
Ordinal Analysis by Transformations

Henry Towsner

Department of Mathematics, Carnegie Mellon University

Abstract

The technique of using infinitary rules in an ordinal analysis has been one of the
most productive developments in ordinal analysis. Unfortunately, one of the most
advanced variants, the Buchholz Ωµ-rule, does not apply to systems much stronger
than Π1

1-comprehension. In this paper, we propose a new extension of the Ω rule
using game-theoretic quantifiers. We apply this to a system of inductive definitions
with the strength of a recursively inaccessible ordinal.

Key words: Ordinal analysis, inductive definitions
1991 MSC: 03F05, 03F35

1 Introduction

Infinitary inference rules have been a key tool in ordinal analysis since their
introduction by Schütte [1]. The appropriate infinitary rule for Peano Arith-
metic, the ω rule, is reasonably straightforward—it simply branches over the
natural numbers—but suitable infinitary rules for stronger systems are less
clear.

The first type proposed, Buchholz’s Ωµ rule [2], branches not over numbers,
but over a particular class of derivations. Subsequently, Pohlers proposed the
method of local predicativity [3], in which infinitary rules branch over infinite
ordinals. Rules branching over ordinals have almost entirely replaced the Ωµ

rule, in large part because they led to productive generalizations, culminating
in an analysis of Π1

2-comprehension [4], while the Ωµ rule seemed limited to
iterated systems of Π1

1-comprehension.

In the method of local predicativity, ordinals are built directly into the system,
since they are necessary to even describe the system cut-elimination will take

Email address: henryt@cmu.edu (Henry Towsner).

Preprint submitted to Annals of Pure and Applied Logic 27 February 2008

place in. This integration with ordinals is different from earlier analyses, in
which the cut-elimination process came first and the ordinals could be “read
off” from the reduction procedure; in local predicativity, the crucial collapsing
step is justified by reference to the properties of the ordinals, which have,
naturally, been defined just so as to make this possible. Unfortunately, as the
systems get more complex, this leads to the appearance that the proof proceeds
by “magic”, obscuring the underlying structure of the argument. This problem
isn’t intrinsic to infinitary techniques—the most advanced finitary methods,
as in [5],[6], and [7], also require systems defined in terms of ordinals, and face
the same problems as a result.

In the author’s opinion, reductions which can be defined independently of
ordinals are clearer and have a greater potential for extracting combinatorial
consequences. Unfortunately, ordinal based methods have been the only option
for going beyond iterations of Π1

1-comprehension. In this paper, we propose
an alternate method of analyzing strong subsystems of analysis, based on a
“game-theoretic” extension of the Ωµ rule, and apply it to a lightface version of
the system µ2 described by Mollerfeld [12]. The exact strength of this system,
as characterized by subsystems of analysis or recursively large ordinals, is
not known to the author, but Mollerfeld’s work implies that it is at least as
strong as the system with a recursively inaccessible ordinal, although it may
be stronger. Systems with the strength of a recursively inaccessible ordinal
were first analyzed using finitary methods in the form of (∆1

2−CA)0 +BI [8]
and later using infinitary methods in the form of KPi [9]. For the equivalence
between these systems, see [10]. (There is also an analysis using Ωµ rules, [11],
but this uses local predicativity-style ordinal indices to obtain sufficiently large
iterations of the Ωµ rule.)

Systems of inductive definitions are relatively susceptible to ordinal analysis,
so we will extend the particularly elegant analysis of ID<ω given in [13]. We
will work with the simplest fixed point operator which can’t be analyzed by
that method, namely a fixed point of the form

µxX.A(x,X, µyY.B(x,X, y, Y))

where Z appears negatively in A(x,X, Z).

Such definitions contain objects of a corecursive character, so it is not surpris-
ing that we use the method of corecursion (as described in [14] and [15]) in a
key definition.

While this illustrates the method, it by no means exhausts it. Unsurprisingly,
since any proof has to exceed methods available in Π1

1-comprehension—which
includes recursion along any easily definable well-ordering—it becomes dif-
ficult to even describe the iterated form of the method required to analyze
stronger fixed point. Even with this limitation, it appears that, at a mini-

2

mum, this method extends to the µ2 calculus (in which the A above could
contain closed fixed points of the same form, which could themselves contain
fixed points of that form, and so on), and we hope that a suitable generaliza-
tion would extend to the complete µ-calculus, which is known to be equivalent
to Π1

2-comprehension [12].

2 Outline

Before launching into the technical details of the proof, we outline the deriva-
tion of the general method from Buchholz’s Ωµ rule. Suppose that we can
prove cut-elimination for some arbitrary theory T (say, Peano Arithmetic or
IDn) using an infinitary system T∞. We may extend T to a theory T ′ by
adding a least fixed point predicate

µxX.A(x,X)

where A is a formula of T and X appears positively, along with closure and
induction axioms. We may then extend T∞ by a closure rule

A(n, µxX.A(x,X))

n ∈ µxX.A(x,X)

and call proofs in this extended system “small”. The full infinitary version
of T ′ adds an Ω rule which branches over small proofs of n ∈ µxX.A(x,X)
and gives the conclusion n 6∈ µxX.A(x,X). Cut-elimination is quite easy to
prove, and the heart of the resulting argument is the demonstration that the
induction axiom in the finitary system can be embedded as an Ω rule in the
infinitary system. The proof that this is possible involves showing that, given
any “small” proof of n ∈ µxX.A(x,X), the predicate y ∈ µxX.A(x,X) can
be systematically replaced by any formula F [y].

This method breaks down when we attempt to add the predicate

µxX.A(x,X, µyY.B(x,X, y, Y))

where X appears negatively in B, and therefore µyY.B(x,X, y, Y) must ap-
pear negatively in A. (For convenience, we abbreviate µyY.B(x,X, y, Y) by
µB(x,X) and µxX.A(x,X, µB(x,X)) by µA.) If we attempt the same tech-
nique, a “small” proof of n ∈ µA must contain negative occurrences of µB(m,µA),
which must be introduced by an Ω rule for µB(m,µA), which must in turn
branch over proofs containing negative occurrences of µA, which gives a vi-
cious cycle.

