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0 Overview

The fundamental theorem of algebra reveals that complex polynomials enjoy certain advantages
over real polynomials. It turns out that this is part of a more general phenomenon for differentiable
maps defined on open sets of C and taking values in complex Banach spaces. The purpose of these
notes is to give a brief introduction to the study of the special properties of these maps, which is
known as complex analysis. The reader will need some knowledge of the differential calculus of
maps between Banach spaces, the theory of power series, and the theory of the Cauchy integral of
Banach-valued functions on a compact interval (the Bochner integral will also suffice, though that’s
a bit like saying it’s okay to substitute a tank for a horse in battle). All of this can be found, for
instance, in the fantastic book of Dieudonné [2]

As a warning, the title should be taken seriously: this is meant as a crash course and not a
systematic study of complex analysis. Many (most, really) standard topics are completely ignored.
The notes grew out of a smaller set of notes delivered during the last week of the honors course
Mathematical Studies: Analysis II at Carnegie Mellon in the Spring of 2020. They are meant as
an amuse bouche preceding a more serious course in complex analysis. For the latter the author
recommends the books of Conway [1], Lang [3], and Needham [4] as well as the appropriate sections
in Dieudonné’s book [2].

In Section 1 we introduce holomorphic functions. We then define various types of special paths,
including loops, roads, and circuits (it’s a good thing this is all we need, as no one could keep straight
a theory of avenues, boulevards, lanes, parkways, etc). We then develop some homotopy theory for
these paths and record some approximation results that will be essential in our subsequent analysis.
Most importantly, we introduce a version of a complex line integral along roads.

Section 2 is an ode to the Cauchy-Goursat theorem, which roughly speaking, shows that the
integration theory of holomorphic functions along loops (paths that start and end at the same
point) is horribly boring in the sense that such integrals always vanish. However, this vanishing
has a number of truly remarkable consequences, some of which we then develop. These include
the fact that holomorphic functions are analytic and the Cauchy integral formula, which essentially
shows that a holomorphic function can be entirely reconstructed in an open set by its values on the
boundary of the set. We also develop the acme of complex integration: integration on loop chains.
Together with a brief study of loop chain homology, this then allows us to build the ultimate general
form of Cauchy-Goursat for homologous loop chains, which is incredibly useful in practice.

In Section 3 we explore some more of the implications of the incredible rigidity of holomorphic
functions. We study their zero sets and derive a number of powerful estimates. We prove the
argument principle and Rouché’s theorem and show how to use these to gain very useful information
about polynomials, such as the fact that the roots of a polynomial depend continuously on its
coefficients. We also enumerate some of the special properties of holomorphic maps from C to
(shining) C, including holomorphic versions of the inverse function and open mapping theorems.

Finally, in Section 4 we study Laurent series in annuli. This gives us a classification scheme
for isolated singularities: removable, finite order poles, and essential. We then develop the basic
theory of meromorphic functions, which are holomorphic functions away from a set of isolated poles.
We complete the notes with the residue theorem and some applications in computing interesting
integrals.

We conclude the overview with some remarks on notation used throughout the notes.

1. We write B(z, r) for open balls and B[z, r] for closed balls.

2. We write L(X, Y ) for the set of bounded linear maps between two complex Banach spaces X
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and Y . We write Ln(X;Y ) for the set of bounded n−linear maps from X to Y .

3. Let X be a Banach space and [a, b] ⊂ R be a compact interval. The Cauchy integral is built
out of the space of regulated maps,

Reg([a, b];X) = {f : [a, b]→ X | f is regulated}, (0.1)

where we say that f : [a, b] → X is regulated if it has left and right limits at each point in
[a, b]. The key fact (which we won’t prove here, but can be found for instance in [2]) is that
Reg([a, b];X) is the uniform closure of the space of step functions from [a, b] to X. On the
space of step functions, it’s a trivial matter to define the integral (form Riemann sums!), and
the resulting map is then easily shown to be Lipschitz. We can then extend the integral from
the space of step functions to its uniform closure and arrive at the Cauchy integral∫ b

a

: Reg([a, b];X)→ X, (0.2)

which is a bounded linear map satisfying all of the properties one would hope for, including
versions of the fundamental theorems of calculus. Once again, we refer to [2] for a survey
of this integral, which it seems was actually introduced by Bourbaki and just named after
Cauchy.

1 Complex calculus

We begin by surveying some of the extra structures present in the calculus of functions defined on
subsets of C.

1.1 Holomorphic functions and the Cauchy-Riemann equations

The following definition gives a new name to the concept of differentiability. This new name is
certainly not necessary, but is widely used in the literature, so we adopt the same convention here.

Definition 1.1. Let ∅ 6= U ⊆ C be open, X be a complex normed vector space, and f : U → X.
We say f is holomorphic at z ∈ U if the limit

f ′(z) = lim
w→z

f(z)− f(w)

z − w
∈ X (1.1)

exists. We say f is holomorphic if it is holomorphic at each z ∈ U , in which case we define
f (1) = f ′ : U → X. We inductively define f (k+1) = (f (k))′ as per usual, provided these exist. We
say f is smooth if f (k) : U → X exists for all k ∈ N.

Remark 1.2. Clearly, f is holomorphic at z ∈ U if and only if f is differentiable at z, and in
either case, Df(z) ∈ L(C;X) and f ′(z) ∈ X are related via

Df(z)h = hf ′(z) for h ∈ C. (1.2)

Similarly, the above notion of smooth coincides with the usual one.

Let’s consider some examples.
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Example 1.3. Let X be a complex Banach space and let x0, . . . , xn ∈ X. The complex polynomial
p : C→ X given by p(z) =

∑n
k=0 z

kxk is holomorphic, and p′(z) =
∑n

k=1 kz
k−1xk. Consequently, p′

is holomorphic, and we can iterate to deduce that p is smooth. 4

Example 1.4. Let X be a complex Banach space, z0 ∈ C, and {xn}∞n=0 ⊆ X. Assume that

R =

(
lim sup
n→∞

‖xn‖1/n
X

)−1

∈ (0,∞]. (1.3)

The maps C 3 z 7→ znxn ∈ X belong to Ln(C;X) and have operator norms equal to ‖xn‖X .
Consequently, the theory of power series guarantees that the map f : B(z0, R)→ X given by

f(z) =
∞∑
n=0

(z − z0)nxn (1.4)

is smooth. In particular, for each k ∈ N

f (k)(z) =
∞∑
n=k

n!

(n− k)!
(z − z0)n−kxn, (1.5)

where the series converges pointwise in B(z0, R) and uniformly in B[z0, S] for each 0 < S < R. 4

Example 1.5. The map f : C→ C given by f(z) = z̄ is not holomorphic. Indeed, for h = reiθ we
have

f(z + h)− f(z)

h
=
h

h
= e−2iθ, (1.6)

from which we conclude that the difference quotient can have no limit. 4

The next result builds an important bridge between holomorphic functions valued in C and
differentiable vector fields on open subsets of R2.

Theorem 1.6 (Cauchy-Riemann). Let ∅ 6= U ⊆ C be open and f : U → C. Define the open set

Ũ = {x ∈ R2 | x1 + ix2 ∈ U} (1.7)

and the vector field F : Ũ → R2 via F (x) = (Re f(x1 + ix2),Re f(x1 + ix2)). Let z ∈ U be given by
z = x1 + ix2 for x ∈ Ũ . Then the following are equivalent.

1. f is holomorphic at z.

2. F is differentiable at x and satisfies the Cauchy-Riemann equations:

∂1F1(x) = ∂2F2(x) and ∂2F1(x) = −∂1F2(x). (1.8)

Proof. We begin with the proof that first item implies the second. Suppose that f is holomorphic
at z. Note that t ∈ (−ε, ε)\{0} for ε > 0 sufficiently small, we have that

lim
t→0

f(z + t)− f(z)

t
= f ′(z) and lim

t→0

f(z + it)− f(z)

t
= i lim

t→0

f(z + it)− f(z)

it
= if ′(z). (1.9)

Then we can compute

∂1F (x) = lim
t→0

F (x+ te1)− F (x)

t
= (Re f ′(x1 + ix2), Im f ′(x1 + ix2)) (1.10)
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and

∂2F (x) = lim
t→0

F (x+ te2)− F (x)

t
= (Re if ′(x1 + ix2), Im if ′(x1 + ix2))

= (− Im f ′(x1 + ix2),Re f ′(x1 + ix2)). (1.11)

Hence
(∂1F1(x), ∂1F2(x)) = (∂2F2(x),−∂2F1(x)), (1.12)

which are the Cauchy-Riemann equations.
We now prove the converse. Let r > 0 be such that BC(z, r) ⊂ U . For h ∈ C with 0 < |h| < r

write h = η1 + iη2 ∈ C for η ∈ R2 with 0 < |η| < r. Set w = ∂1F1(x) + i∂1F2(x) ∈ C, and note that
the Cauchy-Riemann condition requires that

hw = (η1∂1F1(x)− η2∂1F2(x)) + i(η1∂1F2(x) + η2∂1F1(x))

= (η1∂1F1(x) + η2∂2F1(x)) + i(η1∂2F2(x) + η2∂2F2(x)) = ∇F1(x) · η + i∇F2(x) · η. (1.13)

Then

f(z+h)− f(z)−hw = (F1(x+ η)−F1(x)−∇F1(x) · η) + i(F2(x+ η)−F2(x)−∇F2(x) · η) (1.14)

and hence∣∣∣∣f(z + h)− f(z)

h
− w

∣∣∣∣2 =

∣∣∣∣F1(x+ η)− F1(x)−∇F1(x) · η
|η|

∣∣∣∣2
+

∣∣∣∣F2(x+ η)− F2(x)−∇F2(x) · η
|η|

∣∣∣∣2 → 0 as h→ 0. (1.15)

Thus f is holomorphic at z and f ′(z) = w.

Let’s consider an important example of how the Cauchy-Riemann equations are used to find
holomorphic maps.

Example 1.7. Consider the negative real axis N = {z ∈ C | Re z ≤ 0 and Im z = 0}, and set
U = C\N . For each z ∈ U there exists a unique 0 < r <∞ and −π < θ < π such that

z = reiθ. (1.16)

Clearly r = |z|. To compute θ conveniently we use the tangent half-angle formula

tan(θ/2) =
sin(θ)

1 + cos(θ)
=

r sin(θ)

r + r cos(θ)
=

Im z

|z|+ Re z
(1.17)

to arrive at the expression

θ = 2 arctan

(
Im z

|z|+ Re z

)
for z ∈ U. (1.18)

Now define the map L : U → C via

L(z) = log |z|+ 2i arctan

(
Im z

|z|+ Re z

)
. (1.19)
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If we define θ(z) and r(z) as above, then L satisfies

eL(z) = z for z ∈ U. (1.20)

We claim that L is holomorphic in U . To see this let Ũ = {x ∈ R2 | x1 + ix2 ∈ U} and F : Ũ → R2

via F (x) = (ReL(x1 + ix2), ImL(x1 + ix2)). Then

F1(x) = log |x| and F2(x) = 2 arctan

(
x2

|x|+ x1

)
, (1.21)

which is smooth in Ũ and satisfies

∂1F1(x) =
x1

|x|2
and ∂2F1(x) =

x2

|x|2
(1.22)

as well as

∂1F2(x) =
2

1 +
(

x2
|x|+x1

)2

(
−x2(1 + x1

|x|)

(x1 + |x|)2

)
= − 2(x1 + |x|)2

2 |x| (x1 + |x|)
· x2(x1 + |x|)
|x| (x1 + |x|)2

= − x2

|x|2
(1.23)

and

∂2F2(x) =
2

1 +
(

x2
|x|+x1

)2

(
(x1 + |x|)− x2

2/ |x|
(x1 + |x|)2

)
=

2(x1 + |x|)2

2 |x| (x1 + |x|)
· x1(x1 + |x|)
|x| (x1 + |x|)2

=
x1

|x|2
. (1.24)

Then F satisfies the Cauchy-Riemann equations in Ũ , and so L is holomorphic. 4

This suggests some notation.

Definition 1.8. Let N = {z ∈ C | Re z ≤ 0 and Im z = 0}. The holomorphic function log :
C\N → C is defined via

log(z) = log |z|+ 2i arctan

(
Im z

|z|+ Re z

)
. (1.25)

1.2 Paths, loops, roads, and circuits

We now seek to define a version of complex line integrals. We do so in a manner that allows for
functions taking values in complex Banach spaces, and for this we employ the Cauchy integral. We
begin by introducing some notation related to this integral.

Definition 1.9. Suppose a, b ∈ R with a < b and let X be a Banach space. We say that F ∈
C0([a, b];X) is a primitive if there exists f ∈ Reg([a, b];X) such that

F (x) = F (a) +

∫ x

a

f for all x ∈ [a, b]. (1.26)

From the fundamental theorems of calculus we have the following result.

Theorem 1.10. Suppose a, b ∈ R with a < b and let X be a Banach space. The following are
equivalent for F ∈ C0([a, b];X).
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1. F is a primitive.

2. F is differentiable on [a, b]\E, where E ⊂ [a, b] is countable, and F ′ = f on [a, b]\E for
f ∈ Reg([a, b];X).

In either case, F is Lipschitz.

Proof. These follow immediately from the first and second fundamental theorems of calculus.

We now introduce some refinements of the idea of paths and path connectedness.

Definition 1.11. Let ∅ 6= U ⊆ C.

1. A path in U is a continuous map γ : [a, b] → U , where a, b ∈ R and a < b. We define its
range to be the compact set ran(γ) = γ([a, b]) ⊂ U . We call γ(a) the start of γ and γ(b) the
end of γ. We say γ is a loop if γ(a) = γ(b), i.e. the start and end of γ agree.

2. If γ : [a, b]→ U is a path in U , its reversal is the path γ̌ : [a, b]→ U given by γ̌(t) = γ(a+b−t).

3. Let γi : [ai, bi] → C, i = 1, 2, be two paths in U . We say γ1 meets γ2 if γ1(b2) = γ2(a2), in
which case we define their concatenation to be the path γ1 ∨ γ2 : [a1, b1 + b2 − a2]→ U defined
by

γ1 ∨ γ2(t) =

{
γ1(t) if t ∈ [a1, b1]

γ2(t− b1 + a2) if t ∈ [b1, b1 + b2 − a2].
(1.27)

4. Two paths γi : [ai, bi] → C, i = 1, 2, are equivalent, written γ1 ∼ γ2, if there exists an
increasing bijection ϕ : [a1, b1]→ [a2, b2] such that ϕ and ϕ−1 have primitives and γ1 = γ2 ◦ϕ.
This is easily seen to be an equivalence relation.

5. A road in U is a path in U that is a primitive. A circuit in U is a loop that is a road.

Remark 1.12. Suppose γ : [a, b] → U ⊆ C is a path. Then we can define the path β : [0, 1] → U
via

β(t) = γ(a+ t(b− a)). (1.28)

Clearly β ∼ γ. As such, up to equivalence, it’s not a loss of generality to restrict our attention to
paths that are defined on the compact domain [0, 1].

The following two propositions encode some basic properties of these definitions. The first deals
with path equivalence and its relation to other ideas.

Proposition 1.13. Let ∅ 6= U ⊆ C. Let γ1 and γ2 be two paths in U such that γ1 ∼ γ2. Then the
following hold.

1. ran(γ1) = ran(γ2).

2. γ1 is a loop if and only if γ2 is a loop.

3. γ1 is a road if and only if γ2 is a road.

Proof. Exercise.

The second result deals with concatenation.
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Proposition 1.14. Let ∅ 6= U ⊆ C. Let γ1 and γ2 be two paths in U such that γ1 meets γ2. Then
following hold.

1. If γi ∼ βi for i = 1, 2, then β1 meets β2 and γ1 ∨ γ2 ∼ β1 ∨ β2.

2. If γ1 and γ2 are roads, then the path γ1 ∨ γ2 is a road.

3. If γ1 and γ2 are loops, then γ1 ∨ γ2 is a loop.

Proof. Exercise.

We will use counterclockwise circuits around circles so often that they merit some special nota-
tion.

Definition 1.15. Given z ∈ C and r > 0 we define the circuit ∂B(z, r) : [0, 1]→ C via

(∂B(z, r))(t) = z + re2πit. (1.29)

Clearly, ran(∂B(z, r)) = ∂B(z, r).

It will also be useful to introduce rectangular circuits.

Definition 1.16. Given a closed rectangle

R = {z ∈ C | a ≤ Re z ≤ a+ w and b ≤ Im z ≤ b+ h} ⊂ C (1.30)

for a, b, w, h ∈ R with w, h > 0, we define the circuit ∂R : [0, 2w + 2h]→ C via

∂R(t) =


a+ t+ ib if 0 ≤ t < w

a+ w + i(b+ t− w) if w ≤ t < w + h

a+ w − (t− w − h) + i(b+ h) if w + h ≤ t < 2w + h

a+ i(b+ l − (t− 2w − h)) if 2w + h ≤ t ≤ 2w + 2h.

(1.31)

Clearly, ran(∂R) = ∂R.

1.3 Homotopy

We now have the tools needed to introduce the idea of loop homotopy, which is a way of continuously
deforming one loop into another.

Definition 1.17. Let ∅ 6= U ⊆ C.

1. Consider γ1 and γ2 be two loops in U . We say they are (loop) homotopic if there exists a
continuous map H : [0, 1]× [0, 1]→ U such that

(a) H(·, 0) ∼ γ1 and H(·, 1) ∼ γ2,

(b) H(0, s) = H(1, s) for all s ∈ [0, 1].

2. We say that a loop γ in U is homotopic to a point z ∈ U if γ is homotopic to the trivial loop
[0, 1] 3 t 7→ z ∈ U .
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3. We say that U is simply connected if it is path connected and every loop γ in U is homotopic
to some point in U .

Some remarks are in order.

Remark 1.18. The condition H(0, s) = H(1, s) for s ∈ [0, 1] is equivalent to requiring that the
paths H(·, s) : [0, 1]→ U are loops for each s ∈ [0, 1].

Remark 1.19. In order for a path connected set U ⊆ C to be simply connected, every loop in U
has to be homotopic to a point z ∈ U . However, since U is path connected, this is equivalent to
being homotopic to any other point w ∈ U . Thus the specific choice of the point is irrelevant in
definition.

Homotopy defines an equivalence relation on the set of loops in U .

Proposition 1.20. Let ∅ 6= U ⊆ C be open. Then homotopy of loops is an equivalence relation,
i.e. if γ1, γ2, and γ3 are loops in U , then the following hold.

1. γ1 is homotopic to γ1.

2. If γ1 is homotopic to γ2, then γ2 is homotopic to γ1.

3. If γ1 is homotopic to γ2, and γ2 is homotopic to γ3, then γ1 is homotopic to γ3.

Proof. Exercise.

Let’s consider some examples.

Example 1.21. Suppose that U ⊆ C is star-shaped with respect to z ∈ U . Then U simply
connected. Indeed, let γ be a loop in U with [0, 1] as its parameterization domain. Fix z ∈ U and
define the continuous map H : [0, 1]× [0, 1]→ U via

H(t, s) = sz + (1− s)γ(t), (1.32)

which takes values in U since U is star-shaped. This is readily verified to be a homotopy, and so γ
is homotopic to the point z. The star-shaped condition also shows that U is path connected, so U
is simply connected. 4

We can push this a bit further.

Example 1.22. Suppose that U ⊆ C is star-shaped with respect to z ∈ U . Let β and γ be loops in
U with [0, 1] as their parameterization domains. Define the continuous map H : [0, 1]× [0, 1]→ U
via

H(t, s) =

{
2sz + (1− 2s)γ(t) if 0 ≤ s ≤ 1/2

2(1− s)z + 2(s− 1/2)β(t) if 1/2 ≤ s ≤ 1
(1.33)

which takes values in U since U is star-shaped. This is readily verified to be a homotopy between
γ and β. 4

Example 1.23. Every convex set C ⊆ C is star-shaped and hence simply connected. Moreover,
any pair of loops in C are homotopic. 4
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Example 1.24. Let ∅ 6= U ⊆ C and γ : [a, b]→ U be a path in U . Consider the loop γ ∨ γ̌. Then
β is homotopic to the point γ(a) in U . Indeed, the map H : [0, 1]× [0, 1]→ U given by

H(t, s) = γ(2 |1/2− t| a+ (1− 2 |1/2− t|)(sa+ (1− s)b)) (1.34)

is a homotopy from γ ∨ γ̌ to γ(a) in U . 4

It will be convenient to introduce a notion of homotopy for certain types of path as well.

Definition 1.25. Let ∅ 6= U ⊆ C and let γ1 and γ2 be two paths in U that start and end at the same
points. We say they are (path) homotopic if there exists a continuous map H : [0, 1] × [0, 1] → U
such that

1. H(·, 0) ∼ γ1 and H(·, 1) ∼ γ2,

2. H(0, s) = H(0, 0) and H(1, s) = H(1, 0) for all s ∈ [0, 1].

Remark 1.26. If γ1 and γ2 are loops that are path homotopic, then they are loop homotopic, so
there is no conflict in our definitions. However, the requirements for the path homotopy are slightly
more rigid in this case. In referring to homotopy, if we state that the two paths are loops, then we
always mean loop homotopy, and if we only state that they are paths then we mean path homotopy.

Let’s consider an example.

