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1 Introduction

In this note we focus on rigorous estimates for melting and solidification problems. These estimates
guarantee the convergence of solutions to nontrivial equilibrium patterns. We also present some in-
teresting numerical simulations which demonstrate the equilibrium structures and the approach of the
system to equilibrium. The novel feature of these calculations is the linking of the small parameter in
the system, 9§, to the grid spacing.

Our governing equations are an energy balance for the medium and an evolution equation for a
nonconservative “order parameter,” p. In dimensionless variables the energy equation takes the form

T, + (1—p*)"pe —®AT =0, (z,y) € (1.1)

while the evolution equation for p may be written as

abp, — N8 Ap = puT (1-p*)" +p(1-p%), (z,y) € Q. (1.2)

Here A is the two-dimensional Laplacian and 7T is the dimensionless temperature. The parameters
a,a, )\, and p are positive and order 1,0 < § << 1, and m is a nonnegative integer. The equations
with m = 0 are the most frequently studied, the case where m = 2 has been investigated by Sekerka
and coworkers [1-3] and Almgren and Almgren [4]. For definiteness we take m = 1 and restrict our
attention to the situation where (2 is the unit square

Q={(z,y) | —1/2<z<1/2and —1/2<y<1/2}. (1.3)

On 0f) we assume that the normal derivatives of 7" and p vanish. Initial conditions for 7" and p are
prescribed. Noting that at a local maximum (minimum) of p that Ap < 0(Ap > 0) it is easily checked
that if the initial data for p satisfies —1 < p(z,y,0") < 1, (z,y) € Q, then the same estimates obtain
for all future ¢ > 0. We shall exploit this fact in what follows.

The system (1.1) and (1.2) is customarily referred to as the diffuse-interface description of melting
and solidification. There is a corresponding sharp-interface description which is obtained formally from
(1.2) by letting ¢ tend to 0. The derivation of this description may be found in Caginalp [5-6].

In the sharp-interface description p only takes on the values —1 and +1. Solid regions are those
where p = —1 and liquid regions those where p = +1. In what follows
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I(t) ={(z,y) | 2 = 2(s,8), y=9(s,¢), 0< s < L} (1.4)

will be a curve separating liquid and solid regions and m(s,t) will be the unit normal to I' which points
into the liquid region. The unit tangent, ¢, to I' is chosen so that n(s,t) x t(s,t) = e3. K is the
curvature of I" at (&, 9)(s,t), and

c(s,t) © (34, 9,) (s, 1) (1.5)

is the speed at which I" moves in the direction m. A singular perturbation analysis of (1.1) and (1.2),
with m = 1, yields the following results:

1. T is continuous across [';

2. On I" the Gibbs-Thomson relation

ac+ MK = —2Y2\uTy, (1.6)
holds; and finally across I'

4 , (0T~ OT*

Ze = = = ). 1.

3¢ ¢ <8n on ) (L.7)

or+
In (1.6), Tn(s) = T (2(s,t), §(s,t)) is the local melt temperature while in (1.7), o is the normal
n

derivative of T" in the liquid region and is the normal derivative of 7" in the solid region. In the

n
sharp-interface description one solves the heat equation

T, — a®’AT =0 (1.8)

in the portion of 2 away from interfaces. At equilibrium, ¢ = 0 and (1.6) implies that T3, = 0(4). In
what follows, we shall restrict our attention to initial data T'(z,y,0") = 0(52).

The sharp-interface description becomes unduly complicated in the presence of multiple interfaces
since all must be tracked. Difficulties also arise when interfaces merge. For these, and a plethora
of other reasons, we focus on (1.1) and (1.2). Our principal results consist of a sequence of a-priori
inequalities satisfied by solutions of the system (1.1) and (1.2). These estimates guarantee regularity
of the solutions and that the solutions converge to equilibria as ¢ tends to infinity.

One point worthy of note is it is possible to obtain solutions of (1.1) and (1.2) which approximate
those generated by the sharp interface descriptions. These are produced by solving (1.1) and (1.2) with
initial data p°(z,y,0%) which approximate the jump discontinuous data of the sharp interface theory
but transition smoothly from —1 to +1 over an interval of width of 0(d) in the direction m. For such
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initial p’s (and initial temperature fields satisfying T'(z,y,0") = 0(6%)) we are guaranteed that terms

1
like & / / | v p°|?dzdy and - (1 — p?)® dady are bounded independently of § and ¢ and it is these
Q

J

Q
estimates which link the solutions of the two theories.
We also note there is an “intermediate” model where one replaces (1.1) (here with m = 1) with

/2 p1/2
Tyt =To) =t~ [ [ (p=1"/3) (0.0, t)dody (L9)
—1/2J-1/2
and solves
adp; — N262Ap = (uTp + p) (1 — p2) , (z,y) € Q (1.10)
and
dp
5 =0 » (my)€on (1.11)

The constant hg in (1.9) is given by

1/2  p1/2
ho = / / (T+p —p3/3) (z,y,0")dzdy. (1.12)
~172J-172
This “intermediate” model is justified by two facts. The first is that solutions of (1.1) and (1.2)
or o
satisfying the boundary conditions o 8_p =0, (z,y) € 00 satisfy the overall energy balance:
n n
172 p1/2
ho = / / (T +p— p3/3) (z,y,t)dzdy (1.13)
~172J-1/2

for all £ > 0 and the second is that the spatially varying portion of 7' decays to zero as t tends to
infinity (for details see the comments following (2.17)).