To find a way out of this dilemma, we can consider what we expect to happen
when we attempt to embed an induction axiom for µA as a hypothetical Ω rule.

3

We would expect to replace µA with some formula F , and therefore whatever
rule introduces ¬µB(m,µA) must be easily converted to a proof of ¬µB(m,F).
This is not true of the ordinary Ω rule, which would face the obstacle that the
Ω rule for ¬µB(m,µA) does not even necessarily branch over the right domain
to become an Ω rule for ¬µB(m,F).

We resolve both these problems at once by introducing a new type of Ω rule to
be the “small” rule introducing ¬µB(m,µA); this rule will branch over proofs
of µB(m,F) for any F . This difficult is that such derivations may contain
inference rules which more widely than is permitted in a small proof (for
instance, the introduction of ¬µA when F is µA).

Such inferences will be converted into non-branching inference rules. We will
call these inference rules truncated inferences, since rather than encoding the
manner in which the original proof derived ¬F [n], they merely note where
such a derivation occured. The Ω rule will then provide, to each derivation of
n ∈ µB(m,F), a derivation of some G[n, F] from instances of these truncated
inferences, as well as an indication, for each truncated inference in the resulting
derivation, a source inference in the original derivation.

Fig. 1. Example Transformation

We cannot be finished, because we have thrown away everything above a
widely branching inference in the original derivation. In order to recover it,
we must provide, for each truncated inference appearing in our derivation of
G[n, F], not only a truncated inference from the source derivation, but also a
new Ω rule which will provide, for each possible premise di, a new derivation
F(di) in such a way that {F(di)}ι are valid premises for the widely branching
inference.

In order to keep all this information in one place, our Ω rule for n ∈ µB(m,F)
will branch, not over derivations, but over sequences of derivations. Given a
derivation d of n ∈ µB(m,F), we divide this derivation into pieces by chopping
it at each introduction of some ¬F [k]. We then build up a new derivation
coinductively; the bottommost piece, d0, is replaced by some F(〈d0〉). Each
truncated inference θ appearing in F(d0) is traced to some truncated inference

4

in d0, which in turn is traced to some introduction of ¬F [k] in d using an
inference rule I. This introduction rule, whatever it is, has some list of premises
{dι}; for each dι there is an inference F(〈d0, dι〉) which extends F(〈d0〉) at θ.
By replacing θ in F(〈d0〉) with I, taking for each premises ι the extension
in F(〈d0, dι〉), we obtain a new valid derivation. We then have new truncated
inferences which first appeared in F(〈d0, dι〉), and the process repeats.

Fig. 2. A derivation is divided into segments, and (the corresponding portion of)
the transformation is applied to each segment in turn.

We may formulate this procedure as a game with two players, a Prover and
a Transformer. Prover plays first, and must play a derivation of from our sys-
tem of small proofs augmented by truncated inferences (which we wall call a
truncated proof system). Transformer must play a derivation with appropriate
endsequent from the same system (actually, transformer is given a bit more
flexibility, for instance, being allowed to use the cut rule), with the additional
property that, for each truncated inference in this derivation, transformer must
name a source callback inference in Prover’s play. Prover then chooses some
truncated inference in Transformer’s play, and plays this truncated inference
together with a new derivation. From here, play continues alternating these
last two steps. Transformer wins as long as it is possible to provide derivations
with the appropriate endsequent relative to what Prover offers (and an addi-
tional condition to be described shortly). The Ω rule is simply an encoding of
a winning strategy for Transformer. (The ordinary Ω rule may be viewed as
the two step version of this game, where Prover is not permitted an additional
play after Transformer has gone once.) Any derivation gives a collection of
strategies for Prover, and applying the transformation to some derivation is

5

the result of knitting together the results given by Transformer against all the
strategies for Prover offered by the derivation.

Two points must be made about this procedure. First, it is convenient in the
description of cut-elimination to take the view that Transformer’s plays (that
is, the premises of the Ω rule) are not merely the portion of the derivation to
be placed above truncated rules, but the entire derivation below that point as
well. That is, F(σ_〈dn〉, τ_〈θ〉) should be an extension of F(σ, τ) in which the
only change is that the truncated inference θ, which had no premise in F(σ, τ),
is required to have a single premise with appropriate endsequent (based on
dn) in F(σ_〈dn〉, τ_〈θ〉). These truncated rules with an additional premise
will be called callback inferences, since they represent the point at which
Transformer’s play has to make reference to the content omitted in Prover’s
play.

The second point is that truncated inferences appearing in F(σ, τ) may have
their source in any inference in σ, not just the most recent one. This is nec-
essary, since the cut-elimination process will cause this situation to occur.
However this introduces a concern about well-foundedness; we wish to have
the property that whenever d is a well-founded derivation, the result of ap-
plying the transformation to it is also well-founded. In order to preserve this,
we must specify additional conditions on infinite play; if Prover’s plays are
given by the infinite sequences σ, τ and the τi are all selected from the newly
extended part of Transformer’s play, Transformer loses if there is some σi such
that infinitely many τj belong to σi. In any other infinite play, Prover loses. (A
well-foundedness criterion of some sort is to be expected, since we are produc-
ing an analysis of a system stronger than Π1

1-comprehension. It is not hard to
show that a transformation with this property maps well-founded derivations
to well-founded ones.) Our Ω rule must remain a winning strategy for this
clarified version of the game.

Given this Ω rule, the remainder of our proof is not so difficult. Such Ω rules
are considered an additional type of “small” inference, and may appear in
derivations of n ∈ µA, which then has an ordinary Ω rule.

