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Abstract

Hilbert's epsilon substitution method provides a technique for showing that a
theory is consistent by producing progressively more accurate computable approx-
imations to the non-computable components of a proof. If it can be shown that
this process eventually halts with a sufficiently good approximation, the theory is
consistent.

Here we produce a new formulation of the method for the thédry of induc-
tive definitions which simplifies the proof given in [Ara03], and prove termination
using the cut-elimination method of [MTB96].

1 Introduction

Hilbert introduced the epsilon calculus, c.f. [HB70] to provide a method for proving
the consistency of arithmetic and analysis. In place of the usual quantifiers, a symbol
e is added, allowing terms of the forax¢[z], which are interpreted as “somesuch
that¢[z] holds, if such a number exists.” When there isinsatisfyinge[z], we allow
ex¢[z] to take an arbitrary value (usual). Then the existential quantifier can be
defined by

Jegla] & dlexdla]]

and the universal quantifier by

Vaozr] & dlex—plr]]

Hilbert proposed a method for transforming non-finitistic proofs in this epsilon
calculus into finitistic proofs by assigning numerical values to all the epsilon terms,
making the proof entirely combinatorial.

The difficulty centers on the critical formulas, axioms of the form

o[t] — lexglx]]

In Hilbert's method, the (finite) list of critical formulas which appear in a proof is con-
sidered. Then a finite series of functions-substitutions—is defined, each providing
values for some of the of the epsilon terms appearing in the list. Each of these sub-
stitutions will satisfy some, but not necessarily all, of the critical formulas appearing
in proof. At each step we take the simplest unsatisfied critical formula and update an



appropriate epsilon term so that it becomes true. The resulting series of substitutions is
called theH -process.

The H-process can only halt when the final substitution makes every critical for-
mula, and therefore every formula of the proof, true. Then, when every epsilon term
in a proof of some formula is replaced by its value under the substitution, we have a
purely numerical proof of the new formula. Typically, we start with a proofe|x]
where¢ is quantifier free. At the conclusion of thé-process, we have[n] and a
proof thatn does, in fact, satisfy.

If it can be shown that this process terminates for every (finite) set of starting for-
mulas, then we have also proven the consistency of our theory.

After several attempts, Ackermann [Ack40] eventually proved that the provess ter-
minates for first order arithmetic, and therefore that a substitution of numerical values
for all infinitary terms can be found using a finite process.

For several decades, little work was done applying this technique to more power-
ful theories, in preference to other techniques for proving the consistency of theories,
chiefly cut-elimination ([Gen34],[Gen36]). These techniques were extended to the im-
predicative theory ofl}-comprehension in [Tak67]. This work led to the development
of impredicative theories liké D; and their detailed analysis in [Kre63], [Fef70], and
[BFPS81].

Grigori Mints developed a different technique for proving that Hheprocess ter-
minates, using a cut-elimination argument applied to an ad hoc system of deductions.
As laid out in [Min94], this technique shows that a cut-free derivation of the empty se-
guent in this system encodes tHeprocess, and the well-foundedness of the derivation
implies that the process must terminate.

This technique was applied to more powerful theories, including elementary analy-
sis [MTB96], ramified analysis [MT99], and the hyperarithmetical hierarchy [Ara02b].
This last paper also gives a proof using Ackermann’s technique.

The most recent work has focused on extending either method to impredicative sys-
tems, specifically to theories of inductive definitions likB,. Based on the extended
definition of ane-substitution given in [Min03], a proof using Ackermann’s technique
was given in [Ara03], and a slightly simplified version was explained more clearly, but
without full detail, in [Ara].

In this paper we prove that tHé-process fof D, terminates using the cut-elimination
method. The transition tdD; from a system like first order arithmetic raises several
separate issues which must be addressed. The first is the presence of transfinite or-
dinals, which means that we cannot recursively verify that a given solutigfias
minimal. We resolve this in the same way as [Ara03], in that whghis true, we
simply take the value afunder the current substitution to be the new valuefap|v],
rather than selecting the least number satisfying

An immediate consequence of this is that even when a non-default vake §e]
is correct, we may change it to some other (smaller) non-default value. This requires
some changes to the cut-elimination proof; the necessary modifications were made in
[Tow03], which applies Mints’ technique to Peano Arithmetic with transfinite induc-
tion.

The presence of impredicativity requires some kind of collapsing argument during
cut-elimination. Despite the differences in the systems, the collapsing argument here



is very similar to the standard cut-elimination argumentifby, as given in [Poh89].

Unlike Ackermann’s method, the proof by cut-elimination requires carefully distin-
guishing which expressions are assigned default values because we have not yet con-
sidered their value, and which have been actually decided to have the default value, at
least temporarily. With simpler systems this doesn’t matter, blibip, the monotonic-
ity of our inductive predicate means we require some additional work. In particular,
(n € I<~, 1) € S implies that we can assumec [<# is also false fo3 < a. Con-
sequently, we need to modify tté-rule by redefining the truncatiogf<,. of © to rank
r so that when we remove formulas of rank greater thame retain the implications
that formula had for formulas of rank r.

The presence of formulas € I* andn € I<% in our substitutions creates one
last oddity which cut-elimination must deal with. When we decide how to evaluate
n € I<%, we could create a cut with two premises, one corresponding to the claim
thatn € I<% is true, and the other to the claim thatc 1<% is false. But this proves
problematic, since we would like to ensure that 1<% is true only whem ¢ 17 is
true for some3 < «. We resolve this by introducing afiC'ut inference, a modified
cut-rule whose subderivations correspondstoc 1<%,?) and(n € I°,T) for each
8 < a. Moreover, if we already have sonfe € 7<7,7?) in our sequent withy < «,
we only allow in the rang€y, ). This inference does not have a welldefined cut-
rank, since different premises add pairs with different ranks, so we develop a method
of eliminating a cut in pieces as the cut-rank of the derivation decreases.

2 Ordinals

We use the system of ordinalg" ) developed in [Poh89]. The ordinals of this system
are generated fro and() using+, the Veblen functionp, and the function). We
are mostly interested in the collapsing functibriPoh89][Section 24], whose primary
properties are thaba < € for all a, Da = a whena < €2, and the property that
Da < Dg iff either:

1. 8 < aand there is somg € SC(3) such thatDa < 5, or
2. a < Band foreveryy € SC(a),n < D3
whereSC(«) is defined by:
1. SC(0)=SC(Q) =0
2. SC(a+ ) = SC(papB) = SC(a) USC(B)
3. SC(Da) = {Da} if a > QandSC(Da) = SC(«) otherwise

2 and ordinals of the fornrDa for o >  are strong critical, meaning thatdf is
strongly critical and3, v < atheng + v, pBvy < a.

Definition 2.1. We sayr < 3, « is essentially less thafiif « < §andDa < DgS.
We sayy < Fiff a < gandDa < Df.



The following properties are proved in [Poh89], or follow immediately from results
there:

Lemma2.l. 1 a<pgimpliesQ+a<Q+p
2. fn,m<wanda < gthena+n<«< B+miffa <k
3. IfQ < athenSC(a) < Da

We will mostly be interested in ordinals of the forfW« + ) wherea > Q > ~,
and ify # 0 theny = D(&/ + +') wherea < o’. When we write¢ = D(a + v), we
always assume that< Q < «, even when not explicitly stated.

The following ad hoc function on ordinals will be useful:

Definition 2.2. «,. for r < w is given by induction on:

ar(n) = awHtasm#asm+2  jfp = 541

3 [D1€

Our system is similar to the one given in [Ara] and [Ara03].

There are two types ihD; ¢, numbers and ordinals, denotddandO respectively.
We let, € {N,O}.

The language of D, ¢ consists of:

1. N-variablest, v, z, . ..
. O-variableg, n, ¢
. The0-ary function constants"

2
3
4. A 0-ary function constarg for each ordinal irOrd
5. The unary functiory

6

. Predicate constants for everyary computable predicate on numbers, including
=N, <V add, andprod

~

Binary predicate constarnts” and=°
8. Binary predicate constanfsand<
9. Unary predicate constaft*
10. Propositional connectives A, and—
11. Propositional constantsand T

12. The epsilon symbel



We typically user, y, z for N-variablesg, n, ¢ for O-variables, and for variables
which may be either. We use, n for N-terms (and also meta-language numbers),
a, 3 for O-terms,s, t for terms which may be either.

The expressions afD; e include-terms for, € {N, O}, and formulas, and are
defined inductively by:

1. Eache-variable is an-term
. 0Yis an. term
. Each ordinatr is anO-term

2

3

4. 1 andT are formulas

5. If tis anN-term thenSt is an N-term
6

. ftq, ... t, are N-terms andR is ann-ary predicate constant thety, - - - ¢, is
a formula

. If s and¢ areO-terms thers; =€ s, ands; <© s, are formulas

~

8. If ¢ andy are formulas them¢, ¢ A ¢, and¢p — 1 are formulas

9. If s is anO-term andt is an N-term thenIst, I<st, and I<%¢ are formulas
writtent € 1%, t € 1<%, andt € I< respectively

10. If ¢ is a formula and: an N-variable occuring free im thenex < wg[z] is an
N-term

11. If ¢ is a formula and) an O-variable occuring free ig thenen < Qg¢[n] is an
O-term

12. If tis an N-term, s an O-term, andn an O-variable not occuring free ihor s
thenen < s[t € I"] is anO-term abbreviated{t}.

Note that the bounds in (10) and (11) are true of all values in the range; they are
included only to make the notation uniform. The restriction on the first parameters
to {} predidicates is neccessary to make sure that our reduction relation is confluent.
(It is probably possible to avoid this by putting tighter restrictions on our reduction
relation, but since we have no need for a more general definition, this suffices.)

The axioms ofl D; e consist of:

1. All propositional tautologies

2. Substitution instances of quantifier free defining axiomsrfary predicates,
including the axioms for the linear orders" and<?

3. Equality axiomg = ¢, s = t — ¢(s) — ¢(t) wheres andt¢ are N- or O-terms
of the same type

4, -St=0andSs =St —-s=t



5. -t eI<0
6. Critical formulas:

Pred -s =0 — s = Sex < w(s = Sx)

Epsilon Axiom ¢[t] At <' s — (ev < s¢[s]) <t A plev < sd]s]]
Inductive Definition Axiom ¢ € I°® « A[I<%,{]

Inductive Minimality Axiom s >0 — (t € I<% « t € [°{t})
Closure A[I<%t] —t € I<%

We considet € I<? « t € I*{*} to be an instance of the Inductive Minimality
Axiom (whereQ) > 0 has been taken to be trivially true, and omitted since it is not
a formula of our language). We considgt] — ¢le€ < Q¢[¢]] andft] — dlex <
w¢[x]] to be instances of the Epsilon Axiom whefe<® Q or x <V w is taken to be
trivially true. Note that the Inductive Definition Axiom cannot apply with- €2, since
it would not be a formula of our language.

The only rule is modus ponensw

To save notation, we require thdthave the form-B(ex < wB(z)) and B con-
tains noe-subterms, nor any predicatés/ <, or I <. We interpret/ <’ to be the least
fixed point of A. It is known that restrictingd to IT; formulas does not weaken the
system [Mos74]. We are further restricting our formula to a single initial quantifier to
simplify our notation.

4 e-Substitutions

Definition 4.1. We define the depth of an expression to be the number of closed non-
computable expressions it contains:

1. d(v) = d(0*) = d(a) = d(L) = d(T) = 0

2. d(St) = d(t)

3. d(per---en) = XL d(e)

4. d(sy =0 s3) = d(s1 <© s2) = d(s1) + d(52)
5. d(—¢) = d(¢)

6. d(¢ N Y) = d(¢ — ) = d(¢) + d(¢))

, , 1+d(t) +d(s) if sandt are closed
S\ — <s) —

7odt € I?) =d(I=?) = { d(t) +d(s)  otherwise

1+d(t) iftisclosed

<\ _—
8. dte I%) = { d(t)  otherwise

[ 1+d(¢) if¢isclosed
9. d(evg[v]) = { d(¢)  otherwise



Definition 4.2. An expressiomr is canonicalf it is closed,d(e) = 1, and it has one of
the formser < tp, t € 1%, 0rt € <5,
An expressiom is simpleif it is closed andi(e) = 0.

Definition 4.3.
B if eis aformula
(e) = N ifeisanN-term
H7N o ifeistheO-termet < aglé]
Q if eisanO-terme¢ < t¢[€] and there is nax < Q) such thatt = «

N\ {0} t=N
vVt = {T} =B
{l0<f<a} t=a
Also0” = L
Definition 4.4. Ane-substitution is a functioty such that:
Domain The domain is a set of canonical expressions
Range S(e) € V(¢ U {?} for e € dom(S)

Monotonicity 1 If (n € 1%, T) € Sanda <© g < Qthen(n € I5,7),(n €
I8¢ 8

Monotonicity 2 If (n € 1<%, T) € Sthen(n € 1%, T) € S for somes <9 «
Parsimony 1 If (e,u) € S andu #? thenu # 04(¢)

Parsimony 2 If (ev <*) a.¢[v],u) € S andu #? thenu <) o
Definition 4.5.

S* =8 U{(nelI® T)|3a<®pl(necl*T)cS]}
U{(n € 18,?) | 3a >© B[n € I* € dom(S)]}
U{(n € I%,?) | 3a > B[(n € I<*,?) € dom(S)]}
UW(n eI T)|3a<CpBl(nel*T)e S}
U{(n € I<8,?) | Ja >© Bln € I* € dom(9)]}
U{(n € I<A,?) | 3a >9 B[(n € I<*,?) € dom(9)]}

is called thecompletionof S.

S =28* U{(e,?) | eis acanonicak term notindom(S)}
U{(neIP?)| ~3Fa[(ncI*,T) eS|}
Uf(n € I<5,7) | =3a[(n € I*, T) € S]}

is called thestandard extensioof S.

The completion internalizes the monotonicityfof by assigning values to all €
I? andn € I<f whenevem € I is in S. The standard extension assigns default
values to all canonical expressions left undecidedby



Definition 4.6.
rng(S) = {S(e) | e € dom(S)}

Definition 4.7. We say are-substitutionsS is finitary if the following conditions are
satisfied:

Finite S is finite

I?-free If S(e) =7 thene is not of the formm € 17
Parsimony 3 If (n € 1%, T),(n € I?, T) € Sthena = 3
Parsimony 4 (n € 1<%, T) ¢ S foranyn or «

Generally we will be interested in working with the completions of finitary substi-
tutions. The completion expands the information in a finitary substitution to include
all values forn € I? andn € I<? which we can directly infer from values already
present. Unlike in [Ara03], we need to distinguish the completion from the standard ex-
tension because cut-elimination requires that we keep track of which expressions have
been decided, even when they retain a default value. Similarly, our definition of finitary
is slightly different, since we allow in the range ofS except for formulas: € 1°.