2 Entropies and A-Priori Estimates

Our goal in this section is a set of inequalities of the form

% —divg <G (2.1)
satisfied by solutions of
T,+(1-p)p—d®AT =0 , (z,y) €, (2.2)



adp, — X202 Ap = (T +p) (1 - p%), (z,y) € Q, (2.3)

and
oT Op
— == Q. .
Once again
Q={(z,y) | —1/2<z<1/2and —1/2<y<1/2)}. (2.5)
For (2.1) to be of value we require
0<mn, (z,y) € Qand g-n =0, (z,y) € 0N (2.6)

and that either G < 0 in Q or G is a-priori bounded in L;(©2 x (0,00)). Throughout we exploit the
pointwise estimates

—1<p(z,y,t) <1, (z,y) € NQandt >0 (2.7)

satisfied by solutions of (2.3).
Once again we record the overall energy balance satisfied by solutions of (2.2) — (2.4), namely the
identity:

/2 p1/2
/ / (T +p—p°/3) (z,y,t)dzdy = ho. (1.13)
~1/2J-1/2

This is obtained by integrating (2.2) over  and exploiting (2.4);.
Our first inequality is obtained by multiplying (2.2) by (%) and (2.3) by & and adding the resulting
identities. This yields (2.1) with

pr® N5 o (1—p¥)’
_ kLT Ao 2
M 25+2|p|+ TR (2.8)
pa’ 2
q, = TTVT-“ A°0p: V p, (2.9)
and
P Rva Ak
G = —ap? — % (2.10)



and (2.8)-(2.10) yield

T2 )\26 1—p?)?
—1/2J-1/2 46

/2 p1/2 e ,
- ap; + Tl v TP (z,y,t)dedy.
~1/2J-1/2

Once again we restrict our attention to initial data satisfying

T % 1-p?)°
/ / < + —| vl + % ) (z,y,0")dzdy = 0(1)
12J-1/2
independent of §.

If we next multiply (2.2) by aT; we obtain

aa? 0
5 8t| vVT?—addiv(T,vT)=—a (Tt2 + (1 —p2)ptTt)

and if we add this result to (2.1) with 7;, g, G; we obtain

0

% —div g, < Gs
where

pT? N 2, (1— p2)2 aa’ 2
B 427 T
pa’ 2 2
q; = TTVT'*‘)\ ppVptaalyy T

and

2

2 _
Gy = —a (PP + T2 + (1 - p*) Tipy) —%IVTI2 < 7“(1)?+Tf) —%IVTI2

and (2.12)-(2.14) imply that

1/2 p1/2 T2 A28 1— 2\ 2 2
/ (“ 200+ B 08 G 1) (0, tyday

1/2  p1/2 ja?
- / [ (G010 + 519 TP (0,0, daay.
—1/2J-1/2

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



If we now write

T(z,y,t) = To(t) + Tu(z,y,t) , (z,y) €Q (2.16)
where
1/2 1/2 /2 p1/2
To(t) :/ / T(z,y,t)dzdy and / / Ti(z,y,t)dzdy = 0, (2.17)
—1/2 J-1/2 1/2J-1/2

then (2.15) implies that if 7' and p are in H!(Q2) at ¢ = 0, then they are in H'(Q) for all ¢ > 0 and that

/2 p1/2

T satisfies hm / T?(z,y,t)dedy = 0. !
—1/2J-1/2

If we make a similar decomposition of p, that is write

p(xayat) = pO(t) +p1($,y, t) (218)
where
172 p1/2 172 p1/2
:/ / p(z,y,t)dzdy and / / pi(z,y,t)dedy = 0, (2.19)
~1/2 1/2 -1/2J-1/2
then (2.3) implies that
/2 p1/2
W[ p) - )y dody (220)
—1/2J-1/2
and
d*po 12 2 2
ad— = = / / (v (T (1 - p*) — 2pTp,) + (1 - 3p%) 1) (z,y,t)dedy (2.21)
dt “1/2d-1)2