3 Transformations

3.1 Proof System

We first need a general notion of a proof system, which we take almost verba-
tim from [13]. In the following, we assume we have already fixed some suitable
language, and are working with the formulas of this language.

6

Definition 3.1. A sequent is a finite set of formulas.

A proof system consists of a set of formal inference symbols (generally denoted
by the variable I), and, for each inference symbol:

• A (possibly infinite) set |I| called its arity
• A sequent ∆(I)
• For each ι ∈ |I|, a sequent ∆ι(I)
• A set Eig(I) which is either empty of a singleton {x} where x is a variable

not in FV (∆(I)) (in this case we call x the eigenvariable of I)

When we say that a proof system contains an inference rule
· · ·∆ι · · · (ι ∈ I)

I !u!
∆

we are declaring I to be an inference symbol with arity I, ∆(I) = ∆, ∆ι(I) =
∆ι, and Eig(I) = {u} (or ∅ if u is omitted). When the arity is finite, we
typically list all the premises explicitly.

Definition 3.2. The derivations d of a proof system and the end sequent
Γ(d) are defined inductively. If, for each ι ∈ |I|, dι is a derivation and setting
Γ := ∆(I)∪⋃ι∈|I| Γ(dι) \∆ι(I), Eig(I)∩ FV (Γ) = ∅ then d := I(dι)ι∈|I| is a
derivation with Γ(d) := Γ.

If d is a derivation and Γ(d) ⊆ Γ then we write d ` Γ.

Definition 3.3. An expression of the form λx.F is called a predicate, and
denoted F . We write F [t] := F (x/t).

3.2 Augmented and Truncated Derivations

We define proof systems with additional rules which serve to mark places where
a derivation has been cut off. The rule TruncΓ 7→Γ,∆ indicates a point where
the derivation has been truncated below an inference rule I with ∆(I) = Γ
and

⋃
ι∈|I| Γ(dι) \∆ι(I) = ∆.

A CBΥ 7→∆ inference indicates a point where every branch besides the branch ι
of some inference rule I has been cut off, Γ(dι) = Υ and ∆(I)∪Γ(dι)\∆ι(I) =
∆.

Definition 3.4. Let P be a proof system. We define truncated P to consist
of P together with inference rules

TruncΓ 7→Γ,∆
Γ,∆

We define augmented P to consist of truncated P together with inference rules

7

ΥCBΥ7→∆ ∆

We define Θ(d) to be the set of instances of Trunc inferences appearing in d.

If θ is a truncated inference TruncΓ 7→Γ,∆, we set In(θ) := Γ and Out(θ) := ∆.

Note that Θ picks out instances, so it distinguishes two occurrences of the
inference rule in different places, even if they have identical parameters.

We will want to be able to talk about systems such as truncated P where P
is itself augmented Q; when we speak of truncated inferences in a derivation
in augmented P , or refer to Θ(d), we mean to include only those inferences
not belonging to P . That is, augmenting and truncating give disjoint unions.

Definition 3.5. We define the exploded derivations of P over Q by induction:

• If d is a derivation in truncated Q and I, E are functions on Θ(d) such
that I(θ) is an inference rule from P , In(θ) =

⋃
ι Γ(E(θ, ι)) \ ∆ι(I(θ)),

Out(θ) = ∆(I(θ)), and each E(θ, ι) is an exploded derivation then 〈d, I, E〉
is an exploded derivation with endsequent Γ(d)

We denote the endsequent of an exploded derivation E by Γ(E). If E =
〈d, I, E〉 is an exploded derivation, we set E0 := d and call this the main part
of the exploded derivation.

Definition 3.6. If 〈d, I, E〉 is an exploded derivation, the unexplosion U(〈d, I, E〉)
is given by main induction on E and a side induction on d:

• If d is a Trunc inference,

U(〈Trunc, I, E〉) := I(θ){U(E(θ, ι))}ι∈|I(θ)|

• Otherwise,

U(〈J {dι}, I, E〉) := J {U(〈dι, I � Θ(dι), E � Θ(dι))}ι∈|J |

Definition 3.7. If P ,Q are proof systems, ∆ a sequent, and F a predicate,
we define the explosion EQ(d) of a derivation d in P by:

• If d = I{dι} where I is not an inference of Q,

EQ(d) := 〈TruncΓ(d)\∆(I)→Γ(d), θ 7→ I, (θ, ι) 7→ EQ(dι)〉

• Otherwise d = I{dι} where I is an inference of Q and set, for each ι ∈ |I|,
〈d′ι, Iι, Eι〉 := EQ(d), and then

EQ(d) := 〈I{d′ι},
⋃
Iι,
⋃
Eι〉

8

Lemma 3.1. For any Q, U(EQ(d)) = d.

Definition 3.8. Let d, d′ be derivations in augmented P such that d and d′

are identical except that there exist some TruncΓ 7→Γ,∆ inference in d, but at
the corresponding place in d′, there is a θ = CBΥ7→Γ,∆ inference. We say d′

narrowly extends d, and write d′ \ d for the derivation which is the premise of
the callback inference θ in d′. We call Υ the key sequent of this extension.

Definition 3.9. Let P ,Q be proof systems, and let sequences of equal length
σ0, τ0 be given. We say {dσ,τ}σ⊇σ0,τ⊇0τ together with supplementary functions
Λσ,τ is a transformation from Γ out of P over some restricted set of formulas
F (in a proof system Q) with endsequent Σ and root σ0, τ0 if the following
holds:

• For every derivation d of Γ,Υ in truncated P with Υ ⊆ F , dσ_0 〈d〉,τ0 is a proof
of Σ,Υ in truncated Q, Λσ_0 〈d〉,τ0 : Θ(dσ_0 〈d〉,τ0) → Θ(d) ∪ ⋃i<length(σ) Θ(σi),
and for each θ, Out(θ) = Out(Λσ_0 〈d〉,τ0(θ))
• If dσ,τ is defined, θ ∈ Θ(dσ,τ), and d � In(Λσ,τ (θ)),Υ in truncated P with

Υ ⊆ F then dσ_〈d〉,τ_〈θ〉 is a proof in augmented Q narrowly extending dσ,τ
at θ and dσ_〈d〉,τ_〈θ〉 is a proof in truncated Q with key sequent In(θ),Υ.
Furthermore, Λσ_〈d〉,τ_〈θ〉 has range in

⋃
Θ(σi) and agrees with Λσ_〈d〉,τ on

elements in their shared domain.