This is because when we wish to indicate € I°, we include(n € I<°+1 ?) rather
than(n € I°,7).

When we havén € I, T) € S, we generally interpret this ase 1\ <.

5 Computations with e-Substitutions

Definition 5.1. 1. If (e,u) € S* thene —§ u

2. If (e,?) € S* thene —} 04(¢)

3. Ift =L t'thenSt —L ¢/

4. 1f1 <i<nande, —} e, thenRe;---e;---e, —§ Rey e ey

5. Ift —§t'thent =@ s =t/ =9 5,6 <O s =4t/ <@ 5,5 ="t =5 s=""1,
s<Pt—ls<Ot

6. If ¢ =% ¢' then—¢p —§ ¢/, gAY =5 ¢ AP, Y NG =g PNY ¢ — ) =
¢/—>1p,w—>¢<—>}q¢—>¢/

7. If ¢ =% ¢ thener < s¢ —% ev < s¢/

8. Ift =L t'thener < t¢p —! ev < t'¢,t € I* >L ¢/ € I8, t € <% —}
terl<ste <Lt el andt € {ti,...,t; | s1,...,8x} =5t €
{tlv"wtj‘sla"'ask’}

9. Ifs =L s'thent e I* =Lt e I* andt € I<5 =Lt e I<¥
— g is the transitive, reflexive closure ef &



Lemmab5.1. If e =} ¢/ thenFV (e) = FV(€)
Proof. By induction on the definition of-§
1. If e is almost canonical thetd is simple, so both are closed
2. Otherwise, the result follows directly from the inductive hypothesis
U

Lemma5.2. If e =} ¢ ande —g €” then there is some such thate’ — ¢ « and
"
e —g U.

Proof. By induction on the definition of-§

1. If e is almost canonical then there is a uniqusuch that —§ u, soe’ = ¢” =
u.

2. If e has only one immediate subexpression which can be reduced, the result
follows directly from IH

3. Otherwise, let = f(e1,...,€i,...,€5,...,e,)Wheree’ = f(er,...,€},...,€j,...,€p)
ande” = f(e1,...,e;,.. .,e;-, ...,epn). If i = j then the result follows by IH.
Otherwiseu = f(e1,..., €}, ..., €. . en).

O
Lemma5.3. If e =} ¢’ thend(e’) < d(e).
Proof. By induction on the definition of-
1. If e is almost canonical thedi is simple,d(e) =1 > 0 = d(e')
2. Otherwise, the result follows directly from the inductive hypothesis
O

Lemma 5.4. Every expression has a unique normal forrfe|s such thate —g |e|s
and there is na; such thafe|s —% u.

Proof. By Lemma 5.3, any sequence of reductions must eventually end, and by Lemma
5.2, it must end uniquely. O

Definition 5.2. e is S-computable iffi(|e|s) = 0.

Definition 5.3. If S 'and S’ are e-substitutions then we s& < S’ if for each(e, u) €
S, one of the following holds:

1. (e,u) € 5
2.e=nel<®u=?and(nc <8 ?) c S forsomed > a

3. e=nel<®u="and(nec I’ T)ec S forsomes > a



S <5 means thab is the same aS$’ except that somén € 1<*,?7) € S may be
improved to somée, u) € S’ which is stronger, in the sense thatu) € S’ implies
(nelI<*7)es"™.

Lemmab5.5. S <5 impliesS* C ™
Proof. AssumeS < 5" and(e, u) € S*; then one of the following holds:

1. (e,u) € S. Thenif(e,u) € S’ the result is obvious. Otherwise,= n € I<*
and either(n € 1<A,?) € S"for 8 > aor (n € I°,T) € S with 3 > «. In
either case(e, u) € S'*.

2. (e,u) € S* because there is some approprigtec I*,v) € S. Then(n €
I*v) € 8, s0(e,u) € ™.

3. (e,u) € S* because there is some appropridtec 1<*,?7) € S. If (n €
I<®.7) € S’ the result is obvious. Otherwise, there is either same <7 or
n € I%in S’ In either case(e, u) € S’ is forced.

O

6 Rank

This definition similar to the one used in [Ara03], cf. [Ara02a]. In particular, Lemma
6.1 is essentially Arai's Rank Lemma.

Definition 6.1. Leto be either a variable ok. Thenifo ¢ FV (e)U{x} thenrk,(e) =
0. Otherwise:

1. 7ky(v) = rko(@) = ko (L) = 7k (T) =0

2. 7k (St) = ko (t)

3. rky(Rty - ty) = max{rky(t1), ..., ko (tn)}

4. rky(s1 =9 83) = 1ky(s1 <© s2) = max{rk,(s1), ko (s2)}

5. 7ko(=¢) = rko(0)

6. rko (¢ ANY) = ko (¢ — ) = max{rk,(¢), rks ()}

7. rky(ex < wo) = max{rk,(¢), rk.(¢) + 1}

8. ko (e€ < Q¢) = max{rk,(¢), rke(¢) +1,Q+ 1}

9. rho(ef < slt € IF]) = { Eiﬁ:i 8 322?;)11 1,7k (5), Q2 + 2} gtiezrvasi !
10,y (e € 1) = { et 1) e

10



max{rk,(t),3a} ifs=a<Q
max{rk,(t),rks(s), 2} otherwise

11. rk,(t € I<%) = {
12. rky(t € I<9?) = max{rk, (t), 3Q}
rk(e) = rk.(e) is therankof e.
Rank is defined to satisfy the following:
Lemma6.l. 1. Ife <} ¢ thenrk,(e') < rk,(e)
2. All subexpressions of an expressionave ranks< rk(e)
3. Ifev < s¢is canonical anc: € V) U 04) thenrk(é(u)) < rk(ev < s¢)
4. Ifn € I is canonical themk(A(I<%,n)) < rk(n € I%)
5. rk(n € I?) < rk(a{n}) whenevep < a.
6. rk(n € I?) < rk(n € I*) whenevep < a.
7

. The rank of compound expressions formed&by:, A, —, =°, <©, andS is just
the maximum of the ranks of the subexpressions.

We haverk(e) < 2+ w for all e.
Definition 6.2. We defing)(r) by:

| ifr=3a0rr=3a+1
O(T)_{ a+1l fr=3a+2

Definition 6.3. If S is ane-substitution then

Ser ={(e,u) € S|rk(e) <r} U{(neI<C0) ?)|(neI’ T)ecS rk(neclI?) >r}
U{(n e I<PM 2) | (n e I<P,?) € S,rk(n € I<P) > r}

This definition differs from the one used in, for instance, [MTB96] with respect
to the formula components ¢f. The property we actually maintain is that whenever
rk(e) < r, |e|ls = |e|s.,. This is necessary to ensure that when a compofiert

I<P ?) is present inS and removed inS<,., its low-rank consequences (liKe <
I<0() 7)) are kept.

Lemma6.2. 1. Ifrk(e) <rande —guthene —s_ u

2. If (e,u) € S<, andrk(e) > rthenu =?,e =n € I<P, rk(e) =7 +1

3. If (e,u) € S<,\ Sandrk(e) < rthenu =?,e =n € I<P,rk(e) =r — 1
Proof. 1. By straightforward induction on-}.

2. Obvious from the definition

3. Obvious from the definition

Lemma 6.3. If S<, = S_, andrk(e) < rthenle|s = [e]s

Proof. By induction ond(e), using Lemma 6.2. O

11



7 H-Process

AssumeCry,...,Cry is a fixed finite sequence of closed critical formulas and that
no ordinal constants other tha@nand (2 appear in anyC'r;. This is equivalent to the
general case since each constant is definable by a primitive recursive formula.

Definition 7.1. If |e|s is some true propositional combination of computable formu-
las we saye —g T. If |e|s is some false propositional combination of computable
formulas, we say —g L.

We says is solvingif Cr; << T for I € {0,...,N}

7.1 H-Expressions andH-Values

We are going to define a function ersubstitutions which updates them. There will
be two types of updates, one for formulas and onecftarms. When we update a
term, we either adde, ) or we replace somée, u) with (e,v) wherev < u under
the appropriate ordering. When we update a formula, we either(add 1°, T)
(possibly displacing somér € 1<%,7?)) or replace(n € I°, T) with (n € I7,T)
wherey <© 3.

Definition 7.2. For each componen(te, v), we defineP(e, u) to be the set of pairs
which it may displace:

{(e7v)}u<ov<oa U {(6, ?)} If €= 65 < O“b
7)(6, u) = {(e7v)}u<v<w U {(6, ?)} ife=cx < w¢
{(n6Iﬁ,T)}a<Oﬁ<OQU{(n€I<B,?)}@§Q ife=nel®

Definition 7.3. Let .S be a nonsolving-substitution.
For I < N, definee; depending on the type of the formula;:

1. If Cryis of the formms =0 — s = Sex < w(s = Sx) then

e = er < w|slg = Sz

N

. [fCryisofthe formp[t) At < s — (ev < s¢) <t A dlev < sé[v]] then

ef = ev < |s|glolg[v]

w

. IfCryis of the forme € I° «— A[I<* ¢t] then

6? = |t|§ c [\S|§

N

. If Cryis of the forms > 0 — (t € I<% «» t 5{t}) then

ef = ev < |slgltlg € I¥

(&)

. IfCryis of the formA[I<% ] — t € [<% then
6? = ‘t|§ e I”

for suitablec.

12



Section 7.3 explains what a suitalalgs.
Definition 7.4. Definer; = rk(ef) and letI(S) < N be the leasf such that:
1L Crp—g L
2. Whenever§ < r{,Cr; <z T
3. Ifrf=rfandJ <I,Cr; —5 T

DefineCr(S) = Crys), R(S) = 17y, ande(S) = e . e(S) is called the
H-expression of.
The H-valuev(S) is given by:

1. IfCr(S) is of the form—s = 0 — s = Sex < w(s = Sx) thenv(S) = |s|g — 1

2. If Cr(S) is of the formp[t] At < s — (ev < sd[V]) < t A dlev < sd[v]] then
v(S) = |tls

3. IfCr(S) is of the formt € I°® — A[I<*,t] thenv(S) =T

4. 1fCr(S) is of the forms > 0 — (t € I<* « t {t}) thenw(S) is the (unique)
asuchthat|t|g € I*,T) € S

5. If Cr(9) is of the formA[I<?,¢] — t € <% thenv(S) = T. In this case, we
say.sS is at a closure step

Definition 7.5.
H"(S) = S<r(s) \ P(e(S5),v(5)) U{(e(S),v(S))}

Note thatH ™ (S) is the same a#/ (.S) in [Ara03].

We can now define the fulH-step H(S), and theH-process (the sequence of
substitutions resulting from iteration of thé-step) by simultaneous induction. Note
that all the definitions in the rest of this section are simultaneous with the definition of
the H-process.

Definition 7.6. If S, S’ are e-substitutions and, for some > 0, H™(S) = 5’, we say
S< S Ifn>0wesaysS < 5.

That is,S < S’ exactly if S’ comes aftetS in the H-process.

7.2 Correction Terms

We need to accomodate the following situation: suppose that, at some closure step, we
addn € I, and then, at some later step, refute this. Then our wouldadd B(I<,n, z)|g, k)
for somek which witness this refutation.

Then the immediate next step will be to assigre 7¢ again: while our substitu-
tion “knows” thatn € I is false, it does not know that € 7<% is also false. To
deal with this, we must copfez—||B(I<*,n,x)|g, k) up, by simultaneously adding
(ex—||B(I<%,n, z)|5, k).
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Definition 7.7. Supposes is at a closure step ane® = n € I®. Then we say is the
sourceofain S. If S < S’ inthe H-process andh € I® isinU whenevelS < U < S’
then we also say is the source ofv in S".

The immediate solution is to say that, whenevés the source ai and(e(S), v(S)) =
(ex—|B(I<*,n,z)|5, k) then we add an additional component.

We must also deal with the iterated version of this problem: suppose that, after
refutingn € I*, we add somen € I” (thereby removingez—|B(I<%,n,z)|g, k)).
We then refuten € I, add an extra component, and then add 7 again, losing
the extra component we added to refutec 7<%, To deal with this, when we refute
m € I”, we need to add the extra component refuting 1 as well.

We want to copy components of the form = (ex—|B(I<%,n, )|z, k) when
m € U whereU < S, but not all such components. When copying from earlier
substitutions, we need to ensure that intervening changes have not made the component
incorrect. First, we need to require that? has the same meaning in bdfrandH (S).
Second, we need to require that all changes made betiesrd .S are irrelevant; it
suffices to require that they have rank greater ihan

Definition 7.8. C(S4, . . ., S,) is a set of components of the fotex—| B(1<%, n, r) 5 k)

for somei < n. C(Sy,...,8,) # 0iff (e(Sn),v(Sn)) = (ex=|B(I% n,2)|5, k)
andn is the source ofv. In this case:

o (ex—|B(I<%, mm)\m, k) € C(S4,...,Sy). Thisis called thg@rimary com-

ponentof C (S, ..., S,)
e If the following conditions are met théaz—|B(I1<, m, z)|51):
—1<n
— (ex=|B(I<%,m,z)|g,1) € S;
- (nelf,T)eSiff¢ <aand(ne It T)e S,
— Foranyj withi < j < n, rk(e(S;)) > 3a

If C(S4,...,S,) # 0 then we say tha$, ..., S, is at acorrected H-step

Definition 7.9.
H(Sy,...,8,)=H"Y(S,)UC(S1,...,5,)

Note thatH (.S) is calledHq(S) in [Ara03].
Definition 7.10. The H-process is defined inductively 8 = 0,

% | H(H,,...,H,) Iif H,isnotsolving
n+l = H, if H,, is solving

We say thed-process (forCrq, ..., Cr,) terminates if there is some such that
H,, is solving, and therefore that,, = H,,11.
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7.3 Ordinal Assignment

We need to select an ordinal to assign when updating closure axioms. The ordinal
selected depends on a “height” which we calculate by predicting portions of the tree
which will be used to show that the process terminates. Rather than pull all the key
definitions out of context, the height will be defined in Section 9.2.

We actually need the part of the process preceeding the substitution at a closure
step, so the ordinal has to be defined by simultaneous induction witH tkiep. Let
ind(S) be the operation defined in Section 9.2.

In order to have the properties we will need, we need some information about the
ordinals in our substitutions first.

Definition 7.11. 1. Ord(e) = {£ < Q| ¢ is asubterm ot} U {0}

Ord(S) = {¢|3n[(n € I¥) € dom(5)]}

2. U {]€€rng(S)}
U {0,Q}

The second clause @¥rd(S) may appear unnecessary, andS'i= H,, for some
n, it is. However in the termination proof we will deal with substitutions which may
include somée, «) when there is n@ € 7 in the domain.

