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Abstract

In this note, we show that modulo a null set, hyperfiniteness, finite
asymptotic separation index (asi), asi 1, and existence of Borel toast
are all equivalent. This is of interest as several of the directions of this
equivalence are open problems in the Borel context.

1 Introduction

Let X be a set. By an extended metric on X, we mean a metric which is
allowed to take the value ∞. If ρ is such a metric, the pair (X, ρ) is called an
extended metric space. If X is a standard Borel space, such a ρ is called Borel
if it is Borel as a function X2 → R ∪ {∞}, and in this case (X, ρ) is called a
Borel extended metric space.

We call an extended metric locally finite if every finite radius ball with
respect to it is finite.

For (X, ρ) an extended metric space, we write Eρ to denote the equivalence
relation {(x, y) ∈ X2 | ρ(x, y) < ∞}. It is Borel if (X, ρ) is. To avoid
trivialities in what follows, we will always assume that each Eρ class is infinite.

This note concerns several notions of what might be called “finitization”
in the Borel context. The first is the following well studied definition: A
countable Borel equivalence relation E on a space X is called hyperfinite if it
can be written as the increasing union of a countable sequence of finite Borel
equivalence relations on X.

The second was defined recently in [1]. First, for (X, ρ) an extended metric
space and r > 0, we define the r-jump graph Gr

ρ as the graph on X for which
two distinct points x, y ∈ X are adjacent iff ρ(x, y) ≤ r. It is Borel if (X, ρ)
is.
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We then say asi(X, ρ) ≤ s, for s ∈ ω, if for each r > 0, X can be partitioned
into sets U0, . . . , Us such that for each i, the connected components of Gr

ρ � Ui
all have finite (ρ−) diameter. Note that this is equivalent to those components
being finite when ρ is locally finite. This defines asi(X, ρ), called the asymptotic
separation index of (X, ρ), as an element in ω ∪ {∞}.

Replacing “finite diameter” with “uniformly bounded diameter” in the
above definition, one recovers a notion due to Gromov [6] called asymptotic
dimension. Asymptotic separation index as we have defined it, though, is un-
interesting: It is always 1, as can be witnessed by alternating annulli around
a base point in each Eρ-class.

Both asymptotic dimension and separation index, though, were studied
in [1] in the Borel context (where they are both interesting). When (X, ρ)
is Borel, we define the Borel asymptotic dimension separation index, denoted
asiB(X, ρ), as we did asi(X, ρ), but where the Ui’s are required to be Borel.

The condition that asiB be finite has proven to have much utility in Borel
combinatorics. For example, in [1] it is shown that in this case, asymptotic
dimension and Borel asymptotic dimension are equal, and an upper bound for
Borel chromatic numbers of graphs with finite asiB (for their path metrics) is
obtained. This bound is better for lower asiB. In [11], Certain Borel Schreier
graphs are shown to admit Borel degree-plus-one edge colorings if asiB = 1.
The last two sentences may help motivate the following question from [1]:

Problem 1. Is there a locally finite Borel extended metric space (X, ρ) for
which 1 < asiB(X, ρ) <∞?

In [1], a negative answer is found under the additional assumption that
(X, ρ) has finite asymptotic dimension

This next question, though not mentioned in [1], also seems to be open.

Problem 2. Let (X, ρ) be a locally finite Borel extended metric space for which
asiB(X, ρ) = 1. Is Eρ hyperfinite? What if only asiB(X, ρ) <∞?

Again, in [1], a positive answer is found under the additional assumption
that (X, ρ) has finite asymptotic dimension.

The third notion has its origins in [3] and [4], though it is typically phrased
in the less general language of graphs. Our formalization is based on that from
[5]. For (X, ρ) an extended metric space and r > 0, let us say an r-toast is
a collection C ⊂ [Eρ]

<ω (this means a collection of finite subsets of X, each
contained in a single Eρ-class) satisfying:

• For all (x, y) ∈ Eρ, there is some C ∈ C with x, y ∈ C.
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• For distinct C,D ∈ C, either ρ(C,D) > r, B(C, r) ⊂ D, or B(D, r) ⊂ C.