If T = {dσ,τ}σ⊇σ0,τ⊇τ0 is a transformation and σ′ ⊇ σ0, τ
′ ⊇ τ0 are such that

dσ′,τ ′ is defined, we write T � σ′, τ ′ for the transformation {dσ,τ}σ⊇σ′,τ⊇τ ′ .

Let d be given and let σ0, τ0 be given with d an element of σ. We define the
d-well-founded transformations inductively:

• If there is no σ ⊇ σ0, τ ⊇ τ0, θ ∈ Θ(dσ,τ) such that Λσ,τ (θ) ∈ Θ(d) then
{dσ,τ}σ⊇σ0,τ⊇τ0 is d-well-founded. We call such transformations d-void.
• If for every d′, θ, T � σ_0 〈d′〉, τ_0 〈θ〉 is d-well-founded then so is T

We say T = {dσ,τ} is well-founded if for every σ, τ and every d such that
dσ_〈d〉,τ is defined, T � σ_〈d〉, τ is d-well-founded.

A transformation should, as the name suggests, give a way of transforming a
derivation of Γ,Υ into a derivation of Σ,Υ. In order to get the right inductive
hypothesis, we need to first show how to apply a transformation to an exploded
derivation.

Lemma 3.2. Let E = 〈d0, I, E0〉 be an exploded derivation over P with
endsequent Γ,Υ and let T = {dσ,τ}σ⊇σ0,τ⊇τ0 be a well-founded transforma-
tion from Γ out of P over some F ⊇ Υ with endsequent Σ. Then there is a
derivation d∗ with endsequent Σ,Υ and a function Λ : Θ(d∗)→ ⋃

Θ((σ0)i).

9

Proof. The proof is by main induction on E and side induction on T . Let
E = 〈d0, I, E0〉 be given. Then by induction, we produce from any d0-well-
founded transformation T a d0-void transformation T ′. If T is d0-void then
T ′ = T . Otherwise, by the side IH, for each d′, θ, T � σ_0 〈d′〉, τ_0 〈θ〉 is d0-well-
founded. For each d let d′σ_0 〈d〉,τ0 be the result of replacing each θ ∈ Θ(dσ_0 〈d〉,τ0)

such that Λσ_0 〈d〉,τ0(θ) ∈ Θ(d0), with I(Λσ_0 〈d〉,τ0(θ)) with the premise ι given
by T ′ applied to E0(Λσ_0 〈d〉,τ0(θ), ι); this application exists by the main IH.

Then d∗ := d′σ_0 〈d0〉,τ0 and Λ := Λσ_0 〈d0〉,τ0 � Θ(d∗) witness the theorem.

Theorem 3.1. If T is a transformation out of Q from Γ over F with end-
sequent Σ and d � Γ,Υ for some Υ ⊆ F then there is a derivation T (d) of
Σ,Υ.

Proof. Apply the preceding lemma to EQ(d).

Lemma 3.3. Let T be a wellfounded transformation, let {Oi} be a set of
operators on derivations, all with the same domain, and for each Oi, let ΛOi
be a function with the properties that:

• Each Oi takes wellfounded derivations to wellfounded derivations
• Each Oi preserves narrow extensions; that is, if d′ narrowly extends d then
Oi(d′) narrowly extends Oi(d)
• For every d in the domain of Oi, ΛOi(d) : Θ(Oi(d)) → Θ(d) with the

property that Out(θ) = Out(ΛOi(d)(θ)) and if d′ � In(ΛO(d)(θ)),Υ belongs
to the domain then there is an operator Oj such that Oj(d′) � In(θ),Υ.

Then each Oi extends to an operator on wellfounded transformations, T 7→
Oi ◦ T , with appropriate domain and range with the property that

(Oi ◦ T)(d) = Oi(T (d))

for any derivation d.

Proof. Follows immediately by applying operators pointwise, using ΛOi to
define Oi(Λ).

We call such a system of such operators uniform.

10

4 The System µ2

4.1 Language

Definition 4.1. If A(X, x) is a formula, we write A(X) for {x | A(X, x)}; in
particular, A(X) ⊆ X means ∀x(A(X, x)→ x ∈ X).

As we define our system, we also assign depths to formulas. Depths will be
ordinals ≤ ω+ω, although we will immediately restrict ourselves to ω+2. (The
use of the ordinal ω+ω is somewhat artificial; we have ω levels corresponding
to finitely many iterated inductive definitions, and then three levels above,
corresponding to the inaccessible, the negated inaccessible, and an admissible
above the inaccessible. The names < I, I, and I + 1 might convey this more
clearly.)

Definition 4.2. The language of Lµ2 is defined as follows:

• 0 is a constant symbol
• S is a unary function constant symbol
• There are infinitely many symbols for variables
• For each n-ary primitive recursive relation, including = and ≤, there is an
n-ary predicate constant symbol R
• The logical symbols are ¬,∧,∨,∀, ∃
• If A(x,X) contains no other free variables and contains X positively then
µxX.A(x,X) is a unary predicate symbol
• If B(y, Y, Z) contains Y positively and Z negatively and A(x,X, Z) con-

tains X positively and Z negatively, and A and B have finite depth then
µxX.A(x,X, µyY.B(y, Y,X)) is a unary predicate symbol; we call this a
predicate of inaccessible type

The terms are given by:

• 0 is a term
• If t is a term then St is a term
• Each variable is a term

The formulas are given by:

• If R is a symbol for an n-ary primitive recursive relation and for each i ≤ n,
ti is a term, then Rt1 . . . tn is an atomic formula of depth n for any n ≥ 0
• If A(x,X) has depth n and t is a term then t ∈ µxX.A(x,X) is an atomic

formula of depth n
• If t is a term then t ∈ µxX.A(x,X, µyY.B(y, Y,X)) is an atomic formula of

depth ω

11

• If A is an atomic formula of depth n, ¬A is a formula of depth n+ 1
• If A0 and A1 are formulas of depth n then A0∧A1 and A0∨A1 are formulas

of depth n
• If x is a variable and A a formula of depth n then ∀xA and ∃xA are formulas

of depth n

If n < ω then LIDn is the restriction to formulas of depth n. The depth of a
formula, dp(A), is the least n ≥ 0 such that A has depth n.