Lemma 7.1 (cf Lemma 9.8 in [Ara03]). 1. LetS be a substitution. It is an ex-
pression withOrd(e) C Ord(S) ande < g €’ thenOrd(e’) C Ord(S)

2. If S'is non-solving and’r(S) is not a closure axiom the@rd(e(S)) C Ord(S)
Proof. 1. By straightforward induction on-g.

2. By partl and the definition o&(S).

Definition 7.12. If O is a set of ordinals then
SClL(0)=0U{SC(a)u{~} | D(a+~) € O}
ThenSCl,,4+1(0) = SCl;(SCl1,(0)),andSCI(O) = | SCI,(0).

Definition 7.13. Let Sy, ..., S,, be a sequence such thB(Sy, ..., S;) = S;+1 and
e(S;) > Qfori < m. LetQ < ¢ < Q+w be anordinal and? < r = min{rk(e(S;)) |
i<m}<Q4w.

n<w

e If £ > rtheno(Sy,...,Sm;&) =0(So,. .., Sm;7)
e If m = 0theno(So,...,Sm;&) = 0(50;&) = (U + w)r—_e(ind(Sy)).
o Ifm>0thenlet{ky <--- <k} ={i <m]|e(S;) =r}, ko =0, and set

0(So, -, Smi&) = (4 w)r—¢Xici0(Skys - - -y Skipr—157)

SetO(So, ey S,n) = O(So, ey S Q)
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Definition 7.14. Supposey, . .., S,, = S is the maximal sequence such tiatS;) =
Si+1ande(S;) > Qfori < m. Suppos&CIl(Ord(S)) = {& > & > -+ > & = 0}.
Let eacht; = D(a; + ;) withy; < Q < .

Leti(Sy,...,Sm) =min{i < k| a; > o(So,...,Sm)}-

- 51(51,..~,SWL) if SC(O(Sl,,Sm)) < 5’&(5‘1,---,Sm)
k(S1,...,S8m,n) = { 0 otherwise

Definition 7.15. If C'r; is a closure axiom andy, . . ., .S,, = S the maximal sequence
such thatt (So, . .., S;) = S;41 thenek = (n € I%) where

a = D(o(So,...,m)+k(So,...,5m))

Lemma 7.2 (Cf. [Ara03], Lemma 9.18). Let O, O’ be finite sets of ordinals so that
max O’ < max O, and suppose th&t = D(« + ) satisfies either:

e v > SC(a),andforevery’ = D(a/++') € SCI(O) such thatx < o/, ¢’ < v,
or

e v =0and forevert’ = D(a/ ++') € SCI(O), such thaty < o/, &’ < SC(«)
Then one of these properties holds fowith respect taO U O’.

Proof. Then we have somg € O’ which violates this property. That is, < o’ and
v < &. Sincemax O’ < maxO, we also have somg € O C SCI(O) such that
& < ¢*. Let&* = D(a* 4+ +*) be least such that: € SCI(0) and¢’ < £*.
Supposex* < «o’. Then there is somg € SC(a* + v*) such thatt’ < 5. But
thenn € SCI(0O) andn < £*, violating our assumption. Hene€ < «*. Then, since
v < &*, it must be that* < SC(a). Buttheny < ¢’ < SC(«), so we havey = 0
and the second case remains true. O

Lemma 7.3. If £ € SCI(Ord(S)) andCr; is a closure axiom, and thereforg =
n € I?, thené < B.

Proof. Let 5 = D(a/ + ). We proceed by induction. if € SCI(Ord(S)) then
§ =D(a+~v),and by IHy < 8. If a +~v < o + 4 then sinceSC(a + v) C
SCI(Ord(S)), by IH we haveSC(a + ) < 3, S0€ < (3.

If o/ +4' < a+vthend < a. If £ < SC(«) thené < 3, and otherwise we have
§<q <B O

Lemma7.4. Let{ = D(a++) be some ordinal, and l&f = D(a/ +v') < € be some
ordinal such thatx < o/. Then{’ < ~.

Proof. By induction on¢: let ¢ be least that such &t exists.

If a4+~ < o’ ++'thenthere is some € SC(a++) such that’ < ». Then either
n=r~yorn € SC(a), and thereforé’ < SC(«).

So suppose’ + ' < a+v. Thena’ = a andy’ < 7. Theny = D(a* + v*),
anda < o, SC(a) < . SinceSC(a’ + ') < 7, it must be that* +~* < o’ ++/,
thatisa* = o andy* < /.

But theny* < v’ < v, soy’ = D(«’" +~"), and we must have” > «. But then
~ and~’ provide a smaller example, contradicting the minimality of O
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The following lemma is also needed, but we will have to prove it along with the
termination proof:

Lemma 7.5 (Cf. [Ara03], 10.4). If ¢(S) = n € I then there is nd: such that
(ex—|B(I<%,n,x)l5, k) € S.

Note that thel/ -process we have defined has the following essential property:
Lemma 7.6. If e(S;) > r > e(Sy,) thenH(Sy,...,S,) = H(Sk+1,--,5n).

Proof. Follows from the definition. O

8 Correctness

Definition 8.1. We define
olu] A =p[0] if e =ev < so[v] andu #?
A[I<8 n] if e=n € I andu #?
T if u="7

Fle,u) =

F(S)={F(e,u) | (e,u) € SAu#7}
Note thatrk(F(e,u)) < rk(e) by Lemma 6.1.
Definition 8.2. We say arn substitutionS is correct if¢p —< T for all ¢ € F(.5).
Lemma 8.1. If S is correct and nonsolving theH (.S) is a correcte-substitution.

Proof. Consider somée, u) € H(S). If (e,u) € S thenrk(F(e,u)) < rk(e(S)), so
the result follows form the correctness.®f

On the other hand, suppose ) € H(S) \ S. If u #7 then either(e,u) =
(e(9),v(9)) or (e,u) € C(S). Supposee,u) = (e(S),v(S)). By Lemma 6.3, it
suffices to show thgi'(e, u)|g = |F'(e, u) 5y

1. If Cr(S) is of the form—s = 0 — s = Sex < w(s = Sz) then|s|g =
S(|s|g — 1) <5 T, and therefor¢s|g = S(lejg — 1) —g T by Lemma 6.3.

2. If Cr(S) is of the formg[t] At < s — (ev < s@[v]) < t A dlev < s¢[v]] then
¢lt] —g T, and so||¢|5]|t|<] |m = T. By correctness of, we have
eithere(S) ¢ dom(S), in WhiChicanqh[OHm = L ore(S) € dom(S)
in which case, by correctness, the same thing holds. But sifice ), =
H(S)%, o5y We havelF (e, u) |y = ||9ls]lts) ey = T-

3. If Or(S) is of the formt € I° « A[I=*,1] then |A[I<Vls, |t|5]|75 =
|A[I<°,t]|5, and sinceS is correct andC'r(S) —g L, A[[<°,t] —g T, S0

A[I<|s\§’ |t|§] HW T.

4. If Cr(S) is of the forms > 0 — (t € 1<% « t €*{t}) then sincet € I<* —
T, it must be that: < |s|g. Also, sincerk(n € I*) < rk(e), (n € I*,T) €
H(S).
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5. If Cr(9) is of the formA[I<*, ] — t € I< then this follows by Lemma 7.5.

Suppose(e,u) € C(S). If (e,u) is the primary component of( ) then let
e(S) = ex—b(I<%,n,z). Sincen € I<¢ —g= sy | iffno€ <% 7isy |+ and
by the argument above;b(I<*,n,u) A b(I<%,n,0) — sy | the same holds for
=b(I<% n,u) Ab(I<?,n,0).

If (e,u) is not the primary component then let= ez—b(1<%,m,z). We have
=b(I<%, m,u) Ab(I<%,m,0) —¢ T for someU such that € I<¢ 5 sy 1 iff 0 €
I<¢ < T, andU andH(S) agree below the largest ordinal #(S) (and therefore
below the largest ordinal ity). But by Lemma 7.1, sinc®rd(b) C {0}, it follows
that|—b(I<%,m,u) A b(I<%, m, 0)lzrzsy = |=b(I<% m,u) AT m,0)|z=T.

Observe that (S) is finite, since it is at most one element larger thfanlt is
I?-free sincev(S) =7 is never?. It meets the remaining conditions since:

1. No component ofe,u) € S<, hasu = 0(*) by the parsimony of, andv(S) #
i)

2. If (e,u) = (ev <™ a.¢[v],u) € H(S) andu #? then either(e,u) € S, in
which case: <*(*) a by the parsimony of, ore = e(S) andu <**) « follows
by the definition of the -step.

3. If(neI%T),(n€ I T) e H(S) then, sinceS is parsimonious, it must be
that (w.l.o.g.)e(S) = (n € I*) andv(S) = T. If a < Bthen(n € I?,T) €
P(e(S),v(S9)), so we could not havén € I°,T) € H(S). If 3 < a then we
haven € I* —3 T, son € I* could not be theéZ-term of S. Thereforen = 3.

4. We cannot havén € 1<% T) € S<, for any a sinceS is parsimonious, and
e(S) # (n e I<%).
O

Definition 8.3. S is computationally inconsistent (ci)df —g L for somegp € F(S)
Otherwise it is cc.

S is computing iff all formulag) € F(S) are S-computable.

S is deciding iffS is computing and the critical formula§'r, ..., Cr, are S-
computable.

Lemma 8.2. If S is a correct, nonsolving-substitution then:

1. If (e,u) € S, u #7, and (e,v) € H(S) for somev # u thene = e(95),
v =2v(5),v #?andv < u.

2. lf(ne I~ T)e Sand(n € I?,T) € H(S) with 3 # a thenn € I*ise(S)
andg < «

Proof. 1. Sincee = ev < s.¢[v] must be thed-term of S, we consider which criti-
cal formulas could haveasH-term. Sincepu| —z T by the correctness o,
the only axiom which could be false undgris the Epsilon Axiom, specifically
we must havéer.1)[v]) < t —g L, and therefore since < t —g L, we have
v =|t|g < u.
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2. n € I® must be theH-term of S, so Cr(S) must be an Inductive Definition
Axiom, and if we hadh < 3 thenCr(S) <5 T, so we must havg < a.
O

Definition 8.4. We say thd{-rule appliesto S if S is cc, deciding, and nonsolving.

9 Cut Elimination

To prove that thef{-process terminates, we will create an ad hoc sequent calculus.
Our sequents will be-substitutions augmented with additional information, and the
resulting derivations will be similar to invertell-processes, with the empty sequent
on the bottom derived from axioms which will include solviiigubstitutions. We will

then apply a cut-elimination process which will result in a derivation from a soksing
substitution in which each inference corresponds exactly téfttstep would be taken

(or to certain non-essential operations which do not affect thgirocess); the well-
foundedness of our derivation will then prove that tHeprocess reaches a solving
substitution in finitely many steps.

Each pair(e, u) in one of our sequents will be expanded to include a marker, which
must be eithet (temporary) orf (fixed). This will indicate whether or not that item
may be updated in the derivation, that is, whether we allow a step above it in our deriva-
tion to represent afl -step in whicte is the H-expression. When a pair is fixed and we
would like to update it, we will instead be required to stop at an axiom indicating that
we would like to update the pair. (This is a generalization of the distinction betWween
and?° in [MTB96]; in that paper, only pairée, ?) can be updated, while here we must
deal with the possibility that any value can be changed by a Iatstep.)

Definition 9.1. e Asequent is a set of tuplese, u, ) satisfying:

1. ©s ={(e,u) | (e,u,1) € O} is ane-substitution
2. i € {t, f} for each(e,u,i) € ©
3. If(e,u, i), (e,u,j) € ©theni =

e Ahistorical sequeris a triple (0, H, A) such that:

— Ois asequent
- H={51,...,5,) is afinite sequence efsubstitutions
— Ais a set of canonical-terms of rank?2 + 1

e dom(0) = dom(0) = dom(Og)

e Suppose? is a sequente a canonical expressiony € V¢(¢) U {?}, andi €
{t, f}. Then(e,u,i),0 = © U {(e,u,i)} iff © U {(e,u,)} is also a sequent;
that is, eithere ¢ dom(©) or (e, u, i) € O.

o Ot ={(e,u,t) € O}
e Of ={(e,u, f) € O}
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We sayo <X if Og < Xg

If e {<, <, >, >, =} then we say x r if for everye € dom(©), rk(e) b r.

We says < r if there is some' such that: = ¥°

We sayr < X if, whenever(e, u, i) € o andrk(e) < r thenr = rk(e) + 1 and
e has the forrm € 1< for somex

Ord(®) = Ord(Og)

If (6, H, A) is a historical sequent, we often only mention the seq@erand do
not specify that/ and A are also present.

9.1 ID,

We introduce a deduction system for historical sequents with three groups of inferences
and axioms. We will frequently find it useful to be able to refer to the premises of an
inference by parameters, so we introduce notation to make this convenient

Definition 9.2. If I is an inference the®rem(I, ) refers to the premise dfindexed
by z.

If I as an inference and some instance of an inference occuring in one of the
premises of, we write Param(I, J) = x whenJ occurs inPrem(I, x).

Technically the premise is a deduction, but we will sometimesiisen(I, z) to
refer to the endsequent of the premise; it will be clear from context when we are doing
this. In general, if the parameters bbther thari’ range over the ordinals below we
equate? with a.

In the definitions below] always refers to the inference being defined.

9.1.1 Generic Axioms

AzF (©,H,A)is an instance oAz F' if O is Ci

AzS (©,H, A)is an instance oflzS is ©g is solving

9.1.2 Term Axioms and Inferences

e is ane-term for all axioms and inferences in this subsection, and is called the main
expression of the inference or axiom.

AzH. , ((e,u, f),©,H,A) is an instance oz H., , if e is the H-term andv the
H-value of((e,u, f), 9)s, and theH-rule applies

AzPH., ((e,?,t),0,H, A) is an instance oflzH. , if e is the H-term andv the
H-value of((e, u,t),0)g, the H-rule applies, and is at a correctétistep, and
(e,v,a) € Aforsomea < rk(e)
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Cut,
{P(I,u) | u € V") u{?}}
(0,H, A)
Where the endsequent &%(1,7) is ((e,?, f), 0, H, A) and the endsequent of
P(I,u)foru #7is ((e,u, f), 0, H, A). We require thaOrd(e) C Ord(O)
CutFr,
{P(I,u) | ue€ V") U{?}}
(0,H, A)
Where the endsequent B I, u) is ((e, u,t), 0, H, A) foru #? and((e, ?,t),0, H, A)
for u =7. We require thaOrd(e) C Ord(©)

Fr,
((67 ?7t)) @7 H7 A)

(©,H,4)
WhereOrd(e) C Ord(0©)

He,v
((e,v,1),{(e",v",8) [ (¢/,v" € C(HTO5 U{(e,0)}))}, Ocrie), H™Os U{(e,u)}, A)

((e,u,t),0,A)

If e is the H-term andv the H-value of((e, u, t), ©)s, and theH-rule applies to
the conclusion.

