilibrium relative
grain size distributions obtained from the two models
are also in excellent agreement as can be seen in figure
8. A significant result is that the dependence of the
mean curvature on time in the VM simulations fits the
PDE model well, see figure 9. The mean curvature
is defined as the average of interfacial curvatures (in
absolute value) weighted by arc lengths, i.e.

> frij |&| ds
~ 4 g0
> fr,1ds

where s is the arc length parameter and the sum is

taken over all GBs. Under the constant curvature as-
sumption of VM, (13) reduces to,

K =

(13)
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The excellent agreement of & between VM and the
PDE model indicates that the constant curvature as-
sumption is able to capture overall how curved the
grain network evolves. Apparently, this cannot be
achieved with vertex models assuming straight inter-

faces, such as the Soares et al. model and the Kawasaki
et al. models [6].

0.8 T

T
—k Vertex
—©- PDE

Figure 8: Comparison of the equilibrium size distri-
butions generated by simulating the proposed vertex
model and the PDE model.

In addition to achieving higher computational ef-
ficiency, the VM obtained from coarsening the PDE
model offers a user-controlled parameter \/u that fa-
cilitates convenient investigation of the relationship
between two types of kinetics, the vertex kinetics and
the boundary kinetics. Their relationship has been
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Figure 9: Mean curvature K plotted as a function of
time in the VM simulation. It agrees very well with &
in the PDE simulation (dashed curve).

discussed in [11], where the influence of vertex drag on
the boundary motion is investigated for a symmetric
grain boundary system with only one triple junction,
and in [2] [3], where a qualitative criterion for esti-
mating the relative strength of vertex drag is given
for general grain networks. The present vertex model
combining the two types of kinetics provides an op-
portunity to understand their relation from the per-
spective of grain growth statistics.

To illuminate the effect of different ratios \/u, we
present the relative grain size distributions obtained
from simulations for A = 1,2,5,20 respectively. The
simulations all start from the same initial Voronoi di-
agram of 25600 cells. The metastable distributions
are taken when approximately 90% of the grains diss-
apeared as a result of coarsening. In this time regime
the mean grain area depends linearly on time, for all
the above choices of A\. The distributions are plotted
in figure 10 together with that of the Soares et al.
model that represents the small vertex mobility limit
A — 0. It is observed that as A decreases, the spike
of distribution around 0 becomes sharper, approach-
ing the highly peaked distribution of the Soares et al.
model. On the other hand, as A increases, the distri-
bution flattens out around 0, approaching the typical
grain size distribution of the PDE curvature driven
grain growth.

To summarize, for small A, the GB motion is
dragged by the slowly moving vertices and the sys-
tem is dominated by the vertex kinetics, which fa-
vors relatively small grains. For large A, the system is
dominated by the curvature driven boundary motion,
vertices merely trying to establish the thermodynamic
equilibrium angles. Thus, the relative grain size dis-

tribution is similar to that in the PDE model. A range
of metastable relative grain size distributions are ob-
tained for intermediate values of \.

T
—¥— Soares
—+A=1
A a=2 | 4

Figure 10: Metastable relative grain size distributions
obtained from simulating VM for different choices of
the vertex mobility A.

7 DISCUSSION

The paper discusses a sequence of models for studying
grain growth from thermodynamically and kinetically
detailed models to coarse grained models. We have
applied temporal as well as spatial coarse graining,
leading to very different models that capture differ-
ent aspects of the system behavior. In addition to
acceleration of computationally expensive methods,
these coarse grained models offer new insights into
mechanisms at the mesoscale. There are challenging
questions in coarse graining of such system that aim
at understanding texture and grain boundary char-
acterization. This work has focused on the simplest
distribution function, and the most studied one, the
size distribution. However, the methodology applied
is general and we expect that study to pave the road to
further investigation using coarse graining ideas aim-
ing at particular distribution functions, e.g., texture
and grain boundary characterization.

References

[1] Anderson, M. P., Srolovitz, D. J., Grest, G.
S., Sahni, P. S. Computer Simulation of Grain
Growth-1. Kinetics Acta Metall., 32.5, (1984),
783-791



2]

[10]

[12]

[13]

Fradkov, V.E., M.E. Glicksman, et al Topolog-
ical Events in Two-dimensional Grain growth,
Acta Metall. Mater., 42(8), pp. 2719-2727,
1994.

Fradkov, V.E., Udler D.Two Dimensional
Normail Grain Growth: Topological Aspects,
Advances in Physics, 43(6), pp. 739-789, 1994.

Fradkov, V.E.Main Regularities of 2-D Nor-
mal Growth, Material Science Forum Vols. 94-
96, pp. 269-274, 1992.

Hassold, G. N., and Holm, E. A. A fast serial
algorithm for the finite temperature quenched
Potts model Computers in Physics, 7.1 (1993),
97-107.

Kawasaki, K., Nagai, T., and Nakashima,
K. Vertex models for two-dimensional grain
growth Phil. Mag. B, 60.3 (1989), 399-421.

Kinderlehrer, D. and Liu, C., Evolution of
grain boundaries, Math. Models and Meth.
Appl. Math., 11.4 (2001), 713-729.

Kinderlehrer D., Livshits 1., Ta’asan S., A
Variational Approach to Modeling and Simu-
lation of Grain Growth Numerical Simulation.
Preprint.

Kinderlehrer, D., Manolache, F., Livshits, I.,
Rollett, A., and Ta’asan, S., An approach
to the mesoscale simulation of grain growth,
Mat. Res. Soc. Proc. 652, (Aindow et al., eds),
2001, Y.1.5

Mullins, W.W. Solid surface morpholo-
gies governed by capillarity, Metal Surfaces:
Structure, Energetics, and Kinetics, ASM,
Cleveland, pp. 17-66, 1963.

Czubayko, U., Sursaeva, V. G., Gottstein,
G., and Shvindlerman, L. S. Influence of
triple junctions on grain boundary motion
Acta Mater., 46.16 (1998), 5863-5871

Soares, A., Ferro, A., and Fortes, M. Com-
puter Simulation of Grain Growth in a Bidi-
mensional Polycrystal Scripta Metall., 19
(1985), 1491-1496

Srolovitz, D. J., Anderson, M. P., Sahni, P.
S., and Grest, G. S. Computer Simulation
of Grain Growth-II. Grain size distribution,

topology, and local dynamics Acta Metall.,
32.5, (1984), 793-802

[14] Yu, P., and Ta’asan, S. Large Scale Limit

of Monte-Carlo Simulations of Grain Growth,
Proceedings of the Second M.I.T. Conference
on Computational Fluid and Solid Mechanics,
Cambridge, Massachusetts, 2003. To appear.

[15] Yu, P., and Ta’asan, S. Vertezx Models for

Computer Simulation of Grain Growth in 2D,
Preprint.