If dp(A) ≥ ω + 1 then we call µxX.A(x,X), and any formula containing it,
large.

Our theory will effectively restrict consideration to formulas of depth at most
ω+2. Note that all formulas of higher depth are large. The restriction is some-
what artificial, since we have to “throttle” the formation rule for µ-expressions,
but the alternative would be analyzing a stronger system corresponding to an
inaccessible with infinitely many admissibles above it. (This phenomenon has
been observed before, for instance in [16], where the addition of a construc-
tor corresponding to an inaccessible immediately pushes the system up to
infinitely many admissibles beyond it due to the presence of other construc-
tors.)

Definition 4.3. FV (φ) denotes the set of free variables of φ, and φ is closed
if FV (φ) = ∅. Here φ may be a formula, a term, or a sequent.

If A is not atomic, ¬A indicates the negation of A in negation normal form as
given by de Morgan’s laws.

The rank rk(A) of a formula is defined by:

• rk(A) := 0 if A is atomic
• rk(¬A) := rk(A)
• rk(A ∧B) = rk(A ∨B) := max{rk(A), rk(B)}+ 1
• rk(∀xA) = rk(∃xA) := rk(A) + 1

A(x/t) means the result of substituting t for every free occurrence of x in A
(renaming bound variables if necessary). When x is clear, we just write A(t).

Definition 4.4. We define the true primitive recursive formulas to be those
closed primitive recursive atomic formulas and negations of atomic formulas
which are true in the standard interpretation.

The system µ2 contains the following inference symbols:

Ax∆ ∆
where ∆ contains a true primitive recursive formula or a pair t ∈ µxX.A(x,X), n 6∈

12

µxX.A(x,X)

A0 A1∧
A0∧A1 A0 ∧ A1

Ai∧i
A0∨A1 A0 ∨ A1

i ∈ {0, 1}

A(y)∧y
∀xA !x!∀xA

A(t)∨t
∃xA ∃xA

C ¬CCutC ∅
IndtF ¬F [0],¬∀x(F [x]→ F [Sx]),F [t]

where C is not large

A(t, µxX.A(x,X))
Clt∈µxX.A(x,X)

t ∈ µxX.A(x,X)

Ind
µxX.A(x,X),t
F ¬(A(F) ⊆ F), t 6∈ µxX.A(x,X),F [t]

We say a derivation d belongs to IDn if every formula in every endsequent in
d belongs to LIDn .

4.2 Infinitary Derivations

We define an infinitary system µ∞2 ; its language is the same language Lµ2 , but
only closed formulas are permitted. This definition will require that a number
of weaker systems be defined along the way.

The following, which we will call ID∞0 , will be the basis for all the systems we
need. Roughly, it is the standard infinitary system for Peano Arithmetic plus
a closure rule—but not an induction rule—for µxX.A(x,X) of depth 0.

Definition 4.5. Ax∆ ∆

where ∆ contains a true primitive recursive formula

13

A0 A1∧
A0∧A1 A0 ∧ A1

Ai∨i
A0∨A1 A0 ∨ A1

i ∈ {0, 1}

· · ·A(i) · · · (i ∈ N)∧
∀xA ∀xA

A(n)∨n
∃xA ∃xA

n ∈ N

A(n, µxX.A(x,X))
Cln∈µxX.A(x,X)

n ∈ µxX.A(x,X)

C ¬CCutC ∅

and all formulas have depth 0.

Definition 4.6. If q is a proof and Γ a sequent, ∆Γ
q := Γ(q) \ Γ.

The systems ID∞n+1 are defined inductively; as the name suggests, they are
essentially the infinitary systems from [13].

Definition 4.7. Given ID∞n , the language of the system ID∞n+1 is LIDn—that
is, formulas with depth ≤ n + 1, and consists of the rules of ID∞n together
with

Ax∆ ∆
where ∆ contains n ∈ µxX.A(x,X), n 6∈ µxX.A(x,X) with dp(µxX.A(x,X)) <
n+ 1

k ∈ µxX.A(x,X) . . .∆k∈µxX.A(x,X)
q . . . (q ∈ |k ∈ µxX.A(x,X)|)

Ωk 6∈µxX.A(x,X) ∅
where |k ∈ µxX.A(x,X)| is the set of cut-free proofs of ID∞dp(k∈µxX.A(x,X))

and dp(µxX.A(x,X)) ≤ n, and ∆q(Ωk 6∈µxX.A(x,X)) := Υ where q ` k ∈
µxX.A(x,X),Υ

Note that the premise of the Ω rule d defines a function taking proofs of
k ∈ µxX.A(x,X) to proofs of Γ(d).

Definition 4.8. Next we define a system µ∞ω , which extends the union of
ID∞n with the closure rule for predicates of inaccessible type.

Note that this doesn’t add any derivations—there’s no way to introduceA(n, µA)
since there’s no way to introduce n 6∈ µB(µA). We’re including the rule so that
it will be present in the extensions we need.