CutFr}
{P(I,u) |ue Vi u{?}}
(0,H, A)
Where the endsequentB{ 7, u) is ((e, u,t), 0, H, A) foru #? and((e, 7, t), 0, H, AU
{e}) for u =? where « is some ordinal, and(e) = N. We require that
Ord(e) C Ord(0)

9.1.3 Formula Axioms and Inferences

n € I<* (wherea = Q when appropriate) is the main expression of the axiom or
inference except foF H?, AxFH?, andAxPF H?, which have main expressionc
I+, All variants of F'H come in two varietied and2; these are identical except that
one applies when the formula being removed is of the farmm < and the other
when it is of the formn € I®. This means thaF H' applies the first time we have
an H-inference fom, and F H? applies every time we update whiohis the first such
thatn € 1.

These axioms and inferences are similar to the term axioms and inferences, al-
though somewhat more complicated. We name them be prefixing &mnthe name
to indicate that they refer to formulas. Axiomdlse PF' H replaceAxF'H after partial
elimination of cuts (described in detail below).

AxFH) , 5 ((n€1<%,?,f),0,H,A)isaninstance ol FH), , ;if n € I” isthe

H-term of (n € I<%,7, f), )5 and this is not a closure rule.
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AxFH? 5 ((n€I*7T,f),0,H,A)is aninstance oflx FH? , ;if n € I is the

H-term of((ne]“ , 1),9)s.

AzCIFH, 5 ((n € I<%,?,f),0, H, A) is an instance oflzCIFH,, 5 if n € I” is
the H-term of ((n € I<Q, , f), ©)s and this substitution is at a closure step.
A

AzPFH) , 5 ((n€I<*,?,t),0,H,A)isaninstance ofluPFH, , ;if n € I’ is
the H-term of ((n € I<%,7?,t), ©)s and this is not a closure rule.

AzPFH? 5 ((n€1%T,t),0,H,A)is aninstance ofle PFH? , ;if n € I”is
the H-term of (n € I*,T,1),0)s.

AzPCIFH, 5 ((n€ I<%,7,t),0,H, A)is an instance of\zCIF H,, s if n € I° is
the H-term of (n € I<%,7,t),0)s and this substitution is at a closure step.

All these axioms also require that tii&-rule apply.

FCutn,a’g
P(l,a)  {P(,y)|[B<y<a}
(neI<P?, f),0, H,A)
Where the endsequent &f(1,«a) is ((n € I<%,?,f),0, H, A) and the end-
sequent of eactP(I,~) is (n € 17, T, f),0,H, A). Also, we require that
a > fanda € Ord(0). If 8 = 0then the conclusion i® (and the component
(n € I<P,?, f) is omitted).

Pcutn’awg,g
P(Iaa) {P(I»7)|ﬂ§7<5}
((neI<B? f),0,H,A)
Where the endsequent (I, «) is ((n € I<%,7,¢),0, H, A) and the end-
sequent of eactP(1,v) is ((n € 17, T, f),0,H, A). Also, we require that
a > 46 > fanda € Ord(©). If 3 = 0 then the conclusion i® (and the
componentn € I<7,?, f) is omitted).

PCutFry o3,
P(I,a)  P(I,0) {P(,y)|B<~<d}
(e(n € I<P,2,f),0, H, A)
Where the endsequent 6f(1, ) is ((n € I<%,7,t),0, H, A), the endsequent
of P(1,6)is ((n € I°,T,t),0, H, A), the endsequent of eadh(1,v) is ((n €
I, 7,f),0,H,A). Also, we require thatr > 6 > g anda € Ord(0). If
8 = 0 then the conclusion i® (and the componerft € 1<4,?, f) is omitted).

FF?"n,a”g
((n e I<a? ?? t)7 @7H7 A)

((n 6 I<ﬂ7 ?7t)’ (—)7 H7 A)

Provideda > 3. The componentr € 1<7,?,t) is omitted if 3 = 0. We require
thata € Ord(©).
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FH!
n,a,3
((n S Ioz’ T, t), @ST/C(TLEI“)7 HAGS U {(n S Ia, 7)}, A)
((neI<P2,.1),0,H,A)
If n € I*istheH-term of ((n € I<5,7,t),0)s and this substitution is not at a
closure step, and th&-rule applies to the conclusion.

FH? , 5
((neI*T,t), @Srk(neja)7 H™0gU{(neI* )}, A)
(nel® T,t),0,H,A)
If n € I*is the H-term of ((n € I°,T,t),0)s, and theH-rule applies to the
conclusion.

CIFH,
((n € I*, T, 1), O pinere), HOs U {(n € I*,7)}, A)

((n G I<(27 ?7 t)? 67 H7 A)

If n € I*is the H-term of (n € I<%,?,t),0)s and this substitution is at a
closure step, and th&-rule applies to the conclusion.

While there are a large number of axioms and inferences, most of the differences
represent technical variations on the same basic axiom or inference Cidhand
FCut rules are what will be present in the initial derivation. They represent an un-
informed guess as to what value to assign some expression we wish to evaluate, a
question resolved by considering all possibilities as different branches. Viewed as in-
ference rules, they can be taken to mean that the conclusion is sound precisely when
at least one of the input branches is—the inputs represent all possible situations which
expand on the conclusion in the necessary way.

The FCut, in particular, states that whem € 1< and < «, the possibilities
are either thatn € 1<%, orn € I7 whereg < v < «a. It represents the formula:

el —-ner<v \/ ner (1)
B<y<a

Note that we read the inference going upwards.

Also present in the original derivation will be thiec H axiom and its variants, the
AxFH*® andAxCIF H axioms. These represent attempts to actually applif anle,
places where the conclusion contains everything needed to pi¢k-expresion and
H-value for it, but where the relevant expression is fixed in value.

Our basic operation will be the replacement@ft-type inferences andlxH-
type axioms with theF'r inference (and its variant the' F'r inference) and thed
inference (and its variants, tHe?, andC1F H inferences). Thé r-type inferences
simply mark that we have used some expression—both premise and conclusion will
compute every expression exactly the same way, but the premise notes that some default
value has been used, which allows us to keep track of where branches belong in our
derivation. TheH-type inferences are the heart of our process, each corresponding
to a different type ofi-step. We could choose to have only one, awkwardly defined,
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inference for all these cases, but using different inferences makes the case distinctions
we will need to make easier.

The remaining inferences are intermediate steps of various kinds, which will appear
during cut-elimination, and all eventually be removed. Ht@ut is an oddity resulting
from the fact that, unlike in most cut-elimination arguments, B@ut inference has
premises with many different ranks. As a consequence, when we have eliminated cuts
above some rank, but not below it, some of #i€ut’s premises should behave as if
theCut has been eliminated, but some should not. Pldé&.t represents this “partially
eliminated” cut—it is essentially afi F'r inference with the remains of @iCut added
on.

The Cut Fr and PCutFr inferences are similar, but will exist only in the middle
of cut-elimination. They will result when we eliminate a cut of some rank, but are
still eliminating cuts of the same rank below that inference, and may need the extra
information contained in the other premises. When we have finished eliminating cuts
of that rank, we will prune the extra premises, resulting iFaror PC'ut inference.

Definition 9.3. A deductionof (©, H) in ID, from a set® of historical sequents is a
wellfounded tree according to the rules of inferencé Bf. A derivationis a deduction
from just the axioms aof D..

Definition 9.4. We definé:(d) < «, theheightof d inductively:
1. Ifdis an axiom© andOrd(0) \ Q < a thenh(d) < «
2. Ifd ends in an inferencé with endsequert such thatOrd(0) \ 2 < « and for
eachy such thatPrem(I,~) is definedh(Prem(I,v)) < a,, and:
(@ oy <«
(b) If a< B, andy < B theno, < 3
Thenh(d) < «. (This definition is essentially that of [Poh89], Definition 24.27.)

Lemma 9.1. If rk(e) = r thenr = a + n wherea is the largest ordinal appearing in
eor Qandn < w. Therefore ifOrd({e}) < &, rk(e) < Q, and{ is strongly critical
thenrk(e) < &.

Proof. The first part follows by straightforward induction on the definition of rank.
The second follows sincgis strongly critical, s& > « + w > rk(e). O

Lemma 9.2. If d is a derivation ending ir® anda € Ord(©) then for every) such
thath(d) < n, a <.

Proof. By straightforward bottom-up induction eh O
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9.2 Original Derivation

The construction of the original derivation in this section is the same as in [MTB96]
for e-termse, the step described in Lemma 9.4. In Lemma 9.5 weHiSet inferences

to decide formulas € I<* andn € I*. We do not deciden € I by applying a cut
directly to this formula; instead we decigec 7<*1,

Essentially, we attempt to evaluate the critical formulas; if our substitution is cor-
rect but non-solving, we will find canonical expressions which have not been assigned
values. We apply a cut over some canonical expression appearing in our critical for-
mulas, and repeat the process for every premise of the cut. In order to show that the
process halts, we always choose canonical subexpressions of formulas having the max-
imum possible rank.

We add one essential trick: in order to make sure that ordinals decrease both in
terms of< and <, we have to add ordinals to the height as we add them to sequents.
In order to make “room” for this, we have to count the number of places where ordinals
could potentially be added.

Definition 9.5. Definey(e) by induction:

L x(v) = x(0") = x(a) = x(L) = x(T) =0

2. x(5t) = x(t)

3. X(pel, coen) =X x(e;)

4. x(s1 =9 52) = x(51 <9 52) = x(51) + x(52)
5. x(=¢) = x(¢)

6. x(¢ N ) = x(¢ — ) = x(¢) + x(¥)

7. x(teI*) = x(t € I=°) = x(t) + x(s)

8. x(te I =x(t)+1

9. x(se{t1,...,tn |51,y 8n}) = x(9)

(P)+1 ifa=Q
10. x(ev < aglv]) = { X x () otherwise

This essentially measures the number of places an unbounded countable ordinal
might appear in an expression.

Lemma 9.3. If e =% ¢’ theny(e’) < x(e).
Proof. By the definition of—1. O

Definition 9.6. Let S be ane-substitution andb = {44, ..., 4, } afinite set of closed
formulas.

* ps(®) = max{rk(|Als) | A € @,d(|Als) > 0} U{0}
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o xs(P,7) = Yacorr(as)=r - X(IAls) + #acora(s)#sesc(a)B

0 ifrk(F)<r
* & (F) :{ d(F) otherwise

,us((b,?") - EAetbdr(|A|S)

vs(®) = Q% - ps(®) + wxs(®, ps(P)) + ps(®, ps(P))

Note g (®,7) < w, xs(®,7r) < w- N, ps(P) < Q + w, and therefore/s(P) <
03+ Q2.

Definition 9.7.

Q ifu=?
[lul]a =< u if uisan ordinal or number
1 ifu=T

Definition 9.8. If S is an e-substitution such that thé& -rule applies toS, define an
e-substitutiorext;(S) and a set of formula$; (.S) for i < w as follows:

1. ea:to(S) =0 and<I>0(S) = {C’I“o, ey C’I“N}
2. Ifthe H-rule applies toext;(S), ext;+1(S) = ext;(S) and®; 1 (S) = D,(5)

3. IftheH-rule does not apply text;(S), let Ag € ®;(S) be such thatk(|Ag|cat, (s))
is maximal, and choose some canonical subexpressioi Ag|c,.,(s). If e is
computed bys thenext;1(S) = ext;(S) U {e,|e|ls} and ®;;1(S) = &,(S) U
{F(e,|e|ls)}. Otherwiseext; 1 (S) = ext;(S)U{(e,?)} and®,;,1(S) = ;(.5).

n(S) is the leasn such thatext,, (S) = ext,1(S). ext(S) = exty,(g)(S).

Finally if ext; 11 \ ext;(S) = (e, u) thene(i, S) = eandwv(i, S) = uif e is aterm,

anda if e is the formulan € I* orn € 1<,

Definition 9.9. Define
ind(S) = Bicp(s) Qe FEN|u(G, §)[| 4 + Qevs(Poi (D42

The following two lemmas appear complicated, but the concept is simple: we are
given ane-substitution and a finite set of formulas. We select a canonical expression
of maximal rank from{|A|s | A € @}, assign it a value,, and augmen® to include
a witness to the correctness @f, u), if necessary. Then we show that the resulting
measure by decreases according to bothand <. We will also show, in particular,
that if we are adding expressions in the order used to défifie5) then also the indices
are decreasing.

Lemma 9.4. Let S be ane-substitution andp a finite set of closed formulas such that
Uace Ord(A) € Ord(S). Let Ay € @ with rk(|Aols) = ps(®P), and lete be a
canonicale-subterm of Ag|s. For anyu € V() U {?} let S* = S U {(e,u)} and let

P — ) if u="
| ®U{F(e,u)} otherwise

Then for anyu € V() U {7}
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e S*is ane-substitution

o psu(P") < ps(P)

o Vi (BY) < vs(®)

o ifvg(®) < fandu < [ thenvg. (") < 3

® Uucqpu Ord(A) C Ord(S*)
o if & =&, (5)ande = e(n(S), S*) thenind(S") < ind(S) and ifind(S) < 3
andu < 8 thenind(S*) < .

Proof. e S is ane-substitution
Trivial, sinceS is ane-substitution

o psu (@) < ps(®)
SinceS C S*, we havd|w|s|s« = |w|s«, and thereforek(jw|s«) < rk(jw|s
andd(|w|s«) < d(|lw|g) for eachw. Also, rk(|F(e,u)|s«) < rk(F(e,u)) <
rk(e) < ps(®), s0ps. (B") < ps ().

® Ugu ((I)u) < Us(q)>

If ps«(®*) < ps(®P) then this is obviously the case, so supppse(P“)
ps(®). If max Ord(S™) > max Ord(S) then it must be that sonfe has been
removed, and therefore(|Ao|s«) < x(]Aols). Thereforexg.(®“, ps(®)) <
xs(®, ps(®)). If this inequality is strict then we must havg. (%) < vs(®),
S0 assume s« (P", ps(®)) = xs(P, ps(P)). For eachd € @, rk(|A|gw) <
rk(|A|s) andd(|A|s«) < d(|Als). Thereforeug.(®*) < us(®). But since
d(|Ap|sw) < d(|Ap|s), this inequality must be strict, 8¢ (P*) < vg(P).

o If v5(®) <« fandu < nthenvg.(d*) < 3

If veu(®) < vg(®) then this follows from transitivity. Otherwise we have
Dvg(®) < Drg.(®"), and therefore we must have some= SC(vg«(P%))
such thatDrg(®) < 7. We must have; ¢ SC(vg(®)). But SC(vs(®P)) \
SC(vgu(®*)) C SC(u). But then we must hav®vg(®) < Du, sou &
1/3(‘1)).