1Recall, H*(Q) consists of functions f satisfying

1/2  p1/2 k Y 2
de
I1£11% f/ / a1+a2—] (ﬁ) (z,y)dzdy < oo
1/2J-1/2 59 \ a;>0 oy

and H*(Q x (0, s.)) consists of all functions f on Q x (0, s,) satisfying

Su 1/2  p1/2 k 5i 2
2def f
SRt A— dzdy | ds < .
s [ (//// <++ (G )(z,y,S) zy) 5 < oo

a; >0



and (2.20) and (2.21) along with the fact that (2.15) implies that p; and T; are Ly(€2 x (0,00)) combine
2

d d
to yield the result that C‘ZO and d—I;O are in Ly(0,00) and that
12 p1/2
hmad— = lim / / (uT +p)(1 — z,y,t)dzdy = 0. 2.22
t—o0 t—o0 1/2 1/2 ) )( ) ( )

With the estimate (2.15) we can glean weak information about the long-term behavior of solutions
of (2.2)-(2.4). In what follows we let

(T, ") (z,y,8) = (T,p)(z,y,t +3), (z,y) €Qand 0 < s <s,. (2.23)

The inequality (2.15), together with (2.7), implies that for any s, the functions 7% and p* are in
H'(Q x (0, s,)) with bounds which depend only on the H'(Q) norms of T'(z,y,0") and p(z,y,0") and
s, and that

Sx 1/2 1/2 9 Ma2
lim / / ( “+ (pt) ) +—|v Tt|2) (z,y,8)dzdy | ds = 0. (2.24)
t=oo Jo —1/2J-1/2 4

Moreover, (2.3) implies that A262Ap’ € Ly(Q2 x (0, s,)) with bounds which are independent of ¢. The
boundedness of T* and p* in H'(Q x (0, s,)) implies we can find an increasing sequence {t;}°; with
lim¢; = co and funcitons 7°° and p* in H(Q x (0, s.)) and Ap™ in Ly(Q x (0, s,)) with the following

1—00
properties:

(T°°, p™) is the strong Ls(02 x (0, s,)) limit of (7%, p%) while T, p, vT*,7p>, and Ap™ are the

s

weak Ly(Q x (0, s4)) limits of the appropriate derivatives of T% and p%. Additionally, (2.24) implies

TX =p*=0and 7T =01in Q x (0, s.) (2.25)

and thus that 7°° is a constant and p™ is independent of s. The energy balance (1.13) yields

= ho — / ” / 1/2 )2 /3) (x,y)dzdy (2.26)

while (2.7) implies that —1 < p>® < 1. (2.3) and (2.24) also imply that p™ satisifes the equilibrium
equation

N262Ap™ + (uT™ + p™) (1 — (p°°)2) =0, (z,y) € Q (2.27)
and
op>
= 0, (z,y) € 0 (2.28)



where T is given by (2.26) and finally (2.27) and (2.28) imply that p™ is a critical point of the
functional

“ 002 172 p1/2 [ 2 _ (n0)2) 2
| (*—‘ﬂv P+ M><ac,y>dscdy. (2.29)

1/2J-1/2

Additionally, the functional

1 (Tt)z A28 <1 N (pt)2>2 )
def K £)2 aa .
t * - T )
’ / /1/2 /1/2 26 + | P+ 45 + 5 |v T | (z,y, s)dzdyds

(2.30)

is decreasing in ¢ and has a limit 7., satisfying

N (p™) < Neo- (2.31)

To obtain stronger information we examine the time differentiated versions of (2.2)-(2.4), namely
the equations:

Tt + (1 — p*)pu — 2pp; — a®AT, — 0, (z,y) € €, (2.32)

adpy — N8*Apy = (WT, + p)(1 — p*) — 2p(uT + p)ps, (z,y) € €, (2.33)
0T, 8pt

—_— = — = Q, 2. 4

We shall also exploit
Lemma 1. Suppose f € H'(2). Then, for every € > 0

12 p1/2 (1+e) V2 12 12 p1/2 2
/ fH(z,y)dedy < 4 —/ f(z,y)dzdy + € / | v f1*(z,y)dzdy| .

1/2J-1/2 € 1/2J-1/2 —1/2J-1/2

We multiply (2.33) by p; and make use of (2.7) to obtain

pI?
2

1
D)) ot (23

1
+<+2

000 N div (v p) < N8| 7 pif? + (



T 2
We note that (2.15) implies the term % + (1 + g) p? isin L;(2 X (0,00)) and thus we confine our

attention to 2u|T|p?. Schwarz’s inequality and Lemma 1 imply
12 p1/2 1/2 1/2 1/2 12 p1/2 1/2
2p / / (IT|p?) (2,9, t)dady < 2p / z,y,t)dzdy / pi(z,y, t)dzdy
—1/2J-1/2 —1/2J-1/2 —1/2J-1/2
12 p1/2 1/2 Lbe\ (12 172 12 p1/2
<2u / / T?(x,y,t)dzdy (—) / / pf(w,y,t)dwdy%/ / |V pe* (2, y,t)dedy | .
—1/2J-1/2 € —1/2J-1/2 —1/2J-1/2