Definition 4.9. The system µ∞I extends µ∞ω by the rule

14

n ∈ µxX.A(x,X, µ1, . . . , µk) . . . dσ,τ . . .¬n 6∈µxX.A(x,X)
∅

where µ1, . . . , µk are predicates of inaccessible type appearing negatively in A,
no other predicates of inaccessible type appear in A, and for every F1, . . . ,Fk,
the premises include a well-founded transformation from n ∈ µxX.A(x,X,F1, . . . ,Fk)
out of the cut-free part of µ∞ω over µxX.A(x,X,F1, . . . ,Fk) positive formulas.

Now we can define our final system:

Definition 4.10. The system µ∞ consists of µ∞I plus the rules

Ax∆ ∆
where ∆ contains n ∈ µxX.A(x,X), n 6∈ µxX.A(x,X) and µxX.A(x,X) has
inaccessible type

n ∈ µxX.A(x,X) . . . dσ,τ . . .Ωn6∈µxX.A(x,X) ∅
where the premises range over cut-free proofs of µ∞I

Note that none of these systems allow cut rules over large formulas.

Definition 4.11. Given a system P , the augmentations of P are given induc-
tively: P is an augmentation of P , and if Q is an augmentation of P then so
is augmented Q.

Definition 4.12. We define c−rk(d), the cut-rank of d, inductively as follows:

c− rk(d) = max{c− rk(dι) | ι ∈ |I|}

unless I = CutC

c− rk(CutC(d0, d1)) = max{c− rk(d0), c− rk(d1), rk(C) + 1}

5 Embedding

Definition 5.1. A derivation in µ is closed if every number variable occurring
free is the eigenvariable of an inference below that occurrence. In particular,
FV (Γ(h)) = ∅ if h is closed.

We will define a function taking closed proofs in µ2 to proofs in µ∞. The hard
part will be the induction axioms, which will be embedded as Ω rules. Most
of the work is defining the functions used to make these Ω rules.

Definition 5.2. Let dF ,¬F be the canonical derivation of F ,¬F .

15

If d ` A(n,F) then enF ,A(d) is the derivation

d
...

A(n,F)

dF [n],¬F [n]

...
F [n],¬F [n]

F [n], A(n,F) ∧ ¬F [n]

F [n],¬(A(F) ⊆ F)

or symbolically
n∨

¬(A(F)⊆F)

∧
A(n,F)∧¬F [n]

dd¬(F [n]),F [n]

Lemma 5.1. There is a function SUBΠ
µxX.A(x,X),F such that if dp(µxX.A(x,X)) <

ω and d ` Π(µxX.A(x,X)),Σ is a cut-free proof in ID∞dp(G) then

SUBΠ
µxX.A(x,X),F(d) ` Π(F),¬(A(F) ⊆ F),Σ

is a proof in µ∞.

Proof. By induction on d. We simply proceed up through the proof, adding to
Π as we encounter subformulas or new formulas produced by closures rules. A
typical case is

B0(µxX.A(x,X)) B1(µxX.A(x, x))

B0(µxX.A(x,X)) ∧B1(µxX.A(x, x))
7→ B0(F) B1(F)

B0(F) ∧B1(F)
where B0 ∧B1 belongs to Π.

The only difficult case is the closure rule, which we handle with the help of e:

A(n, µxX.A(x,X))

n ∈ µxX.A(x,X)
7→ A(n,F)

dF [n],¬F [n]

...
F [n],¬F [n]

F [n], A(n,F) ∧ ¬F [n]

F [n],¬(A(F) ⊆ F)

Importantly, we never encounter n 6∈ µxX.A(x,X) anywhere; in particular,
we do not have to deal with the axiom Axn∈µxX.A(x,X),n 6∈µxX.A(x,X).

The full definition is given by

SUBΠ
n∈µxX.A(x,X),F(I(dι)ι∈|I|) :=

16



enF ,G(SUB
Π∪{∆0(I)}
µxX.A(x,X),F(d0)) if I = Cln∈µxX.A(x,X)

and n ∈ µxX.A(x,X) ∈ Π

IA(F)

(
SUBΠ∪{∆ι(I)}

µxX.A(x,X),F(dι)ι∈|I|
)

if I = IB(µxX.A(x,X))

and B(µxX.A(x,X)) ∈ Π

IA(SUBΠ
µxX.A(x,X),F(dι)ι∈|I|) otherwise

Lemma 5.2. LetA(x,X) be a formula. Then there is an operator SUBΠ
µxX.A(x,X),F

such that if d ` Π(µxX.A(x,X)),Σ is a cut-free proof in an augmentation of
µ∞<I then

SUBΠ
µxX.A(x,X),F(d) ` Π(F),¬(A(F) ⊆ F),Σ

is a proof in the corresponding augmentation of µ∞. Furthermore, this operator
is uniform.

Proof. By induction on d. The proof is essentially the same as in the previ-
ous lemma, except that we add an additional case to handle Trunc and CB
inferences.

SUBΠ
µxX.A(x,X),F(I(dι)ι∈|I|) :=

enF(SUBΠ∪{∆0(I)}
µxX.A(x,X),F(d0)) if I = Cln∈µxX.A(x,X)

and n ∈ µxX.A(x,X) ∈ Π

TruncF 7→Π(F),ΣSUBΠ
µxX.A(x,x),F(d0) if I = TruncF 7→Π(µxX.A(x,X)),Σ

CBΠ(F),ΣSUBΠ
µxX.A(x,x),F(d0) if I = CBΠ(µxX.A(x,X)),Σ

IA(F)

(
SUBΠ∪{∆ι(I)}

µxX.A(x,X),F(dι)ι∈|I|
)

if I = IB(µxX.A(x,X))

and B(µxX.A(x,X)) ∈ Π

IA(SUBΠ
µxX.A(x,X),F(dι)ι∈|I|) otherwise

Lemma 5.3. LetA(x,X) be a formula. Then there is an operator SUBΠ
µxX.A(x,X),F ,

and a companion Λσ,τ , giving a well-founded transformation.