¢ Upegu Ord(A) C Ord(S*)
SinceOrd(®“) = Ord(®)UOrd(u) this follows sincedrd(u) C Ord({(e,u)})
andOrd(®) C Ord(S).

o if &=, 5 (S)ande = e(n(S), S*) thenind(S*) < ind(S) and ifind(S) < 8

andu < g thenind(S*) <
Sinceert,(5)-1(S*) = S and®,,(5) (S*) = ¢, let

¢ = Bica(s) Qe @@ oG, 5)]|a
Thenind(S) = ¢(+Q*vs(®)+2 while ind(S™) = (+QwVs ()| |u|| 4+ Qwvs= ()+2,
But sincel|u||4 < Q andvg. (DY) < vg(®), ind(S) < ind(S™).
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If ind(S) < 8 andu <« g thenind(S*) < S follows since no strongly critical

ordinals appear imnd(S") that do not appear ing. (d").
O

The following lemma is essentially the same as the previous one, using a formula
instead of aterm. One complication arises from the fact that we always need to consider
two kinds of formulasn € I<#, andn € I7 for all v < §3. If the canonical subformula
has the forrm € I<> theng = «a, however if it has the formw € I, we need to set
8 = a + 1, since we need to consider the case where we(addI*, T).

Lemma 9.5. Let S be ane-substitution and® a finite set of closed formulas such
that | J 4.4 Ord(A) C Ord(S). Let Ay € @ with rk(|Agls) = ps(P) and lete’
be some canonical subformula [ofg|s. If ¢/ = I<* then sete = (n € I<%) and

B = a, otherwise set = (n € I<**!)and3 = «a + 1. If there is no component
(n € I<5,?7) € Sthen lets = 0, otherwise let = ¢. For eachy such thats < v < 3,
let ST =SuU{(nelI”, T)}\P(nel", T)andletd” = dU{F(n e I",T)}. Let
SP=8SuU{(neI<hN}\P(nel<h7) andletd’ = .

Then for every <~ < :

e S7is ane-substitution and; —g ¢’ impliesg —g+ ¢’
ps+(®7) < ps(®)
Vg~ (‘P’Y) < Us(@)

if vg(®) <« Kk andy <« k thenvgy (P7) € Kk

Usacar Ord(A) C Ord(S7).

if® = ®,5)(S)ande’ = e(n(S), ") thenind(S7) < ind(S) andifind(S) < x
andy < x thenind(S7) < k

Proof. Similar to Lemma 9.4.

e 57 is ane-substitution and —g ¢’ impliesg — g~ ¢’
We consider three cases:

1. There is a componerih € 1<¢,?) € S. If B < ¢ thene' is already
decided, so we hawe < (3. Then forS” with £ < v < 3, we have thab”
is ane-substitution sincén € 1<¢,?) € P(n € I7,T). Also, sinceS is
ane-substitution,S” meets the remaining conditions.

2. There is a componefit € 1%, T) € S. Impossible, since thenwould be
decided.

3. There is no such component. Then cledlyis ane-substitution sincey
is.
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ps(®7) < ps(P)

SinceS C 57, we have|w|s|s+ = |w|s~, and thereforek(|w|s«) < rk(jw|s)
andd(|w|s«) < d(|w|s) for eachw. Alsork(|A[I<7,n]|s~) < rk(|A[I<7,n]|s) <
rk(¢') < ps(®).

vgy (D7) < vg(P)

Asin Lemma 9.4, if we do not hayegs~ (®7) < ps(®) then we haveg- (®7) =
ps(®). Inthis case, ifnax Ord(SY) > max Ord(S) then we must havg = Q
andQ > v > max Ord(S), and thereforegsu (®%, ps(®)) < xs(P, ps(P)).
Otherwisey g« (®“, ps(®)) = xs(®, ps(®)), and in that case, sincé is S7
computable, we have we hayg- (®7) < ps(®). In either caseys- (®7) <
1/5(@).

if vg(®) < k andy < k thenvg, (") K &

If we do not have/s+ (®7) < vg(®) then we haveDrg(®) < Dyandify < &
andvg(®) < k thenvgy (97).

if & = ®,4)(S)ande’ = e(n(S), S") thenind(S7) < ind(S) andifind(S) < x

andy < k thenind(S7) < k
Finally, sinceext,,(s)—1(S7) = S and®,,(s)(S7) = @7, let

¢ = Ei<n(s)waemti(S)(q>i(s))fv(i7 S)
Thenind(S) = ¢4 Q«vs(®)+2 while ind(S7) = ¢ 4 Q@vs(®)y  Quvsr (27)+2,
But sincey < Q andvg+ (®7) < vg(P), ind(S) < ind(S7).
If ind(S) < k andy < G thenind(S7) < & follows since no strongly critical

ordinals appear innd(S") that do not appear ing- (®7).

O
The Lemma above corresponds to fi€'ut inference:
(neI<B.7),8 (nelI",T),S,... Yy <y < BeV9)
(nel<®7?),8

The following two lemmata use the previous ones to actually construct a deduction

of . Lemma 9.6 inductively uses Lemma 9.4 and Lemma 9.5 to consttuttand

FCut inferences. Lemma 9.7 applies this to our base case—the empty sequent and the
critical formulas we are concerned with—to produce a derivation, and verifies that this
derivation is in fact a deduction.

Lemma 9.6. Suppos® is a sequent witt = (), L a finite set of closed formulas with
Uacr Ord(A) C Ord(0s), andr = pes(F(Os) U L). Then there is a derivatioi
of (0, 0) by Cuts and F'Cuts of ranks< r from computing sequents with T¢ = ()
containing® and computing all formulas ifL. In addition,~(d) < ve,(F(Og)UL).

Proof. By induction onve, (F(©g) U L).
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Note that we have

max Ord(0) < xes(F(Os) U L) <vey (F(Os)UL)

Let® = F(Og)UL. If © computes all formulas i then© satisfies the condition.
Otherwise, letA € ® be some formula such thak(|A|e,) = r and letg be some
canonical subexpression pf|e. .

If e is a term such that ¢ dom(©), and eachu € V*(¢) U {7}, let O% =
(e,u, f),©. Then©} satisfies the conditions of Lemma 9.4,19. (F(O%) U L) <
ve(®), and by IH there is a derivatiafy, of ©* by C'uts andF'Cuts of rank< r from
appropriate sequents and withh(d,,) < ve«(F(©%) U L), and since by Lemma 7.1
Ord(e) C Ord(0©), aCut with main terme satisfies the theorem.

If eis aformulathenifitisn € 1%, let3 =a+1,andifitisn € I<*let3 = a.
Then for eachy < 3let©” = (n € I7, T, f),0 and let®f = (n € I<P 7, f),0.
Then© satisfies the conditions of Lemma 9.5,189, (F(©") U L) < vg(®), and
by IH there is a derivatiod., of ©7 by Cuts andF'Cuts of rank< r from appropriate
sequents and withh(d,) < ve~(F(O©7)U L), and since by Lemma 7Qrd(n €
IP) C Ord(©), an FCut with main terme satisfies the theorem. O

Lemma 9.7. There is some < 2 + w such that there is a derivatios of the empty
sequent consisting only of axiontsyts andF'Cuts with rank< r, andh(d) < Q3 +
02,

Proof. Applying Lemma 9.6 td), L = {C'ro,...,Cry} andr = pg(L) gives a de-
duction of( consisting of onlyCuts andF' Cuts with rank< pg(L) and axioms.

If some top sequen® of this deduction is not an axiom the&ds must be cc,
deciding, and nonsolving. Since the only inferences in the part already constructed are
cuts,0t = (). But then® has anH-expressiore(O ) appearing in somé€'r;. Since
© is cc and decidingr; must be computed, and therefef@® s) must be computed,
so there must be sonfe, u) € P(e(Og),v(Og)) such thatle, u, f) € ©. Note that
requirements on ordinals of cut terms are satisfied by Lemma 7.1.

Then this must be adxH, AxF'H, or AxCI1F H axiom. O

In place of the height bounds given by Lemma 9.7, we will use the height bound
given by the functiorind(S), which gives a derivatiomnd(d) < Q%' +2*+1_ This can
obviously be done, usingud(S) in place ofvg(®) in Lemma 9.6. While these appears
to do nothing but inflate our height bounds, it serves the purpose of synchronizing
the height bounds with the ordinal assignment, making a straightforward collapsing
argument possible.

9.3 Controlling Derivations

A derivation with cuts of rank and higher eliminated will be called anderivation.

We will define steps which will allows us to convert, for instance; 1-derivations to
r-derivations. We will begin at the top of the derivation, and work down to the root
(using the well-foundedness of the derivation). As described above, we cannot directly
produce amr-derivation as we go down, since we may need the additional information
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retained byPCut F'r andCutF'r inferences; derivations with this information left in
will be calledr*-derivations. At the interim stages, we will havel- 1-derivations
below some inference, and -derivations above. Once the entire derivationtis we
will be able to easily prune it into arrderivation.

We will define notationsX (d) o< r, wherer<t is some comparison like or > and
X is some inference rule or axiom, to indicate that all instances of that rule have the
appropriate relation to the rank PCutFr, F Fr, and the axioms will have slightly
modified definitions, and we will need some additional information alBtitit.¢ infer-
ences, which will be denoted ByCutF'(d) = r or PCutF(d) ~ r.

Definition 9.10. Thetarget rankof an Az H., , axiom isrk(e).
Thetarget rantof anAxF H,, o g, AxPFH,, o g, AxCIFH, g, or AzPCIFH, g
isrk(n € IP).

Definition 9.11. If the H-rule applies to©, we say(0, H) conflictswith (e, u, i) if
one of the following holds:

ec@)=neX,e=neY,u=?andrk(n€Y) > rk(n € X)
e ¢ =¢(0)andu # v(0)
o (e,v) e C(H)andv # u
e e=nel*ande(O) = ex—|B[I<% n,z]|g
We sayo conflicts with(X, H, A) if:
e There is somée, u, i) € ¥ such that® conflicts with(e, u, ).
e There is somée,v) € C(H) such thate € A.
Definition 9.12. Letd be a derivation.

o If
X € {Cut, CutFr,CutFr*, Fr,H, FCut, PCut, FH,CIFH}

ande {<,>,<,>,=}then we sayX (d) e r if every application of a ruleX
has main expression with ramk r.

o We sayPCutF(d) = r if every PCut,, o 3,5 appearing ind satisfiesrk(n €
I%) > randrk(n € I7) < rforall y < 6.

o We sayPCutF(d) ~ rif for everyPCut, o 3,5 appearingy is the least ordinal
such thatrk(n € 1°) > r.

o We sayPCutFr(d) = rif everyPCutFr,,  g,s appearing ind satisfies-k(n
%) =r.

o If e {>,>} then we sayF'Fr(d) > r if every FFr, o 3 apperaing ind
satisfies'k(n € I<F) >ar.

e We saydx(d) < r if every Ax H-type axiom® has target rank< r, and if the
target rank isr then® conflicts with the endsequentaf
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e Bothr- andr*-derivations are derivations satisfying certain restrictions on the
axioms and inferences they include. The restrictions are stated in this table:

r-derivation r-derivation
Cut(d) < r Cut(d) < r
FCut(d) < r FCut(d) < r
PCutF(d) =~ r PCutF(d) = r
H(d) > & H(d) > 1
FH(d) > r FH() > r
CIFH(d) > r CIFH(d) > 7
PCut(d) > r PCut(d) > r
Fr(d) > r Fr(d) > r
FFr(d) > r FFr(d) > r
CutFr(d) < 0 CutFr(d) = r
CutFr*(d) = Q+1| CutFr*(d) = Q+1
PCutFr(d) < 0 PCutFr(d) = r
Az(d) < r Az(d) < r

In addition:
e If a CutFr* inference occurs in an- or -derivation then- < Q + 1

o If u #7 and I is a CutFr* inference thenPrem(I,u) is an2 + 1- and an
Q + 1*-derivation (in addition to being an- or r*-derivation)

e If I is an H-inference of rank in an r™-derivation and at a corrected-step
then the premise dfis an{) + 1- and an{) + 1*-derivation (in addition to being
anr- or rT-derivation)

e If (©, H, A) is the premise of aif'r, inference and-k(e) = 2 + 1 then either
r<o(H {(e,7)}UBg)oree A

This means that in an or r* derivation, allCut and FCut inferences have rank
belowr, while all H, Fr, FFH, and F'F'r inferences have ranks greater tharNote
that we want the conclusion of thieéF'r inference to have rank at leastnot just the
premise.PCut inferences are required to 'span’ the cut-rank, in the sense that the only
premise adding a temporary value adds an expression with rank at-ledske the
premises adding fixed values add expressions with rank bel6Gut F'r and PCut F'r
inferences are required to be situated precisely. &or CutF'r this means the main
term has rank, while for PCut F'r, this means that the premige € I°, T, t) which
distinguishes it fromPCut will have rankr.

We wish to measure the height of andr*-derivations more precisely to ensure
that we do not take an overly constrictive upper bound which works before we collapse,
but is not generous enough when we try to collapse.

Definition 9.13. If d is anr- or r+-derivation and- > ) then we sayi(d) < n only if
the following additional inductive criterion is met: for eveHr-type axiomX, H, A)
ind, h((X, H, A)) < nimplieso(H™X; 7).
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Lemma 9.8. Suppose is someCutF'r¥ inference in an--derivation off) for some
r < Q, and suppos€0, H, A) is an axiom of typela PCIF H,, o o, in Prem(C,u),
suppose the conclusion 6fis (X, H', A"). Theno(H) < o((H')"{(e,?)} UX).

In addition, ifOrd(©) = Ord(X) then

a < D(o((H")"{(e, )} UX) + k((H') " {(e,7)} UL))

Proof. We haveH = (H')™(S4,...,S, and there exista such thatzt,(S;) = Xg
for somen, ande(n, S;) = ¢, v(n, S;) = u for eachi < n. But since||u||4 < ||?]]a.
it follows thato(H) < o((H') ™ {(e,?)} U X).

The second part follows from the definitionsoéndk. O

Definition 9.14. (O, ..., 0,,) is ar-prepath(for ©,,) ifitis a path in some'-derivation
of ©y = ). A path is assumed to be given with an analysis of the inference rules con-
stituting the path.

(0o,...,0,) is anr-path(for ©,,) if it is an r-prepath and if the inference from
©,;4+1 t0 ©; is aCutFr* inference ther®, ., belongs toPrem(I,?).

The key result is Lemma 9.33, which shows that, if we can eliminate cuts, we will
prove the termination of thé&/-process.

Lemma9.9. 1. If © is a sequent in am + 1 derivation of() then©t > r + 1,
of <r

2. If X is a sequent in an™ derivation of® then:

(a) @gr\GtﬁE
(b) (Xf)>rCO
c)et>r=%%tz>r

(d) If (n € I<*,?,t) € O then either there is sontesuch tha(n € 1<7,?.t) €
¥ or there is someg > O(r) such that(n € I°, T,t) € X.