Moreover, (2.11) guarantees that

1/2 1/2 1/2 28 1/2 1/2 1/2 2.36
/ / T?(x,y,t)dzdy < —/ / (z,y,0")dzdy 22:373
—1/2J-1/2 HJ_1)2 1/2

and this guarantees that we may choose € so that

1/2 1/2 V2 42 p1)2 /\252 12 p1/2
2:“’6 / / Ty, t)d$dy / | th ay) = / / | th ,y,t)d$dy
~1/2J-1/2 ~1/2J-1/2 1/2J-1/2

(2.38)
With e so chosen, (2.35) implies that
of d Yz e 252 [l/2 172 p1/2
5 % / pi(z,y,t) < —5 flﬁzwpt (z,y,t)dzdy + / / T (z,y,t)dzdy
—1/2J-1/2 - —1/2J-1/2
i 12 p1/2 1/2 1 12 p1/2
+ |1+ 5 + 23/2 ,ué/ m(z,y,0")dzdy <1 + —> / / pi(z,y,t)dzdy
—1/2J-1/2 € —1/2J-1/2
(2.39)

and (2.39) then implies that if

1
pi(z,y,07) = ~: (A26*Ap + (uT + p)(1 — p*)) (z,y,0™)

is in Ly(f2), then p; and thus Ap are in Ly(2) independently of ¢ and 7p; € Ly(Q2 x (0, 00)).

The preceding estimate points up the advantage of the “intermediate” model discussed briefly in
(1.9)-(1.12) over the full system. For the intermediate model the contankerous term 2u|T'|p? in (2.35)
would have been replaced by 2u|Ty|p? and this latter term is easily controlled since we know by our
previous estimates that



o5 12 (172 172
|T0| S _/ / 771(%% dwdy
HJ—1/2J-1/2

and thus we would not have to invoke Lemma 1 and choose € = 0 ((53/ 2). This latter choice, pumped

1/2  p1/2

up the coefficient of / / p?(z,y,t)dzdy in (2.39) to be 0 (1/6%?2) which is far from optimal. If we
1/2J-1/2

chose to add some multiple of (2.39) to (2.15) and wanted the right hand side of the resulting inequality

to be negative definite our multiplier would have to be 0(4%/2), an unacceptably small number. For the

“Intermediate” model we could use an 0(1) multiplier (for details see (2.61)-(2.63)).

On the other hand, if we multiply (2.32) by (T} + (1 — p*)p;)/a® we find that

1 0 a? 0
= T+ (1= pP)p)” = S (AT)?
=div (+ 1 -p)p) V) — | VL — 1 —p*) VT - VP + 200 V T, - VP
and (2.40) implies that
(AT)*(z,y,t)dzdy <
2 dt/1/2/1/2 A 2
1 iz 12 12 p1/2
——/ / | v Tl (2, y,t dmdy+/ / |V pil*(2,y,t)dzdy (2.41)
2/ 12J-1)2 172J-1/2
12 p1/2
+4/ / p;| v pl*(z,y, t)dxdy.
“1/2J 172

The first term on the right hand side of (2.41) is in controllable by virtue of the minus sign and the
second term is L;(0, 00) by virtue of (2.39). Thus we can confine our attention to the third term. To
show this term is L;(0,00) we note that

12 p1/2 12 p1/2 V2 1 a2 p1)2 1/2
/ / p;Ivpl (2, y, t)dedy< / p;(z,y,t)dzdy / / |Vpl*(z,y, t)dzdy | .
—1/2J-1/2 —1/2J-1/2 —1/2J-1/2
(2.42)

Lemma 1 then guarantees that

12 p1/2 2 LB 12 1/2
( / / pf(x,y,t)dwdy) < % ( / / (0} + | v o)) (x,y,t)dwdy) (2.43)
—1/2J-1/2 —1/2J-1/2

and that
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12 p1/2 1/2 12 p1/2 1/2 12 p1/2 1/2
/ / | v pl*(z,y, t)dedy | < / / pa(z,y,t)dedy | + / / py(z,y,t)dzdy
“172J-1/2 ~1/2J 172 ~1/2J 172

(1+\/3) /2 p1/2
<=

(P2 + P2 + P2, + P2, + 202,) (z,y, t)dzdy
—1/2J-1/2

/2 p1/2
< (12—\/3)/ / (P2 + P2 + 4(Ap)?) (2, y, t)dzdy

1/2J-1/2
(2.44)

and (2.43) and (2.44) together with (2.41) guarantee that if T'(z,y,0") and p(z,y,0") are in H?(Q)
then T'(z,y,t) is in H%(Q) for all future times and additionally that 77} € La(Q2 X (0, 00)).