Proof. By induction on the length of σ. SUBΠ
µxX.A(x,X,G1,Gk),F(〈d0〉, 〈〉) is just

SUBΠ
µxX.A(x,X),F(d0) as given by the previous lemma. Given SUBΠ

µxX.A(x,X),F(σ, τ),

SUBΠ
µxX.A(x,X),F(σ_〈d〉, τ_〈θ〉) is given by replacing θ in SUBΠ

µxX.A(x,X),F(σ, τ)

with the derivation SUBΠ′

µxX.A(x,X),F(d) where Π′ is chosen to be the unique

sequent such that θ was equal to SUBΠ′

µxX.A(x,X),F(Λσ,τ (θ)).

17

The function Λσ,τ is simply the association of each truncated inference in the
range with the corresponding inference in the domain.

At last, we come to the key lemma:

Lemma 5.4. If µxX.A(x,X) has inaccessible type, there is an operator
SUBΠ

µxX.A(x,X),F such that whenever d is a proof of Π(µxX.A(x,X)),Γ in
µ∞I then

SUBΠ
µxX.A(x,X),F(d) ` Π(F),Γ,¬(A(F) ⊆ F)

Furthermore, SUBΠ
µxX.A(x,X),F is uniform.

Proof. First, the simple cases are given by

SUBΠ
µxX.A(x,X),F(I(dι)ι∈|I|, F}) :=



enF(SUBΠ∪{∆0(I)}
µxX.A(x,X),F(d0)) if I = Cln∈µxX.A(x,X)

and n ∈ µxX.A(x,X) ∈ Π

IA(F)

(
SUBΠ∪{∆ι(I)}

µxX.A(x,X),F(dι)ι∈|I|
)

if I = IA(µxX.A(x,X))

and A(µxX.A(x,X)) ∈ Π

Next, consider ¬n 6∈µyY.B(y,Y,µxX.A(x,X),µ2,...,µk) where n 6∈ µyY.B(y, Y, µxX.A(x,X), µ2, . . . , µk) ∈
Π. We use the abbreviations µA and µB(µA) as in the introduction, and let
T be the transformation formed by the premises. First, consider the simplest
case, where F does not contain predicates of inaccessible type and k = 1.
Then we simply need to produce a function for an Ωn6∈µB(F) inference.

Since the premises give a transformation showing n ∈ µB(F) 7→ Π(µxX.A(x,X)),Γ\
{n 6∈ µyY.B(y, Y, µxX.A(x,X))}, also SUBΠ

µxX.A(x,X),F ◦ dσ,τ gives a transfor-
mation T showing n ∈ µB(F) 7→ Π(F),Γ \ {n 6∈ µyY.B(y, Y,F)}. Then we
may assign to each q ` n ∈ µB(F),Υ the derivation

dq := U(T∗(Eµ∞I
(q)))

More generally, if predicates of inaccessible type occur in F or k > 1 the same
argument gives many transformations which collectively witness the corre-
sponding ¬ inference.

In any other case, we do nothing:

SUBΠ
µxX.A(x,X),F(I(dι)) := IA(SUBΠ

µxX.A(x,X),F(dι)ι∈|I|)

18

Lemma 5.5. If h is a closed µ2 derivation of ∆ with dp(∆) ≤ ω + 2 then
there is a µ∞ derivation h∞ so that h∞ `m Γ(h) for some finite m.

Proof. We define the ·∞ operation by induction on the proof h:

• (
∧y
∀xA d0)∞ :=

∧
∀xA(d0[n]∞)n∈N

• (Ind0
F)∞ := dF [0],¬F [0]

• (Indn+1
F)∞ :=

∨n
∃x(F [x]∧¬F [Sx])

∧
F [n]∧¬F [Sn](Ind

n
F)∞d¬F [Sn],F [Sn]

• (IndµA,nF)∞ := Ωn6∈µAAxn∈µA,n 6∈µA{SUB
n∈µA
µA,F (q)} if dp(µA) < ω or has inac-

cessible type
• (IndµA,nF)∞ := ¬n6∈µAAxn∈µA,n 6∈µA{SUB

n∈µA(F1,...,Fk)
µA(F1,...,Fk)),F(σ, τ)}σ,τ,F1,...,Fk if dp(µA) ≥

ω, µA(µ1, . . . , µk) does not have inaccessible type, and the µi are all predi-
cates of inaccessible type appearing in A
• Otherwise (Ih0 . . . hn−1)∞ := Ih∞0 . . . h∞n−1

6 Cut-Elimination

Definition 6.1. We say that A has
∧

-Form if it is either A0 ∧ A1 or ∀xA0.

We say that A has
∧+-Form if it has

∧
-Form, is a true primitive recursive

formula, or has the form µxX.A(x,X)n. Define

C[k] :=

Ck if C = C0 ∧ C1 or C = C0 ∨ C1 where k ∈ {0, 1}

A(k) if C = ∀xA or C = ∃xA where k ∈ N

Lemma 6.1. If C is a
∧

-Form then there is a uniform operator J k
C such that

whenever d `m Γ, C, J k
C(d) `m Γ, C[k].

Proof. By induction on d.

J k
C(d) :=



J k
C(dk) if I =

∧
C

CBF 7→Σ,C[k](J k
C(d0)) if I = CBF 7→Σ,C

¬{J k
C ◦ Fq}q if I = ¬{Fq}q

I(J k
C(dι))ι∈|I| otherwise

19

Lemma 6.2. Let rk(C) ≤ m with
∧+-Form and e `m Γ, C. Then there is an

operator RC(e, ·) such that whenever d `m Γ,¬C, RC(e, d) `m Γ and such
that {RC} ∪ {J k

D}k,D is uniform.

Proof. By induction on d.