Proof. 1. The statement is proved by bottom-up induction on the proof. It ob-
viously holds for(), and in anr + 1-derivation viewed bottom up, temporary
components are added B, H, CutFr*, FFr, PCut, FH, andCIFH, and
these components all have rank at least 1, unless they belong t&<, \ T
for someTY, in which case they must have rankFixed components are added
by Cut, FCut, and PCut, and these components all have rank- + 1, and
therefore< r. The remaining inferences cannot occur.

2. (a) Again by bottom-up induction. The statement obviously hold®fand
is trivially preserved byF'r, Cut, CutFr, andCutFr*. Also, since any
application of theH, FH, or CIF H rules is of rank at least, the only
term of rankr or less which is removed must be sofegv, t), which is
not in ©<,. \ ©¢. Finally, any application o F'r, FCut, PCutFr, or
PCut which removes somé: € I<# 7, f) adds in somén € <% 7 7)
or (n € I*, T,4) which satisfies the definition of.
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(b) Going downwards, the only points at whi¢h w, f) can vanish are the
Cut, FCut, PCut,andPCutFr inferences, an@'ut(d), FCut(d), PCutF(d) <
r while PCutFr(d) = r soifrk(e) > r then(e, u, f) cannot be removed.

(c) SinceF'r(d) > r,H(d), FH(d),CIFH(d) > r,CutFr(d) =r, CutFr(d) >
r, PCut(d) > r, FFr(d) > r, and PCutFr(d) = r, all components
(e,u,t) added going upwards have rank at leastinless they belong to
T<, \ T for someY, in which case they have ramk— 1.

(d) By bottom-up induction(e, u,t) cannot be removed by @ut, CutF'r,
CutFr*, Fr, or F'Fr inference. If any other inference remowest much

be replaced by some component which ensuresthiat <# <y 1.
O

Lemma 9.10. If d is anrT-derivation of® then there is am-derivationd’ of ©.

Proof. If r # Q + 1, prune allCutFr inferences toF'r inferences by deleting all
premises except the leftmost one and prun@éllt F'r inferences ta?Cut inferences
by deleting the appropriate premise.

If r =Q+ 1, convert allCut F'r inferences t@ut F'r* inferences. O

Definition 9.15. Let© and X be two sequents. ThéhandX are multiplicableif:
1. Whenevete, u, 1), (e,u’,i') € O U X, v/ =vandi’ =1
2. If(neI*,T,i),(necI<’ ?i')YcOUXthens <«
We defineRe 5, by:
1 If(nel*T,i),(nel<h?i)e0UXthen(n € I<F i) € Rox
2. If(neI<%,?i),(n € I<P,?,i) e OUY andfB < athen(n € I<F ?,i') €
Ro x
3. If(nel®T,i),(nelP T,i') e OUXanda < Bthen(n € I%,?,i') € R »
© * X is defined and equal 6 U X \ Rg 5 iff © andX are multiplicable.

Re x is the set of redundant values@nJ X which are implied by other values also
present, so we remove them to make sure@at> is still parsimonious.

Lemma 9.11. If © and X are multiplicable then:
1. If(e,u,i) € Ro x thene — .5, u
2. © x X is a sequent

Proof. 1. Supposén € I<#,?) € (Rex)s and there is somén € 1%, T) €
(© x X)g. Then, since® andX are multiplicable, we must have < «, and
therefore, sincén € 1%, T) € (© x X)g, the result follows. The only other
possible way there could be sorfre € 1<°,?) € (Re »)s is if there is some
(n e I<* 7)€ (0xX)swith § < «, in which case again the result follows.

If (n€I”,T) € (Rox)s then we havén € 1%, T) € (O x X)g, so the result
follows.
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2. All we need to show is thgd© x X) s is ane-substitution. This follows directly
from the fact tha® s andX s aree-substitutions and there are noe 1%, n €
I8 € dom(© x ¥) with a # 3 since we removedg 5, from © « X.

O

When we eliminate cuts, we will want to replace certdinH-type axioms with
branches from the cut. To do this, it will be necessary to show that we can convert the
branch into a derivation of the axiom, since the two will have different components.
To do this, we will need to show that, under suitable conditions, the axiom and the
conclusion of the cut are multiplicable.

The following lemma will be needed when we wish to eliminaté&. inference.
Above that inference is soméx H, , axiom, which we wish to replace with the suit-
able branch of th€'ut inference. We will replace the axiom with a derivation viafan
inference; the premise of this will B&. We will then want to show that the conclusion
of the Cut inference ©, is sufficiently compatible witft, in the sense that we will be
able to convert the relevant branch of thet inference into a derivation of.. The
situation when we eliminat&'Cut or PCut inferences is similar, and will make use
of this lemma in the same way.

Lemma 9.12. Suppose is anr™ deduction o fromX, ¥ < r, and there is am + 1
path for®. Then¥ and© are multiplicable and® < © * 3.

Proof. Supposée, u, i), (e,v’,i') € XUO. ¥ andO are sequents, so assume, w.l.0.g.,
that (e, u,7) € ¥ and(e,v’,3’) € ©. We distinguish whether is a term or a formula;
if e is a term then we havek(e) < r sinceX < r. Buttheni’ = f by Lemma 9.9(1),
and therefore € O<, \ ©t, so(e,v’,i') € ¥ by 9.9(2)(a), sar = v’ and: = ¢’ since
Y is asequent. It is a formula then, = v’ is determined by (u = v’ =7 if ¢ has the
formn € I<%, andu = v’ = T if e has the forrn € I?). Now, if rk(e) > r then we
havei’ = t, and by 9.9(2)(b), we cannot have= f, soi’ =i =t. If rk(e) < r and
i’ = f then sincge,u,i) € ¥ andX is a sequent, by 9.9(2)(a),= i = f. In the final
caseyk(e) < randi’ = t. But then by Lemma 9.9(1), it must be thahas the form
n € I<P for 3 = O(r). Thenu = v/ =? ande € dom(X), and by Lemma 9.9(2)(d),
it must be that = t.

Next supposén € I, T,i),(n € I<°,?,i') € ¥ U © wherea < 3. Suppose
(n€I%T,i) € ©. Thenifrk(n € I*) < r we must have = f by Lemma 9.9(1),
so we must have € I* —y5 T since®<, = O, \ 6t I X, contradicting the fact
that (n € I<%,7) € . On the other hand, ifk(n € I*) > r then we cannot have
r<rk(n€l®) <rk(neI<F)<r+1.

On the other hand, suppoée € 1%, T,i) € ¥. Thenrk(n € I*) < r. But since
(n € I<P ?2,t) € ©, by Lemma 9.9(2)(d), it must be that= t anda > O(r). But
r—1<30(r),son € I* > r 4+ 1, a contradiction.

Suppos€e, u,i) € O. If i = ¢ then since there is an+ 1 path for®, by Lemma
9.9(1) eitherk(e) > r, in which casde, u,t) € © x X sinceX < r, orrk(e) = r and
(e,u,t) € © %X by Lemma 9.9(2)(d). If = f thenrk(e) < r by Lemma 9.9(1), so
sinceO<, = O, \ Ot < ¥, alsoO<, <O x X. O
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9.4 Cut Elimination

A number of technical lemmata are needed for cut-elimination, so a short outline is in
order. The core operation is a reduction of @ret or F'Cut by replacing the axioms
representingd steps with the corresponding inference rule, using another branch,

of the cut to provide a derivation for the premise. Lemmata 9.13 through 9.16 provide
operations on derivations which we use to makKi on top of the H-inference even

when there are many steps between the cut and the axiom. Lemma 9.19 combines them
to show that we can indeed perform a corrBetnference from the brandh

Lemma 9.23 uses this to removeCait, while Lemmata 9.21 and 9.26 remove
FCuts andPCuts respectively. Lemma 9.27 applies these three lemmata inductively
to reduce the rank of a derivation @fromr + 1 tor.

This process is then iterated (Lemma 9.28) to reduce the cut-rank to a limit ordinal.
Lemma 9.30 states that we can move from a limit cut-rank to some lower cut-rank in a
countable derivation, and Lemma 9.31 lets us colldpseerivations to countable size.

The next two lemmata allows us to replace pditsc 7<*,7?) in our derivations
with some(e, ) which implies this (that is, eithefn € 1< ?) for 3 > a or (n €
I8, T) for 8 > a).

Note that the lemmas below largely ignore the history portion of sequents. These
portions are changed appropriately as we alter corresponding sequents, but the only
situation in which these changes matters is when we chéfdg), and this case is
dealt with.

Lemma 9.13 (Persistency).Letd be a derivation such that:
1. dis anr™ derivation
2. The end-sequent dfis of the form(n € I<*,?, f),©
3. Thereis somée, u,t) € © such thatrk(e) = r andu #?
4. h(d) <n

Let3 > o and supposek(n € I°) < r.
Then there is a derivatiods: such that:

1. dx is anr™ derivation

2. The end-sequentdf: is> = (nc I°, T, f),0

3. h(ds) <n

Similarly, if rk(n € I<P) < r, there is a derivationls, such that:
1. dx/ is anr™ derivation

2. The end-sequent df isY = (n € I<P,?, f),©

3. h(dsr) <n

Proof. Otherwise, by induction on the last inferencedof
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1. Cut,CutFr,CutFr* Fr: The result follows directly from IH.

2. H, FH: Sincen € I<* <y, Landn € I°% <y L, any expression
computed by(n € I<*,?, f), © is also computed b¥. andX’ and has the same
value; so theH-expression is unchanged. In addition, while the history may
change, these changes will not chadgfe? )

3. CIFH: AsforanF H, with the additional condition that we must make sure the
ordinal does not change. But since there is ser@edom(©) with rk(e) = r,
Ord(©) = Ord(X), Lemma 7.2 applies.

4. FCuty, ~,5: It m # n then the result follows directly from IH. lfn = n and
8 > ~ then the result follows by applying IH to the subderivation(of €
I<7,7,f), 0. Otherwisey > 8 > o = §, so we trim theF'Cut to a FCuty, .5
to give a derivation ok, and just take the appropriate subderivation to give
That is, if we start with:

(neI<",?,f),0 (neIST,f),0,... V(< ¢<yeV9)
(nel<*?,1),0

FCuty o

we can take the subderivation ¢ < I° T, f),0 for ¥ and delete extra
premises of'Cut,, -, to obtain:

(nel<?,£),0  (nel"T,f),0,... W(B<(<yeV9)
(ne[<ﬂ7?7 )a(—)

FCuty .~

for X'.

5. PCutp, ~.5,.: if m # n then the result follows directly from IH. lin = n then
take the appropriate subderivation fand truncate td*Cut,, ., g, to give X',

6. PCutFry, ~ 5. it m # n then the result follows directly from IH. lfn = n
then take the appropriate subderivation ¥band truncate t®?CutF'r,, ., g . t0
give X',

7. FFry, ~.5: m = nisimpossible by rank considerations,rao# n and the result
follows directly from IH.

8. AzPCIFH, AzCIFH: SinceAxz(d) < r, the main term would have rank at
mostr. But since there is some, u, t) € © with u #? andrk(e) = r, Lemma
9.1 requires that the rank of the axiom be greater tharherefore these axioms
do not appear.

9. All axioms other thadxz PCIF H andAzC!F H remain valid

Lemma 9.14 (Persistency).Letd be a derivation such that:
1. dis anr* derivation

2. The end-sequent dfis of the form(n € I<*,7 1),
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3. h(d) <n

Let3 > a and supposek(n € I”°) = r and that there is somg, u, t) € © such
thatrk(e) = r andu #£7?. Then there is a derivatiods. such that:

1. ds; is anr™T derivation

2. The end-sequent df; isX = (n € I?, T,t),0

3. h(ds) <n

Similarly, if 8 = O(r) then there is a derivatiotiyy such that:
1. dy is anr™ derivation

2. The end-sequent @f is Y = ((n € I<°,7,t),0)

3. h(dsr) <n

Proof. By induction on the last inference df
1. Cut,CutFr,Cut Fr*,Fr: The result follows directly from IH.

2. H, FH: Any expression computed iy, € 7<% 7 i), © is also computed b{
andX’ and has the same value, so tHeexpression is unchanged and the result
follows from IH using the same inference rule. In addition, while the history
may change('(H) will not change.

3. CIFH: As for an FH, with the additional condition that we must make sure
the ordinal does not change. But if this adds an ordinal, we already have some
e € dom(0O) with rk(e) = r, soOrd(©) = Ord(X).

4. FCuty, ~,5: if m # n then the result follows directly from IH. lfn = n then
sincerk(n € I<7) < r, the result follows by applying IH to the subderivation
of (ne I<7,7,f),0.

5. PCutm 5.6 if m # n then the result follows directly from [H. Ifn = n
anda = v then we have an appropriate subderivation, otherwise replace the
inference with anf’F'r inference.

6. PCutFrmy, ~s,.6. it m # n then the result follows directly from IH. lfin = n
then it must be thatt = § andX is a conclusion of a subderivation.

7. FFry, 5. if m # n the result follows directly from IH. Ifn = n thend = 3,
so we are done.

8. AzF H,, « ~: replace with atda PF H,, 3 .

9. AzPCIFH, AzCIFH: In theX case, sincelz(d) < r, the main term would
have rank at most. But since there is somg, u,t) € © with v #7 and
rk(e) = r, Lemma 9.1 requires that the rank of the axiom be greater than
Therefore these axioms do not appear.

In the X’ case, these axioms remain valid except that s@m€!F H axioms
might have to be replaced withx PC1F H axioms.
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10. Other axioms are unchanged

The same functions that measudrean measurés, anddsy . O

Lemma 9.15 (Weakening).Letd be a derivation oB andX. a sequent such that:

1.

© N o g~ w D

d is anr* derivation

There is somée, u, t) € © withu #? andrk(e) = r
¥<r

(£f)sr CO

Stz

O, 4%

[CESNCEDY

h(d) <n

Then there is an derivatiog * ¥ of © x ¥ such that:

1.
2.

d+ ¥ is anrt derivation

h(d') <n

This lemma is one of the core operations we will use when eliminating cuts. The
complicated statement hides the basic situation we are dealingivisithe premise of
an inference which results from replacing sommeH -type axiom with the correspond-
ing H-type inference® is a premise of th€'ut-type inference which first introduced
the main expression of that inference. Our goal here is to use the deridatibich we
can place on top of our new -type inference to make this deduction into a derivation
(the conclusion ofl’ is not quiteX—the next lemma will resolve this).

Proof. By induction on the last inference df

1. Cut: Let the main term be. Thenrk(e) < r and either:

(a) There is some such thafe, u, t) € X: not possible, sinc&¢ 2 r

(b) There is some such thatle, u, f) € X: then((e,u, f),0) * X = O x X,
and thereforel x > = Prem(I,u) * &

(c) Thereis no such: then by I.H. for each, Prem(I,u)« ¥ is defined, and
d * ¥ just applies theCut rule to (Prem(I,u) * ¥)y,enuqzy

2. CutFr, CutFr*: Let the main term be. Thenrk(e) > r and either:

(a) There is some such that(e, u,t) € : then((e,u,t),0) * ¥ = © % X,
and thereforel « ¥ = Prem(I,u) x X
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(b) There isu such that(e, u, f) € X: not possible, sincéxf)-, C © and
(e,u, f) € O.