Example 1.27. If ∅ 6= U ⊆ C is convex, then any two paths with common start and end points
are homotopic. 4

We have the same notion of equivalence as with loop homotopy.

Proposition 1.28. Let ∅ 6= U ⊆ C be open. Then homotopy of paths with common start and end
points is an equivalence relation, i.e. if γ1, γ2, and γ3 are paths in U with the same start and end
points, then the following hold.

1. γ1 is homotopic to γ1.

2. If γ1 is homotopic to γ2, then γ2 is homotopic to γ1.

3. If γ1 is homotopic to γ2, and γ2 is homotopic to γ3, then γ1 is homotopic to γ3.

Proof. Exercise.

Our next result is an essential technical lemma that allows us to approximate general homotopies
with nicer maps.

Lemma 1.29. Let ∅ 6= U ⊆ C be open. Suppose that H : [0, 1]× [0, 1]→ U , and that either

(a) γ0 and γ1 are two loops and H is a loop homotopy of γ0 and γ1, or

(b) γ0 and γ1 are two paths with the same start and end points, and H is a path homotopy of γ0

and γ1.

Then for every ε > 0 there exists a Lipschitz map L : [0, 1]× [0, 1]→ C such that the following hold.

1. L([0, 1]2) ⊂ U , and ‖H − L‖C0
b
< ε.
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2. L(·, s) is a road for every s ∈ [0, 1], and L(t, ·) is a road for every t ∈ [0, 1]. Moreover, in case
(a) we have that L(·, s) is a circuit for every s ∈ [0, 1], and in case (b) we have that the paths
L(·, s) have the same start and end points for every s ∈ [0, 1].

3. L is a homotopy of β0 = L(·, 0) and β1 = L(·, 1) in U . Moreover, β0 is homotopic to γ0 in U
and β1 is homotopic to γ1 in U .

4. In case (a), if γ1 and γ2 are circuits, then L(·, 0) = H(·, 0) and L(·, 1) = H(·, 1). In case (b),
if γ1 and γ2 are roads, then L(·, 0) = H(·, 0) and L(·, 1) = H(·, 1).

Proof. The set H([0, 1]2) ⊂ U is compact and U c is closed, so we can choose ε0 > 0 such that

K = {z ∈ C | dist(z,H([0, 1]2)) ≤ ε0} ⊂ U. (1.35)

Let 0 < ε < ε0. Since [0, 1]2 is compact, the Stone-Weierstrass theorem provides a polynomial
P0 : [0, 1]2 → C such that

‖H − P0‖C0
b
<
ε

6
. (1.36)

Consider now case (a), i.e. γ0 and γ1 are loops, in which case H is a loop homotopy and
H(0, s) = H(1, s) for s ∈ [0, 1]. We then have that

sup
s∈[0,1]

|P0(0, s)− P0(1, s)| ≤ sup
s∈[0,1]

|P0(0, s)−H(0, s)|+ sup
s∈[0,1]

|H(1, s)− P0(1, s)| < 2ε

6
. (1.37)

Define the polynomial P : [0, 1]2 → C via

P (t, s) = P0(t, s)− t(P0(1, s)− P0(0, s)) (1.38)

and note that P (0, s) = P0(0, s) = P (1, s) for all s ∈ [0, 1]. Also,

|H(t, s)− P (t, s)| ≤ |H(t, s)− P0(t, s)|+ |P0(1, s)− P0(0, s)| , (1.39)

so

‖H − P‖C0
b
<
ε

6
+

2ε

6
=
ε

2
. (1.40)

Then P ([0, 1]2) ⊆ K ⊂ U .
When one of the γj loops fails to be a circuit we set L = P . In this case it remains only to prove

that βj is homotopic to γj for j = 0, 1. Since γ0 is homotopic to γ1 and β0 is homotopic to β1, it
suffices to prove only that β0 is homotopic to γ0. Define the continuous map η : [0, 1]× [0, 1]→ C
via

η(t, s) = sβ0(t) + (1− s)H(t, 0). (1.41)

For t, s ∈ [0, 1] we have that

|η(t, s)−H(t, 0)| = s |H(t, 0)− P (t, 0)| < ε, (1.42)

and so η([0, 1]2) ⊆ K ⊂ U . Since η(·, 0) = H(·, 0) ' γ0 and η(·, 1) = β0, we then conclude that η is
the desired homotopy.

Now suppose that γ0 and γ1 are circuits, in which case H(·, 0) and H(·, 1) are circuits as well.
Since H is uniformly continuous we can pick δ > 0 such that if tj, sj ∈ [0, 1] for j = 0, 1 and
|t0 − t1|+ |s0 − s1| < δ, then |H(t0, s0)−H(t1, s1)| < ε/4. Define χ, χ0, χ1 ∈ Reg([0, 1];R) via

χ0(s) =

{
1− 2s/δ if 0 ≤ s ≤ δ/2

0 if δ/2 < s ≤ 1,
(1.43)
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χ1(s) = χ0(1− s), and χ = 1− χ0 − χ1. Note that each of these is valued in [0, 1]. We then define
the Lipschitz map L : [0, 1]× [0, 1]→ C via

L(t, s) = χ(s)P (t, s) + χ0(s)H(t, 0) + χ1(s)H(t, 1). (1.44)

The construction of χ, χ0, and χ1 and the choice of δ allow us to estimate

‖H − L‖C0
b
≤ sup

s,t∈[0,1]

χ(s) |P (t, s)−H(s, t)|+ sup
0≤s≤δ/2

sup
t∈[0,1]

χ0(s) |H(t, 0)−H(t, s)|

+ sup
1−δ/2<s≤1

sup
t∈[0,1]

χ1(s) |H(t, 1)−H(t, s)| < ε

2
+
ε

4
+
ε

4
= ε. (1.45)

In particular, this means that L([0, 1]2) ⊆ K ⊂ U . Moreover, L(0, s) = L(1, s) and L(·, s) is
a circuit for s ∈ [0, 1], and L(t, ·) is a road for t ∈ [0, 1]. Finally, L(·, 0) = H(·, 0) ∼ γ0 and
L(·, 1) = H(·, 1) ∼ γ1, so L is a homotopy from γ0 to γ1. This completes the construction of L in
case (a).

Now consider case (b). Define P : [0, 1]× [0, 1]→ C via

L(t, s) = P0(t, s) + t(H(1, s)− P0(1, s)) + (1− t)H(0, s)− P0(0, s)). (1.46)

We may then argue as above to show that L = P satisfies all of the stated properties when γ1 or
γ2 is not a road. If both are roads, then we modify P to construct L as above. We leave it as an
exercise to check the details.

Next we consider another approximation result by rectangular roads, which we now define.

Definition 1.30. We say a road γ : [a, b]→ C is rectangular if there exist finite sets E ⊂ [a, b] and

D ⊂ {z ∈ C | Re z = 0 or Im z = 0} (1.47)

such that γ is differentiable on [a, b]\E and γ′(t) ∈ D for t ∈ [a, b]\E. In other words, rectangular
roads are piecewise-differentiable and have derivatives parallel to the real and imaginary axes.

The next technical lemma approximates general paths by rectangular roads.

Lemma 1.31. Let ∅ 6= U ⊆ C be open and γ be a path in U . Then there exists a rectangular path
β in U that is homotopic to γ in U . Moreover, if γ is a loop chain, then so is β.

Proof. Since ran(γ) is compact, we can choose ε > 0 such that

K = {z ∈ C | dist(z, ran(γ)) ≤ 2ε} ⊂ U. (1.48)

Let [a, b] be the domain of γ. Since γ is uniformly continuous we can pick δ > 0 such that
t, s ∈ [a, b] and |s− t| < δ implies |γ(s)− γ(t)| < ε. Let a = t0 < t1 < · · · < tn = b be such that
0 < tj+1 − tj < δ for 0 ≤ j ≤ n− 1. Define β : [a, b]→ C via

β(t) = γ(tj) + 2
t− tj
tj+1 − tj

Re(γ(tj+1)− γ(tj)) if tj ≤ t ≤ tj + tj+1

2
(1.49)

and

β(t) = Re(γ(tj+1)) + i Im(γ(tj)) +

(
2t− tj+1 − tj
tj+1 − tj

)
i Im(γ(tj+1)− γ(tj)) if

tj + tj+1

2
≤ t ≤ tj+1

(1.50)
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for 0 ≤ j ≤ n − 1. Clearly, β is a rectangular road with the same start and end points as γ.
Moreover, by construction, for tj ≤ t ≤ tj+1 we have that

|β(t)− γ(t)| ≤ |γ(tj)− γ(t)|+ |γ(tj+1)− γ(tj)| < 2ε, (1.51)

which in particular means that β([a, b]) ⊆ K ⊂ U .
Now define H : [0, 1]× [0, 1]→ C via

H(s, t) = sβ(t) + (1− s)γ(t). (1.52)

By the above estimate, we have that

|H(s, t)− γ(t)| ≤ s |β(t)− γ(t)| < 2ε for s, t ∈ [0, 1], (1.53)

so H is a path homotopy of γ and β in U .

1.4 Road length and road integrals

We now define the length of a road.

Definition 1.32. Let γ : [a, b]→ C be a road. We define the length of γ to be

len(γ) =

∫ b

a

|γ′| ∈ [0,∞) (1.54)

which is well-defined because |γ′| ∈ Reg([a, b];R).

The basic properties of length are recorded in the following result.

Proposition 1.33. Let ∅ 6= U ⊆ Rn. The following hold.

1. If γ1 and γ2 are two roads in U such that γ1 ∼ γ2, then len(γ1) = len(γ2).

2. If γ1 and γ2 are two roads in U such that γ1 meets γ2, then

len(γ1 ∨ γ2) = len(γ1) + len(γ2). (1.55)

3. len(γ) = len(γ̌).

Proof. Exercise.

We now have all the tools needed to define complex road integrals.

Definition 1.34. Let ∅ 6= U ⊆ C and X be a complex Banach space. Let γ : [a, b]→ U be a road
in U and f ∈ C0(ran(γ);X). We define∫

γ

f =

∫ b

a

γ′f ◦ γ ∈ X, (1.56)

which is well-defined since γ′f ◦ γ ∈ Reg([a, b];X). This induces a linear map
∫
γ

: C0(ran(γ);X)→
X. We sometimes write ∫

γ

f(z)dz =

∫
γ

f (1.57)

to emphasize the variable of integration.
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The basic properties of the integral are recorded in the following result.

Theorem 1.35. Let ∅ 6= U ⊆ C and X be a complex Banach space. Let γ be a road in U and
f ∈ C0(ran(γ);X). The following hold.

1. If β is road in U such that γ ∼ β, then ∫
γ

f =

∫
β

f. (1.58)

2. We have that ∫
γ

f = −
∫
γ̌

f. (1.59)

3. If β is a road in U that meets γ and f extends to a function f ∈ C0(ran(β)∪ ran(γ);X), then∫
β∨γ

f =

∫
β

f +

∫
γ

f. (1.60)

4. If f = gx for g ∈ C0(ran(γ);C) and x ∈ X, then∫
γ

f =

(∫
γ

g

)
x. (1.61)

5. We have the bound ∥∥∥∥∫
γ

f

∥∥∥∥
X

≤ len(γ) max
z∈ran(γ)

‖f(z)‖X . (1.62)

In particular, the map
∫
γ

: C0
b (U ;X)→ X is bounded and linear.

6. If Y is a complex Banach space and T ∈ L(X, Y ), then

T

∫
γ

f =

∫
γ

Tf. (1.63)

7. If {fn}∞n=` ⊆ C0(ran(γ), X) is such that fn → f uniformly as n→∞, then∫
γ

fn →
∫
γ

f as n→∞. (1.64)

Proof. These follow immediately from the properties of the Cauchy integral.

We also have a version of the fundamental theorem of calculus for complex road integrals.

Theorem 1.36 (FTC for complex road integrals). Let ∅ 6= U ⊆ C be open, X be a complex Banach
space, and f ∈ C1(U ;X). If γ : [a, b]→ U is a road in U , then∫

γ

f ′ = f(γ(b))− f(γ(a)). (1.65)
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Proof. By the chain rule and the second fundamental theorem of calculus we have that∫
γ

f ′ =

∫ b

a

(f ◦ γ)′ = f(γ(b))− f(γ(a)). (1.66)

Let’s consider some examples.

Example 1.37. For k ∈ N define fk : U → C via f(z) = zk. Let γ : [a, b] → U be a road in U .
Then f ′k+1 = (k + 1)fk, and so the fundamental theorem of calculus implies that∫

γ

zkdz =

∫
γ

fk =

∫
γ

f ′k+1

k + 1
=
fk+1(γ(b))− fk+1(γ(a))

k + 1
=

(γ(b))k+1 − (γ(a))k+1

k + 1
. (1.67)

In particular, if γ is a circuit, then ∫
γ

zkdz = 0. (1.68)

4

Example 1.38. Let ∅ 6= U ⊆ C and let γ be a circuit in U . Let X be a complex Banach space
and p : U → X be the polynomial p(z) =

∑n
k=0 z

kxk for x0, . . . , xn ∈ X. Then∫
γ

p =
n∑
k=0

∫
γ

zkxkdz =
n∑
k=0

(∫
γ

zkdz

)
xk = 0 (1.69)

since γ is a circuit. 4

Example 1.39. Consider the setting of Example 1.4 with f : B(z0, R)→ X defined by

f(z) =
∞∑
n=0

(z − z0)nxn. (1.70)

Define F : B(z0, R)→ X via

F (z) =
∞∑
n=0

(z − z0)n+1

n+ 1
xn. (1.71)

This is well-defined since

lim sup
n→∞

(
‖xn‖X
n+ 1

)1/n

= lim sup
n→∞

‖xn‖1/n
X , (1.72)

and in fact F is smooth and F ′ = f .
If γ : [a, b]→ C is any road in B(z0, R), then∫

γ

f = F (γ(b))− F (γ(a)). (1.73)

In particular, if γ is a circuit, then ∫
γ

f = 0. (1.74)

4
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Example 1.40. Let ∅ 6= U ⊆ C and let γ : [a, b] → C be a circuit in U . Fix k ∈ N\{1} and
z0 ∈ U\ ran(γ), and define fk : U\{z} → C via fk(z) = (z − z0)−k. Then f ′k = −kfk+1, so the
fundamental theorem of calculus implies that if k ≥ 2, then∫

γ

1

(z − z0)k
dz = 0. (1.75)

4

The above examples have only produced trivial circuit integrals. We now show that it’s possible
to get something other than 0.

Example 1.41. Let z0 ∈ C and define f : C\{z0} → C via f(z) = (z − z0)−1. It is a simple
matter to check that f is holomorphic in C\{z0}. Let r > 0 and define γ : [0, 2π] → C\{z0} via
γ(t) = z0 + reit. Then ∫

γ

f =

∫ 2π

0

ireit

γ(t)− z0

dt = i

∫ 2π

0

reit

reit
dt = 2πi. (1.76)

This shows that there is something special about the functions C\{z0} 3 z 7→ 1/(z − z0). We will
see this again. 4

2 The Cauchy-Goursat theorems and their implications

We saw in Example 1.39 that
∫
γ
f = 0 when f is a holomorphic function given by a power series

in some ball and γ is a circuit in the ball. We now aim to show that this vanishing is a much
more general phenomenon. In turn, this vanishing has some truly remarkable consequences for
holomorphic maps.

2.1 Cauchy-Goursat for circuits and roads

We begin with a key technical lemma that shows how the maps from Lemma 1.29 interact with
holomorphic functions. First we introduce some notation.

Definition 2.1. Given a cube Q = [a, a+ l]× [b, b+ l] for a, b, l ∈ R with l > 0, we define the map
ωQ ∈ Reg([0, 4l]; ∂Q) via

ωQ(t) =


(a+ t, b) if 0 ≤ t < l

(a+ l, b+ t) if l ≤ t < 2l

(a+ l − t, b+ l) if 2l ≤ t < 3l

(a, b+ l − t) if 3l ≤ t ≤ 4l.

(2.1)

We can now present the lemma.

Lemma 2.2. Let X be a complex Banach space, ∅ 6= U ⊆ C be open, and f : U → X be
holomorphic. Suppose that L : [0, 1]2 → U is Lipschitz and is such that L(·, s) is a circuit for all
s ∈ [0, 1] and L(t, ·) is a road for all t ∈ [0, 1]. Let α : [0, 4]→ U be the circuit given by α = L◦ω[0,1]2,
where ω[0,1]2 is as in Definition (2.1). Then ∫

α

f = 0. (2.2)
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Proof. Define ∫
α

f = x ∈ X. (2.3)

We claim that there exists a sequence of cubes {Qn}∞n=0 such that Qn has side length 2−n, Qn+1 ⊆
Qn ⊆ [0, 1]2, and if we write ωn = ωQn as in Definition 2.1, then

‖x‖X
4n
≤
∥∥∥∥∫

L◦ωn
f

∥∥∥∥
X

. (2.4)

To prove the claim we proceed inductively. For the base case we set Q0 = [0, 1]2 and note that
α = ω0, which means that (2.4) with n = 0 follows from (2.3). Now suppose that we have cubes
Qn ⊆ Qn−1 ⊆ Q0 such that Qm has side length 2−m and

‖x‖X
4m

≤
∥∥∥∥∫

L◦ωm
f

∥∥∥∥
X

for 0 ≤ m ≤ n. (2.5)

Write Qn,j for j ∈ {0, 1, 2, 3} for four cubes of side length 2−n−1 such that Qn =
⋃3
j=0Qn,j. By

Theorem 1.35 we have that ∫
L◦ωn

f =
3∑
j=0

∫
L◦ωQn,j

f, (2.6)

and so there must exist j ∈ {0, 1, 2, 3} such that

1

4

∥∥∥∥∫
L◦ωn

f

∥∥∥∥
X

≤

∥∥∥∥∥
∫
L◦ωQn,j

f

∥∥∥∥∥
X

. (2.7)

Setting Qn+1 = Qn,j and employing (2.5), we find that

‖x‖X
4n+1

=
1

4

‖x‖X
4n
≤

∥∥∥∥∥
∫
L◦ωQn+1

f

∥∥∥∥∥
X

, (2.8)

which is (2.5) with m = n+ 1. The claim then follows by strong induction.
Now let λ ∈ [0,∞) be the Lipschitz constant for the map L. For t, s ∈ [0, 4 · 2−n] with t 6= s we

can estimate ∣∣∣∣L(ωn(t))− L(ωn(s))

t− s

∣∣∣∣ ≤ λ

∣∣∣∣ωn(t)− ωn(s)

t− s

∣∣∣∣ (2.9)

to see that
|(L ◦ ωn)′(t)| ≤ λ |ω′n(t)| (2.10)

for the all but countably many t ∈ [0, 4 · 2−n] where L ◦ ωn is differentiable. From this estimate we
then deduce that

len(L ◦ ωn) ≤ λ len(ωn) = 4λ2−n. (2.11)

Since each Qn is compact with side length 2−n and Qn+1 ⊆ Qn, we may use the shrinking closed
set property to find z ∈ U with {z} =

⋂∞
n=0Qn. Define R : U → X via R(z) = 0 and

R(w) =
f(w)− f(z)

w − z
− f ′(z). (2.12)
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Since f is holomorphic at z we have that R is continuous, and

εn = sup
w∈Qn

‖R(w)‖X → 0 as n→∞. (2.13)

Since L ◦ ωn is a circuit, Example 1.39 shows that∫
L◦ωn

(f(z) + (w − z)f ′(z))dw = 0, (2.14)

so ∫
L◦ωn

f =

∫
L◦ωn

(w − z)R(w)dw. (2.15)

Using this, Theorem 1.35, and (2.11), we arrive at the bound∥∥∥∥∫
L◦ωn

f

∥∥∥∥
X

≤ len(L ◦ ωn)εn diam(Qn) ≤ 4λ2−nεn
√

22−n =
25/2λεn

4n
. (2.16)

We now combine (2.4) and (2.16) to see that

‖x‖X
4n
≤
∥∥∥∥∫

L◦ωn
f

∥∥∥∥
X

≤ 25/2λεn
4n

. (2.17)

Thus
‖x‖X ≤ 25/2λεn → 0 as n→∞, (2.18)

and so x = 0.

We now have all of the tools needed to show that the previously mentioned vanishing phe-
nomenon is completely general. The importance of the following theorem in complex analysis
cannot be understated: it is the essential ingredient in nearly every result to come. It would not be
unfair to call it the fundamental theorem of holomorphic functions.

Theorem 2.3 (Cauchy-Goursat, circuit version). Let ∅ 6= U ⊆ C be open, X be a complex Banach
space, and f : U → X be holomorphic. The following hold

1. If γ0 and γ1 are circuits in U that are homotopic, then∫
γ0

f =

∫
γ1

f. (2.19)

2. If γ is a circuit in U that is homotopic to a point in U , then∫
γ

f = 0. (2.20)

3. If U is simply connected and γ is a circuit in U , then∫
γ

f = 0. (2.21)
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Proof. We begin with the proof of the first item. Let H : [0, 1]2 → U be a homotopy from γ0 to γ1.
Let ε = 1 and pick L : [0, 1]2 → U as in Lemma 1.29. Let α be the circuit associated to L as in
Lemma 2.2 and note that α is the concatenation of the circuits β, ζ, τ̌ , and ζ̌, where

β = H(·, 0) ∼ γ0, ζ = L(1, ·), and τ = H(·, 1) ∼ γ1 (2.22)

Then from Lemma 2.2 and Theorem 1.35 we have that

0 =

∫
α

f =

∫
β

f +

∫
ζ

f +

∫
τ̌

f +

∫
ζ̌

f =

∫
γ0

f +

∫
ζ

f −
∫
γ1

f −
∫
ζ

f =

∫
γ0

f −
∫
γ1

f, (2.23)

and so ∫
γ0

f =

∫
γ1

f. (2.24)

This proves the first item.
We now prove the second item. Pick z ∈ U such that γ is homotopic to the constant map

β : [0, 1]→ U with β(t) = z for all t ∈ [0, 1]. Then the first item implies that∫
γ

f =

∫
β

f =

∫ 1

0

β′f ◦ β = 0. (2.25)

This proves the second item, and the third follows immediately from the second.