RC(e, d) :=



CutC[k]J k
C(e)RC(e, dk) if I =

∨k
¬C

e if I = Ax¬C,C

CBF 7→ΣRC(e, d0) if I = CBF 7→Σ,¬C

¬{RC ◦ Fq}q if I = ¬{Fq}q
I(RC(e, dι))ι∈|I| otherwise

Lemma 6.3. For each m, there is an operator Em so that whenever d `m+1 Γ,
Em(d) `m Γ and {Em} ∪ {RC}C ∪ {J k

D}k,D is uniform.

Proof. By induction on d.

Em(I(dι)ι∈|I|) :=



RC(Em(d0), Em(d1)) if I = CutC , rk(C) = m

and C has
∧+ -Form

R¬C(Em(d1), Em(d0)) if I = CutC , rk(C) = m

and ¬C has
∧+ -Form

¬{Em ◦ Fq}q if I = ¬{Fq}q
I(Em(dι))ι∈|I| otherwise

Lemma 6.4. There is a uniform operator DI such that if Γ does not contain
predicates of inaccessible type negatively and d `0 Γ then DI(d) ` Γ and
DI(d) ∈ µ∞I .

Proof. By induction on d.

20

DI(I(dι)ι∈|I|) :=



F ◦ DI if I = Ωn 6∈µxX.A(x,X)

and µxX.A(x,X) has inaccessible type

¬{DI ◦ Fq}q if I = ¬{Fq}q
I(Em(dι))ι∈|I| otherwise

Lemma 6.5. There is an operator Dn such that if d `0 Γ and dp(Γ) ≤ n then
Dn(d) `0 Γ and is a proof in ID∞n .

Proof. By induction on d.

Dn(I(dι)ι∈|I|) :=



Dn(dDm(d0)) if I = Ωn6∈µxX.A(x,X)

and dp(µxX.A(x,X)) = m ≥ n

Dn(dDI(d0)) if I = Ωn∈µxX.A(x,X)

and µxX.A(x,X) has inaccessible type

I(Dn(dι))ι∈|I| otherwise

Theorem 6.1. Let d be a proof in µ2 of a sequent Γ of depth 0. Then there
is a cut-free proof d∗ of Γ in ID∞0 . Furthermore, the existence may be shown
in a constructive theory.

Proof. Let d∗ := D0(E0(· · · (Em(d∞)))). Then d∗ is a cut-free proof in ID∞0 .

Constructivity follows via continuous cut-elimination carried in an appropri-
ate constructive system; for specificity, intuitionistic Π1

2−CA would be (more
than) sufficient to formalize each instance of this argument. Although the
derivations are nominally infinite, they can be replaced with finitary descrip-
tions, with branches only produced when they are actually used. Since all
our transformations are defined continuously, they remain well-defined in this
context.

Theorem 6.2. µ2 is consistent.

Proof. If there is a proof of 0 = 1 in µ2 then there is a cut-free proof in ID∞0 .
But the cut-free proofs of primitive recursive formulas are also proofs in IS,

21

so there is a cut-free proof of 0 = 1 in µ2. But this is impossible, since no
inference rule other than cut can produce this as an end-sequent.

References

[1] K. Schütte, Beweistheoretische Erfassung der unerdlichen Induktion in der
Zahlentheorie, Math. Ann. 122 (1951) 369–389.

[2] W. Buchholz, Eine Erweiterung der Schnitteliminationsmethode,
Habilitationsschrift (1977).

[3] W. Pohlers, Cut elimination for impredicative infinitary systems. I. Ordinal
analysis for ID1, Arch. Math. Logik Grundlag. 21 (3-4) (1981) 113–129.

[4] M. Rathjen, Recent advances in ordinal analysis: Π1
2-CA and related systems,

Bull. Symbolic Logic 1 (4) (1995) 468–485.

[5] T. Arai, Proof theory for theories of ordinals. I. Recursively Mahlo ordinals,
Ann. Pure Appl. Logic 122 (1-3) (2003) 1–85.

[6] T. Arai, Proof theory for theories of ordinals. II. Π3-reflection, Ann. Pure Appl.
Logic 129 (1-3) (2004) 39–92.

[7] T. Arai, Proof theory for theories of ordinals, preprints (1996-1997).

[8] G. Takeuti, M. Yasugi, The ordinals of the systems of second order arithmetic
with the provably ∆1

2-comprehension axiom and with the ∆1
2-comprehension

axiom respectively, Japan. J. Math. 41 (1973) 1–67.

[9] G. Jäger, W. Pohlers, Eine beweistheoretische Untersuchung von (∆1
2-CA)+(BI)

und verwandter Systeme, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber.
(1982) 1–28 (1983).

[10] W. Pohlers, Subsystems of set theory and second order number theory, in:
Handbook of proof theory, Vol. 137 of Stud. Logic Found. Math., North-Holland,
Amsterdam, 1998, pp. 209–335.

[11] W. Buchholz, K. Schütte, Proof theory of impredicative subsystems of analysis,
Vol. 2 of Studies in Proof Theory. Monographs, Bibliopolis, Naples, 1988.

[12] M. Möllerfeld, Generalized inductive definitions, Ph.D. thesis, Westfälische
Wilhelms-Universität Münster (2003).

[13] W. Buchholz, Relating ordinals to proofs in a perspicuous way, in: Reflections
on the foundations of mathematics (Stanford, CA, 1998), Vol. 15 of Lect. Notes
Log., Assoc. Symbol. Logic, Urbana, IL, 2002, pp. 37–59.

[14] J. Barwise, L. S. Moss, Vicious Circles: On the Mathematics of Non-Wellfounded
Phenomena, CSLI Publications, 1996.

22

[15] P. Aczel, Non-well-founded sets, Vol. 14 of CSLI Lecture Notes, Stanford
University Center for the Study of Language and Information, Stanford, CA,
1988, with a foreword by Jon Barwise [K. Jon Barwise].

[16] A. Setzer, Well-ordering proofs for Martin-Löf type theory with W-type and
one universe., Annals of Pure and applied Logic 92 (1998) 113–159.

23