The estimates (2.39) and (2.44) also guarantee that if T'(x,y,0") and p(z,y,0") are in H?(Q2), then
the resulting orbit is compact in H*({2) and that the w-limit set is nonempty in H'(Q2). The fact that
VT; € Ly(2 x (0,00)) further guarantees that the function 77 defined in (2.16) and (2.17) converges
to zero strongly in H'().

Our final estimates pertain to solutions generated by initial data T'(z,y,0") € H?(Q2) and
p(x,y,0") € H3(Q2). These are obtained by multiplying (2.33) by p;;. The resulting inequality is

)\252 a 2 2 22 :
9 a| W el + adpy, — A*6% div (py V pe) =

1 (T(1 — p?) — 2pTp;) pet + (1 — 3p?)pspus (2.45)

ad 242 8
< ?ptzt t 5 (T7 +4T?p7) + apf :

Our preceding calculations imply that if T'(z,y,0") € H*(Q) and p(z,y,0") € H3(Q), then

202 2,2 8 o

— (Iy +4T —

b ( t T pt)+a6pt

is in L;(2 x (0,00)) and thus (2.45) implies that yp; € L2(Q2) independently of ¢ and that py €
Ly(€2 % (0,00)). The former conclusion, together with (2.3), implies that p € H3(Q) with bounds which

are independent of ¢ while the latter conclusion implies that

lim adp, = lim (A6*Ap+ (uT +p)(1 —p*)) =0
and that this limit is obtained strongly in L (2).

We conclude this section with some observations about the “intermediate” model introduced in
(1.9)-(1.12). Once again in that model one replaces (2.3) with

adp; — X262 Ap = (uTy + p)(1 — p?), (z,y) € (2.46)

11



and

o 0 , (z,y) €00 (2.47)

where

/2 p1/2 /2 p1/2
To(t) = ho—/ / (p—1*/3) (z,y,t)dxdy and ho = / / (T +p—p*/3) (2,y,0")dady.
1/2 1/2 —-1/2J-1/2
(2.48)

Solutions of this latter system also satisfy the pointwise estimates —1 < p(z,y,t) < 1 and a set of
“entropy” inequalities similar to those satisfied by solutions of the full system. The most basic of these
is

on
(,;7; div g, = &4 (2.49)
where
Ty & (1-p»)’
=t el (250)
@, = \p 7 p (2.51)
and
G, = —ap?. (2.52)

Moreover, (2.49) - (2.52) imply that

T2 A% 1-p?)°
/ / (M +—| v o>+ ( 45p) )(w,y,t)dwdy
—1/2J-1/2

(2.53)
1/2 p1/2
/ pi(z,y,t)dzdy.
—172J-1/2
The time differentiated identities
0Py — )\262Apt =u (To(l — p2) — 2pT0pt) +(1- 3p2)pt, (2.54)

12



) /2 p1/2
Ty — / / (1= P)pi(a, y, t)dedy, (2.55)

—1/2J-1/2
and
Op;
— =0 on. 2.56

also yields:

b 0

2 (‘)t — )\252 div (pt vpt) =

_)‘252| th|2 +p (To(l - p2) - 2PT0Pt> p+ (1 — 3p2)pt2

L 12 p1/2 (2.57)
< =NP vl + / / i (2, y, t)dzdy
2 \Ji2 a2

1/2
12 p1/2
+23/2M1/251/2 ( / /1/2771 z,y,0 d:cdy) pf +(1+ g)P?
—1/2 J—

and

A6? 0| v puf®

9 ot — \%6% div (Pee V Pt) =

—adpy, + p (To(l — p%) — 2pTope)pu + (1 — 3p?)pepue

o 1 12 p1/2 12 p1/2
< -5 Pt > 2u2/ / z,y,t)dedy + | 4+ 166 / i (z,y,0")dzdy | p
~1/2 —1/2 —1/2J-1/2

(2.58)
The former follows from multiplying (2.54) by p; and the latter from multiplying (2.54) by py.
Moreover, if we let
/2 p1/2
Bo=|1+p+ 23/2u1/251/2/ / i (x,y,0")dzdy | (2.59)
~1/2J-1/2
/2 1/2
B3 =4+ 24>+ 1616 / (z,y,0")dzdy, (2.60)
—1/2 —1/2

13



o’ 5 pIy N6 (1-p?)? 25

s @0 s ply 2, (1=p»?
2262 ) 2262
Gy = Gy + 20 — A%
g =q; + 45, DtV Pt P/ p+ 45, Pt/ D,