We also have a version of Cauchy-Goursat for roads.

Theorem 2.4 (Cauchy-Goursat, road version). Let ∅ 6= U ⊆ C be open, X be a complex Banach
space, and f : U → X be holomorphic. If γ0 and γ1 are roads in U with the same start and end
points, and γ0 and γ1 are homotopic in U , then∫

γ0

f =

∫
γ1

f. (2.26)

Proof. The proof is similar to that of the circuit version except that we use case (b) from Lemma
1.29. We leave the details as an exercise.

As a first glimpse of the power of the Cauchy-Goursat theorem, we prove a remarkable formula
known as Cauchy’s integral formula.

Theorem 2.5 (Cauchy’s integral formula, ball version). Let X be a complex Banach space, ∅ 6=
U ⊆ C be open, and B[z0, r] ⊂ U . Let ∂B(z0, r) be the circuit from Definition 1.15. If f : U → X
is holomorphic and z ∈ B(z0, r), then

f(z) =
1

2πi

∫
∂B(z0,r)

f(w)

w − z
dw. (2.27)

Proof. Fix z ∈ B(z0, r). Write γ = ∂B(z0, r). For 0 < ε ≤ 1
2
(r−|z − z0|) let γε : [0, 1]→ ∂B(z, ε) ⊂

B(z0, r) be the circuit given by γε(t) = z + εe2πit. The map Hε : [0, 1]× [0, 1]→ U\{z} given by

H(t, s) = (1− s)γ(t) + sγε(t) (2.28)
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is a homotopy of γ and γε in U\{z}. The function U\{z} 3 w 7→ f(w)/(w−z) ∈ X is holomorphic,
so the Cauchy-Goursat theorem then implies that∫

γ

f(w)

w − z
dw =

∫
γε

f(w)

w − z
dw. (2.29)

We then compute∫
γε

f(w)

w − z
dw =

(∫
γε

1

w − z
dw

)
f(z) +

∫
γε

f(w)− f(z)

w − z
dw

= 2πif(z) +

∫ 1

0

2πiεe2πitf(z + εe2πit)− f(z)

εe2πt
dw

= 2πif(z) + 2πi

∫ 1

0

[f(z + εe2πit)− f(z)]dw. (2.30)

Hence, by the continuity of f at z,∫
γ

f(w)

w − z
dw = lim

ε→0

∫
γε

f(w)

w − z
dw = 2πif(z). (2.31)

Cauchy’s integral formula shows just how special holomorphic functions are. Indeed, the formula

f(z) =
1

2πi

∫
∂B(z0,r)

f(w)

w − z
dw for z ∈ B(z0, r) (2.32)

shows that the values of f in the entirety of the ball B[z0, r] are encoded in the values on the circle
∂B(z0, r). This shows a first glimpse of the rigidity of holomorphic functions: it is not possible to
modify f in the interior of the ball without simultaneously changing the values on the boundary,
and vice-versa.

2.2 Analyticity

We now recall the definition of analytic functions from open sets of C to complex Banach spaces.

Definition 2.6. Let X be a complex Banach space, ∅ 6= U ⊆ C be open, and f : U → X be smooth.
We say f is analytic if for each z0 ∈ U there exists R > 0 with B(z0, R) ⊆ U such that f can be
written as a power series with radius of convergence r ≥ R.

Obviously, analytic functions are holomorphic. Remarkably, holomorphic functions are also
analytic.

Theorem 2.7. Let X be a complex Banach space, ∅ 6= U ⊆ C be open, and f : U → X. Then f
is holomorphic if and only if f is analytic. In either case, if B[z0, r] ⊂ Ω, then

lim sup
n→∞

(∥∥f (n)(z0)
∥∥
X

n!

)1/n

≤ 1

r
. (2.33)
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Proof. If f is analytic, then it is trivially holomorphic. Suppose, then, that f is holomorphic. Fix
z0 ∈ U and r > 0 such that B[z0, r] ⊂ U . Define the circuit ∂B(z0, r) from Definition 1.15. For
z ∈ B(z0, r) we set 0 < δ(z) = |z − z0| /r < 1 and note that for w ∈ ∂B(z0, r)∣∣∣∣ z − z0

w − z0

∣∣∣∣ =
|z − z0|

r
= δ(z) < 1, (2.34)

which allows us to write

1

w − z
=

1

w − z0 − (z − z0)
=

1

w − z0

1

1− (z − z0)/(w − z0)

=
1

w − z0

∞∑
n=0

(z − z0)n

(w − z0)n
=
∞∑
n=0

(z − z0)n

(w − z0)1+n
. (2.35)

Here the series converges uniformly on ∂B(z0, r) since δ(z) < 1. Using this and Theorem 1.35 we
can then compute

2πif(z) =

∫
∂B(z0,r)

f(w)

w − z
dw =

∞∑
n=0

∫
∂B(z0,r)

(z − z0)n

(w − z0)1+n
f(w)dw

=
∞∑
n=0

(z − z0)n
∫
∂B(z0,r)

f(w)

(w − z0)1+n
f(w)dw. (2.36)

For n ∈ N set

xn =
1

2πi

∫
∂B(z0,r)

f(w)

(w − z0)1+n
f(w)dw ∈ X (2.37)

and note that Theorem 1.35 provides the estimate

‖xn‖X ≤
2πr

2πr1+n
max

w∈∂B(z0,r)
‖f(w)‖X = r−n max

w∈∂B(z0,r)
‖f(w)‖X . (2.38)

Hence

lim sup
n→∞

‖xn‖1/n
X ≤ 1/r and r ≤

(
lim sup
n→∞

‖xn‖1/n
X

)−1

. (2.39)

We deduce from these that

f(z) =
∞∑
n=0

(z − z0)nxn (2.40)

and that this power series converges pointwise in B(z0, r) and uniformly absolutely in B[z0, s] for
s < r. Since z0 ∈ U was arbitrary we deduce that f is analytic. Finally, we have that

1

n!
f (n)(z0) = xn, (2.41)

so (2.33) follows from (2.39).

Remark 2.8. The estimate (2.33) shows that if a ball B[z0, r] is contained in U , then we have the
power series expansion

f(z) =
∞∑
n=0

(z − z0)n

n!
f (n)(z0) for z ∈ B(z0, r) (2.42)

with absolute converge in B(z0, s) for every 0 < s < r. This estimate for the radius of convergence
is often useful.
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This is another massive difference between complex differentiability and real differentiability.
Indeed, the existence of one complex derivative is enough to guarantee that all derivatives exist and
that power series expansions converge. In particular, this means that there is no reason to introduce
the Ck(U ;X) spaces when ∅ 6= U ⊆ C is open, X is a complex Banach space, and 1 ≤ k <∞ since
they all coincide with D1(U ;X), the space of differentiable (holomorphic) maps.

2.3 Holomorphic path integrals

Our construction of the road integral requires that we integrate on roads. Using Cauchy-Goursat, we
now aim to extend the definition of the integral to all paths, provided the integrand is holomorphic
in an open set containing the path. This might seem a somewhat strange goal, as it’s not clear how
to define such an integral without being able to differentiate the path. We will accomplish this with
the use of homotopy. We begin with a technical lemma.

Lemma 2.9. Let γ be a path in C and U ⊆ C be an open set such that ran(γ) ⊆ U . Then the
following hold.

1. There exists a road β in U with the same start and end points as γ such that β and γ are
homotopic in U .

2. Suppose that X is a complex Banach space and f : U → X is holomorphic. If β1 and β2 are
two roads in U with the same start and end points as γ, both homotopic to γ in U , then∫

β1

f =

∫
β2

f. (2.43)

Proof. The first item follows from Lemma 1.29. To prove the second we note that by the transitivity
of homotopy, β1 and β2 are homotopic. The stated identity then follows directly from Cauchy-
Goursat.

The lemma allows us to define path integrals of holomorphic functions.

Definition 2.10. Let ∅ 6= U ⊆ C be open, X be a complex Banach space, and f : U → X be
holomorphic. If γ is a path in U , then we define∫

γ

f =

∫
β

f ∈ X, (2.44)

where β is any road in U , with the same start and end points as γ, that is homotopic to γ. This is
well-defined by Lemma 2.9. We call this the integral of f on the path γ.

It may appear at first glance that the integral defined above depends on the choice of the open
set U . Our next result shows that this is not the case

Lemma 2.11. Let X be a complex Banach space and γ be a path in C. Suppose that U, V ⊆ C are
open sets such that ran(γ) ⊂ U ∩ V . Write∫ U∩V

γ

,

∫ U

γ

, and

∫ V

γ

(2.45)
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for the integrals defined above, relative to the open sets U ∩V , U , and V , respectively. Suppose that
f : U ∩ V → X, g : U → X, and h : V → X are holomorphic and f = g = h on U ∩ V . Then∫ U∩V

γ

f =

∫ U

γ

g =

∫ V

γ

h. (2.46)

Proof. Since γ is a path in U ∩V we can pick a road β in U ∩V with the same start and end points
as γ that is homotopic to γ in U ∩ V , in which case∫ U∩V

γ

f =

∫
β

f. (2.47)

On the other hand, β is homotopic to γ in both U and V , so∫ U

γ

g =

∫
β

g =

∫
β

f and

∫ V

γ

h =

∫
β

h =

∫
β

f. (2.48)

The next result shows that the properties of the road integral carry over to the holomorphic
path integral.

Theorem 2.12. Let ∅ 6= U ⊆ C and X be a complex Banach space. Let γ be a path in U and
f : U → X be holomorphic. The following hold.

1. If β is path in U such that γ ∼ β, then ∫
γ

f =

∫
β

f. (2.49)

2. We have that ∫
γ

f = −
∫
γ̌

f. (2.50)

3. If g : U → X is holomorphic and a, b ∈ C, then∫
γ

(af + bg) = a

∫
γ

f + b

∫
γ

g. (2.51)

4. (Cauchy-Goursat for loops) Suppose γ is a loop. If β is a loop in U that is homotopic to γ,
then ∫

γ

f =

∫
β

f. (2.52)

If γ is homotopic to a point in U , then ∫
γ

f = 0. (2.53)

Moreover, if U is simply connected, then ∫
γ

f = 0. (2.54)
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5. (Cauchy-Goursat for paths) If β is a path in U that has the same start and end points as γ
and is homotopic to γ in U , then ∫

γ

f =

∫
β

f. (2.55)

6. If f = gx for g : U → C holomorphic and x ∈ X, then∫
γ

f =

(∫
γ

g

)
x. (2.56)

7. If Y is a complex Banach space and T ∈ L(X;Y ), then

T

∫
γ

f =

∫
γ

Tf. (2.57)

Proof. Exercise.

2.4 Loop indices

Next we need the idea of the index of a loop.

Lemma 2.13. Let γ be a loop in C. Define the map ind(γ, ·) : C\ ran(γ)→ C via

ind(γ, z) =
1

2πi

∫
γ

dw

w − z
, (2.58)

which is well-defined since γ is a loop in C\{z}, where the integrand is holomorphic. Then the
following hold.

1. ind(γ, ·) is continuous.

2. ind(γ, z) ∈ Z for each z ∈ C\ ran(γ).

3. ind(γ, ·) is constant on each connected component of C\ ran(γ).

Proof. Fix z ∈ C\ ran(γ). It suffices to prove the first two items under the assumption that γ is a
circuit in C\{z}. Assume this.

Set δ = dist(z, ran(γ)) > 0. For h ∈ C and |h| < δ/2 we have that dist(z + h, ran(γ)) > 0, so
z + h ∈ C\ ran(γ). In turn this allows us to estimate

|w − z − h| ≥ |w − z| − |h| ≥ δ − |h| ≥ δ

2
(2.59)

for all w ∈ ran(γ), and hence

|ind(γ, z + h)− ind(γ, z)| = 1

2π

∣∣∣∣∫
γ

(
1

w − z − h
− 1

w − z

)
dw

∣∣∣∣
=

1

2π

∣∣∣∣∫
γ

(
h

(w − z − h)(w − z)

)
dw

∣∣∣∣ ≤ |h| len(γ)

2π
sup

w∈ran(γ)

1

|w − z − h| |w − z|
≤ |h| len(γ)

πδ2
(2.60)

from which we deduce that ind(γ, ·) is continuous at z. The first item is proved.
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We now prove the second item. Let [a, b] be the domain of γ and define g : [a, b]→ C via

g(t) =

∫ t

a

γ′

γ − z0

. (2.61)

This is well-defined because z0 /∈ ran(γ), so the integrand is regulated. The first fundamental theo-
rem of calculus shows that g is Lipschitz on [a, b] and differentiable on (a, b)\E for some countable
set E with g′(t) = γ′(t)/(γ(t)− z0) for these t. Then the function h : [a, b]→ C defined by

h(t) = e−g(t)(γ(t)− z0) (2.62)

is continuous and differentiable outside a countable set with

h′(t) = e−g(t) (−g′(t)(γ(t)− z0) + γ′(t)) = 0 (2.63)

for points of differentiability t. Then h(t) = h(a) = γ(a)− z0 for all t ∈ [a, b], which means that

eg(t) =
γ(t)− z0

γ(a)− z0

for all t ∈ [a, b]. (2.64)

In particular,

exp

(∫
γ

dz

z − z0

)
= exp

(∫ b

a

γ′

γ − z0

)
= eg(b) =

γ(b)− z0

γ(a)− z0

= 1 (2.65)

since γ is a loop. In turn this implies that∫
γ

dz

z − z0

= 2πin for some n ∈ Z, (2.66)

and the second item is proved.
The third item follows from the first two since the set U\ ran(γ) is open and so its connected

components are the same as the path connected components.

This suggests some notation.

Definition 2.14. For any loop γ in C and z ∈ C\ ran(γ) we define the index of γ relative to z to
be

ind(γ, z) =
1

2πi

∫
γ

dw

w − z
∈ Z. (2.67)

If γ is a loop, we say a point z ∈ C is enclosed by γ if ind(γ, z) 6= 0. We say a loop γ is counter-
clockwise simple if ind(γ, z) ∈ {0, 1} for all z ∈ C\ ran(γ).

The index is sometimes called the winding number. This terminology is justified by the following
example.

Example 2.15. For m ∈ Z\{0} set γm : [0, 1]→ C via γm(t) = z0 + re2πimt for some fixed z0 ∈ C
and r > 0. Then for z ∈ B(z0, r) we have

ind(γ, z) = ind(γ, z0) =
1

2πi

∫ 1

0

2πimre2πimt

z0 + re2πimt − z0

dt = m. (2.68)
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On the other hand, for z ∈ B[z0, r]
c we have

ind(γ, z) = ind(γ, z0 + 2r) = m

∫ 1

0

e2πimt

e2πimt − 2
dt = −m

∫ 1

0

e2πimt

2

1

1− e2πimt/2
dt

= −m
∫ 1

0

∞∑
n=0

(
e2πimt

2

)n+1

dt = −m
∞∑
n=1

1

2n

∫ 1

0

e2πimntdt = 0, (2.69)

where here uniform convergence justifies pulling the sum out of the integral. Thus, the index is
counting the number of times γ winds around the point z.

4

Our next result records some basic properties of the index.

Proposition 2.16. Let z ∈ C and γ1 and γ2 be loops in C\{z}. Then the following hold.

1. ind(γ̌1, z) = − ind(γ1, z).

2. If γ1 meets γ2, then ind(γ1 ∨ γ2, z) = ind(γ1, z) + ind(γ2, z).

3. If γ1 and γ2 are homotopic in C\{z}, then ind(γ1, z) = ind(γ2, z).

4. If ran(γ) ⊂ B[z0, R] and |z − z0| > R, then ind(γ, z) = 0.

Proof. The first two items follow from Theorem 2.12. For the third item we note that since C\{z} 3
w 7→ (w−z)−1 ∈ C is holomorphic, the result follows immediately from the Cauchy-Goursat theorem
applied in C\{z}.

Now suppose that ran(γ) ⊂ B[z0, R] and |z − z0| > R. Write [a, b] for the domain of γ. Then
the continuous map H : [0, 1]× [0, 1]→ C given by

H(t, s) = sγ(a+ t(b− a)) + (1− s)(z0 +Re2πit) (2.70)

is continuous and satisfies

|H(t, s)− z0| ≤ s |γ(a+ t(b− a))− z0|+ (1− s)
∣∣Re2πit

∣∣ ≤ sR + (1− s)R = R, (2.71)

so H is a homotopy in C\{z} between γ and the circuit ∂B(z0, r) given in Definition 1.15. The
third item and Example 2.15 then imply that

ind(γ, z) = ind(∂B(z0, r), z) = 0. (2.72)

This proves the fourth item.

2.5 Chains, homology, and the general form of Cauchy-Goursat

With the notion of loop indices in hand, we now aim to prove an even stronger version of Cauchy-
Goursat. We begin by introducing the concept of path and loop chains. In the following definition,
given a set X 6= ∅, we write

Ffin(X;Z) = {f : X → Z | f−1(Z\{0}) is finite} (2.73)

for the set of functions from X to Z with finite support. For f ∈ Ffin(X;Z) we write

spt(f) = {x ∈ X | f(x) 6= 0}. (2.74)
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We endow this set with the algebraic structure known as a Z−module: if f, g ∈ Ffin(X;Z) and
a, b ∈ Z, then af + bg ∈ Ffin(X;Z) is defined by

(af + bg)(x) = af(x) + bg(x) ∈ Z for x ∈ X. (2.75)

We are now ready to make the definition.

Definition 2.17. Let ∅ 6= U ⊆ C be open.

1. Let P (U) denote the set of paths in U and L(U) ⊂ P (U) denote the set of loops in U .

2. A path chain is an element of Ffin(P (U);Z). A loop chain is an element of Ffin(L(U);Z) ⊂
Ffin(P (U);Z).

3. We define the range of a path chain γ to be the set

ran(γ) =
⋃

β∈spt(γ)

ran(β) ⊂ U. (2.76)

4. We write path chains γ as
γ = m1β1 + · · ·+mnβn, (2.77)

for spt(γ) ⊆ {β1, . . . , βn} and mj = γ(βj) for 1 ≤ j ≤ n. In other words, rather than write
path chains as functions, we write them as formal linear combinations of paths with integer
coefficients corresponding to the value of the path chain on that path. The path chain 0 is the
unique path chain taking only the value 0 ∈ Z, which we will also write as

0 = 0β1 + · · · 0βn (2.78)

for any finite number of paths β1, . . . , βn ∈ P (U).

5. Addition and multiplication by Z for path chains is written similarly: if γ =
∑J

j=1mjγj and

β =
∑J

j=1 njγj, then for b, c ∈ Z,

bβ + cγ =
J∑
j=1

(bnj + cmj)γj. (2.79)

6. If X is a complex Banach space, f : U → X is holomorphic, and γ =
∑J

j=1 njγj is a path
chain, we define ∫

γ

f =
J∑
j=1

nj

∫
γj

f ∈ X. (2.80)

Our next result records the basic properties of the chain integral.

Theorem 2.18. Let ∅ 6= U ⊆ C be open, X be a complex Banach space, and f : U → X be
holomorphic. Let γ be a path chain in U .

1. If β is a path chain in U , then ∫
γ+β

f =

∫
γ

f +

∫
β

f. (2.81)
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2. We have that ∫
0

f = 0 (2.82)

and ∫
−γ
f = −

∫
γ

f. (2.83)

3. If g : U → X is holomorphic and a, b ∈ C, then∫
γ

(af + bg) = a

∫
γ

f + b

∫
γ

g. (2.84)

4. If f = gx for g : U → C holomorphic and x ∈ X, then∫
γ

f =

(∫
γ

g

)
x. (2.85)

5. If Y is a complex Banach space and T ∈ L(X;Y ), then

T

∫
γ

f =

∫
γ

Tf. (2.86)

Proof. Exercise.

We now define loop chain indices in the obvious way. Note that the following definition is the
principal reason we use coefficients Z in the definition of path chains rather than the more natural
choice of C.

Definition 2.19. Let γ be a loop chain in C. We define ind(γ, ·) : C\ ran(γ)→ Z via

ind(γ, z) =
1

2πi

∫
γ

dw

w − z
. (2.87)

This general version of the index inherits the same basic properties of the loop version.

Proposition 2.20. Let γ be a loop chain in C. Then the following hold.

1. If γ =
∑J

j=1 njβj, where nj ∈ Z and βj is a loop chain for 1 ≤ j ≤ J , then

ind(γ, z) =
J∑
j=1

nj ind(βj, z) for z ∈ C\
J⋃
j=1

ran(βj). (2.88)

2. ind(γ, ·) is constant on each connected component of C\ ran(γ).