(c) There is no such: then by I.H. for each, Prem(I,u) « X is defined, and
d * X just applies the&ut F'r rule to (Prem(1, u) * ¥)yenufr)

3. Fr: Let the main term be. Then((e, ?,t),©) = X is defined, sinc& < r <
rk(e), andd = X is just theF'r rule applied to the derivation @ = 3.

4. H: Letthe main term be. Thenrk(e) > r and® = (e, u, ), Y is derived from
0" = (e,v,1), T<ri(e). SiNCEY S < rk(e), X' = {(¢/,u/,i") € ¥ | & # e}
is also correct, an@' f)>, C ©'.

SinceY € Y and® C O, © andY’ are multiplicable and®’ * ¥/ =

(e,v,1), T;rk(e) #* X' = (e,v,1), (T*X)<ri(e), While© X = (e,u,i), T+
Thereforal«Y is obtained by applying the same inference to the derivation given

by I.H..

Now, suppose”'(H) changes. Then this must be at a correctedtep, and
rk(e) = r. But then the derivation above is also@r- 1T derivation, so, by IH,
we have a derivation of « X U {(e, u,t) | (e,u) € C(H)}.

5. FCuty,q,3,PCuty o 3,5, PCutFr, o s Callthe inferencd and let® = (n €
I<P.7.1),0.

(a) If there are no € 17 orn € I<7 for any~ in dom(X) then just apply
IH to each subderivation and end the derivation with the same inference
applied to the new subderivations.

(b) Suppose we havB = (n € I7,T,4),%X'. Then by IH, if Prem(I,u) is
one of the immediate subderivations therem (I, u)«X’ is defined. Ifi =
tthenrk(n € I7) = r, soR is not aPCut inference. Ifl is aPCutFr
inference, there is a subderivation endingiine 1°, T,¢),©’, and since
0 =, by IH there is a derivation dfin € I, T7,t),0")«X =0« X. If R
is an F'Cut inference, we have > «, so the result follows from Lemma
9.14 followed by IH.

If ¢ = f then we cannot havek(n € I7) > r, since(Xf)>, C O
andn € I” ¢ dom(©). Sincerk(n € I7) < r either we have some
subderivation ending in € I7, T, f), ©, and we apply IH to that, or we
apply IH to the result of Lemma 9.13.

(c) Suppose we havB = (n € I<7,?,i),%'. Then by IH, if Prem(I,u) is
some subderivation theRrem (I, u) « ¥/ is defined. Ifi = ¢ thenr +
1> rk(n € I77) > r — 1. If Iis a PCut inference then there is a
subderivation ending iin € <%,?,¢),©’. If v = a then we apply IH
to the subderivation dfn € I7, T, t), ©’, otherwise we truncate theC'ut
to an F'Fr inference. IfR is an FCUt inference, we have > «, so the
result follows from Lemma 9.14 and IH. R is a PCut F'r inference then
we truncate to ai” F'r inference and apply IH t&rem(I, «).

If i = f then we cannot havek(n € I<7) > r, since(Xf)>, C O
andn € I<7 ¢ dom(©). If I is an FCut inference witha < ~, we
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apply Lemma 9.13 followed by IH, otherwise we prune the inference by
replacingi with .

6. F'Fry, o There canbe na € I” in dom(X), and if = (n € I<7,7,7),%’
theni = ¢ since the sequents are multiplicable, and 3, s00 * X = © % X/,
and we just apply IH to the premise of thieF'r inference, and add the same
F Frinference to give the required derivation.

7. FHn,a’ﬁ:

(a) If there are nm € I7 orn € I<7 for any~ in dom(X) then just apply IH
to the subderivation and end the derivation with the same inference applied
to the new subderivation.

(b) We cannot hav& = (n € I, T,4),%’, since eithen € I* € dom(©) or
n € I<* € dom(®) anda > ~.

(c) Suppose: = (n € I<7,7,4),%. We have® x 3 = © % Y/, sincea > v
and the inference applied to the result of the inductive hypothesis remains
valid.

8. CIF H, ¢: Aswith anF H inference, and note that since there is s¢me, t) €
O with u #? andrk(e) = r, it follows thatr < rk(n € I?). Then sinceZ < r,
it follows by 7.2 that the ordinal remains unchanged.

9. AzPCIFH, AxCIFH: SinceAz(d) < r, the main term would have rank at
mostr. But since there is some, u, t) € © with u #? andrk(e) = r, Lemma
9.1 requirs that the rank of the axiom be greater thdn- < . Therefore these
axioms do not appear if < 2.

10. Axioms: Otherwise, iP is an axiom ther® * X is an axiom of the same kind.
O

Lemma 9.16 (Repetition). Letp = (Oy,...,0,,) be ar + 1 path for© = ©,,. Let

¥ < r be a correct sequent such that,. < %, © « 3 is defined, an® < © % X.
Then there is a derivatiod’ of X from © * X consisting only of'r, H, FFr, FH,

andCIlF H inferences of ranks- » copied fromp and in the same order.

This lemma completes the work of the previous one, providing a series of infer-
ences we can use to place the derivation given by the previous one on topFbtyipe
inference we have created.

Proof. By induction onn, and trivial ifn = 0. Suppose: > 0 and let®’ = 6,,_;.
SinceO is on anr + 1 path, it follows thal®’.,. < O, (since no inference in an+ 1
path will remove elements of rank r, nor elements of rank greater thawhich might
be in©’_,., without replacing them by something appropriate) éxid X is defined, so
by IH there is a derivation of from @’ x ¥.. Consider the inference frof to ©'.

1. Cut: We have® = (e, u, f),®" andrk(e) < r. Therefore® « ¥ = 0’ x X
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10.

. H:0 = (e,v,t), T<ppe) andO’ = (e

. CutFr,PCutFr: impossible in an- + 1-path

. CutFr*: This must be thé branch, so arf'r inference applies. Singeis a

path for©, e € A.

. Fr:©=(e,?,t),0. Thenrk(e) > r, soO* % = (e, 7, t),® x X and the same

Fr inference applies.

T. Thensincek(e) > r, Ox% =

’u) t)?
(e,v,t), (T % X)<pp(e)- AN O’ X = (e,u,t), T * X, so theH -rule applies to
O’ x ¥ and has the sam#é-value.

. FCut,, o p: We haved = (e, u, f),©~ and®’ = (¢/,u/, f),0~. Also,{(e, u, f) }*

© =0, andsinc®<, I ¥ andrk(e) < r, we haved « ¥ = 0’ x X.

. PCuty, o 8,5 We have® = (e,u,i),0~ and®’ = (¢/,u/,i),07. If i = f

thenrk(e) < r, soX x© = ¥ ©’. Otherwiseg = n € I<* andn € I<°") ¢
dom(X), so anF'Fr inference applies dt « © = ¥ x ©'.

. FEry, 58 sincerk(n € I<%) > rk(n € I<P) > r, we have(n € I<P,?t) €

dom(©’ x X), SOF F'ry, o 5 is an inference fron® x X to ©' x 3.

. FH: © = (e,v,t), Y<ppe) and©’ = (¢, T,1), Y. Sincerk(e) > rk(e’) >

r+1>70xYE = (e,v,t),(T*X)<pe). ANdO’ x X = (¢/, T,1),T x X, s0
the F'H-rule applies t®’ « X and has the samiE-value.

CIFH: As foran FH. The rank of the ordinal is greater than any ordinal in
Ord(X) by Lemma 7.3, and unchanged by Lemma 7.4.

O

Lemma 9.17. Letd be anr*-derivation of(©, H, A) withr > Q and H' a sequence
of e-substitutions, and' a substitution with-%(e(S)) = r. Supposéi(d) < n. Then
there is an-*-derivationd’ of (0, (H')~S™H, A) with h(d') < o((H')™S;r) + n.

Proof. By induction ond. The only case we need to check iglifs an axiom. Then
we hado(H;r) < 7, and therefore

o((H)"STH;r)=0((H')"S;r)+ o(H;r)

O

Lemma 9.18. Suppose that there is an™ derivationd of ©, X is a correct sequent
such that:

1.
2.
3.
4,

X<
© x X is defined
(Ef)gr g (C]

Stz
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5
6
7. Thereis amr + 1 pathp for ©
8. h(d) <n

9

. There is somée, u,t) € © such thatk(e) =
Then there is am™-derivationd’ of . with h(d") < n # n for somen.

This lemma combines the previous two into a single operation: given the premise
of an H-type inference}, and the appropriate subderivation af’at-type inference,
this lemma produces a derivation Xf

Proof. By Lemma 9.15 there is a derivatiati of (© x X,a U o’ [ Ord(© * X)) with
h(d*) < n, and by Lemma 9.16 there is a deductionBf a’) from (6 « X, a U d’ |
Ord(© X)) consisting only ofF'r, H, F Fr, FH, andCIF H inferences of rank- r.

To see that the height bound holds, note that the 'tail’ attached by Lemma 9.16
consists of finitely many inferences. By [Poh89], Lemma 24.16(vk o # 1. If we
definedy = d* andd; to bed* with the first: inferences from the tail, by induction,
h(d;) < n#i, sincen#i < n#i+#1, and thereforé(d') < n#n for somen. 0O

Lemma9.19.Let((e,u,4), T, H, A) be someinstance efx H, Az PF H or AxPCIFH
with main expressioa. LetS = ((e,u, i), T)s, e’ = e(S), v’ = v(S), andr = rk(e’).
Supposel is anr* derivation of(e, u, 1), © which contains one or more instances
of (e,u,i),Y, and suppose there exists an+ 1 path p for (e, u,4),© and anr™
derivationd’ of (¢/, v, t), ©.
Then there is am™ derivationd* of (e, u, t), © in which the axiom(e,u, i), Y is
not present, and if(d) < nandh(d’) < ¢ thenh(d*) < (#w#n.

This is the core lemma which we will actually apply in eliminating cuts. It applies
the previous ones to replace all occurances of an axiom, setting the stage for elimination
of aCut-type inference. The complexity is necessary to deal with the various kinds of
axioms which are all handled by this lemma.

Proof. First, observe thdk, u, ¢), T cannot be an axiom in the derivatidhof (¢’, v/, t), ©.
We must havée, u) € P(e’, '), and thereforée, u, i) and(e’, v’, t) cannot be present
in the same sequent. We also have#£?, so by bottom-up induction, the only place
(e’,u’,t) could disappear (going upwards) in &h derivation is at arf{ inference in
which it is replaced bye’, v) with v < «’. But eitheru =7 oru’ < u, so(e, u, i) does
not occur in any sequent if.

DefineX = (¢/,u/,t), T<,.

By Lemma 9.12, we have that and© are multiplicable an® < © % X. Since
(¢/,u/,t) € X, we have((e/, v/, t),0) * X = © x X, so by Lemma 9.9(2)(b), we have
(((e,u,9), 1) f)<r C (e,u,1),0, and by Lemma 9.9(2)(c) we havée, u,:),0)t >
r = ((e u,1), T)t 2 r. Since® has anr + 1 path,©t = r + 1, so(Xf)>, C

e, u, f),©and3t 2 r. We haveO <, \ Ot < ¥ by Lemma 9 9(2)(a).
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By Lemma 9.18, there is a derivatiatt of ¥ with h(d") < ¢ # n for somen.

Now, we constructl* by induction on the last inference df If d is the axiom
(e,u,), T, replace it with anH, FH, or CIF H inference as appropriate from to
(e,u,t), Y. If r > Q, we apply Lemma 9.17 td" (the lemma applies sinog:(e’') =
r).

Letd = o' if e is anO-term anduw’ ¢ Ord(©), let§ = § if the axiom is
AzPFH, o3 andfg ¢ Ord(©), and0 otherwise. Sincé € Ord(Y), § < ¢. Also, if
r > Q,0(H;r) < (. Thereforeh(d*) < { #w #n (this is trivial if 6 = 0; otherwise
it follows from the fact that < n).

If d is some other axiom thefi = d.

If d ends in some inferenck replace eactPrem(I,w) with Prem* (I, «) using
IH, and letd* be the result of applyind to the Prem*(I,u), changing(e, u, f) to
(e,u,t) in the conclusion ofl if necessary (this can be done since a fixed expres-
sion will not be removed going up). Lét(Prem(I,u))) < m,; then since each
h(Prem*(I,u)) < ( #w # 1y, h(Prem*(I,u)) < (#Hw#n.

, :
d*xX 0%

(el7u/7t)7T§r D

Hew (e,u,t), T
e) 'LL, )
d

(e,u,t),©

Lemma 9.20. Letd be anr* derivation ending in(n € I<%,?, f),© with rk(n €
I<%) = r. Then there is an* derivationd’ ending in(n € I~*,7,¢),0 and if
h(d) < nthenh(d') <.

Let d be anr™ derivation ending in(n € I* T, f),0 with rk(n € I*) = r.
Then there is ant derivationd’ ending in(n € I*,T,t),© and if h(d) < 7 then
h(d") <.

This lemma, simple in concept, if not statement, lets us transform the branches
above ant’'Cut or PCut, which add fixed main expressions, into derivations which end
with a temporary main expression, which we will need for cut-elimination to proceed
below that inference.

Proof. Replace anylzF H,, g axioms withAz PF H,, o 3 axioms anddzCIF H,, 3
axioms withAx2 PCIF H,, 3 axioms. Then all inferences remain valid. O

Lemma 9.21. Letd be an derivation ending in ah'Cut,, o g With rk(n € I<%) =r
such that the immediate subderivations are derivations andp is anr + 1 path
for the end-sequerttn € I<#,?, f),©. Then there is an* derivationd’ of (n €
I<A.? f),© andifh(d) < n thenh(d") < n.

This lemma replaces alCut with a PCut.
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Proof. Replace theF'Cut inference with aPCut inference and apply Lemma 9.20.
O

Lemma 9.22. Letd be an derivation

? u

(e,?,1),© (e,u, f),© ue Vi)
o Cut,

such thatrk(e) = r, the immediate sub-derivations @fare r* derivations, and
there exists am + 1 pathyp for the end-sequert of d. Then for each: € V*(¢) U {?}
there is an-* derivationd,, of (e, u,t),©. Also ifh(d) < nthen

h(dy,) < (w#n) x [[ul

=

where

w Ifu=?and:=N

uw IfueNorwuisanordinal
ul|<, =
t(e) Ifu=7and.(e)is an ordinal

This lemma constructs the new branch we will need when we elimingieta
inference.

Proof. By transfinite induction on.