402

L /2 p1/2
Gy = G1+— 1+ + 23/2 1/251/2/ / f(z,y,0")dzdy | p

1/2J-1/2

/\262

pi(z,y,t)dzdy — v pel?
852/1/2/1/2 ! 2 | iE

263 o MI§ | A%

+ | vl +

2/\253

fls = T2 + 35 | vV el = 5 T3 | v

a?A263 9 ar?§? a?\?
15, P NV Pe = A°0p V p + % Dt/ Pt +

‘33:&2+

and

403

| P

53

Dt \/ Dy,

1/2  p1/2
Gs =G+ — |4+ 16u5/ / i (z,y,0")dzdy | p}
453 “172J-1)2

a8
pi(z,y,t)dzd
253 /1/2/1/2 ! Y 86, 85, P

we obtain the inequalities

and these imply

1/2  p1/2 2 2 2 22 2
ply  Aolvpl  (A—p7) 0% ,
/ ( 5 t 35,7 (z,y,t)dzdy
1/2  p1/2 al\2s? (12 ru2
< —— / p;(z,y, t)dedy — 1 / | 7 (2,9, t)dzdy,
—1/2J-1/2 B2 J_12J-1/2
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(2.62)
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(2.65)

(2.66)

(2.67)

(2.68)



and

46 802 80s

_aN¥?
< __/ / pi(z,y,t) / / | v pe|%(z,y, t)dzdy (2.69)
1/2J-1/2 40: 1/2J-1/2

Q282 vz iz
2
—— Pz, y,t)dzdy.
433 /_1/2 /_1/2 *

We leave it to the reader to supply the precise conclusions derivable from the inequalities (2.53),
(2.63), and (2.69). The key point of these inequalities is that the parameter § appears optimally.

T2 /\25 2 (1—p2)? 5 2)\243
/ / (M vl A=p) L 20,2 |vpt|2> (z,y,t)dzdy
1/2J-1/2 2

3 Computational Experiments

In this section we present some numerical simulations of the system (2.2) - (2.4). We let N be an
integer and set

dz = dy = 1/N. (3.1)

Our approximate solutions will be piecewise constant on the cells

1 (i—1) 1 1 (j-1) 1
Qs =14 (z,y)|-= —~+—and — - 4+ 3.2
y {(xy)‘ sty <e<-—5tyan st <¥<-3ty (3.2)

where 1 < 4,5 < N and thus the cell averages (T} ;, p; ;) may also be thought of as the point values at
the cell centers

1 21—1 1 2j—1
(:35) = (‘5* N 2 on ) | (33)
We impose the boundary conditions
oT 0Op
D ) o0 3.4

by insisting that the extended grid functions satisfy
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(Tok, pok) = (Trp, Prx) )
(Tn+1,8:PN+1,6) = (TN k> PNE) 5
(Tr,0, Pr,0) = (Th,15Pr1) 5 ’

and

(Te,n41, Pre,N+1) = (ThN, PRN)

for 1 <k <N.
For any function u defined on the grid and satisfying (3.5) we let

2
ANt = N° (uis1,j + tim1j + Uigar + ij-1 — 4ui;)

be the discrete laplacian applied to u. For functions v and v satisfying (3.5) we define

N
[, 0] = > i jvi /N

ij=1
and note that
N N-1 N N-1
2
—u, Anu] = D 0N (uigen —wig)? + Y Y (i — uig)”
i=1 j=1 j=11i=1

Such grid functions also satisfy the discrete version of Lemma 1, namely the inequality

(1+¢)

w2 u?] = [ut, 1] < 4 < [u, 4] — €[u, ANU]) 2

for every € > 0.
Finally, we replace (2.2) - (2.4) by the system

Tij+ (1—p};)pi; — a*ANTi; =0

and
abpi; — N6 Anpi; = (WTi; + piy) (1 — pi;)
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(3.5)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)



where T; ; and p; ; satisfy the discrete boundary conditions (3.5) and the symbol - denotes differentiation
with respect to ¢t. Solutions of (3.10) and (3.11) obey the pointwise estimate that if —1 < p; ;(07) <
1, 1 <4,57 <N, then -1 <p,;;(t) <1, 1 <4, <N for all ¢t > 0. This system also satisfies estimates
which are the exact analogue of those obtained in section (2). Corresponding to (2.8) we have the
identity

[T +p—p*/3,1](t) = ho (3.12)

while the analogues of (2.11) and (2.15) are the inequalities

a
dt

<,U27(;2 L a ;6172) ) ,1] - A_E‘;[p, ANp]> (t) = —alps, p](t) + “T“z[T, ANT(2), (3.13)

and

% ({;;T; L a ; ;,,2)2, 1} — %25 [p, Anp] — % T, ANT]) (t) e

o' pa?
< =5 (Ipope] + [T, T]) (1) + =5 [T, ANT] ().
We spare the reader the detailed analogues of (2.39), (2.41), and (2.45). Suffice it to say if we
/2 p1/2 172 p1/2
replace terms like / f(z,y,t)dzdy by [f,1] (t) and terms like / | VI |? (z,y,t)dzdy
—1/2J-1/2 —1/2J-1/2
by — [f, Anf] (2), then the resulting inequalities go through intact.