3. If ran(γ) ⊂ B[z0, R] and |z − z0| > r, then ind(γ, z) = 0.

Proof. These follow immediately from Proposition 2.16 and Theorem 2.18.

Our aim in introducing the path chain integral is to prove a version of Cauchy-Goursat for this
new general integral. Along the way it is convenient to give a name to the property we want to
investigate.
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Definition 2.21. Let ∅ 6= U ⊆ C be open. We say that two path chains β and γ in U are Cauchy-
Goursat equivalent if for every complex Banach space X and every holomorphic map f : U → X
we have that ∫

β

f =

∫
γ

f. (2.89)

Employing our previous work, we have two very simple sufficient conditions for Cauchy-Goursat
equivalence.

Proposition 2.22. Let ∅ 6= U ⊆ C be open and suppose that β =
∑J

j=1mjβj and γ =
∑J

j=1 njγj
are path chains in U .

1. If for each 1 ≤ j ≤ J we have that either nj = mj and γj ∼ βj or else nj = −mj and γj ∼ β̌j,
then then γ and β are Cauchy-Goursat equivalent.

2. If for each 1 ≤ j ≤ J we have that either nj = mj and γj is homotopic to βj in U or else
nj = −mj and γj is homotopic to β̌j in U , then γ and β are Cauchy-Goursat equivalent.

Proof. These follow from immediately from Theorem 2.12.

Next we seek to find a necessary condition for the Cauchy-Goursat equivalence in the case of
loop chains.

Proposition 2.23. Let ∅ 6= U ⊆ C be open and suppose that β and γ are Cauchy-Goursat equiv-
alent loop chains in U . Then

ind(β, z) = ind(γ, z) for each z ∈ U c. (2.90)

Proof. For each z ∈ U c the function fz : U → C given by fz(w) = (2πi(w − z))−1 is holomorphic.
Thus

ind(β, z) =

∫
β

fz =

∫
γ

fz = ind(γ, z). (2.91)

We now give this necessary condition a name.

Definition 2.24. Let ∅ 6= U ⊆ C be open.

1. We say two loop chains γ and β in U are homologous in U if

ind(γ, z) = ind(β, z) for all z ∈ U c. (2.92)

2. We say a loop chain γ in U is homologous to zero in U if γ is homologous to the chain loop
0, i.e.

ind(γ, z) = 0 for all z ∈ U c. (2.93)

Remark 2.25. Homology induces an equivalence relation on the set of loop chains in U .

If two loops are homotopic, then they are homologous.

Proposition 2.26. Let ∅ 6= U ⊆ C be open. If γ and β are homotopic loops in U , then γ and β
are homologous.
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Proof. If z ∈ U c, then γ and β are homotopic in C\{z}. Proposition 2.16 then shows that ind(γ, z) =
ind(β, z).

However, the converse fails, so homology is weaker than homotopy.

Example 2.27. Let U = C\{−i, i}. Define α, β : [0, 1] → U via α(t) = i − ie2πit and β(t) =
−i + ie2πit. Then the circuit γ = α ∨ β ∨ α̌ ∨ β̌ is homologous to zero in U . However, it can be
shown, using the tools of algebraic topology, that the circuit is not homotopic to a point in U . 4

Example 2.28. The circuit 3∂B(0, 10) is homologous to the loop chain −∂B(1, 2) + 5∂B(i, 2) −
∂B(−1, 2) in B(0, 20)\{0}. 4

Example 2.29. The circuit −2000∂B(0, 10) is homologous to the loop chain

100∂B(1, 2)− 5∂B(i, 2) + 10∂B(−1, 2) (2.94)

in B(0, 20) since B(0, 20) is convex. 4

Next we establish two technical lemmas. The first concerns approximation by rectangular path
chains, which we now define.

Definition 2.30. We say a path chain γ is rectangular if γ =
∑J

j=1 njγj, where γj is a rectangular
road for 1 ≤ j ≤ J , as defined in Definition 1.30.

We now state our first technical lemma.

Lemma 2.31. Let ∅ 6= U ⊆ C be open and γ be a path chain in U . Then there exists a rectangular
path chain β in U that is Cauchy-Goursat equivalent to γ. Moreover, if γ is a loop chain, then so
is β.

Proof. Lemma 1.31 shows that if γ is a path in U , then there exists a rectangular road β with the
same start and end points, such that γ and β are homotopic in U . Thus Cauchy-Goursat for paths
implies that β and γ are Cauchy-Goursat equivalent. This proves the result when γ is a path.

Now suppose that γ =
∑J

j=1 njγj, where γj is a path in U . Applying the above, we produce

a rectangular road βj in U that is Cauchy-Goursat equivalent to γj. Then β =
∑J

j=1 njβj is a
rectangular path chain that is Cauchy-Goursat equivalent to γ. Moreover, the construction shows
that if γ is a loop chain, then so is β.

The second technical lemma establishes a connection between rectangular loop chains and linear
combinations of rectangular boundary circuits, as defined in Definition 1.16.

Lemma 2.32. Let ∅ 6= U ⊆ C be open and γ be a rectangular loop chain in U that is homologous
to zero in U . Then there exist nondegenerate rectangles R1, . . . , Rn ⊂ C and m1, . . . ,mn ∈ Z such
that γ is Cauchy-Goursat equivalent to the loop chain

∑n
j=1mj∂Rj, where ∂Rj is the circuit defined

in Definition 1.16 and Rj ⊂ U if mj 6= 0.

Proof. Since γ is a rectangular loop chain, Proposition 2.22 clearly shows that it is Cauchy-Goursat
equivalent to a rectangular path chain of the form

γ′ =

j∑
j=1

mjhj +
K∑
k=1

nkvk, (2.95)
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where hj, vk : [0, 1] → C via hj(t) = aj + tλj and vk(t) = bk + itµk for {a1, . . . , aJ , b1, . . . , bK} ⊂ C
and {λ1, . . . , λJ , µ1, . . . , µK} ⊂ (0,∞). Proposition 2.23 shows that γ′ is also homologous to zero.

Let r > 0 be such that ran(γ) ⊂ B[0, r/2] and define the cube

Q = {z ∈ C | − r ≤ Re(z) ≤ r and − r ≤ Im(z) ≤ r}. (2.96)

The horizontal lines aj + λjR and vertical lines bk + µkR form a grid partition on Q. Call the
resulting grid of nondegenerate rectangles {R1, . . . , RM}. Increasing to J ′ ≥ J and K ′ ≥ K if
necessary, we may assume that all of the horizontal and vertical line segments forming this grid are
given by hj for 1 ≤ j ≤ J ′ and vk for 1 ≤ k ≤ K ′ of the same form as above. Consequently, we may
again use Proposition 2.22 to see that each circuit ∂Rm from Definition 1.16 is Cauchy-Goursat
equivalent to a sum

ρm = hj + vk − hj′ − vk′ for j, j′ ∈ {1, . . . , J ′} and k, k′ ∈ {1, . . . , K ′}. (2.97)

Write Σ = {hj}J
′
j=1 ∪ {vk}K

′

k=1, let zm ∈ R◦m denote the center of the rectangle Rm, and set

W = {1 ≤ m ≤M | ind(γ, zm) 6= 0}. (2.98)

Consider m ∈ W . Suppose, by way of contradiction, that there exists z ∈ Rm ∩ U c. Since Rk

is convex, z and zm lie in the same connected component of C\ ran(γ), so ind(γ, z) = ind(γ, zm).
Since γ is homologous to zero, ind(γ, z) = 0, contradicting the inclusion m ∈ W . Thus Rm ⊂ U for
each m ∈ W .

Now define the loop chain

β =
M∑
m=1

ind(γ, zm)∂Rm (2.99)

and the Cauchy-Goursat equivalent path chain

β′ =
M∑
m=1

ind(γ, zm)ρm. (2.100)

Suppose, by way of contradiction, that γ′ 6= β′. Note that spt(β′), spt(γ′) ⊆ Σ, and so spt(γ′−β′) ⊆
Σ. We may then select σ ∈ Σ and m ∈ Z\{0} such that (γ′ − β′)(σ) = m (where here we view
γ′ − β′ as a function from Σ to Z). Pick 1 ≤ µ ≤ M such that σ is one of the terms appearing in
ρµ and consider the loop chain

δ = γ − β −m∂Rµ. (2.101)

If σ belongs to both Rµ and Rλ for λ 6= µ, let z∗ = zλ. Otherwise select z∗ ∈ C to be any point on
the opposite side of σ, lying outside the cube Q, on a common line with zµ.

For z /∈ ran(δ) we can compute

2πi ind(δ, z) =

∫
γ−β

dw

w − z
−m

∫
∂Rµ

dw

w − z
=

∫
γ′−β′−mσ

dw

w − z
−m

∫
ρµ−σ

dw

w − z
. (2.102)

For z ∈ σ((0, 1)) ⊂ ran(σ) we have that z /∈ ran(γ′−β′−mσ)∪ ran(ρµ−σ), so we can use the latter
expression and continuity to see that ind(δ, ·) may be extended continuously to ran(δ) ∪ σ((0, 1)).
Consequently,

ind(δ, zµ) = ind(δ, z∗). (2.103)
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If z∗ = zλ, then

−m = ind(γ, zµ)−
m∑
m=1

ind(γ, zm) ind(∂Rm, zµ)−m ind(∂Rµ, zµ) = ind(δ, zµ) = ind(δ, zλ)

= ind(γ, zλ)−
m∑
m=1

ind(γ, zm) ind(∂Rm, zλ)−m ind(∂Rµ, zλ) = 0, (2.104)

while if z∗ lies outside Q, then

−m = ind(δ, zµ) = ind(δ, z∗) = ind(γ, z∗) = 0 (2.105)

due to Proposition 2.20 and the fact that |z∗| > r/2. This contradicts the fact that m 6= 0, and
so we deduce that γ′ = β′, which in turn means that γ is Cauchy-Goursat equivalent to β. To
conclude, we write

β =
M∑
m=1

ind(γ, zm)∂Rm =
∑
m∈W

ind(γm, zm)∂Rm, (2.106)

and note that Rm ⊂ U if m ∈ W .

With the previous two technical lemmas in hand, we are now ready to prove the most general
version of the Cauchy-Goursat theorem, which shows that the Cauchy-Goursat equivalence of two
loop chains is the same as the chains being homologous. In other words, the necessary condition
identified in Proposition 2.23 is also sufficient.

Theorem 2.33 (Cauchy-Goursat for loop chains). Let ∅ 6= U ⊆ C be open and suppose that β
and γ are loop chains in U . Then β and γ are homologous if and only if they are Cauchy-Goursat
equivalent.

Proof. Suppose that β and γ are homologous. According to Lemma 2.31, we can choose rectangular
loop chains β′ and γ′ such that β is Cauchy-Goursat equivalent to β′ and γ is Cauchy-Goursat
equivalent to γ′. Consider the rectangular loop chain α = γ′ − β′. Proposition 2.23 shows that
ind(α, z) = 0 for every z ∈ U c, i.e. α is homologous to zero in U . Using Lemma 2.32, we then
find nondegenerate rectangles R1, . . . , Rn ⊂ U and m1, . . . ,mn ∈ Z such that α is Cauchy-Goursat
equivalent to the loop chain

∑n
j=1mj∂Rj (if the lemma produces the 0 chain then we pick the

rectangles arbitrarily and set each mj = 0). If X is a complex Banach space and f : U → X is
holomorphic, then

mj

∫
∂Rj

f = 0 for each 1 ≤ j ≤ J (2.107)

by Cauchy-Goursat for circuits. Hence,∫
γ

f −
∫
β

f =

∫
γ′
f −

∫
β′
f =

∫
α

f =
J∑
j=1

mj

∫
∂Rj

f = 0, (2.108)

and we deduce that β and γ are Cauchy-Goursat equivalent. Proposition 2.23 shows that the
converse also holds.

Remark 2.34. In particular, this general form of Cauchy-Goursat shows that if γ is homologous
to zero in U , then ∫

γ

f = 0 (2.109)

for every holomorphic f : U → X, where X is a complex Banach space.
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2.6 The general Cauchy integral formula

We are now in a position to prove the general form of Cauchy’s integral formula.

Theorem 2.35 (Cauchy’s integral formula, general version). Let X be a complex Banach space and
∅ 6= U ⊆ C be open. Let γ be a loop chain in U that is homologous to zero in U . If f : U → X is
holomorphic, z ∈ U\ ran(γ), and n ∈ N, then

ind(γ, z)f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw. (2.110)

Proof. Fix z ∈ U\ ran(γ) and define F : U → X via

F (w) =
1

(w − z)n+1

(
f(w)−

n∑
m=0

(w − z)m

m!
f (m)(z)

)
(2.111)

for w 6= z and

F (z) =
f (n+1)(z)

(n+ 1)!
. (2.112)

Clearly, F is holomorphic in U\{z}. We claim that F is also holomorphic at z.
To prove the claim we use the fact that f is analytic to write

f(w) =
∞∑
m=0

(w − z)m

m!
f (m)(z) (2.113)

for w ∈ B(z, r) ⊂ U . Then

F (w)− F (z) =
1

(w − z)n+1

∞∑
m=n+1

(w − z)m

m!
f (m)(z)− f (n+1)(z)

(n+ 1)!
=

∞∑
m=n+2

(w − z)m−n−1

m!
f (m)(z),

(2.114)
where the latter series continues to converge in B(z, r). Thus

lim
w→z

F (w)− F (z)

w − z
=
f (n+2)(z)

(n+ 2)!
, (2.115)

which proves the claim.
Since γ is homologous to zero, we may apply Cauchy-Goursat to F to see that

0 =

∫
γ

F =

∫
γ

f(w)

(w − z)1+n
dw −

n∑
m=0

1

m!

(∫
γ

(w − z)m−n−1dw

)
f (m)(z). (2.116)

Rearranging and employing the calculations from Example 1.40, we then find that∫
γ

f(w)

(w − z)1+n
dw =

∫
γ

f(w)

(w − z)1+n
dw =

n∑
m=0

1

m!

(∫
β

(w − z)m−n−1dw

)
f (m)(z)

=
1

n!

(∫
γ

dw

w − z

)
f (n)(z) =

2πi ind(γ, z)

n!
f (n)(z). (2.117)

This is the desired formula.
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This form of Cauchy’s integral formula shows that not only can f be recovered from its values
on a loop chain homologous to zero, but the values of its derivatives can be recovered as well.
Moreover, if we formally differentiate the formula

ind(γ, z)f(z) =
1

2πi

∫
γ

f(w)

w − z
dw. (2.118)

n times in z by differentiating under the integral, we arrive at the stated form of the integral formula.

3 Rigidity of holomorphic functions

We have seen above some of the first glimpses of the extreme rigidity of holomorphic maps. We
now turn our attention to a deeper study of this rigidity.

3.1 Zeros

We begin by studying the zeros of holomorphic functions. Our first result is a restatement of a
general fact about analytic functions that we saw before.

Lemma 3.1. Let ∅ 6= U ⊆ C be open and connected, X be a complex Banach space, and f : U → X
be holomorphic. If z ∈ U is such that f (n)(z) = 0 for all n ∈ N, then f = 0 in U .

Proof. Define the set
E = {w ∈ U | f (n)(w) = 0 for all n ∈ N}. (3.1)

We will prove that E is relatively open and relatively closed in U . Then since U is connected and
z ∈ E we conclude that E = U , so f = 0 in U .

Suppose {wm}∞m=` ⊆ E and wm → w ∈ U as m → ∞. For n ∈ N we have that f (n)(wm) = 0,
and upon sending m → ∞ and using the continuity of f (n) we deduce that f (n)(w) = 0. Hence
w ∈ E, and so E is relatively closed in U .

On the other hand, suppose w0 ∈ E. Since f is analytic we can pick r > 0 such that B(w0, r) ⊆ U
and the power series

f(w) =
∞∑
n=0

(w − w0)n

n!
f (n)(w0) (3.2)

converges in B(w0, r). Since w0 ∈ E the series sums to 0, and we deduce that f = 0 in B(w0, r).
Hence B(w0, r) ⊆ E, and we deduce that E is relatively open in U .

Using this lemma we can prove more remarkable facts about holomorphic functions. The first
shows that the zeros of holomorphic maps are isolated and have a well-defined order.

Theorem 3.2. Let ∅ 6= U ⊆ C be open and connected, X be a complex Banach space, and
f : U → X be holomorphic and nontrivial. Define the zero set Z = {z ∈ U | f(z) = 0} ⊂ U . Then
the following hold.

1. For each z ∈ Z there exist 1 ≤ n ∈ N, r > 0 such that B(z, r) ⊆ U , and a holomorphic
function g : B(z, r)→ X such that g(w) 6= 0 and f(w) = (w − z)ng(w) for w ∈ B(z, r).

2. Z ′ ∩U = ∅, i.e. Z has no limit points in U , or equivalently, all of the zeros of f are isolated.

3. If K ⊂ U is compact, then Z ∩K is finite.
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Proof. We begin with the proof of the first item. Consider z ∈ Z. If f (m)(z) = 0 for all m ∈ N,
then Lemma 3.1 implies that f = 0, a contradiction. Thus we can select a minimal n ∈ N such that
f (n)(z) 6= 0. Then using analyticity, we can write

f(w) =
∞∑
m=n

(w − z)m

m!
f (m)(z) = (w − z)m

∞∑
m=n

(w − z)m−n

m!
f (m)(z), (3.3)

with the series converging in B(z,R) ⊆ U for some R > 0. Then the function g : B(z, R) → X
defined by the power series

g(w) =
∞∑
m=n

(w − z)m−n

m!
f (m)(z) (3.4)

converges to a holomorphic function such that g(z) = f (m)(z)/m! 6= 0. By continuity, there exists
0 < r < R such that g 6= 0 in B(z, r). This prove the first item.

To prove the second item we suppose, by way of contradiction, that z ∈ Z ′ ∩ U . Letting n, g,
and r be as in the first item, we pick a point w ∈ B(z, r) ∩ Z\{z}, which means that

0 = f(w) = (w − z)ng(w) 6= 0, (3.5)

a contradiction. Hence Z ′ ∩ U = ∅, and the second item is proved.
We now turn to the proof of the third item. If K ⊂ U is compact then Z ∩ K is as well.

Consequently, if Z ∩ K is infinite, then by the Bolzano-Weierstrass totally bounded limit point
property (every infinite subset of a totally bounded metric space has a limit point) it has a limit
point, which means Z ′ ∩ U 6= ∅, a contradiction. Thus Z ∩K is finite.

This suggests some notation.

Definition 3.3. Let ∅ 6= U ⊆ C be open, X be a complex Banach space, and f : U → X be
nontrivial and holomorphic. For each z ∈ U such that f(z) = 0 the order of the zero is 1 ≤ n ∈ N
from the first item of Theorem 3.2, applied to the restriction of f to the connected set B(z, r) ⊂ U .
We write ord(f, z) = n. Note that by construction,

n = 1 + min{m ∈ N | f (m)(z) = 0}. (3.6)

Remark 3.4. Let ∅ 6= U ⊆ C be open and suppose that f(w) = 0 and n ≥ 1 is the order of w, i.e.
f(z) = (z − w)ng(z) for z ∈ B(w, r). Then by construction, the map

U 3 z 7→

{
f(z)/(z − w)n if z 6= w

g(w) if z = w
(3.7)

is holomorphic. We often slightly abuse notation by saying that z 7→ f(z)/(z−w)n is holomorphic,
with the understanding that the value at w has to be recovered from g or by taking the limit as
z → w.

The next remarkable result shows that two holomorphic functions cannot agree on a set without
agreeing on a larger set.

Corollary 3.5. Let ∅ 6= U ⊆ C be open and connected, X be a complex Banach space, and
f, g : U → X be holomorphic. If f = g on a set with a limit point in U , then f = g in all of U . In
particular, if ∅ 6= V ⊆ U is open and f = g in V , then f = g in U .
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Proof. The first assertion follows from Theorem 3.2 applied to f − g, and the second assertion
follows since nonempty open sets have limit points.

Next we show a special property of non-vanishing holomorphic maps with values in C.

Theorem 3.6. Suppose that ∅ 6= U ⊆ C is open and simply connected and g : U → C is holomor-
phic and non-vanishing, i.e. g(z) 6= 0 for z ∈ U . There there exists a holomorphic h : U → C such
that g = eh.

