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Abstract

We construct Borel graphs which settle several questions in descriptive
graph combinatorics. These include “Can the Baire measurable chro-
matic number of a locally finite Borel graph exceed the usual chromatic
number by more than one?” and “Can marked groups with isomor-
phic Cayley graphs have Borel chromatic numbers for their shift graphs
which differ by more than one?” We also provide a new bound for Borel
chromatic numbers of graphs whose connected components all have two
ends.

1 Introduction

A graph on a set X is a symmetric irreflexive relation G ⊂ X × X. In this
situation, the elements of X are called the vertices of G. Vertices x and y are
called adjacent if (x, y) ∈ G, and in this case the pair {x, y} is called an edge
of G. The degree of a vertex is the number of other vertices adjacent to it. G
is called locally finite if every vertex has finite degree, is said to have bounded
degree d if every vertex has degree at most d, and is called d-regular if every
vertex has degree exactly d, where d is some natural number. A connected
component of G is an equivalence class of the equivalence relation generated
by G.

A (proper) coloring of G is a function, say, c : X → Y to some set Y such
that if x and y are adjacent, c(x) 6= c(y). In this situation, the elements of Y
are called colors. The sets c−1({y}) for y ∈ Y are called color sets. If |Y | = k,
c is called a k-coloring. The chromatic number of G, denoted χ(G), is the
least k such that G admits a k-coloring.
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Descriptive graph combinatorics studies these notions in the descriptive
setting: Let X now be a Polish space. A graph G on X is called Borel if G is
Borel in the product space X ×X. A coloring c : X → Y is called Borel if Y
is also a Polish space and c is a Borel function. The Borel chromatic number
of G, denoted χB(G), is the least k such that G admits a Borel k-coloring.
Similarly, c is called Baire measurable if it is a Baire measurable function, and
the Baire measurable chromatic number of G, denoted χBM(G), is the least k
such that G admits a Baire measurable k-coloring. For a survey covering this
exciting emerging field, see [4].

For a Borel graph G, we of course have χ(G) ≤ χBM(G) ≤ χB(G), but
it is natural to ask just how large χBM(G) and χB(G) can be compared to
χ(G). There are many known examples [4] where χ(G) = 2 while χBM(G)
and χB(G) are infinite. However, for graphs of bounded degree d, Kechris,
Solecki, and Todorcevic [5] proved χB(G) ≤ d + 1. We therefore restrict our
attention to bounded degree graphs for the remainder of the paper.

In [6], Marks proved that this bound is sharp, even for acyclic G (so in
particular, χ(G) = 2). Thus, χB(G) can be arbitrarily large compared to
χ(G). On the other hand, for Baire measurable chromatic numbers, Conley
and Miller proved the following [2] (Theorem B):

Theorem 1. Let G be a locally finite Borel graph such that χ(G) < ℵ0. Then
χBM(G) ≤ 2χ(G)− 1.

The question “How close to this bound can we get?” still remains. Pre-
viously, not much seems to have been known regarding this: In fact, Kechris
and Marks pose the following problem [4] (Problem 4.7):

Problem 1. Is there a bounded degree Borel graph G for which χBM(G) >
χ(G) + 1?

The graphs constructed by Marks in [6] are not hyperfinite (see Section 4
for a definition). Furthermore, an analogue of Theorem 1 holds for measure
chromatic numbers if the extra assumption of hyperfiniteness is added (see
Theorem 5). This lead to the question of whether the 2χ(G) − 1 bound held
for Borel chromatic numbers in the hyperfinite setting ([4], Question 5.19). In
[1], though, Marks’ techniques were adapted to the hyperfinite setting, giving
a negative answer to this question.

In this paper, however, we note that a certain strengthening of the hyper-
finiteness assumption is enough to get this bound. Using techniques similar
to those in [2] and some results from [7], we prove in Section 2 the following
analogue of Theorem 1:
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Theorem 2. Let G be a locally finite Borel graph such that χ(G) < ℵ0, and
such that every connected component of G has two ends. Then χB(G) ≤
2χ(G)− 1.