Here and throughout, B(A, r) denotes the set of points with distance at most
r from A. If (X, ρ) is Borel, we call this toast Borel if its Borel as a subset of
[X]<ω.

This note is concerned with these notions in the measurable setting. Let
(X,µ) be a standard Borel probability space. We say a countable Borel equiv-
alence relation E on X is µ-hyperfinite if (X ′, E � X ′) is hyperfinite for some
Borel E-invariant µ-conull set X ′. Similarly, if ρ is a Borel extended metric
on X, we say asiµ(X, ρ) ≤ s if there is some X ′ as above (with E = Eρ) for
which asiB(X ′, ρ � X ′) ≤ s, and we say (X, ρ) admits a µ-measurable r-toast
if there is some such X ′ for which (X ′, ρ � X ′) admits a Borel r-toast.

In Section 3 of this note, we will show the following:

Lemma 1. Let (X, ρ) be a locally finite Borel extended metric space and µ a
Borel probability measure on X. If asiµ(X, ρ) <∞, then Eρ is µ-hyperfinite.

This answers Problem 2 in the measurable setting. Perhaps more interest-
ingly, we combine this lemma with the work from [3] (which we will rephrase
in our setting in Section 2) to answer Problem 1 as well, plus a little more:

Theorem 1. Let (X, ρ) be a locally finite Borel extended metric space and µ
a Borel probability measure on X. The following are equivalent.

1. Eρ is µ-hyperfinite

2. For all r > 0, (X, ρ) admits a µ-measurable r-toast.

3. asiµ(X, ρ) = 1

4. asiµ(X, ρ) <∞

It is interesting to ask how well this equivalence holds up in the Borel
context. Our proof for 2 =⇒ 3 will done in the Borel context, and of course
3 =⇒ 4 holds. In [2], the authors construct hyperfinite acyclic bounded
degree Borel graphs with aribtrarily large Borel chromatic numbers, which
can be seen to rule out 1 =⇒ 4 (and therefore 1 =⇒ 2, 3 as well). 4 =⇒ 3
and 3, 4 =⇒ 1 were already mentioned as open problems. Toast is essentially
defined as a witness to hyperfiniteness with nice metric properties, and so we
have 2 =⇒ 1 (in fact, the existence of r-toast for any r implies 1). Finally
3 =⇒ 2 seems to be open, so we mention it here:

Problem 3. Let (X, ρ) be a locally finite Borel extended metric space for which
asiB(X, ρ) = 1. Does (X, ρ) admit a Borel r-toast for every r > 0?
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Again, it follows from results in [1] that this has a positive answer under
the additional assumption that (X, ρ) has finite asymptotic dimension.

It is worth mentioning that all of these notions hold automatically modulo
a Eρ-invariant meager set, as shown in [3][7].

Finally, Theorem 1 provides additional motivation for studying Problem
2: A major open question in the field of countable Borel equivalence relations
is whether such a relation which is µ-hyperfinite for each µ is hyperfinite. By
our theorem, a negative answer to Problem 2 would imply a negative answer
tot his question.

2 1 =⇒ 2 =⇒ 3

As was suggested in the introduction, the proof of these directions is essen-
tially from [3]. Our reasons for reproducing it here are to phrase it in the
language of locally finite metrics, and to isolate the construction of toast as a
key intermediate step.

Throughout this section, (X, ρ) will be some locally finite Borel extended
metric space, and µ will be a Borel probability measure on X. We’ll start with
1 =⇒ 2:

Proof. Fix r. By removing a Eρ-invariant null set, we may assume Eρ is
hyperfinite, say as witnessed by the sequence En of finite Borel equivalence
relations. Since ρ is locally finite, for all x and n, there is some m > n
such that B([x]En , r) ⊂ [x]Em . Let An be the set of x for which this holds for
m = n+1. By passing to a subsequence, we may then assume µ(An) > 1−2−n

for each n. Let X ′ be the set of x ∈ X in all but finitely many An’s. By the
Borel-Cantelli lemma, µ(X ′) = 1. If x ∈ X ′ and y ∈ [x]Eρ , find n large enough
so that x ∈ Am for all m ≥ n and (x, y) ∈ En. Then since Am is Em-invariant
for each m, y ∈ Am for all m ≥ n, so y ∈ X ′. That is, X ′ is Eρ-invariant.