Proof. Note that g′/g is holomorphic in U since g never vanishes. Fix w ∈ U and consider a point
z ∈ U . Since U is open and connected, it is polygonally connected, and so there exists a road in U
that starts at w and ends at z. If γ1 and γ2 are any roads in U such that γ1 and γ2 both start at w
and end at z, then γ1 ∨ γ̌2 is a circuit and so Cauchy-Goursat implies

0 =

∫
γ1∨γ̌2

g′

g
=

∫
γ1

g′

g
−
∫
γ2

g′

g
, (3.8)

which means that ∫
γ1

g′

g
=

∫
γ2

g′

g
. (3.9)

We may thus define H : U → C via

H(z) =

∫
γz

g′

g
, (3.10)

where γz is any road in U that starts at w and ends at z. This is well-defined by the above.
Let z ∈ U and r > 0 be such that B[z, r] ⊂ U . Let η ∈ C with 0 < |η| < r. Define the road

β : [0, 1] → U via β(t) = z + tη. Fix a road γz from w to z and note that γz ∨ β is a road from w
to z + η. Then

H(z + η)−H(z) =

∫
β

g′

g
=

∫ 1

0

η
g′(z + tη)

g(z + tη)
dt (3.11)

and so
H(z + η)−H(z)

η
− g′(z)

g(z)
=

∫ 1

0

(
g′(z + tη)

g(z + tη)
− g′(z)

g(z)

)
dt→ 0 (3.12)

as η → 0 by continuity. Thus H is holomorphic and H ′ = g′/g. Then

(e−Hg)′ = e−H(g′ − gH ′) = 0 in U, (3.13)

but U is connected, so e−Hg is constant. We have H(w) = 0 by construction, so

e−Hg = e−H(w)g(w) = g(w) 6= 0 (3.14)

since g doesn’t vanish. Writing g(w) = eR+it for R = log |g(w)| and t ∈ [0, 2π), and defining the
holomorphic function h = H +R + it, we deduce that

g = eR+it+H = eh, (3.15)

the desired equality.

Remark 3.7. The formula g = eh suggests that we should simply set h = log g for log the complex
logarithm from Definition 1.8. However, we do not know that g(U) ⊆ C\N (where N is as in the
definition), so this strategy cannot work in general.
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3.2 Estimates of holomorphic functions

Next we explore a number of remarkable estimates associated with the rigidity of holomorphic
functions. The first shows that if a holomorphic map f : C→ X has a bounded derivative of some
order or grows no faster than a polynomial, then it must actually be a polynomial.

Theorem 3.8 (Liouville). Let X be a complex Banach space, f : C → X be holomorphic, and
n ∈ N. Then the following are equivalent.

1. f (n) : C→ X is bounded.

2. f is a polynomial of degree at most n.

3. There exists a constant C ∈ (0,∞) such that ‖f(z)‖X ≤ C(1 + |z|n) for z ∈ C.

In any case,

f(z) =
n∑

m=0

zm

m!
f (m)(0). (3.16)

In particular, the bounded holomorphic functions from C to X are precisely the constant functions.

Proof. Assume f (n) is bounded. Consider the circuit ∂B(z, r) from Definition 1.15. According to
Theorem 2.7, we can write

f (n+1)(z) =
1

2πi

∫
∂B(z,r)

f (n)(w)

(w − z)2
dw. (3.17)

Then ∥∥f (n+1)(z)
∥∥
X
≤ len(∂B(z, r))

2πr2
sup
w∈C

∥∥f (n)(w)
∥∥
X

=
1

r
sup
w∈C

∥∥f (n)(w)
∥∥
X
→ 0 as r →∞. (3.18)

Since z was arbitrary, we deduce that f (n+1) = 0 on C. The second item then follows by applying
Lemma 3.1 to the holomorphic function F : C→ X defined by

F (z) = f(z)−
n∑

m=0

zm

m!
f (m)(0), (3.19)

which satisfies F (m)(0) = 0 for all m ∈ N. This proves the first item implies the second.
The second item trivially implies the third. Suppose, then that the third holds. Then Cauchy’s

integral formula implies that

∥∥f (n)(z)
∥∥
X

=

∥∥∥∥ n!

2πi

∫
∂B(z,R)

f(w)

(w − z)n+1
dw

∥∥∥∥
X

≤ n!2πR

2πRn+1
max
|z−w|=R

C(1 + |w|n)

≤ Cn!

Rn
max
|z−w|=R

(1 + (|w − z|+ |z|)n) ≤ Cn!

Rn
(1 + (R + |z|)n)→ Cn! as R→∞. (3.20)

Hence,
∥∥f (n)(z)

∥∥
X
≤ Cn! for all z ∈ C, and the first item is proved.

Liouville’s theorem is often used in conjunction with contradiction arguments to show the exis-
tence of points of interest in C. We demonstrate this now with the following generalization of the
fundamental theorem of algebra.
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Theorem 3.9. Let X be a unital Banach algebra over C and suppose that x0, . . . , xn ∈ X for some
1 ≤ n ∈ N, where xn is invertible. Consider the polynomial p : C→ X given by p(z) =

∑n
k=0 z

kxk.
Set R = 2

(
1 + ‖x−1

n ‖X
∑n−1

k=0 ‖xk‖X
)
. Then the following hold.

1. If |z| > R, then p(z) is invertible.

2. There exists z ∈ B[0, R] such that p(z) is not invertible.

Proof. First note that for z 6= 0 we can compute

1

zn
p(z)− xn =

1

zn

n−1∑
k=0

zkxk (3.21)

in order to estimate, for |z| ≥ 1,∥∥∥∥ 1

zn
p(z)− xn

∥∥∥∥
X

≤ |z|
n−1

|z|n
n−1∑
k=0

‖xk‖X =
1

|z|

n−1∑
k=0

‖xk‖X . (3.22)

The above then shows that for |z| > R we have that∥∥∥∥( 1

zn
p(z)− xn

)
x−1
n

∥∥∥∥
X

≤ 1

|z|
∥∥x−1

n

∥∥
X

n−1∑
k=0

‖xk‖X <
1

2
, (3.23)

and hence the identity

p(z) = znxn + (p(z)− znxn) = zn
(
I −

(
1

zn
p(z)− xn

)
x−1
n

)
xn (3.24)

implies that p(z) is invertible with

p(z)−1 = z−nx−1
n

∞∑
k=0

[(
1

zn
p(z)− xn

)
x−1
n

]k
(3.25)

and ∥∥p(z)−1
∥∥
X
≤ ‖x

−1
n ‖X
|z|n

1

1− 1/2
=

2 ‖x−1
n ‖X
|z|n

. (3.26)

Thus, p(z) is always invertible for |z| > R, and the inverse p(z)−1 is bounded there.
Suppose then, by way of contradiction, that p(z) is invertible for all z ∈ C. Since inversion is

continuous, we deduce that
max
|z|≤R

∥∥p(z)−1
∥∥
X
<∞. (3.27)

Hence the map C 3 z 7→ p(z)−1 ∈ X is holomorphic (because inversion is differentiable) and
bounded. Liouville’s theorem then implies that it’s constant, which is readily shown to be a con-
tradiction. We deduce, then, that there exists at least one z ∈ C such that p(z) fails to be
invertible.

Remark 3.10. Taking X = C in the previous theorem provides a proof of the fundamental theorem
of algebra since the only non-invertible element of C is 0.
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Next we show that holomorphic functions cannot achieve their maximal norm without having
constant norm.

Theorem 3.11 (Strong maximum principle). Let ∅ 6= U ⊆ C be open and connected, X be a
complex Banach space, and f : U → X be holomorphic. Suppose that there exists z ∈ U such that

‖f(z)‖X = max
w∈U
‖f(w)‖X . (3.28)

Then ‖f‖X is constant in U . Moreover, if X = C, then f is constant in U .

Proof. Write M = ‖f(z)‖X and E = {w ∈ U | ‖f(w)‖X = M}. The set E is relatively closed since
‖f(·)‖X is continuous. We claim that E is relatively open. Once this is established, we have that
E = U since U is connected and E 6= ∅ by assumption.

We now prove the claim. Let w ∈ M and pick R > 0 such that B[w,R] ⊂ U . For 0 < r < R
consider the circuit γr : [0, 2π] → U given by γr(t) = w + reit. Then by Cauchy’s integral formula
we have

‖f(w)‖X =
1

2π

∥∥∥∥∫
γr

f(ζ)

ζ − w
dζ

∥∥∥∥
X

=
1

2π

∥∥∥∥∫ 2π

0

ireit

w + reit − w
f(w + reit)dt

∥∥∥∥
X

≤ 1

2π

∫ 2π

0

∥∥f(w + reit)
∥∥
X
dt, (3.29)

and hence (3.28) implies that

0 = ‖f(w)‖X −M ≤
1

2π

∫ 2π

0

(∥∥f(w + reit)
∥∥
X
−M

)
dt ≤ 0. (3.30)

We deduce from this that the continuous map ϕ : [0, 2π]→ (−∞, 0] given by

ϕ(t) =
∥∥f(w + reit)

∥∥
X
−M (3.31)

satisfies ∫ 2π

0

ϕ = 0, (3.32)

which can only happen if ϕ = 0 on [0, 2π]. Hence ‖f(w + reit)‖X = M for all t ∈ [0, 2π] and
0 ≤ r < R, and we deduce that B(z,R) ⊂ E. Thus E is relatively open, and the claim is proved.

It remains to show that f is constant when X = C. In this case we return to the context of the
Cauchy-Riemann theorem, Theorem 1.6, and identify the holomorphic map f : U → C with the
vector field F : Ũ → R2. The theorem shows that F obeys the Cauchy-Riemann equations

∂1F1(x1, x2) = ∂2F2(x1, x2) and ∂2F1(x1, x2) = −∂1F2(x1, x2). (3.33)

Since f is smooth, F is as well, and we know from the above that |F (x1, x2)| = M for all (x1, x2) ∈ Ũ .
If M = 0, then F = 0 identically, and so f = 0 identically as well, so we may reduce to the case
M > 0. In this case we then compute

0 = ∂1(F 2
1 + F 2

2 ) = 2F1∂1F1 + 2F2∂1F2 and 0 = ∂2(F 2
1 + F 2

2 ) = 2F1∂2F1 + 2F2∂2F2, (3.34)

which combine with the Cauchy-Riemann equations to show that

0 = F1∂2F2 + F2∂1F2 and 0 = −F1∂1F2 + F2∂2F2. (3.35)
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We then multiply the the first equation by F1 and the second by F2 and sum to see that

0 = (F 2
1 + F 2

2 )∂2F2 = M2∂2F2, (3.36)

which implies that ∂2F2 = ∂1F1 = 0. Similarly multiplying the first equation by F2 and the second
by F1 and subtracting shows that

0 = (F 2
1 + F 2

2 )∂1F2 = M2∂1F2, (3.37)

which implies that ∂1F2 = ∂2F1 = 0. Thus, ∇F1 = ∇F2 = 0, and since U is connected we conclude
that F is constant, which then implies that f is as well.

In the strong maximum principle the assertion that f itself is constant can fail in the case
X 6= C, as we show in the next example.

Example 3.12. Consider the Banach space C2 with the norm ‖(z1, z2)‖C2 = max{|z1| , |z2|}. Con-
sider the holomorphic map f : U → C2 given by f(z) = (1, z). Then ‖f(z)‖C2 = 1 for all z ∈ B(0, 1)
but f is not constant. 4

The strong maximum principle has a somewhat weaker variant that applies to holomorphic
functions that extend continuously to the boundary of bounded open sets. This weak maximum
principle is extremely useful for deriving further estimates.

Theorem 3.13 (Weak maximum principle). Let ∅ 6= U ⊆ C be open and bounded and X be a
complex Banach space. Suppose that f ∈ C0(Ū ;X) and that f is holomorphic in U . Then

max
z∈Ū
‖f(z)‖X = max

z∈∂U
‖f(z)‖X . (3.38)

Proof. Suppose initially that U is connected. Both Ū and ∂U are compact, and so

max
Ū
‖f‖X = max{sup

U
‖f‖X ,max

∂U
‖f‖X}. (3.39)

If supU ‖f‖X > max∂U ‖f‖X , then ‖f‖X achieves its maximum in U , and so the strong maximum
principle implies that ‖f‖X is a constant in U , and hence in Ū by the continuity of f , which
contradicts the fact that supU ‖f‖X > max∂U ‖f‖X . Thus supU ‖f‖X ≤ max∂U ‖f‖X , and we
deduce that

max
Ū
‖f‖X = max

∂U
‖f‖X . (3.40)

Now consider the general case in which U is only assumed to be bounded and open. Decomposing
U into its connected components, we may then write U =

⋃
k∈K Uk, where Uk is a nonempty open

connected component of U and K is countable and nonempty. Applying the above analysis to each
nonempty Uk, we see that

max
Ūk

‖f‖X = max
∂Uk
‖f‖X , (3.41)

which then implies that

max
Ū
‖f‖X = max

k∈K
max
Ūk

‖f‖X = max
k∈K

max
∂Uk
‖f‖X = max

∂U
‖f‖X . (3.42)
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The maximum principles can be parlayed into striking quantitative estimates. Our first of these
shows that it is possible to interpolate estimates for a holomorphic function in a strip-like domain.

Theorem 3.14 (Hadamard’s three lines estimate). Let R = {z ∈ C | 0 ≤ Re(z) ≤ 1}, X be
a complex Banach space, and suppose that f ∈ C0

b (R;X) is holomorphic in R◦. Then for every
x ∈ [0, 1] we have that

sup
y∈R
‖f(x+ iy)‖X ≤

(
sup
y∈R
‖f(0 + iy)‖X

)1−x(
sup
y∈R
‖f(1 + iy)‖X

)x
. (3.43)

Proof. Let 0 < M0,M1 <∞ be such that

sup
y∈R
‖f(0 + iy)‖X ≤M0 and sup

y∈R
‖f(1 + iy)‖X ≤M1. (3.44)

For z = x+ iy ∈ R we have that∣∣M1−z
0 M z

1

∣∣ = M1−x
0 Mx

1 ≥ min{M0,M1} > 0. (3.45)

This allows us to define the functions g, gn ∈ C0
b (R;X) (here 1 ≤ n ∈ N) via

g(z) =
f(z)

M1−z
0 M z

1

and gn(z) = g(z)e(z2−1)/n. (3.46)

The boundedness of g follows from the boundedness of f and (3.45), while the boundedness of gn
follows since for z = x+ iy we have that

‖gn(z)‖X =
‖f(z)‖X
M1−x

0 Mx
1

e(x2−y2−1)/n ≤
‖f‖C0

b (R;X)

min{M0,M1}
e−y

2/n. (3.47)

This estimate also tells us that
‖gn(z)‖X ≤ 1 for z ∈ ∂R (3.48)

and that for each n ≥ 1 there exists rn > 0 such that

|Im(z)| ≥ rn ⇒ ‖gn(z)‖X ≤ 1. (3.49)

Clearly g and gn for n ≥ 1 are holomorphic in R◦. Fix n ≥ 1. For each m ≥ 1 define the
rectangle Rm = {z ∈ R◦ | |Im(z)| < rn +m}. According to the estimates (3.48) and (3.49) we have
that for n ∈ N

max
∂Rm
‖gn‖X ≤ 1, (3.50)

and so the weak maximum principle guarantees that

max
Rm
‖gn‖X ≤ 1. (3.51)

Sending m→∞ then shows that
sup
R
‖gn‖X ≤ 1. (3.52)

Finally, since gn(z)→ g(z) as n→∞ for each z ∈ R, we deduce that ‖g(z)‖X ≤ 1 on R, and hence

‖f(x+ iy)‖X ≤M1−x
0 Mx

1 . (3.53)

Since this holds for all such M0,M1, we conclude that (3.43) holds.
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Hadamard’s three lines estimate gives rise to a corresponding three circle estimate for holomor-
phic functions defined on annuli.

Theorem 3.15 (Hadamard’s three circles estimate). Let 0 < r0 < r1 <∞ and consider the annulus
A = {z ∈ C | r0 ≤ |z| ≤ r1}. Let X be a complex Banach space, and suppose that f ∈ C0

b (A;X) is
holomorphic in A◦. Then for every s ∈ [0, 1] we have that

sup
z∈∂B(0,r1−s0 rs1)

‖f(z)‖X ≤

(
sup

z∈∂B(0,r0)

‖f(z)‖X

)1−s(
sup

z∈∂B(0,r1)

‖f(z)‖X

)s

. (3.54)

Proof. Let R = {z ∈ C | 0 ≤ Re(z) ≤ 1} and define the holomorphic map Φ : R→ C via

Φ(z) = r0 exp(z log(r1/r0)). (3.55)

Note that
Φ(s+ it) = r1−s

0 rs1e
is log(r1/r0), (3.56)

so Φ(R) = A, Φ(R◦) = A◦, and Φ({z ∈ R | Re z = s}) = ∂B(0, r1−s
0 rs1). Define the function

F ∈ C0
b (R;X) via F = f ◦ Φ, which is clearly holomorphic in R◦. Hadamard’s three lines estimate

shows that

sup
z∈∂B(0,r1−s0 rs1)

‖f(z)‖X = sup
y∈R
‖F (s+ iy)‖X ≤

(
sup
y∈R
‖F (0 + iy)‖X

)1−s(
sup
y∈R
‖F (1 + iy)‖X

)s

=

(
sup

z∈∂B(0,r0)

‖f(z)‖X

)1−s(
sup

z∈∂B(0,r1)

‖f(z)‖X

)s

, (3.57)

which is the desired bound.

Hadamard’s three circles estimate provides rigid estimates for holomorphic maps defined in
annuli. We now derive estimates for holomorphic maps defined in balls.

Theorem 3.16 (Schwarz estimate). Suppose that R, S > 0, X is a complex Banach space, x0 ∈ X,
and z0 ∈ C. Suppose that f : B(z0, R)→ BX(x0, S) is holomorphic and f(z0) = x0. Then

‖f(z)− x0‖X ≤
S

R
|z − x0| for all z ∈ B(z0, R). (3.58)

Moreover, if either ‖f ′(z0)‖X = S/R or there exists z ∈ B(z0, R)\{z0} such that ‖f(z)− x0‖X =
S
R
|z − x0|, then

‖f(z)− x0‖X =
S

R
|z − x0| for all z ∈ B(z0, R), (3.59)

and if X = C then there exists x ∈ C with |x| = 1 such that

f(z) = x0 +
S

R
(z − z0)x for all z ∈ B(z0, R). (3.60)

Proof. We first prove the result under the extra assumption that z0 = 0, x0 = 0, and R = S = 1.
Then f : B(0, 1)→ BX(0, 1) is holomorphic and f(0) = 0. Since f has a zero at 0, we may consider
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the holomorphic function F : B(0, 1) → X defined by F (z) = f(z)/z for z 6= 0 and F (0) = f ′(0).
Applying the weak maximum principle to the restriction of F to B[0, r], for 0 < r < 1, we find that

max
z∈B[0,r]

‖F (z)‖X = max
z∈∂B(0,r)

‖f(z)‖X
|z|

≤ max
z∈∂B(0,r)

1

|z|
=

1

r
. (3.61)

Sending r → 1, we deduce that
sup

z∈B(0,1)

‖F (z)‖X ≤ 1, (3.62)

and hence that ‖f(z)‖X ≤ |z| for all x ∈ B(0, 1). Moreover, if ‖f ′(0)‖X = 1 or there exists
z ∈ B(0, 1)\{0} such that ‖f(z)‖X = |z|, then ‖F (w)‖X = 1 for some w ∈ B(0, 1), and so the
strong maximum principle implies that ‖F‖X is constant and that if X = C then there exists x ∈ C
with |x| = 1 such that F (z) = x for all z ∈ B(0, 1), which means f(z) = zx. This proves the result
in the special case.

In the general case of f : B(z0, R)→ BX(x0, S) we define the holomorphic function g : B(0, 1)→
BX(0, 1) via

g(z) =
f(z0 +Rz)− x0

S
(3.63)

and note that g(0) = 0. Applying the specialized result to g then yields the general result.

3.3 The argument principle and Rouché’s theorem

The following result is a further generalization of Cauchy’s integral formula that is often called the
argument principle.

Theorem 3.17 (Argument principle). Let X be a complex Banach space, ∅ 6= U ⊆ C be open,
f : U → C be nontrivial and holomorphic, and g : U → X be holomorphic. Write Z(f) = {z ∈
U | f(z) = 0} ⊂ U and recall that ord(f, z) denotes the order of the zero z ∈ Z(f). If γ is a loop
chain in U that is homologous to zero in U and ran(γ) ∩ Z(f) = ∅, then

1

2πi

∫
γ

f ′

f
g =

∑
z∈Z(f)

ord(f, z) ind(γ, z)g(z), (3.64)

where the sum is finite due to the compactness of ran(γ), Proposition 2.20, and Theorem 3.2, and
the integral is well-defined because gf ′/f is holomorphic in U\Z(f).

Proof. Pick R > 0 such that ran(γ) ⊆ B[0, R]. Since ind(γ, z) = 0 for |z| > R, we deduce that γ is
homologous to zero in U ∩B(0, 2R). Theorem 3.2 implies that the compact set K = Z(f)∩B[0, 3R]
is finite. Again appealing to Theorem 3.2, we find that the function h : U → C given by

h(z) = f(z)
∏
w∈K

(z − w)− ord(f,w) (3.65)

is holomorphic and does not vanish in U ∩B(0, 2R). Then

f(z) = h(z)
∏
w∈K

(z − w)ord(f,w) for z ∈ U ∩B(0, 2R), (3.66)

and hence the product rule implies that

f ′(z)

f(z)
=
h′(z)

h(z)
+
∑
w∈K

ord(f, w)

z − w
for z ∈ U ∩B(0, 2R)\K. (3.67)
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Since gh′/h is holomorphic in U ∩ B(0, 2R) and γ is homologous to zero in U ∩ B(0, 2R), we then
deduce from Cauchy-Goursat and Cauchy’s integral formula that∫

γ

f ′

f
g =

∫
γ

h′

h
g +

∑
w∈K

ord(f, w)

∫
γ

g(z)

z − w
dz =

∑
w∈K

ord(f, w)2πi ind(γ, w)g(w)

= 2πi
∑

w∈Z(f)

ord(f, w) ind(f, w)g(w). (3.68)

This yields the stated identity.