See section 2 for a definition of two endedness. Also note that this condition
is indeed a strengthening of hyperfiniteness [7].

Similarly little seems to have been known regarding the sharpness of this
bound. In fact, one of the goals of the project which led to this paper was to
resolve the following:

Problem 2. Is there a bounded degree Borel graph G whose connected com-
ponents all have two ends for which χB(G) > χ(G) + 1?

In this paper, we answer Problems 1 and 2 as strongly as possible, proving
the bounds in Theorems 1 and 2 are sharp:

Theorem 3. Let k ≥ 3. There is a Borel 3(k − 1)2-regular graph, say, Gk,
such that all the connected components of Gk have two ends, χ(Gk) = k, and
χBM(Gk) = χB(Gk) = 2k − 1.

The graphs Gk will be arise in the following way: A marked group (in this
paper) is a pair (Γ, S), where Γ is a (typically infinite) finitely generated group
and S is a finite symmetric set of generators for it not containing the identity.
When there is no confusion, we will sometimes refer to a marked group by its
underlying group. Consider the group action Γ y 2Γ given by

(g · x)(h) = x(g−1h) (1)

for g, h ∈ Γ and x ∈ 2Γ. This is called the left shift action. When 2Γ is given
the product topology, this action is clearly continuous. Let

F (2Γ) = {x ∈ 2Γ | ∀g ∈ Γ− {id}, g · x 6= x }. (2)

This is a Gδ subspace of 2Γ, hence a Polish space. We can therefore form
a Borel graph on F (2Γ) by putting an edge between x and y exactly when
s · x = y for some s ∈ S. This is called the shift graph of (Γ, S). We will
always refer to the shift graph by its underlying set, F (2Γ). The graphs Gk

will all have the form F (2Γk) for some marked group Γk.
Let Cay(Γ) be the Cayley graph of (Γ, S). This is the graph on Γ given

by putting an edge between group elements g and h exactly when sg = h for
some s ∈ S. Clearly, as a (discrete) graph, F (2Γ) is isomorphic to a disjoint
union of continuum many (if Γ is infinite) copies of 2Γ. It is therefore natural
to expect to get some information on the descriptive combinatorics of F (2Γ)
from the graph Cay(Γ). However, in [8] (Theorem 1), Weilacher showed that
Cay(Γ) is not enough to determine χB(F (2Γ)) or χBM(F (2Γ)):
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Theorem 4. Let k ≥ 3. There are marked groups Γ and ∆ with isomorphic
Cayley graphs for which χB(F (2∆)) = χBM(F (2∆)) = k but χB(F (2Γ)) =
χBM(F (2Γ)) = k + 1.

This led to the natural question:

Problem 3. Are there marked groups Γ and ∆ with isomorphic Cayley graphs
for which χB(F (2Γ)) − χB(F (2∆)) > 1? What about for Baire measurable
chromatic numbers?

We answer this as well by producing for each k a marked group ∆k whose
Cayley graph is isomorphic to that of Γk, but for which χB(F (2∆k)) = χBM(F (2∆k)) =
k + 1. Thus we get

Corollary 1. Let k be a natural number. There are marked groups Γ and
∆ with isomorphic Cayley graphs but for which χB(F (2Γ)) − χB(F (2∆)) =
χBM(F (2Γ))− χBM(F (2∆)) = k.

In Section 3 we define the marked groups ∆k and Γk and compute their
various chromatic numbers. In Section 4 we note that everything said in
this paper about Baire measurable chromatic numbers can also be said about
measure chromatic numbers in the hyperfinite setting.

2 Graphs Whose Connected Components All

Have Two Ends

In this section we prove Theorem 2. The proof uses little more than some
results of Miller from [7], but nevertheless the result seems to be new, and
may be of interest to some.

Let G be a graph on a set X. If A ⊂ X, we denote by G � A the graph
G ∩ (A × A) on A. We call G connected if it has one connected component,
and A connected if G � A is connected.