When doing simulations with the discrete system (3.10) and (3.11) we link the small parameter §
to the grid dz = dy = 1/N; specifically we set

§=1/N (3.15)

and restrict our attention to initial data satisfying

2 2 2 2
N “g L 4p L (0%) - ;‘—N [p, Anp] (07) — % [T, AyT] (0%) =0(1).  (3.16)
Interesting data satisfying (3.16) may be achieved in a variety of ways. Below we outline one such
construction. We let T" be a simple closed curve of finite arclength L(I') which is wholly contained in
2, S; be all cells €); ; which are cut by I', S; be all cells €2; ; which are interior to the region surrounded
by I', and Sg be those cells €2; ; which are in Q2 and exterior to I'. For definiteness we choose

]., if Qi,j € Sg
piyj(0+) = p;,j € [_1) 1]) if Qi,j € Sc (317)
-1, if Q€ S;
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and

7.5 (07) = ho — [(p—5°/3) (0%) 1] = 0 (1/N'7). (3.18)

Such data models the situation where initially water surrounds ice. With such data it is easily checked
that N [T2(0%),1] = 0(1), while N [(1 —p?)?,1] and — [p, Ayp] are 0(L(T')) and thus the functional
defined in (3.16) is 0(1) independently of N. For such data we note that 6% [Ayp, Anp] = 53 [Anp, Anp]
is also 0(L(T")) independently of N. The last functional enters in the discrete analogue of (2.68).

The simulations we present were all run with the following parameters:

(a’ A761/7/’11) = (17 17 1’ 1)' (3'19)
We chose N = 200
dx =dy =6 =1/200 (3.20)
and
dt = dx/10. (3.21)
With these parameters
def 2 _
ml = dt/(dz)* = 10 (3.22)
and
def Odt 1
2= 3.23
T dr)? T 10 (8.23)

and thus we were compelled to use an implicit integration scheme for (3.10). Our choice was ADI
working with the fixed tri-diagonal matrix whose non-zero entries are

1+ml ifi=1and=200

A1) = { 1+2ml if 2 <i< 199 (3:24)

and

A(iyi+1) = A+ 1,i) = —m1, 1< < 199. (3.25)

We used a first order explicit Euler scheme on (3.11).
Our first simulation was run with the following choice of initial data:

18



( {101 +4 <5 <200 and 1<i<99}or

1 if {302 —1<7<200 and 102<:< 200} or
’ {1<;<100—-1 and 1<i7<99}or
{1<j<-101+4 and 102 <3 < 200},

{100+¢=j and 1<i<100} or
{301—i=j  and 101 << 200} or
{101—i=;j and 1<i< 100} or
{100 +i=7 and 101 < i< 200},

Pi,i(07) = 4 (3.26)

0, if

{102—-i<j<99+i and 2<i< 100} or

i 9944 <j<300—i and 101<i< 199},

\

This data satisfies [p, 1] = [p?, 1] = 0. We chose hq = .05 and T; ;(07) = .05, 1 < 4,5 < 200.

The initially superheated square block of ice converged to a circular block centered at (0,0) with a
radius consistent with the § = 01 asymptotics. Specifically, if we grant that the “equilibrium” curve
separating the ice from the water is a circle of radius R, then the “Gibbs-Thomson” relation (1.6), with
our choice of parameters, implies that

.005
while (3.12) implies that
Ty = .05 —[p—p*/3,1]. (3.28)

Noting that p; ; ~ —1 inside of the circle and p; ; ~ +1 outside yields

2
[p—p*/3,1] = 3 (1-27R?) (3.29)
and (3.27)-(3.29) imply that R satisfies
dr o, .005 2
?R + 2R — 3 .05. (3.30)
(3.30) has one positive solution close to zero and a second larger solution R = .3808 which is the

approximate equilibrium radius we obtain in our simulation. This radius, when substituted into the
Gibbs-Thomson relation (3.27) yields a melt temperature consistent with what we observe. The results
of this simulation are shown in Figure 1.

Our final simulation starts with 16 regularly spaced circular blocks of ice surrounded by water.
Specifically
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—1, if /(i —40m)%+ (j —40n)2 < 15
pii(0F) = and 1 <m,n <4 (3.31)
1, otherwise.
For this data
[(p — p*/3)(07), 1] = .2885. (3.32)

We again chose hg to be .05 and at t = 0 took the uniform temperature field

T,5(0%) = ho — [(p — p°/3)(0*), 1] = —.2385. (3.33)

The solutions using this initial data converged to the same equilibrium as before but the approach was
far more interesting. The solutions at times ¢ = .05, .17, .24, .4, .6, .7, 2,3.3, and 12.5 are shown in
Figures 2-10.