Thus, we may assume X = X ′. For each n, let Cn ⊂ [Eρ]
<ω be the set of

nonempty sets of the form An ∩ [x]En+1 for x ∈ X. Let C =
⋃
n Cn. This is

clearly Borel, and we claim it is an r-toast. For the first condition, suppose
(x, y) ∈ Eρ. Find n large enough so that (x, y) ∈ En and, using the hypothesis
X = X ′, x, y ∈ An. Then x, y ∈ An ∩ [x]En+1 ∈ Cn.

Now suppose C ∈ Cn, D ∈ Cm, and C 6= D. WLOG assume n ≤ m.
Observe that B(C, r) is contained a single En+1-class while D is Em-invariant.
Thus, if n < m, B(C, r) is either contained in D or disjoint from it, giving our
second condition in the definition of toast. If n = m, C and D are contained in
different En+1-classes, and so B(C, r) and B(D, r) are disjoint, and the second
condition is again satisfied.
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As promised in the introduction, the proof of 2 =⇒ 3 does not require
throwing away a null set:

Proposition 1. Suppose (X, ρ) admits a Borel r-toast for every r > 0. Then
asiB(X, ρ) = 1.

Proof. Fix r. Let C be a Borel 2r-toast. Let U ⊂ X be the set of x such that
for some C ∈ C, x ∈ C, but B(x, r) 6⊂ C. This is Borel. We claim U and
X \ U witness asiB = 1 for the distance r.

By König’s lemma, it suffices to show that Gr
ρ does not admit any infinite

injective paths contained in either U or X \ U . Suppose first that (xn)n∈ω is
an infinite injective path in Gr

ρ � (X \ U). Pick C ∈ C with x0 ∈ C. For each
n, if xn ∈ C, then since B(xn, r) ⊂ C, we conclude xn+1 ∈ C. Thus each xn is
in C by induction, contradicting the finiteness of C.

Now suppose (xn)n∈ω is an infinite injective path in Gr
ρ � U . Let C ∈ C

such that x0 ∈ C. As before, it suffices to show that if xn ∈ C, so is xn+1.
If not, there must be some D 6= C with xn+1 ∈ D but B(xn+1, r) 6⊂ D. But
since B(D, r) contains xn ∈ C, and xn+1 witnesses D 6⊂ C, it must be the
case that B(C, 2r) ⊂ D, but xn+1 ∈ B(C, r), so B(xn+1, r) ⊂ B(C, 2r) ⊂ D, a
contradiction.

3 4 =⇒ 1

This section contains our result that 4 =⇒ 1. Again, throughout, (X, ρ)
is a locally finite Borel extended metric space, and µ is a Borel probability
measure on X.

We start with the following: Call a set A ⊂ X an r-barrier, for r > 0, if
Gr
ρ � (X \ A) has only finite connected components.

Lemma 2. Eρ is µ-hyperfinite if and only if for all r > 0 and ε > 0, There is
a Borel r-barrier A with µ(A) < ε.

This equivalence is basically well known. See for example Lemma 3.1 in
[9] for a very similar statement in the context of a countable group action
(whose proof our proof below is mostly a rephrasing of), or Proposition 9.12
in [10] and [8] for similar statements in the more familiar context of a Borel
graph, but where the universal quantifier on r is traded for an assumption of
invariance or quasi-invariance for µ. Only the reverse direction will be used.
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Proof. Suppose Eρ is µ-hyperfinite, as witnessed by a conull Eρ-invariant X ′

and a sequence of finite Borel equivalence relations (En)n∈ω on X ′. Fix r.
For each n, let An be the set of x ∈ X for which B(x, r) 6⊂ [x]En . Each An
is an r-barrier for (X ′, ρ′ � X ′) since if (xn)n∈ω is an infinite injective path
in Gr

ρ � (X ′ \ An), it can clearly never leave [x0]En , a contradiction. Thus
An ∪ (X \X ′) is a Borel r-barrier (of the same measure as An).