A path between vertices x and y is a finite sequence x = x0, . . . , xn = y
such that (xi, xi+1) ∈ G for all i. In this situation n is called the length of the
path. Note that a graph is connected if and only if there is a path between
any two of its vertices. The path distance between x and y is the smallest n
such that there is a path of length n between x and y, or∞ if there is no path
between x and y. The path distance between two sets of vertices A and B is
the smallest path distance between any pair of vertices x ∈ A and y ∈ B. A
graph is called acyclic if it admits no paths as above with x0 = xn, but no
other repeats among the xi’s.
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Now assume G is connected and locally finite. We say a subset F ⊂ X
divides G into n parts if G � (X − F ) has n infinite connected components.
We say G has n ends if there is a finite set F dividing G into n parts, but no
such F dividing G into m parts for any m > n. Note that if G has n ends,
we can finite a finite set F dividing it into n parts such that F is furthermore
connected. It should be noted this definition is different in general from the
one used in [7], but is equivalent in the locally finite case.

Now let G be a localy finite Borel graph on a space X whose connected
components all have two ends. Denote by [G]<∞ the standard Borel space of
finite connected subsets of X. Let Φ ⊂ [G]<∞ be the set of sets which divide
their connected component into two parts. Miller (Lemma 5.3) proves that
there is a maximal Borel set Ψ′ ⊂ Φ whose members are pairwise disjoint. An
easy modification of their proof shows that we can instead get a maximal Borel
set Ψ ⊂ Φ such that the path distance between any two distinct members of
Ψ is at least 4. Fix such a Ψ.

Let T be the set of pairs (S, T ) with S, T ∈ Ψ such that S 6= T and there
is a path from S to T which avoids all other points of

⋃
Ψ. Miller proves

that T is an acyclic graph on Ψ, that S and T are connected in this graph if
and only if they are subsets of the same connected component of G, and that
every element of Ψ is T -adjacent to at most two other elements (Lemma 5.5).
(Strictly speaking, they prove these things for Ψ′, but the proofs clearly still
apply to Ψ.)

Lemma 1. Every S ∈ Ψ is T -adjacent to exactly two other elements.

Proof. Suppose some S ∈ Ψ has fewer than two T -neighbors. Let C be the
connected component of S. Let C− and C+ be the two infinite connected
components of G � (C − S). WLOG, C+ must contain no sets in Ψ. This
follows from the fact that any T ∈ Ψ with T ⊂ C must be T -connected to S.

Let N be the set of points in C+ whose path distance from S is exactly 4.
N is finite since G is locally finite. We claim N divides C into 2 parts: By
König’s Lemma, we can find an injective sequence {xn | n ∈ ω} of points in
C+ such that (xn, xn+1) ∈ G for all n. Since G is locally finite, there must
be some M for which for all n ≥ M , the path distance between xn and S is
at least 5. Then the sequence {xn | n ≥ M} does not pass through N , so it
is contained in an infinite connected component of G � (C −N). Also, C− is
contained in an infinite connected component of G � (C − N), so it suffices
to show there is no path from C− to xM avoiding N . This is clear, though,
as any path from C− to xM must pass through S, say at the point y, since
xM ∈ C+. Then since the path distance from S to xM is greater than 4, there

5



must be some point in C+ along our path from y to xM whose path distance
from S is exactly 4.

Let D be the infinite connected component of G � (C −N) not containing
S. Let N ′ ⊂ N be the set of elements of N adjacent to a point in D. Then N ′

still divides C into 2 parts. Furthermore, we can find a finite subset A ⊂ D
such that N ′ ∪A is connected. Then N ′ ∪A ∈ Φ, and furthermore since every
point in D has path distance at least 5 from S, the path distance between S
and N ′ ∪ A is 4. However, since we assumed C+ contains no sets in Ψ, this
contradicts the maximality of Ψ.

Lemma 2. Every connected component of G � (X −
⋃

Ψ) is finite.

Proof. Let x ∈ (X−
⋃

Ψ). Let C be the connected component of x in the graph
G, and let D be the connected component of x in the graph G � (C −

⋃
Ψ).