We also ran both sets of data with the “intermediate” model and obtained virtually identical results.

Explanation of Graphics

In Figures 1-10 the upper left frame is a contour plot of p and p is 1 in a neighbourhood of the
boundaries z = £1/2 and y = +1/2 and the upper right hand frame is a contour plot of 7. In Figure
1 the lower left plot shows p,T and p — p®/3 + T along the lines z = 0, y = 0, and the 45° diagonal
through the origin. These plots overlay one another because of the circular symmetry of the final state.
In Figure 1 the bottom right plot again displays the same information. In Figures 2-10 the bottom left
plot shows p, T, and p — p3/3 + T along the 45° diagonal through the origin and the bottom right plot
shows the same quantities on the line z = 0.
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time pmax pmin = 8 1 -1 T and Tav = -0.0091861

0.4 0.4 @
0.2 0.2 @ @
TR @
-04 -0.2 0 02 04 -04 -0.2 0 02 04
[p,T,H] along rays and (T+p—(p3)/3)av =0.05 [p,T,H] on diagonal and Entropy = 2.2342
1 \ [ 1
0.5 \ \ 0.5
\ !
0 | | 0
-0.5 -0.5
-1 -1
-0.5 0 0.5 -0.5 0 0.5
Figure 1:
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time pmax pmin =0.05 1 -1 T and Tav= -0.14605

ISR

0.4

0.2¢ 0.2¢
0 0
-0.2 -0.2

L

-04 -0.2 0 0.2 0.4

x =0 plots and Entropy = 10.0007

05— ’_'] F '_} — o5+—m T
0 0f 1
L —f ——T T -
-0.5 -0.5
ulnRniw
-1 : - -1
-0.5 0 05 -0.5 0 0.5
Figure 2:
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time pmax pmin =0.17 1 -1

0.4

0.2¢

diag plots and (T+p—(p3)!3)av = 0.05

P s I T I A O

T and Tav= -0.04784

ne

x =0 plots and Entropy = 8.4053

-1

1_\/ VARV

-0.5



time pmax pmin =0.24 1 -1

0.4

0.2¢

x =0 plots and Entropy = 6.952

1 Vv
— | I — 1 [
05} E 1 05} |
Or —4—T 17 T+ 0 - L
-0.5 -05
— L— —— | —4 1
-1 -1
-0.5 0 05 -0.5 0 0.5
Figure 4:
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0.4

0.2¢

05¢

time pmax pmin =0.4

—

[

0.5

Figure 5:
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0.4

0.2

T and Tav= 0.0083737

P\

x =0 plots and Entropy = 5.7421

]
05¢
0 =
-0.5
- -
-1 .
-0.5 0 0.5



time pmax pmin =0.6 1 -1 T and Tav= 0.014527

0.4 1 0.4 \>

¢

0.2¢ 0.2¢
0 0
-0.2 -0.2

-04 -0.2 0 0.2 0.4 -04 -0.2 0 0.2 0.4

x =0 plots and Entropy = 4.8034

1 ||—| Il {_———_‘

057 1 05¢
0 B B 0
-05 -05

JN [ Y (R A - |
-1 . -1
-0.5 0 0.5 -0.5 0 0.5
Figure 6:
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time pmax pmin =0.7 1 -1 T and Tav= 0.013876

0.4} ] 04}
- o O
0.2} 0.2} -
o G
ol 0 O 0
a O
-0.2 -0.2 O
b »
-0.4 -0.4 &
-04 -02 0 0.2 04 -04 -02 0 0.2 04

diag plots and (T+p—(p3)!3)av = 0.05 x =0 plots and Entropy = 4.0204

—
05} ] 05}
0 0
-0.5 -0.5
- ! | _
-1 . -1
-0.5 0 0.5 -0.5 0 0.5

Figure 7:
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0.4

0.2¢

05¢

time pmax pmin =2 1 -1

2

diag plots and (T+p—(p3)!3)av = 0.05

Figure 8:
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T and Tav= -0.00087008

x =0 plots and Entropy = 3.0116

05¢

-1 .
-0.5 0 0.5




time pmax pmin =3.3 1 -1

0.4

0.2¢

05¢

diag plots and (T+p—(p3)!3)av = 0.05

I

H

Figure 9:
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T and Tav= 0.00041457

0.4

0.2¢

x =0 plots and Entropy = 2.4185

05¢

-1
-0.5



time pmax pmin =12.5 1 -1

0.4

0.2¢

05¢

diag plots and (T+p—(p3)!3)av = 0.05

Figure 10:
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T and Tav= -0.0091957

0.4

0.2¢

x =0 plots and Entropy = 2.234

05¢

-1 .
-0.5 0 0.5
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