The An’s are decreasing since the En’s are increasing, and they decrease to ∅
since ρ is locally finite, and so for all x there is some n for whichB(x, r) ⊂ [x]En .
Thus the An’s have measures approaching 0.

Conversely, suppose for each n > 0, we can find a Borel r = 2n+ 1-barrier
An with µ(An) < 2−n. For each n, define a finite Borel equivalence relation
Fn as follows: For each connected component C of Gr

ρ � (X \ An), B(C, n)
will be a class of Fn. Note that this is valid as ρ is locally finite, and distinct
such classes have distance between them greater than 2n + 1. Points not in
B(X \ An, n) will be Fn-related only to themselves. Let Em =

⋂
n≥m Fn, so

that the Em’s give an increasing sequence of finite Borel equivalence relations.
Call their union E.

Obviously E ⊂ Eρ. By the Borel-cantelli lemma, the set X ′ of x which
belong to only finitely many An’s is conull. Suppose x ∈ X ′ and ρ(x, y) <
m ∈ ω. We may choose m large enough so that x 6∈ An for all n ≥ m. Then
(x, y) ∈ Fn for all such n, so (x, y) ∈ E. Thus [X ′]Eρ is a Borel conull Eρ-
invariant set on which E = Eρ, so since E is hyperfinite by construction we
are done.

Now we can show 4 =⇒ 1 (Also referred to as Lemma 1 in the introduc-
tion):

Proof. We will show the equivalent condition from Lemma 2. As in the forward
direction of the lemma, we can get a Borel barrier with small measure by
finding a Borel barrier with small measure for the restriction of ρ to some
conull invariant set, then adding in the complement of that invariant set.
Thus we may assume that asiB(X, ρ) is some s ∈ ω.

Fix r > 0 and N ∈ ω large. For j ∈ N , let Ij = [rj, r(j + 1)), and let
IN = [rN,∞], so that the Ij’s partition the extended non-negative reals. Let

U0, . . . , Us be Borel sets covering X such that each G
(2N+1)r
ρ � Ui has only

finite connected components. For each i, define a Borel di : X → N + 1 by
letting di(x) be the unique j so that ρ(x, Ui) ∈ Ij. For each t ∈ N s+1, let
At = {x ∈ X | ∃i di(x) = t(i)}, and Bt = {x ∈ X | ∀i di(x) = t(i)}.

We first claim each At is an r-barrier. Fix t. Suppose (xn)n∈ω is an infinite
injective path in Gr

ρ. The Ui’s cover X, so fix an i with x0 ∈ Ui, so di(x0) = 0.
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We claim that for some n, we must have ρ(xn, Ui) > rN . Suppose not. Then
for each n, find yn ∈ Ui with ρ(xn, yn) ≤ rN . Then for each n, ρ(yn, yn+1) ≤
rN + r + rN = (2N + 1)r, since ρ(xn, xn+1) ≤ r. Thus the yn’s are all in

the same G
(2N+1)r
ρ � Ui component, so there are only finitely many, but this

contradicts local finiteness since {xn} ⊂ B({yn}, rN).
Now, di(xn) = N , but also since the distance between adjacent xm’s is at

most r, ρ(xm, Ui) can change by at most r when m increments by 1, and so
di(xm) can change by at most 1. Thus there must be some 0 ≤ m < n for
which di(xm) = t(i), and so xm ∈ At as desired.

Now it suffices to show some At has small measure. We will do this by
showing their average measure is small. For t, t′ ∈ N s+1, write t ∼ t′ if
t(i) = t′(i) for some i. Then At =

⊔
t′∼tBt′ for each t. Let c = N s+1 − (N −

1)s+1 = O(N s), so that c is the number of t′’s related to each t. Now∑
t

µ(At) =
∑
t

∑
t′∼t

µ(Bt′) =
∑
t′

cµ(Bt′) ≤ c,

where the last inequality follows from the disjointness of the Bt′ ’s. Therefore
the average of µ(At) over all t is at most c/N s+1 = O(N−1). Since N was
arbitrarily large, we are done.
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