Remark 3.18. By taking f(w) = w−z for some z ∈ U , we recover Cauchy’s integral formula from
the argument principle.

The argument principle has a particularly nice corollary (which is actually the origin of its name)
when X = C and g = 1. First we need a lemma.

Lemma 3.19. Let ∅ 6= U ⊆ C be open and f : U → C be holomorphic. Let γ =
∑J

j=1mjγj be a

loop chain in U and define the loop chain f ◦ γ =
∑J

j=1 mjf ◦ γj. Then for w0 ∈ C\f(ran(γ)),

ind(f ◦ γ, w0) =
1

2πi

∫
f◦γ

dw

w − w0

=
1

2πi

∫
γ

f ′

f − w0

. (3.69)

Proof. Suppose first that γ is a lop in U . Since ran(γ) ⊆ U\f−1({w0}) we can pick β : [a, b] →
U\{z ∈ U | f(z) = w0} to be a circuit homotopic to γ. If H : [0, 1]2 → U\f−1({w0}) is a homotopy
of β and γ, then f ◦H : [0, 1]2 → C\{w0} is a homotopy of f ◦ β and f ◦ γ. Since f ◦ β is a circuit,
we may then compute

2πi ind(f ◦ γ, w0) =

∫
f◦γ

dw

w − w0

=

∫
f◦β

dw

w − w0

=

∫ b

a

(f ◦ β)′

f ◦ β − w0

=

∫ b

a

f ′ ◦ β
f ◦ β − w0

β′ =

∫
γ

f ′

f − w0

, (3.70)

which is the stated identity when γ is a loop.
Now let γ =

∑J
j=1mjγj for mj ∈ Z and γj a loop in U . Then

ind(f ◦ γ, w0) =
1

2πi

∫
f◦γ

dw

w − w0

=
J∑
j=1

mj

2πi

∫
f◦γj

dw

w − w0

=
J∑
j=1

mj

2πi

∫
γj

f ′

f − w0

=

∫
γ

f ′

f − w0

,

(3.71)
which is the stated identity in the general case.

With the lemma in hand, we get a nice identity related to the index of f ◦ γ for γ a loop and f
holomorphic.

Corollary 3.20. Let ∅ 6= U ⊆ C be open and f : U → C be holomorphic. Let γ be a chain loop in
U that is homologous to zero in U, and let w0 ∈ C\f(ran(γ)). Write Z(f − w0) = {z ∈ U | f(z) =
w0} ⊂ U and define the chain loop f ◦ γ in C as in Lemma 3.19. Then w0 /∈ ran(f ◦ γ), and

ind(f ◦ γ, w0) =
∑

z∈Z(f−w0)

ord(f − w0, z) ind(γ, z). (3.72)
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Proof. The identity follows from Lemma 3.19 and the argument principle applied to g = 1 and
f − w0, which is nontrivial since w0 /∈ f(ran(γ)).

Another nice result based on the argument principle is Rouché’s theorem, which gives a tool for
counting the zeros of holomorphic functions.

Theorem 3.21 (Rouché’s theorem). Let ∅ 6= U ⊆ C be open and let f, g : U → C be holomorphic.
Suppose γ is a loop chain in U that is homologous to zero in U and that

|f(z)− g(z)| < |f(z)|+ |g(z)| for all z ∈ ran(γ). (3.73)

Then for Z(f) = f−1({0}) and Z(g) = g−1({0}) we have (Z(f) ∪ Z(g)) ∩ ran(γ) = ∅, and∑
z∈Z(f)

ord(f, z) ind(γ, z) =
∑
z∈Z(g)

ord(g, z) ind(γ, z). (3.74)

Proof. The condition (3.73) implies that g(z) 6= 0 and f(z) 6= 0 for z ∈ ran(γ). Consequently,
0 /∈ ran(f ◦γ) and 0 /∈ ran(g ◦γ). We may then define h : U\(Z(f)∪Z(g))→ C via h = f/g, which
is holomorphic and does not vanish since Z(h) = Z(f). Then γ is a loop chain in U\(Z(h)∪Z(g))
such that 0 /∈ ran(h ◦ γ), and so Lemma 3.19 implies that

ind(h ◦ γ, 0) =
1

2πi

∫
γ

h′

h
. (3.75)

However,
h′

h
=
g

f

(f ′g − fg′)
g2

=
f ′

f
− g′

g
, (3.76)

so the argument principle implies that

ind(h ◦ γ, 0) =
1

2πi

∫
γ

f ′

f
− 1

2πi

∫
γ

g′

g
=
∑
z∈Z(f)

ord(f, z) ind(γ, z)−
∑
z∈Z(g)

ord(g, z) ind(γ, z). (3.77)

Returning to (3.73), we find that

|h(z)− 1| < |h(z)|+ 1 for all z ∈ ran(γ). (3.78)

A bit of algebra shows that this is equivalent to

− Reh(z) < |h(z)| for all z ∈ ran(γ), (3.79)

and hence
N = {w ∈ C | Rew ≤ 0 and Imw = 0} ⊆ ran(h ◦ γ)c. (3.80)

Let r > 0 be such that ran(h ◦ γ) ⊂ B[0, r]. Since N is connected, 0 and −2r ∈ N belong to the
same connected component of C\ ran(h ◦ γ), so Proposition 2.20 then implies that

ind(h ◦ γ, 0) = ind(h ◦ γ,−2r) = 0. (3.81)

The stated equality then follows by plugging this into (3.77) and rearranging.

Let’s consider some examples.
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Example 3.22. Rouché’s theorem is particularly appealing when, in addition to the stated hy-
potheses, γ is assumed to be a counter-clockwise simple loop. Then the theorem says that if we
define E(γ) = {z ∈ U | γ encloses z} = (ind(γ, ·))−1({1}), then∑

z∈Z(f)∩E(γ)

ord(f, z) =
∑

z∈Z(g)∩E(γ)

ord(g, z). (3.82)

In other words, counting with multiplicity, the number of zeros of f enclosed by γ equals the number
of zeros of g enclosed by γ. 4

Example 3.23. Let n ≥ 3, a, b ∈ C with |a| , |b| ≤ 1, and consider the polynomial f(z) = zn+az+b.
We claim that all of the roots of f lie within B(0, 3/2). Indeed, 20 < 27, so 5/2 < 27/8 and hence
for |z| = 3/2,

|f(z)− zn| ≤ |z|+ 1 =
5

2
<

27

8
= |z|3 ≤ |z|n . (3.83)

Rouché’s theorem with γ(t) = (3/2)e2πit for t ∈ [0, 1] then shows that f has the same number or
roots as zn in B(0, 3/2), but this is n. Hence all roots of f lie in B(0, 3/2).

4

The requirement that the codomain be C cannot be relaxed in Rouché’s theorem.

Example 3.24. Rouché’s theorem fails in general for X 6= C. Let f, g : C → C2 via f(z) = (z, 1)
and g(z) = (2z, 0). Let γ : [0, 1]→ ∂B(0, 1) via γ(t) = e2πit. On ran(γ) we have that |z| = 1, so

|f(z)− g(z)| =
√

1 + |z|2 =
√

2 < 2 = |g(z)| . (3.84)

However, Z(f) = ∅, Z(g) = {0}, ord(g, 0) = 1, and ind(γ, 0) = 1, so∑
z∈Z(f)

ord(f, z) ind(γ, z) = 0 6= 1 =
∑
z∈Z(g)

ord(g, z) ind(γ, z). (3.85)

4

Rouché’s theorem easily yields a stronger form of the fundamental theorem of algebra that comes
with an estimate for the locations of all of the roots.

Theorem 3.25 (Fundamental theorem of algebra, quantitative version). Let 1 ≤ n ∈ N and
p : C→ C be the polynomial p(z) =

∑n
m=0 amz

m with an 6= 0. Then p has n roots in B[0, r], where

r = max{1, 1

|an|

n−1∑
m=0

|am|}. (3.86)

Proof. Let q : C→ C via q(z) = anz
n. Then for |z| = R > r ≥ 1 we have

|p(z)− q(z)| ≤
n−1∑
m=0

|am|Rm ≤ Rn−1

n−1∑
m=0

|am| ≤ |an| rRn−1 < |an|Rn = |q(z)| ≤ |q(z)|+ |p(z)|

(3.87)
by the choice of R. Let γ : [0, 1]→ ∂B(0, R) via γ(t) = Re2πit. Rouché’s theorem then implies that
no roots of p lie on ∂B(0, R) and that p has n roots in B(0, R) since q does. This holds for every
R > r, so we conclude that all roots of p lie inside B[0, r].
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The implicit function theorem can be used to show that the roots of a complex polynomial
depend smoothly on the coefficients of the polynomial, provided all of the roots are distinct. If
there are repeated roots, then smoothness breaks down, but we can still hope for continuity. We
now prove this with the help of Rouché’s theorem. To formulate continuity of the set of roots we
will use the Hausdorff metric h on the set of nonempty compact subsets of C, K(C). Recall that,
given a metric space X, the Hausdorff metric space H(X) consists of all nonempty closed subsets
of X and that

K(X) = {∅ 6= K ⊆ X | K is compact} ⊆ H(X) (3.88)

is the subspace of nonempty compact sets in X.

Theorem 3.26 (Continuous dependence of polynomial roots on coefficients). Let 1 ≤ n ∈ N and
define the open set U = {a = (a0, . . . , an) ∈ Cn+1 | an 6= 0}. For a ∈ U let pa : C → C be the
polynomial pa(z) =

∑n
k=0 akz

k. Define the map Φ : U → K(C) via Φ(a) = Z(pa) = p−1
a ({0}). Then

Φ is continuous.

Proof. Let a ∈ U and pick δ0 > 0 such that B(a, δ0) ⊂ U . Write Z(pa) = {z1, . . . , zm} with zj 6= zk
for j 6= k, and let σj = ord(pa, zj) for 1 ≤ j ≤ m. Then we can write

pa(z) = an

m∏
j=1

(z − zj)σj (3.89)

with n =
∑m

j=1 σj. If m = 1 set r = 1; otherwise set

0 < r = min{|zj − zk| | 1 ≤ j, k ≤ m and j 6= k}. (3.90)

Let 0 < ε < r/2 and set

δ = min{δ0, |an| εn
(

n∑
k=0

(|zj|+ ε)k

)−1

}. (3.91)

Assume b ∈ B(a, δ) ⊂ U . Let 1 ≤ j ≤ m and z ∈ ∂B(zj, ε). Then

|pa(z)− pb(z)| ≤
n∑
k=0

|ak − bk| |z|k < δ
n∑
k=0

(|zj|+ ε)k ≤ |an| εn. (3.92)

Also, if m > 1 we can estimate, for each k 6= j,

|z − zk| ≥ |zj − zk| − |z − zj| ≥ r − ε ≥ r

2
> ε. (3.93)

Thus,

|pa(z)| = |an| |z − zj|σj
∏

j∈{1,...,m}\{k}

|z − zk|σk ≥ |an| εσjεn−σj = |an| εn. (3.94)

Combining these estimates, we find that

|pa(z)− pb(z)| < |an| εn ≤ |pa(z)| ≤ |pa(z)|+ |pb(z)| (3.95)

for all z ∈ ∂B(zj, ε). Rouché’s theorem then implies that no roots of pb lie on ∂B(zj, ε) and that pb
has the same number of roots as pa in B(zj, ε), which is σj. Since n =

∑m
j=1 σj and pb has n roots,

we deduce from this that

Z(pb) ⊆
m⋃
j=1

B(zj, ε), (3.96)
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which in turn implies that h(Z(pa), Z(pb)) < ε, where h is the Hausdorff metric. Thus, Φ is
continuous.

It’s essential that we restrict to polynomials of the same degree in this result, as we now show.

Example 3.27. The polynomials p, q : C→ C given by p(z) = z and q(z) = z − εz2 for ε > 0 are
such that Z(p) = {0} and Z(q) = {0, 1/ε} but |(0, 1, 0)− (0, 1,−ε)| = ε. Thus the coefficients are
arbitrarily close, but the roots of q are not confined to nearby the roots of p. 4

3.4 Special properties of complex-valued holomorphic functions

We now turn our attention to some properties of complex-valued holomorphic functions. Our first
result is a holomorphic version of the inverse function theorem.

Theorem 3.28 (Holomorphic inverse function theorem). Let ∅ 6= U ⊆ C be open and f : U → C
be holomorphic. Suppose that z0 ∈ U and f ′(z0) 6= 0. Then there exists an open set V ⊆ U with
z0 ∈ V such that f : V → f(V ) is a homeomorphism with f−1 : f(V )→ V holomorphic.

Proof. Let Ũ = {x ∈ R2 | x1 + ix2 ∈ U} and F : Ũ → R2 be the smooth function given by
F (x) = (Re f(x1 + ix2), Im f(x1 + ix2)). Let y ∈ U be such that z = y1 + iy2. Note that since
f ′(z) 6= 0 we have that

|∂1F1(y)|2 + |∂2F2(y)|2 = |f ′(z)|2 6= 0. (3.97)

Since F satisfies the Cauchy-Riemann system, we may compute

DF (y) =

(
∂1F1(y) ∂2F1(y)
−∂2F1(y) ∂1F1(y)

)
, (3.98)

and so DF (y) is invertible with

(DF (y))−1 =
1

|∂1F1(y)|2 + |∂2F2(y)|2

(
∂1F1(y) −∂2F1(y)
∂2F1(y) ∂1F1(y)

)
. (3.99)

The inverse function theorem provides a set Ṽ ⊆ Ũ with y ∈ Ũ such that F : Ṽ → F (Ṽ ) is a
smooth diffeomorphism. Set V = {x1 + ix2 ∈ U | x ∈ V }. Then f : V → f(V ) is a homeomorphism
and f−1 : f(V )→ V is related to F−1 via F−1(x) = (Re f−1(x1+ix2), Im f−1(x1+ix2)). From (3.99)
and the identity DF−1(F (y)) = (DF (y))−1 we then deduce that F−1 satisfies the Cauchy-Riemann
equations, and hence f−1 is holomorphic on f(V ).

Next we prove that non-constant complex-valued holomorphic functions are open maps.

Theorem 3.29 (Open mapping). Let ∅ 6= U ⊆ C be open and f : U → C be holomorphic and not
constant. Then f is an open map, i.e. if V ⊆ U is open, then f(V ) is open.

Proof. Let V ⊆ U be open. If V = ∅, there’s nothing to prove, so we may assume that V 6= ∅.
Let z0 ∈ V and w0 = f(z0). The holomorphic function F : V → C defined by F (z) = f(z) − w0

has a zero at z0, and its zeros must be isolated, so we can pick r > 0 such that B[z0, r] ⊂ V and if
z ∈ B[z0, r], then f(z) 6= w0. Define

δ = min{|f(z)− w0| | z ∈ ∂B(z0, r)} > 0. (3.100)
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Now let w ∈ B(w0, δ/2), and suppose, by way of contradiction, that f(z) 6= w for any z ∈ V .
We may then define the holomorphic function g : U → C via

g(z) =
1

f(z)− w
. (3.101)

By the weak maximum principle,

max
z∈B[z0,r]

|g(z)| = max
z∈∂B(z0,r)

1

|f(z)− w0|
. (3.102)

For z ∈ ∂B(z0, r) we may compute

|f(z)− w| ≥ |f(z)− w0| − |w0 − w| ≥ δ − δ

2
=
δ

2
, (3.103)

so

max
z∈∂B(z0,r)

1

|f(z)− w0|
≤ 2

δ
. (3.104)

On the other hand,

|g(z0)| = 1

|f(z0)− w|
=

1

|w0 − w|
>

2

δ
(3.105)

and so 2/δ < 2/δ, a contradiction. Thus, B(w0, δ/2) ⊆ f(V ), and we conclude that f(V ) is open
for every open V ⊆ U .

Our next result shows that injective holomorphic functions with values in C have holomorphic
inverses.

Theorem 3.30. Let ∅ 6= U ⊆ C be open and f : U → C be holomorphic and injective. Then
∅ 6= f(U) ⊆ C is open and the inverse map f−1 : f(U)→ C is holomorphic.

Proof. First note that f(U) is open due to the open mapping theorem, Theorem 3.29. This also
shows that f−1 is continuous since f(V ) = (f−1)−1(V ) is open for every open V ⊆ U , again by the
open mapping theorem. It remains to prove that f−1 is holomorphic. In light of Theorem 3.29, it
suffices to prove that f ′ : U → C never vanishes.

Suppose, by way of contradiction, that f ′(z0) = 0 for some z0 ∈ U . Then f − f(z0) has a zero
of order at least two at z0, so in a ball B(z0, r) ⊂ U we can write f(z) = f(z0) + (z − z0)ng(z) for
n ≥ 2 and g : B(z0, r) → C a holomorphic function that does not vanish. By Theorem 3.6 we can
write g = eh for h : B(z0, r)→ C holomorphic. Define the holomorphic function H : B(z0, r)→ C
via H(z) = (z − z0)eh(z)/n. We can then write

f(z) = f(z0) + (H(z))n (3.106)

for all z ∈ B(z0, r). We have that H(z0) = 0, and since H is holomorphic the set H(B(z0, r)) is open,
so we can pick δ > 0 such that B(0, 2δ) ⊆ H(B(z0, r)). In particular, w1 = δ and w2 = δe2πi/n 6= w1

are such that w1, w2 ∈ H(B(z0, r)). Then there exist z1, z2 ∈ B(z0, r) such that H(zj) = wj for
j = 1, 2, and so

f(zj) = f(z0) + (H(zj))
n = f(z0) + δn for j = 1, 2, (3.107)

contradicting the injectivity of f . Hence f ′ does not vanish in U .
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We next construct a special holomorphic homeomorphism from the unit ball to itself.

Example 3.31. Consider a ∈ B(0, 1). Then for z ∈ C we have that

|z| ≤ 1⇔ |z|2 ≤ 1− |a|2

1− |a|2
⇔ |z|2 + |a|2 ≤ 1+ |a|2 |z|2 ⇔ |z|2− āz−az̄+ |a|2 ≤ 1− āz−az̄+ |a|2 |z|2

⇔ |z − a|2 = (z − a)(z̄ − ā) ≤ (1− āz)(1− az̄) = |1− āz|2 . (3.108)

Moreover, if |z| ≤ 1, then |āz| = |a| |z| < 1, so 1− āz 6= 0 We may thus define fa : B[0, 1]→ B[0, 1]
via

fa(z) =
a− z
1− āz

. (3.109)

The above shows that this is well-defined and yields a holomorphic function in B(0, 1) such that
fa(0) = a and fa(a) = 0. For w ∈ B[0, 1] we compute

w = fa(z)⇔ w − āwz = a− z ⇔ z(1− āw) = a− w ⇔ z = fa(w), (3.110)

which reveals that fa is a homeomorphism with f−1
a = fa. In particular, f−1

a is also holomorphic in
B(0, 1). Moreover, since |z| = 1 if and only if |fa(z)| = 1, the restriction of fa to B(0, 1) is also a
homeomorphism. 4

Remarkably, this is essentially the only example of a holomorphic homeomorphism between
balls.

Theorem 3.32. Suppose that R, S > 0, z0, w0 ∈ C, and f : B(z0, R) → B(w0, S) is a homeomor-
phism. Then the following are equivalent.

1. f is holomorphic.

2. There exist a, u ∈ C with |u| = 1 and |a| < 1 such that

f(z) = w0 + Su

(
Ra− (z − z0)

R− ā(z − z0)

)
. (3.111)

Proof. We first prove the result under the extra assumptions that z0 = w0 = 0 and R = S = 1, in
which case f : B(0, 1)→ B(0, 1) is a homeomorphism.

Suppose that f is holomorphic, in which case Theorem 3.30 shows that f−1 is also holomorphic.
Let a = f−1(0). Define the holomorphic bijection fa : B(0, 1)→ B(0, 1) as in Example 3.31. Then
F = f ◦ fa : B(0, 1) → B(0, 1) and F−1 = fa ◦ f−1 are holomorphic and F (0) = 0 = F−1(0).
Consequently, the Schwarz estimate, Theorem 3.16, shows that

|z| =
∣∣F−1(F (z))

∣∣ ≤ |F (z)| ≤ |z| for z ∈ B(0, 1), (3.112)

and so |F (z)| = |z| for z ∈ B(0, 1). Again appealing to the Schwarz estimate, we conclude that
F (z) = uz for some u ∈ C with |u| = 1. Then f ◦ fa(z) = uz, and hence

f(z) = uf−1
a (z) = ufa(z) = u

a− z
1− āz

. (3.113)

Conversely, if f = ufa, then f is holomorphic.
This proves the theorem in the special case. In the general case we set g : B(0, 1)→ B(0, 1) via

g(z) =
f(z0 +Rz)− w0

S
, (3.114)

which is a homeomorphism. If f is holomorphic, then g is as well, and the special result then proves
that f has the stated form. On the other hand, if f has the stated special form, then g = ufa, and
so g is holomorphic, which shows that f is as well.
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4 Laurent series, singularities, and meromorphic functions

Given an open set ∅ 6= U ⊆ C and two holomorphic functions f, g : U → C, the quotient f/g is
not defined on Z(g) but is perfectly holomorphic on U\Z(g). Theorem 3.2 shows that the points
in Z(g) are isolated, so the singularities of f/g are isolated as well. We now turn our attention
to the study of mappings of this type, i.e. maps that are holomorphic away from a set of isolated
singularities. Along the way we develop a classification for such singularities and extend many of
the above results to a special subset of these maps, which are called meromorphic.