Suppose we have already constructaem/ (I, v) for all v < u (orv <© w), or
for all v € V(¢ if u =?. Then for eachdz H, , appearing inl which conflicts with
(e, u, t) but not with®, we already have ar™ derivation of Prem’ (I, v), since when
u #?,v < u (orv <9 u). This satisfies the conditions of Lemma 9.19, so we apply
this to eachdz H, , to getPrem/ (i, u).

If AxH. , conflicts with©, replace it withAz PH. ,,.

Note that ife is anO-term andu ¢ Ord(©) thenh(Prem(I,u)) < n + u, and
h(Prem(I,u)) < n otherwise.

If h(Prem/(I,v)) < (thenh(Prem/(I,u)) < {#w#mn, so by IH:

h(Prem!(I,u)) < (w#n) x |Jull<, #w#n = (w#n) x(|lull<, +1)
0

Lemma 9.23. Let d be a derivation ending with &ut inferenceC of rank r such
that the immediate sub-derivationsdfre r*-derivations andg is anr + 1-path for
the end-sequer® of d. Then there is am™-derivationd’ of © and if 1(d) < n then
h(d") < (w#n) x(max{r,w} +1) + 1.

This lemma shows that it is possible to eliminate a sirgie.
Proof. By Lemma 9.22, for each premigg : (e, u, f), ©, there are-* derivationsd,,
of (e,u,t),©, so we apply &ut Fr to these to give the desired derivation.

The height bound follows sincg?||<, ., < max{r,w}: [[?||<y = w, while
?ll<a = @ L
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Lemma 9.24. Let d be a derivation ending with &utFr} inferenceC such that
the immediate sub-derivations @fare " -derivations andp is anr + 1-path for the
end-sequen® of d. Then there is am*-derivationd’ of © and if h(d) < n then
h(d) <n+w+n.

Proof. Let (X, H) be somedAzH.. ,, in d which conflicts with(e, ?,¢), but does not
conflict with©. Then(e,w) € H(H) for someu.

SetY = {(e,u,t) | (e,u) € C(H)} U O<,. Observe thall < r, Tf C O,
Tt=0+1,0<.<7,and® < O x . Then by Lemma 9.15, sinek, is anQ2 + 1+
derivation, we have a derivation df, * Y. Now we can apply Lemma 9.19 to give an
r*-derivation ofo©. O

Lemma 9.25 (Path Weakening).Suppose is ans-path for© and there is some < s
such thatCut(p), FCut(p) < r. Then there is am 4 1-pathp’ for © that is obtained
by changing the subscripts of some of t(h€ut,, , 3 s inferences irp.

In general, ars-path will not be anr-path forr # s; however, if theCut and
FCut inferences all have ranks at mastthe only problem is excess branches on
PCut inferences. These can be pruned to givem anl-path. We will need to do this
in order to make our lemmata general enough to handle cut-elimination past a limit
ordinal.

Proof. By induction on the length gf. Letp = (0o, ..., 0’, ©). If the inference from
© to ©’ is anything other than somRCut,, » 3,5 then the result follows from IH and
the fact thatC'ut(p), FFCut(p) <.

If the inference isPCut, o 3,5 then we prune it taPCut, 3, Wherey is the
least ordinal such that:(n € I7) > r. O

Lemma 9.26. Letd be an derivation ending in #Cut,, . g,s Withrk(n € I<%) > r,
such that the immediate subderivations atederivations, and there is anpathp with
s > r for the end-sequerith € 1<7,?, f), © such thatCut(p), FCut(p) < r. Then
there is anr* derivationd’ for (n € 1<°,?, f), © such that everAzPFH,, ,, , Of
AzPCIFH, ~ind satisfiesk(n € I7) < randifh(d) < nthenh(d") < n#w#n.

This lemma takes #Cwut which would be unacceptable in arf-derivation and
converts it to an inference which is allowed inian-derivation. The resulting inference
will be a PCutFr if r = rk(n € I7) for somey, and aPCut inference otherwise.
Note that this lemma allows for the possibility of jumping multiple ranks, when
r+ 1.

Proof. If » = rk(n € I7) for a suitabley then we apply Lemma 9.20 to the subderiva-
tions Prem(I,~) to giver™ derivationsPrem’(I,~) of (n € I7,T,t),© and prune
the inference taPCutFr,, o 5.~. If there is noy such that- = rk(n € I7) then we
just prune to aPCut, g, inference.

Ifany AzPF H, . ~ axioms withrk(n € I7) > r appear in this derivation, apply
Lemma 9.19 to them an#rem/(1,v), using Lemma 9.25 to get asi path fors >
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s’ > r. The height bound holds sinégPrem’(1,~)) < nif v is in the ordinals of the
end-sequent, and( Prem’(1,v)) < n + v otherwise.

If any AzPCIFH, , . axioms withrk(n € I7) > r appear in this derivation, we
do the same thing, but must ensure that the height bound holds. But, by the definition
of v, we must havey < 7, soh(Prem/(1,v)) < n. O

Lemma 9.27.If d is anr + 1 derivation of© and® has anr + 1 pathp then there is
anrT derivationd’ of © and if h(d) < nthen

h(d') < (max{r,w} + w)@#n#nt2
Recall that we may use Definition 2.2 to shorten this (i) < (o + w)1(n).

Proof. By induction ond.

If dis an axiom and < () then the result is trivial.

If dis anH-type axiom(X, H, A), r > 2, we already have(H " Xg;r + 1) <
7. Since this exists in a derivation @ for each substitutiort in this sequence,
rk(e(S)) > r. Therefore

o(H ™ Sg;r) = (2 +w)°H I < (Q 4 w)o #r#m2

Otherwise, letZ be the last inference af, let {Prem(I,u)} be the family of
immediate sub-derivations df and let®,, be the end-sequent &frem (I, ). Then by
I.H., for eachu there is an-* derivation Prem’ (I, u) of ©, with h(Prem’(I,u)) <
(max{r, w} + w)w#hEPrem(luw) #h(Prem(l,u)+2 | et i+ be the derivation 0® by
T from {Prem/(I,u)}.

If Z is aCut of rankr, we apply Lemma 9.23 td* to get an-* derivationd’ such
that

h(d") #h(d")) x (max{r,w}+1)+1
#(max{r,w} 4+ w)* # D # 1) 5« (max{r,w} +1)+ 1
X (max{r,w} + 1)) #(max{r,w} + w)W#h(d) #h(d)+1 4

maX{r, w} + w)w # h(d) # h(d)+2

TeE T

INIA I IA

(Note that we use standard ordinal exponentiation rather thaa/theperation
which corresponds to the iteration ef. This is justified sincenax{r,w} + wis a
limit, so the two operations agree in all cases we are interested in [B§235[j}.)

If Z is an appropriate®Cut inference not allowable in ant derivation, apply
Lemma 9.26, and if is an appropriaté’Cut inference not allowable in ar™ deriva-
tion, apply Lemma 9.21.

If Z7is aCutFr* inference, we deal with two cases. If there is samg? such that
Prem(1,u) is not anr*-derivation (note that we cannot apply IH to these premises,
because there is not a valid path) then trim this té7ainference. This can only
happen whemn < o(H™{(e,?} U ©g)), so the derivation remains valid. Otherwise,
apply Lemma 9.24.

Otherwised* is anr™ derivation of®.

We must check thalz(d) < r is met. Letx be an axiom appearing ibwith target
rank> r. If Y isanAxH, AxF H, or AxCIF H axiom then by Lemma 9.9(2)(b),
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(2f)>r C O, so it follows thate € dom(0). But®f < r by Lemma 9.9(1). The
target rank must be, sinced together withp gives anr + 1-derivation of().

If ¥ is an AxPH which conflicts with the premise df, but not the conclusion,
thenX is at a corrected?-step, sor = 3a + 1 for somea. Consider the element in
the premise of which X conflicts with. Ifitis (e(X), 7, ¢) thenZ is aCut., and since
a € Ord(e) and there is am + 1-path for®, n € I* € dom(©). But this conflicts
with .

If the element in the premise is € I thenZ must be aClF H inference, so the
H-rule applies t®, and therefore

(ex—|B[I<%,n,2]lg—,?) = (ex~|BI?,n,2]|g—,7) € ©

Finally, if the element in the premise (sz—| B[I <%, n, z] ls—?) thenZ is either
an Fr or aCutFr* inference. But if this is arf’r inference then we must have>
h(©) since (ex—|B[I<%, n, 7] 5= 7) € Xs. Butthene € A, soX conflicts with
(©,H,A). -

If 7 is aCutFr* inference then sincée,?,t) € %, it follows from Lemma 9.8
thano(H ~{(e,?)} UBOgs) < r, so this axiom was eliminated when we applied Lemma
9.24.

Supposes is either anAxc PCIF H,, g or AxPF H,, g axiom which conflicts with
a premise of but not the conclusion. Lef(X) = n € I“. Then it must conflict with
somen € Y with rk(n € Y) > rk(n € X). But thenZ must be aPCut inference (it
cannot be arf" F'r inference, since then the conflicting component would be replaced
by another conflicting component). But then we eliminaiagthen we applied Lemma
9.26. O

Lemma 9.28. If d is an« + r-derivation of© with » < w such thath(d) < nand®©
has ana + r-pathp in which all Cut and F'Cut inferences have rank « then there
is ana derivationd’ of © such thati(d') < (a + w)..(n).

Proof. Note that for alln such that < n < r, we have anx + n pathp,, by Lemma
9.25.

By induction onr. If » = 0 then we are done; otherwise, let= s + 1. Then
by Lemmata 9.27, there is art derivationd* of © with h(d*) < (a + w)1(n). By
Lemma 9.10, there is anderivation of®. O

Lemma9.29.Let\q < A, and defindp)g)™n to be the result of iterating Ao n-times
onn. Then(pXg)™(An + 1) < pA(n + 1).

Proof. Clearlypn + 1 < pA(n + 1), and therefore
(920)™ (A1 +1) < (pX0)" (PA(n + 1))
By straightforward induction on, (oXg)™(pA(n+ 1)) = A (n + 1). O

Lemma 9.30. If d is anr + w* derivation of®© with \ a limit, h(d) < 1, and© has
anr + w*-pathp such thatCut(p), FCut(p) < r, then there is am™* derivationd’ of
O witha(d') < A+ 1)(r +w* + 1+ 1).
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Proof. By main induction om\ and side induction oi(d). Assume that the lemma
holds for all limit ordinals< .
Consider the last inference df

1. A Cut or FCut, of rankg > r. If A = 0 then by Lemma 9.28, there isd
with h(d') < (A +1)(r + w* + 1+ 1). If A > 0 then there are and\, such
thato < r + nw?°. Let Prem(I,u) be the-subderivations of the premise of
I with h(Prem(I,u)) < n,; then by the side induction, we haye + nw’o)*
derivationsPrem/ (I, u) with h(Prem/(I,u)) < ¢(A+1)(r +w* +1n). Let the
derivationc be the result of applyin@'ut or FCut to the Prem/(I,w).

Applying the main IHn times gives an™ derivationd’ of © with
h(d') < (p(o + 1) (e(A+1)(r +w* +1) +1) < oA+ 1)(r+w* +1+1)
by Lemma 9.29.

2. A PCuty 5. Let Prem(I,v) be theA-subderivations of its premises. By
the side induction, eackrem(I,~) can be tranformed into ar™ derivation
Prem/(1,~). Letc be the result of applyin@C'ut to the Prem’(I,~).

Applying Lemma 9.26 gives an™ derivationd’ of ©. The height bound is
trivial.

3. Otherwise, using IH, replace each subderivafivam (1, «) with anr+ deriva-
tion Prem/(I,u), and the resulting derivation!, is anr* derivation and the
height bound is trivial.

O

Lemma 9.31 (Collapsing). Supposel is an{2-derivation© such thati(d) < 7. Then
for everyr > Dh(d), there is anr-derivationd’ of © with h(d") < Dn.

Proof. By induction ond. If d is an axiom, the result is trivial, since (f < 7, also
0 <« Dn. Otherwise, apply IH to each premise of the final inferefa# d. If I is
anH,FH, Fr, or FFr inference, the result follows directly from IH, since the only
premised’ has index), so0 < n andh(d’) < h(d) implies Dh(d') < Dn.

If I'isaCut, CutFr*, or FCut inference then we may applyto the result of
applying IH to each premise. Then each premise is indexed by an ordinak (2,
wherey <« 7, and thereforey < Dn, so by definition, if some premise has height
thenDa <« Dn, and we are done.

Now supposel is a PCut,, o . If (X,H,A)is someAxPCIFH, o, axiom
above this, we have = D(o(H ™ X; Q)+k(H ™X)). But since this is af2-derivation,
h((X,H,A)) < nimplieso(H™X%;Q) < n, and using Lemma 9.2y < Dn, so we
may trim this to aPCut,, . g inference with height< Dn for anyr > Dn. O

Lemma 9.32. If d is an(; +2r-derivation of() with » < w then there is @-derivation
d’ of §, and ifh(d) < Q¥ T+ thenh(d’) < Deq1.
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Proof. By Lemma 9.28 there is d@n-derivationd; of () with h(d;) < (Q+w)r(99f+92+1).
By Lemma 9.31, there isBA(d )-derivationd, of () with h(dy) < D(Q+w), (O T +1),
Finally, by Lemma 9.30 there isGderivationd’ of () with

h(d') < o(D(Q + w) (AT FEH) £ 1)(2D(Q + w), (AT TYH) +1) < Deq s
O

Lemma 9.33. In a 0-derivationd of §) all sequents are correct, the top sequent is an
AxS, and all other inferences are eithétr, H, FFr, FH,or CIFH.

Proof. Sinced is a0-derivation, there are nQut, CutF'r, FCut, PCut, or PCutFr
inferences, sd is linear. By bottom-up induction, all sequentsifiare correct and and
Of = 0 for every sequen® in d. Sinced is well-founded, there is a top-sequéht
which must be an axiom, and since it must be corrégt,= (), and sincedz(d) < 0
and the endsequent(isit must be andz.S. 0

Lemma 9.34. If there is a0-derivationd of () then theH -process terminates.

Proof. By Lemma 9.33, all inferences ihare F'r, H, FFr, FH, or CIFH. Since
the derivation is wellfounded, it corresponds to a finite sequénge. ., ©,,. Define
S; = {(e,u) € (©;)s | u #7}. SinceFr and FF'r inferences only add or remove
expressions with default values, we have a sequenesuabstitutions and if; # S;11
thenS;;1 = H(S;) since the inference must be onelf FH, or CIFH. Since©,,
is an instance ofiz S, it follows that theH -process terminates. O

Theorem 1. The H-process terminates.

Proof. By Lemma 9.7 there is anderivation off) for somer < Q+w. If r > Q, apply
Lemma 9.32, otherwise just apply Lemma 9.30. The result is a suppidedvation
of (), so by Lemma 9.34, th& -process terminates. O
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