4.1 Laurent series and classification of isolated singularities

We have seen that holomorphic functions are analytic, and can therefore be expanded in power
series in balls. It turns out that there is a more general version of this expansion that is valid for
maps that are holomorphic in a ball with its center deleted. We now prove this in the context of
holomorphic functions defined on an annulus.

Theorem 4.1. Let X be a complex Banach space. Let z0 ∈ C, 0 ≤ r0 < r1 ≤ ∞, and define the
open annulus

A(z0; r0, r1) = {z ∈ C | r0 < |z − z0| < r1}. (4.1)

Let f : A(z0; r0, r1)→ X. Then the following are equivalent.

1. f is holomorphic in A(z0; r0, r1).

2. There exist {xn}∞n=1, {yn}∞n=0 ⊆ X such that

lim sup
n→∞

‖xn‖1/n
X ≤ r0 and lim sup

n→∞
‖yn‖1/n

X ≤ 1

r1

, (4.2)

and

f(z) =
∞∑
n=1

(z − z0)−nxn +
∞∑
n=0

(z − z0)nyn for z ∈ A, (4.3)

where the series converge in A(z0; r0, r1) and uniformly absolutely in A(z0; s0, s1) for r0 < s0 <
s1 < r1.

In either case, for any r0 < r < r1 we have that

xn =
1

2πi

∫
∂B(z0,r)

(w − z0)n−1f(w)dw for 1 ≤ n ∈ N (4.4)

and

yn =
1

2πi

∫
∂B(z0,r)

f(w)

(w − z0)n+1
dw for n ∈ N. (4.5)

Proof. Suppose initially that the second item holds. Then

lim sup
n→∞

(
‖xn‖X
|z − z0|n

)1/n

≤ r0

|z − z0|
and lim sup

n→∞
(|z − z0|n ‖yn‖X)

1/n ≤ |z − z0|
r1

, (4.6)
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which shows that the series in (4.3) converge and defines a holomorphic function f in A(z0; r0, r1).
Moreover, for r0 < r < r1 and n ∈ Z, the we can use the uniform convergence of the series to
compute

1

2πi

∫
∂B(z0,r)

(w − z0)n−1f(w)dw =
∞∑
m=1

(
1

2πi

∫
∂B(z0,r)

(w − z0)n−m−1dw

)
xm

+
∞∑
m=0

(
1

2πi

∫
∂B(z0,r)

(w − z0)n+m−1dw

)
ym =

{
xn if n ≥ 1

yn if n ≤ 0.
(4.7)

This proves that the second item implies the first.
We now prove the converse. It suffices to prove that the first item implies the second under

the extra assumption that z0 = 0. Indeed, in the general case we define the holomorphic map
g : B(0, r1)\B[0, r0] → X via g(z) = f(z0 + z) and apply the special case to arrive at the result.
Assume, then, that z0 = 0.

Let z ∈ A = B(0, r1)\B[0, r0] and pick ε > 0 such that r0 < |z| − ε < |z| + ε < r1. Also let
θ ∈ [0, 2π) be such that z = |z| eiθ. We then define the map H : [0, 1]× [0, 1]→ C via

H(t, s) =


[|z|+ (1− s)ε] exp(iθ + iπ(1− s)(8t− 1)) if 0 ≤ t < 1

4

[(2− 4t)(|z|+ (1− s)ε) + (4t− 1)(|z| − (1− s)ε)] exp(iθ + iπ(1− s)) if 1
4
≤ t < 1

2

[|z| − (1− s)ε] exp(iθ − iπ(1− s)(8t− 5)) if 1
2
≤ t < 3

4

[(4− 4t)(|z| − (1− s)ε) + (4t− 3)(|z|+ (1− s)ε)] exp(iθ − iπ(1− s)) if 3
4
≤ t ≤ 1.

(4.8)
We leave it as an exercise to check that H is continuous, H([0, 1]2) ⊆ B[0, |z|+ ε]\B(0, |z|−ε) ⊂ A,
β = H(·, 0) is a circuit, H(t, 1) = z for all t ∈ [0, 1], and H(0, s) = H(1, s) for all s ∈ [0, 1]. Thus,
H defines a homotopy from β to the point z ∈ A.

By construction, we have that β = H(·, 0) is the concatenation of β0, β1, β2, and β3, where
βj : [0, 1/4]→ A for j ∈ {0, 1, 2, 3} are given by

β0(t) = [|z|+ ε] exp(iθ + iπ(8t− 1))

β1(t) = −[(1− 4t)(|z|+ ε) + 4t(|z| − ε)]eiθ

β2(t) = [|z| − ε] exp(iθ − iπ(8t− 1))

β3(t) = −[4t(|z|+ ε) + (1− 4t)(|z| − ε)]eiθ.

(4.9)

From this we see that z /∈ ran(β) and that β3 = β̌1. We may then apply the Cauchy integral formula
and Theorem 1.35 to see that

2πi ind(β, z)f(z) =

∫
β

f(w)

w − z
dw =

∫
β0

f(w)

w − z
dw +

∫
β2

f(w)

w − z
dw. (4.10)

We will now compute the terms on the left and right.
First we compute, using Proposition 1.35,

ind(β, z) = ind(β0, z) + ind(β1, z) + ind(β2, z)− ind(β1, z) = ind(β0, z) + ind(β2, z). (4.11)

Note that ran(β0) = ∂B(0, |z| + ε) and ran(β2) = ∂B(0, |z| − ε). Using this, and arguing as in
Example 2.15, we find that ind(β0, z) = 1 and ind(β2, z) = 0. Hence,

ind(β, z) = 1. (4.12)
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For w ∈ ran(β0) we have that |z| < |z|+ ε = |w|, so we can write

1

w − z
=

1

w
· 1

1− z/w
=
∞∑
n=0

zn

wn+1
, (4.13)

where the series converges uniformly absolutely on ran(β0). Similarly, w ∈ ran(β2) we have that
|w| = |z| − ε < |z|, so we can write

1

w − z
= −1

z
· 1

1− w/z
= −

∞∑
n=0

wn

zn+1
, (4.14)

where the series converges uniformly absolutely on ran(β2). On the other hand, β0 and β̌2 are both
homotopic in A to ∂B(0, r). Thus, another application of Cauchy’s integral formula and Theorem
1.35 shows that ∫

β0

f(w)

w − z
dw =

∞∑
n=0

zn
∫
β0

f(w)

wn+1
dw =

∞∑
n=0

zn
∫
∂B(0,r)

f(w)

wn+1
dw (4.15)

and ∫
β2

f(w)

w − z
dw = −

∞∑
n=0

1

zn+1

∫
β2

wnf(w)dw =
∞∑
n=0

1

zn+1

∫
∂B(0,r)

wnf(w)dw. (4.16)

Combining (4.10), (4.12), (4.15), and (4.16) then shows that

f(z) =
∞∑
n=0

zn
1

2πi

∫
∂B(0,r)

f(w)

wn+1
dw +

∞∑
n=1

z−n
1

2πi

∫
∂B(0,r)

wn−1f(w)dw. (4.17)

This proves everything except for the estimates, but these follow easily from the above expressions
for xn and yn. This proves the second item holds in the case z0 = 0.

This suggests some notation.

Definition 4.2. The series expansion (4.3) is called the Laurent series expansion of f in A. We
often write

f(z) =
∑
n∈Z

(z − z0)nf̂(n) (4.18)

as shorthand for the two series in (4.3), where

f̂(n) =
1

2πi

∫
∂B(z0,r)

(w − z0)−n−1f(w)dw ∈ X (4.19)

for n ∈ Z and any r0 < r < r1.

The coefficient map f̂ : Z → X carries a lot of interesting information about the size of f , at
least when X is a Hilbert space. We now investigate this.

Theorem 4.3. Let X be a complex Hilbert space with inner-product 〈·, ·〉X . Let z0 ∈ C, 0 ≤ r0 <
r1 ≤ ∞, and A(z0; r0, r1) ⊆ C be the annulus as in Theorem 4.1. Suppose that f, g : A(z0; r0, r1)→
X are holomorphic and have Laurent series

f(z) =
∑
n∈Z

(z − z0)nf̂(n) and g(z) =
∑
n∈Z

(z − z0)nĝ(n) for z ∈ A(z0; r0, r1). (4.20)

Then for each r0 < r < r1 the following hold.
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1. The maps f̂ , ĝ : Z→ X satisfy∑
n∈Z

r2n
∥∥∥f̂(n)

∥∥∥2

X
+
∑
n∈Z

r2n ‖ĝ(n)‖2
X <∞. (4.21)

2. We have the Plancherel identity:∫ 1

0

∥∥f(z0 + re2πit)
∥∥2

X
dt =

∑
n∈Z

r2n
∥∥∥f̂(n)

∥∥∥2

X
. (4.22)

3. We have the Parseval identity:∫ 1

0

〈f(z0 + re2πit), g(z0 + re2πit)〉Xdt =
∑
n∈Z

r2n〈f̂(n), ĝ(n)〉X . (4.23)

Proof. For N ∈ N define the holomorphic functions fN , gN : A(z0; r0, r1)→ X via

fN(z) =
N∑

n=−N

(z − z0)nf̂(n) and gN(z) =
N∑

n=−N

(z − z0)nĝ(n). (4.24)

Fix r ∈ (r0, r1). For any z such that |z − z0| = r we have that

z − z0 =
r2

z − z0

, (4.25)

and hence

〈fN(z), gN(z)〉X =
N∑

m,n=−N

(z − z0)n(z − z0)m〈f̂(n), ĝ(m)〉X =
N∑

m,n=−N

r2m(z − z0)n−m〈f̂(n), ĝ(m)〉X .

(4.26)
Using this, we compute∫ 1

0

〈fN(z0 + re2πit), gN(z0 + re2πit)〉Xdt =

∫
∂B(z0,r)

〈fN(z), gN(z)〉X
dz

2πi(z − z0)

=
N∑

m,n=−N

(
1

2πi

∫
∂B(z0,r)

(z − z0)n−m−1dz

)
r2m〈f̂(n), ĝ(m)〉X =

N∑
n=−N

r2n〈f̂(n), ĝ(n)〉X . (4.27)

Using (4.27) with gN replaced by fN , we see that∫ 1

0

∥∥fN(z0 + re2πit)
∥∥2

X
dt =

N∑
n=−N

r2n
∥∥∥f̂(n)

∥∥∥2

X
, (4.28)

and so upon sending N →∞ and using the uniform convergence of the Laurent series, we find that∫ 1

0

∥∥f(z0 + re2πit)
∥∥2

X
dt =

∑
n∈Z

r2n
∥∥∥f̂(n)

∥∥∥2

X
. (4.29)
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A similar argument shows that∫ 1

0

∥∥g(z0 + re2πit)
∥∥2

X
dt =

∑
n∈Z

r2n ‖ĝ(n)‖2
X . (4.30)

This proves the first item and the Plancherel identity.
Returning now to (4.27) and sending N →∞, we deduce that∫ 1

0

〈f(z0 + re2πit), f(z0 + re2πit)〉Xdt =
∑
n∈Z

r2n〈f̂(n), ĝ(n)〉X . (4.31)

This proves Parseval’s identity.

The results of Theorem 4.3 are particularly striking when z0 = 0 and r = 1.

Example 4.4. Suppose that X is a complex Hilbert space and 0 < r0 < 1 < r1. Let F,G :
A(0; r0, r1)→ X be holomorphic and define f, g : [0, 1]→ X via f(t) = F (e2πit) and g(t) = G(e2πit).
Then we can take r = 1 to compute

F̂ (n) =
1

2πi

∫ 1

0

(e2πit)−n−12πie2πitF (e2πit)dt =

∫ 1

0

e−2πintF (e2πit)dt =

∫ 1

0

e−2πintf(t)dt (4.32)

and, similarly,

Ĝ(n) =

∫ 1

0

e−2πintg(t)dt. (4.33)

Moreover,∫ 1

0

∥∥F (e2πit)
∥∥2

X
dt =

∫ 1

0

‖f(t)‖2
X dt, and

∫ 1

0

〈F (e2πit), G(e2πit)〉Xdt =

∫ 1

0

〈f(t), g(t)〉Xdt. (4.34)

Theorem 4.3 then says that ∫ 1

0

‖f(t)‖2
X dt =

∑
n∈Z

∥∥∥∥∫ 1

0

e−2πintf(t)dt

∥∥∥∥2

X

(4.35)

and ∫ 1

0

〈f(t), g(t)〉Xdt =
∑
n∈Z

〈
∫ 1

0

e−2πintf(t)dt,

∫ 1

0

e−2πintg(t)dt〉X . (4.36)

To see this from a higher-level perspective, define

H = {f : [0, 1]→ X | f(t) = F (e2πit) for t ∈ [0, 1],

where F : A(0; r0, r1)→ X is holomorphic for some 0 < r0 < 1 < r1}. (4.37)

It is a simple matter to verify that H is a vector subspace of the smooth functions from [0, 1] to X
and that if f ∈ H then f (n)(0) = f (n)(1) for all n ∈ N, i.e. the functions in H are 1−periodic. We
endow H with the inner product defined by

〈f, g〉H =

∫ 1

0

〈f(t), g(t)〉Xdt. (4.38)
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For f ∈ H define f̂ : Z→ X via

f̂(n) =

∫ 1

0

e−2πintf(t)dt. (4.39)

According to the above, this induces a linear map ·̂ : H → `2(Z;X) satisfying

〈f, g〉H(X) = 〈f̂ , ĝ〉`2 and ‖f‖H =
∥∥∥f̂∥∥∥

`2
. (4.40)

In particular ·̂ is an isometric embedding, which we call the Fourier transform. Additionally, we
have the identity

f(t) = F (e2πit) =
∑
n∈Z

e2πintf̂(n) for t ∈ [0, 1], (4.41)

where the series converges uniformly absolutely. This shows that the functions in H are actually
linear combinations of the smooth and 1−periodic functions [0, 1] 3 t 7→ e2πintx ∈ X for x ∈ X a
constant.

4

The Laurent series provide an extremely useful tool for classifying the isolated singularities of
an otherwise holomorphic map. In the following definition we will use the simple fact that if X is
a metric space and E ⊆ X is such that E ′ = ∅, then E is closed.

Definition 4.5. Let X be a complex Banach space, ∅ 6= U ⊆ C be open, and let ∅ 6= E ⊂ U be
isolated, i.e. E ′ ∩ U = ∅. Let f : U\E → X be holomorphic. For any 0 < R ≤ ∞ such that
B(z0, R) ⊆ U and B(z0, R) ∩ E = {z0}, Theorem 4.1 allows us to write

f(z) =
∞∑
n=1

(z − z0)−nxn +
∞∑
n=0

(z − z0)nyn for z ∈ B(z0, R)\{z0}, (4.42)

where {xn}∞n=1, {yn}∞n=0 ⊆ X, and the series converge uniformly absolutely in B(z0, r1)\B[z0, r0] for
every 0 < r0 < r1 < R.

1. If xn = 0 for 1 ≤ n ∈ N, then we say f has a removable singularity at z0.

2. If there exists 1 ≤ N ∈ N such that xN 6= 0 and xn = 0 for n ≥ N + 1, then we say f has a
pole of order N at z0, and we write ord(f, z0) = N . We say the pole is simple if ord(f, z0) = 1.

3. If xn 6= 0 for infinitely many 1 ≤ n ∈ N, then we say f has an essential singularity at z0.

Remark 4.6. It’s clear from the definition that since E isolated, the classification of the singularities
is local, i.e. the classification is the same if we view f : U\E → X or if we consider the restriction
f : B(z0, R)\{z0} → X.

Let’s consider some examples.

Example 4.7. Let f : C\{0, i,−i} → C via

f(z) =
z + 2

z5(z2 + 1)
. (4.43)

Then f has simple poles at ±i, and ord(f, 0) = 5. 4
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Example 4.8. Define f : C\{0} → C via f(z) = e1/z. For n ∈ N we compute∫
∂B(0,r)

znf(z)dz =

∫ 1

0

2πirn+1e2πi(n+1)t exp(r−1e−2πit)dt

= 2πi
∞∑
k=0

1

k!
rn+1−k

∫ 1

0

e2πi(n+1−k)tdt =
2πi

(n+ 1)!
, (4.44)

which means, by way of Theorem 4.1, that f has an essential singularity at 0. 4

The name removable singularity is justified by the following result, which shows that removable
singularities are not singularities at all and may simply be removed to form a holomorphic function.

Theorem 4.9. Let X be a complex Banach space, ∅ 6= U ⊆ C be open, and let ∅ 6= E ⊂ U be such
that E ′ ∩ U = ∅. Let f : U\E → X be holomorphic. If f has a removable singularity at z0 ∈ E,
then the limit y0 = limz→z0 f(z) ∈ X exists, and the map F : (U\E) ∪ {z0} → X defined by

F (z) =

{
f(z) if z 6= z0

y0 if z = z0

(4.45)

is holomorphic.

Proof. Since z0 is a removable singularity, Theorem 4.1 allows us to write

f(z) =
∞∑
n=0

(z − z0)nyn for z ∈ B(z0, R)\{z0}, (4.46)

where {yn}∞n=0 ⊆ X and B(z0, R) ⊆ U with B(z0, R)∩E = {z0}. The result follows immediately.

4.2 Poles and meromorphic functions

We now turn our attention to a more thorough characterization of poles.

Theorem 4.10. Let X be a complex Banach space, z0 ∈ C, 0 < R ≤ ∞, and f : B(z0, R)\{z0} → X
be holomorphic. Let 1 ≤ N ∈ N. Then the following are equivalent.

1. f has a pole of order N at z0.

2. There exist x1, . . . , xN ∈ X with xN 6= 0, and a holomorphic function g : B(z0, R)→ X such
that

f(z) =
N∑
n=1

1

(z − z0)n
xn + g(z) for z ∈ B(z0, R)\{z0}. (4.47)

3. For 0 < r < R we have that∫
∂B(z0,r)

(z − z0)nf(z)dz = 0 for n ≥ N, (4.48)

and ∫
∂B(z0,r)

(z − z0)N−1f(z)dz 6= 0. (4.49)
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4. There exists a holomorphic map h : B(z0, R)→ X such that h(z0) 6= 0 and

f(z) =
h(z)

(z − z0)N
for all z ∈ B(z0, R)\{z0}. (4.50)

5. There exists holomorphic maps H : B(z0, R) → X, d : B(z0, R) → C such that H(z0) 6= 0,
Z(d) = {z0}, ord(d, z0) = N , and

f(z) =
H(z)

d(z)
for all z ∈ B(z0, R)\{z0}. (4.51)

In any case, we have that

xN =
1

2πi

∫
∂B(z0,r)

(z − z0)N−1f(z)dz = h(z0) = lim
z→z0

(z − z0)NH(z)

d(z)
(4.52)

Proof. We will prove that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1).
Proof of (1) ⇒ (2): This follows immediately from the definition and the fact that analytic

functions are holomorphic.
Proof of (2) ⇒ (3): Let 0 < r < R, so that B[z0, r] ⊂ U . By Cauchy-Goursat, we then have

that if n ≥ N then∫
∂B(z0,r)

(z − z0)nf(z)dz =
N∑
k=1

(∫
∂B(z0,r)

(z − z0)n−kdz

)
xk +

∫
∂B(z0,r)

(z − z0)ng(z)dz = 0. (4.53)

Similarly,

∫
∂B(z0,r)

(z − z0)N−1f(z)dz =
N∑
k=1

(∫
∂B(z0,r)

(z − z0)N−1−kdz

)
xk +

∫
∂B(z0,r)

(z − z0)N−1g(z)dz

=

(∫
∂B(z0,r)

(z − z0)−1dz

)
xN = 2πixN 6= 0. (4.54)

Proof of (3)⇒ (4): We have that f is holomorphic in the open annulus A = B(z0, R)\{z0}, so
for 0 < r < R Theorem 4.1 implies that

f(z) =
∞∑
n=0

(z − z0)n
(

1

2πi

∫
∂B(z0,r)

f(w)

(w − z0)n+1
dw

)
+
∞∑
n=1

(z − z0)−n
(

1

2πi

∫
∂B(z0,r)

(w − z0)n−1f(w)dw

)
, (4.55)

where the series converge in A. Define the holomorphic map H : A→ X via

∞∑
n=0

(z − z0)n
(

1

2πi

∫
∂B(z0,r)

f(w)

(w − z0)n+1
dw

)
. (4.56)
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If N ≤ 0, then f = H and so z0 is not a pole, a contradiction. Thus N ≥ 1 and

f(z) = H(z) +
N∑
n=1

(z − z0)−n
(

1

2πi

∫
∂B(z0,r)

(w − z0)n−1f(w)dw

)

=
1

(z − z0)N

(
(z − z0)NH(z) +

N∑
n=1

(z − z0)N−n
(

1

2πi

∫
∂B(z0,r)

(w − z0)n−1f(w)dw

))
, (4.57)

and since the term in parentheses is analytic and doesn’t vanish at z0, the fourth item is proved.
Proof of (4)⇒ (5): Trivial.
Proof of (5)⇒ (1): In light of Theorem 3.2, we can write

d(z) = (z − z0)ND(z) (4.58)

for D : B(z0, R) → C\{0} holomorphic. Define the holomorphic map h : B(z0, R) → X via
h(z) = H(z)/D(z), and note that h(z0) 6= 0. Then f(z) = h(z)/(z − z0)n for z ∈ B(z0, R)\{z0}.

Since h is holomorphic in B(z0, R), Theorem 2.7 shows that we can write

h(z) =
∞∑
n=0

(z − z0)n

n!
h(n)(z0), (4.59)

with the series converging pointwise in B(z0, R) and uniformly absolutely in B(z0, r) for every
0 < r < R. Then

f(z) =
h(z)

(z − z0)N
=

N−1∑
n=0

(z − z0)n−N

n!
h(n)(z0) +

∞∑
n=N

(z − z0)n−N

n!
h(n)(z0)

=
N∑
k=1

(z − z0)−k

(N − k)!
h(N−k)(z0) +

∞∑
n=0

(z − z0)n

(n+N)!
h(n+N)(z0) (4.60)

for z ∈ B(z0, R)\{z0}, and so f has a pole of order N at z0 since h(0)(z0) = h(z0) 6= 0.

We now define a special class of nearly holomorphic maps that are allowed to have isolated
singularities, provided they are only poles. We will call such functions meromorphic.

Definition 4.11. Let X be a complex Banach space and ∅ 6= U ⊆ C be open.

1. We write X∞ = X ∪ {∞}.

2. For f : U → X∞ we write P (f) = f−1({∞}) for the polar set of f and Z(f) = f−1({0}) for
the zero set.

3. Let f : U → X∞. We say that f is meromorphic if P (f)′ ∩ U = ∅ (which means P (f) is
relatively closed in U), f is holomorphic in U\P (f), and if z0 ∈ P (f) then f has a pole at z0.

Remark 4.12. If f is meromorphic, then by definition all points in P (f) are isolated, so P (f)∩K
is finite for every compact set K ⊂ C. This is analogous to the behavior of Z(f) when f is
holomorphic, but here it is built into the definition.

Let’s consider some examples
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Example 4.13. The function f : C→ C defined by f(z) = e1/z for z 6= 0 and f(z) =∞ for z = 0
is not meromorphic since it has an essential singularity at 0 4

Example 4.14. Let f : C→ C via

f(z) =
z + 2

z5(z2 + 1)
(4.61)

for z /∈ {0, i,−i} and f(z) = ∞ otherwise. Then f is meromorphic since the singularities are
poles. 4

Example 4.15. Let ∅ 6= U ⊆ C be open and X be a complex Banach space. Let h : U → X and
g : U → C be holomorphic. Then f : U → X∞ defined by

f(z) =

{
h(z)/g(z) if z /∈ Z(g)

∞ if z ∈ Z(g)
(4.62)

is meromorphic due to Theorems 3.2 and 4.10. 4

The previous two examples show a nice analogy. Holomorphic functions behave locally like poly-
nomials, and meromorphic functions behave locally like rational functions (ratios of polynomials).

Example 4.16. Let P (f) = {nπ | n ∈ Z} and define f : C→ C2×2 via

f(z) =

(
1/z z2 − 2
z4ez 1/ sin(z)

)
(4.63)

for z /∈ P (f) and f(z) =∞ otherwise. Then f is meromorphic and each pole in P (f) is simple. 4

There is a generalization of the argument principle for meromorphic functions. We present this
now.

Theorem 4.17 (Meromorphic argument principle). Let X be a complex Banach space, ∅ 6= U ⊆ C
be open, f : U → C∞ be nontrivial and meromorphic, and g : U → X be holomorphic. If γ is a
loop chain in U that is homologous to zero in U and ran(γ) ∩ Z(f) ∩ P (f) = ∅, then

1

2πi

∫
γ

f ′

f
g =

∑
z∈Z(f)

ord(f, z) ind(γ, z)g(z)−
∑
z∈P (f)

ord(f, z) ind(γ, z)g(z), (4.64)

where the sums are finite due to the compactness of ran(γ), Proposition 2.20, and the fact that all
points is Z(f) and P (f) are isolated, and the integral is well-defined because gf ′/f is holomorphic
in U\(Z(f) ∪ P (f)).

Proof. Pick R > 0 such that ran(γ) ⊆ B[0, R]. Since ind(γ, z) = 0 for |z| > R, we deduce
that γ is homologous to zero in U ∩ B(0, 2R). The compact sets KZ = Z(f) ∩ B[0, 3R] and
KP = P (f) ∩B[0, 3R] are finite, so we can define the function h : U ∩B(0, 2R)→ C via

h(z) = f(z)
∏
w∈KP

(z − w)ord(f,w)
∏
w∈KZ

(z − w)− ord(f,w) (4.65)

and
h(w) = lim

z→w
h(z) if w ∈ KP ∪KZ , (4.66)
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which exists due to Theorems 3.2 and 4.10. These results also show that h is holomorphic in
U ∩B(0, 2R) and does not vanish there. Then

f(z) = h(z)
∏
w∈KP

(z − w)− ord(f,w)
∏
w∈KZ

(z − w)ord(f,w) for z ∈ U ∩B(0, 2R)\KP , (4.67)

and hence the product rule implies that

f ′(z)

f(z)
=
h′(z)

h(z)
+
∑
w∈KZ

ord(f, w)

z − w
−
∑
w∈KP

ord(f, w)

z − w
for z ∈ U ∩B(0, 2R)\KP . (4.68)

Since gh′/h is holomorphic in U ∩ B(0, 2R) and γ is homologous to zero in U ∩ B(0, 2R), we then
deduce from Cauchy-Goursat and Cauchy’s integral formula that∫

γ

f ′

f
g =

∫
γ

h′

h
g +

∑
w∈KZ

ord(f, w)

∫
γ

g(z)

z − w
dz −

∑
w∈KP

ord(f, w)

∫
γ

g(z)

z − w
dz

=
∑
w∈KZ

ord(f, w)2πi ind(γ, w)g(w)−
∑
w∈KP

ord(f, w)2πi ind(γ, w)g(w)

= 2πi
∑

w∈Z(f)

ord(f, w) ind(f, w)g(w)− 2πi
∑

w∈P (f)

ord(f, w) ind(f, w)g(w). (4.69)

This yields the stated identity.

We then have the following variant of Corollary 3.20.

Corollary 4.18. Let ∅ 6= U ⊆ C be open and f : U → C∞ be meromorphic. Let γ be a chain loop
in U that is homologous to zero in U and satisfies ran(γ)∩P (f)∩Z(f) = ∅. Define the chain loop
f ◦ γ in C as in Lemma 3.19. Then

ind(f ◦ γ, 0) =
∑
z∈Z(f)

ord(f, z) ind(γ, z)−
∑
z∈P (f)

ord(f, z) ind(γ, z). (4.70)

Proof. The identity follows from Lemma 3.19 and the meromorphic argument principle applied with
g = 1 and f , which is nontrivial since 0 /∈ f(ran(γ)).

4.3 The residue theorem

Now that we have the concept of a meromorphic function, it is natural to investigate whether a
variant of Cauchy-Goursat holds. In answering this question we will need the concept of a residue,
which we now define.

Definition 4.19. Let ∅ 6= U ⊆ C be open, X be a complex Banach space, and f : U → X∞ be
meromorphic. For z0 ∈ P (f) we define the residue of f at z0 via

Res(f, z0) = x1 ∈ X, (4.71)

where x1 is as in the second item of Theorem 4.10.

The residue may be computed in different ways using Theorem 4.10.

61



Proposition 4.20. Let ∅ 6= U ⊆ C be open, X be a complex Banach space, and f : U → X∞ be
meromorphic. For z0 ∈ P (f) we have that

Res(f, z0) =
1

(ord(f, z0)− 1)!
lim
z→z0

(
d

dz

)ord(f,z0)−1 (
(z − z0)ord(f,z0)f(z)

)
=

1

(ord(f, z0)− 1)!
h(ord(f,z0)−1)(z0),

(4.72)

where in the latter equality h is as in the fourth item of Theorem 4.10. In particular, if z0 is a
simple pole, then

Res(f, z0) = lim
z→z0

(z − z0)f(z) = h(z0) =
H(z0)

d′(z0)
, (4.73)

where in the latter equality f = H/d for H and d as in the fifth item of Theorem 4.10.

Proof. These are immediate from the second, fourth, and fifth items of Theorem 4.10.

The utility of the residue concept is evident in the following simple lemma.

Lemma 4.21. Let ∅ 6= U ⊆ C be open, X be a complex Banach space, and f : U → X∞ be
meromorphic. Suppose that z0 ∈ P (f) and r > 0 is such that B[z0, r] ⊆ U and B(z0, r) ∩ P (f) =
{z0}. Then

1

2πi

∫
∂B(z0,r)

f = Res(f, z0). (4.74)

Proof. Using Theorem 4.10, we can pick 0 < R < r so that we can write

f(z) =

ord(f,z0)∑
k=1

1

(z − z0)k
xk + g(z) for all z ∈ B(z0, R)\{z0} (4.75)

for g : B(z0, R) → X holomorphic. From Cauchy-Goursat and Examples 1.40 and 1.41 we then
have that ∫

∂B(z0,r)

f =

∫
∂B(z0,R/2)

f = 2πix1. (4.76)

This lemma shows that Cauchy-Goursat does not hold for meromorphic functions with poles.
However, it suggests that there may be a simple replacement utilizing residues. Remarkably, this
holds. We now prove one of the most useful theorems in all of complex analysis, the residue theorem.
This is the natural generalization of Cauchy-Goursat to meromorphic functions, and in fact reduces
to Cauchy-Goursat for functions without poles.

Theorem 4.22 (Residue theorem). Let X be a complex Banach space, ∅ 6= U ⊆ C be open, and
f : U → X∞ be meromorphic. Suppose that γ is a loop chain in U that is homologous to zero in U .
If ran(γ) ∩ P (f) = ∅, then

1

2πi

∫
γ

f =
∑
z∈P (f)

ind(γ, z) Res(f, z), (4.77)

where the sum is finite since only finitely many z ∈ P (f) satisfy ind(γ, z) 6= 0, and the integral is
well-defined since f is holomorphic in U\P (f).
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Proof. Pick R > 0 such that ran(γ) ⊆ B[0, R]. Since ind(γ, z) = 0 for |z| > R, we deduce that γ is
homologous to zero in U ∩ B(0, 2R). Note that the set K = P (f) ∩ B[0, 2R] is finite. If K = ∅,
then f is holomorphic in U ∩B(0, 2R), and so

1

2πi

∫
γ

f = 0 =
∑
z∈P (f)

ind(γ, z) Res(f, z) (4.78)

since ind(f, z) = 0 for any z ∈ P (f)\K. This proves the result in the case K = ∅. Assume then that
K 6= ∅ and write K = {z1, . . . , zn}. For 1 ≤ j ≤ n pick 0 < rj such that B(zj, rj) ⊂ U ∩ B(0, 2R),
B(zj, rj) ∩ P (f) = {zj}.

Consider the loop chain δ = γ−
∑n

j=1 ind(γ, zj)∂B(zj, rj). If z ∈ (U ∩B(0, 2R))c, then Example
2.15 shows that

ind(δ, z) = ind(γ, z) = 0 (4.79)

since γ is homologous to zero in U ∩B(0, 2R). On the other hand, Example 2.15 also shows that

ind(δ, zk) = ind(γ, zk)−
n∑
j=1

ind(γ, zj) ind(∂B(zj, rj), zk) = ind(γ, zk)− ind(γ, zk) = 0. (4.80)

Thus, δ is homologous to 0 in U ∩B(0, 2R)\K, so Cauchy-Goursat implies that

0 =

∫
δ

f =

∫
γ

f −
n∑
j=1

ind(f, zj)

∫
∂B(zj ,rj)

f. (4.81)

From this and Lemma 4.21 we then compute

1

2πi

∫
γ

f =
n∑
j=1

ind(f, zj)
1

2πi

∫
∂B(zj ,rj)

f =
n∑
j=1

ind(γ, zj) Res(f, zj) =
∑
z∈P (f)

ind(γ, z) Res(f, z).

(4.82)

The residue theorem gives an incredible toolbox for computing integrals. We briefly demonstrate
this with the following examples.

Example 4.23. From the monotone convergence theorem we know that∫
R

dx

1 + x4
= lim

R→∞

∫ R

−R

dx

1 + x4
. (4.83)

For R > 1 set

IR =

∫ R

−R

dx

1 + x4
. (4.84)

The function f : C → C∞ defined by f(z) = 1/(1 + z4) where the denominator doesn’t vanish
and ∞ otherwise has simple poles at eiπ/4, ei3π/4, ei5π/4 and ei7π/4. Consider the loop ΓR = γ1 ∨ γ2,
where γj : [0, 1]→ C via

γ1(t) = −R + 2Rt and γ2(t) = Reiπt. (4.85)

Then ∫
γ1

dz

1 + z4
=

∫ 1

0

2R

1 + (−R + 2Rt)4
dt =

∫ R

−R

dx

1 + x4
= IR. (4.86)
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On the other hand, if R > 1, then ∣∣∣∣∫
γ2

dz

1 + z4

∣∣∣∣ ≤ πR

R4 − 1
. (4.87)

Thus, by the residue theorem, if we set z0 = eiπ/4 and z1 = ei3π/4, then∫
ΓR

dz

1 + z4
= 2πiRes(f, z0) + 2πiRes(f, z1). (4.88)

However, ∣∣∣∣∫
ΓR

dz

1 + z4
− IR

∣∣∣∣ =

∣∣∣∣∫
γ2

dz

1 + z4

∣∣∣∣→ 0 as R→∞, (4.89)

so
lim
R→∞

IR = 2πiRes(f, z0) + 2πiRes(f, z1). (4.90)

Write g(z) = 1 + z4. Then by Proposition 4.20 we have that

Res(f, z0) = lim
z→z0

(z − z0)f(z) = lim
z→z0

z − z0

g(z)− g(z0)
=

1

g′(z0)
=

1

4z3
0

=
e−i3π/4

4
(4.91)

and

Res(f, z1) = lim
z→z1

(z − z1)f(z) =
1

g′(z1)
=
e−i9π/4

4
=
e−iπ/4

4
. (4.92)

Hence ∫
R

dx

1 + x4
= lim

R→∞
IR =

2π

4

(
e−iπ/4 + eiπ/4

)
= π cos(π/4) =

π√
2
. (4.93)

4

Example 4.24. Define I : (−1, 1)→ R via

I(a) =

∫ 2π

0

cos(θ)

1 + a cos(θ)
dθ. (4.94)

Note that the change of variables θ = ϕ+ π shows that

I(−a) =

∫ 2π

0

cos(θ)

1− a cos(θ)
dθ =

∫ 2π

0

cos(ϕ)

1 + a cos(ϕ)
dϕ = I(a), (4.95)

so I is odd, and we can restrict our attention to a ∈ (0, 1).
Define γ : [0, 2π]→ C via γ(θ) = eiθ and note that

γ′(θ) = ieiθ ⇒ 1 =
γ′(θ)

iγ(θ)
. (4.96)

Define the meromorphic function f : C→ C∞ via

f(z) =
(z + z−1)

2

(
1 + a

z + z−1

2

)−1

=
z2 + 1

az2 + 2z + a
=

z2 + 1

a(z − r+)(z − r−)
, (4.97)

where

r± =
−1±

√
1− a2

a
. (4.98)
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Note that √
1− a <

√
1 + a⇒

√
1− a2 < 1 + a⇒ 0 < r+ < 1, (4.99)

and r− < −1. Write g : C→ C∞ for the meromorphic function g(z) = f(z)/z. Then g has simple
poles at 0, r− and r+. Then the residue theorem implies that

I(a) =

∫
γ

f(z)
dz

iz
=

1

ia

∫
γ

z2 + 1

z(z − r+)(z − r−)
dz =

2π

a
(Res(g, 0) + Res(g, r+)) . (4.100)

We then compute

Res(g, 0) = lim
z→0

zg(z) =
1

a
(4.101)

and

Res(g, r+) = lim
z→0

(z − r+)g(z) =
r2

+ + 1

ar+(r+ − r−)
= − 1

a
√

1− a2
. (4.102)

Hence for 0 < a < 1 we have that

I(a) =
2π

a

(
1− 1√

1− a2

)
, (4.103)

since this expression is also odd, we deduce that∫ 2π

0

cos(θ)

1 + a cos(θ)
dθ =

2π

a

(
1− 1√

1− a2

)
for all a ∈ (−1, 1). (4.104)

4

Example 4.25. Recall that hyperbolic cosine is given by cosh(x) = ex+e−x

2
. It’s easy to verify

that for any ξ ∈ R, the function R 3 x 7→ cos(ξx)/ cosh(x) ∈ R is integrable, and the dominated
convergence theorem shows that ∫

R

cos(ξx)

cosh(x)
dx = lim

R→∞
IR (4.105)

for

IR =

∫ R

−R

cos(ξx)

cosh(x)
dx =

∫ R

−R

2 cos(ξx)ex

e2x + 1
dx. (4.106)

Define the meromorphic function f : C→ C via

f(z) =
2eiξzez

e2z + 1
(4.107)

and note that f has simple poles at z = π(n+ 1/2) for n ∈ Z. Further note that

f(z + iπ) = −e−πξf(z) for all z ∈ C\P (f). (4.108)

Define γ0, γ2 : [−R,R]→ C and γ1, γ3 : [0, π]→ C via

γ0(t) = t, γ2(t) = −t+ iπ (4.109)

and
γ1(t) = R + it, γ3(t) = −R + (π − t)i. (4.110)
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Consider the counterclockwise simple circuit γ = γ0 ∨ γ1 ∨ γ2 ∨ γ3, which avoids P (f) and encloses
exactly one pole, namely iπ/2.

We now compute, using the fact that sin is odd and cosh is even,∫
γ0

f(z)dz =

∫ R

−R

2eitξet

e2t + 1
dt =

∫ R

−R

2 cos(ξt)et

e2t + 1
dt = IR (4.111)

and ∫
γ2

f(z)dz =

∫ R

−R
−f(−t+ iπ)dt = e−πξ

∫ R

−R
f(−t)dt = e−πξIR. (4.112)

On the other hand, we may readily bound∣∣∣∣∫
γ1

f(z)dz +

∫
γ3

f(z)dz

∣∣∣∣ ≤ 4πeR

e2R − 1
. (4.113)

The residue theorem shows that∫
γ

f(z)dz = 2πiRes(f, iπ/2), (4.114)

so ∣∣(1 + e−πξ)IR − 2πiRes(f, iπ/2)
∣∣ ≤ 4πeR

e2R − 1
, (4.115)

and hence

lim
R→∞

IR =
2πiRes(f, iπ/2)

1 + e−πξ
. (4.116)

We compute

Res(f, iπ/2) = lim
z→iπ/2

(z − iπ/2)f(z) = lim
z→iπ/2

(
2ezeiξz

(
f(z)− f(iπ/2)

z − iπ/2

)−1
)

=
2eiπ/2e−ξπ/2

2e2iπ/2
= −ie−ξπ/2, (4.117)

and hence
2πiRes(f, iπ/2)

1 + e−πξ
= 2π

e−πξ/2

1 + e−πξ
=

2π

eπξ/2 + e−πξ/2
=

π

cosh(πξ/2)
. (4.118)

Finally, we deduce from the above that∫
R

cos(ξx)

cosh(x)
dx =

π

cosh(πξ/2)
. (4.119)

Making a change of variables allows us to further compute∫
R

cos(2πξx)

cosh(πx)
dx =

1

cosh(πξ)
, (4.120)

which is an interesting identity in the branch of math known as Fourier analysis, as it shows that
hyperbolic secant, rescaled by π, is its own Fourier transform.

4

66



The residue theorem also allows us to easily compute integrals involving certain rational func-
tions.

Proposition 4.26. Let X be a complex Banach space, and suppose that q : C→ X and p : C→ C
are polynomials such that deg(p) ≥ deg(q) + 2. If γ is a loop chain in C\Z(p) homologous to
∂B(0, R), where Z(p) ⊂ B(0, R), then ∫

γ

q

p
= 0. (4.121)

Proof. Since the roots of p lie in B(0, R) we can use Cauchy-Goursat to see that∫
γ

q

p
=

∫
∂B(0,R)

q

p
, (4.122)

so it suffices to prove that this latter integral vanishes.
Define I : [R,∞)→ C via

I(r) =
1

2πi

∫
∂B(0,r)

q

p
. (4.123)

Since p and q are polynomials, we can pick constants C0, C1, C2 ∈ (0,∞) such that

|p(z)| ≥ C0 |z|deg(p) − C1 and ‖q(z)‖X ≤ C2(1 + |z|deg(q)). (4.124)

Hence, the condition deg(p) ≥ deg(q) + 2 implies that

|I(r)| ≤ 2πr

2π
max
|z|=r

‖q(z)‖X
|p(z)|

≤ C2r(1 + rdeg(q))

C0rdeg(p) − C1

→ 0 as r →∞. (4.125)

On the other hand, the rational function q/p is meromorphic on C, so the residue theorem implies
that

I(r) =
∑
z∈Z(p)

Res(q/p, z). (4.126)

This means that I is a constant function that vanishes at infinity, and hence I(r) = 0 for all
r ≥ R.
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