We want to show D is finite.
By maximality there is some element of Ψ contained in C. Then, by

Lemma 1 along with the fact that T is acyclic, we can label the elements of
Ψ contained in C as {Sn | n ∈ Z}, where the indices are chosen such that
(Sn, Sm) ∈ T if and only if |n − m| = 1. By definition of Φ, for each n the
graph G � (C − Sn) has two infinite connected components, call them Cn,−
and Cn,+. By definition of T , the sets Sm for m > n must all lie in the same
connected component of G � (C−Sn), and likewise for the sets Sm for m < n.
Therefore, by relabelling if necessary, we can assume Sm ⊂ Cn,+ for all m > n
and Sm ⊂ Cn,− for all m < n.

Now, suppose D is infinite. Then, for each n, either D ⊂ Cn,+ or D ⊂ Cn,−.
Consider integers n, points y ∈ Sn, and paths from x to y. Choose n, y, and
such a path such that this path is of minimal length among all such choices.
Then this path cannot pass through any sets Sm for m 6= n. WLOG assume
D ⊂ Cn,+. We claim D ⊂ Cn+1,−. If not D ⊂ Cn+1,+, but then D and Sn are
in different connected components of G � (C − Sn+1), so there can be no path
from x to Sn avoiding Sn+1, a contradiction. Therefore D ⊂ Cn,+ ∩Cn+1,−, so
this intersection is infinite. This implies, however, that the finite set Sn∪Sn+1

divides G � C into at least three parts, a contradiction.

We can now prove Theorem 2:

Proof. For each S ∈ Ψ, let S∗ = S ∪ {x ∈ X | ∃y ∈ S (x, y) ∈ G}. Since
G is locally finite and each S is finite, each S∗ is finite. Let B∗ =

⋃
S∈Ψ S

∗.
B∗ is Borel since Ψ is Borel. Since distinct S’s had path distances of at
least 4 between them, distinct S∗’s have path distances of at least 2 between
them. Thus, every connected component of G � B∗ is a subset of some S∗.

6



In particular these connected components are all finite. Therefore, by the
Lusin-Novikov Uniformization Theorem (See [3], Lemma 18.12), there is a
Borel χ(G)-coloring, say c∗1 : B∗ → {1, 2, . . . , χ(G)} of G � B∗. Let B =
B∗ − c∗−1

1 ({χ(G)}) and c1 = c∗1 � B. Then B is Borel and c1 is a Borel
(χ(G)− 1)-coloring of G � B.

We claim that the connected components of G � (X − B) are also all
finite. Suppose to the contrary that D ⊂ (X − B) is some infinite connected
component. Let C be the connected component of G containing D. We first
claim that D must contain infinitely many points not in B∗. If not, then D
contains infinitely points from (B∗ − B), and only finitely many not in B∗.
By construction, though, B∗ −B is independent, so since D is connected, for
every y ∈ (B∗−B)∩D, there must be some x ∈ D−B∗ with (x, y) ∈ G. Thus
there is some x ∈ D−B∗ connected to infinitely many such y’s, contradicting
local finiteness. Therefore, by Lemma 2, there are x, y ∈ D − B∗ such that
x and y are in different connected components of G � (C −

⋃
Ψ). Let x =

x0, x1, . . . , xn = y be a path from x to y consisting of points in D. Then there
must be some S ∈ Ψ and some 0 < i < n such that xi ∈ S. Then xi−1, xi, and
xi+1 are all in S∗. Since there are some edges between them, they can’t all be
assigned the color χ(G) by c∗1, but this means at least one of them is in B, a
contradiction.

Therefore, again by the Lusin-Novikov Uniformization Theorem, there is
a Borel χ(G), coloring, say, c2 : (X − B) → {χ(G), . . . , 2χ(G) − 1}, of G �
(X−B). Since c1 and c2 use disjoint sets of colors, c1∪c2 is a Borel (2χ(G)−1)-
coloring of G.

3 The Construction

Fix k ≥ 3. In this section, we define the marked groups Γk and ∆k promised
in Section 1.

We start with a finite marked group: Let Zk denote the cyclic group of
order k, which we will identify with the integers modulo k. Consider the
group Zk × Zk with generating set S = {(a, b) | 0 < a, b < n}. Let H be the
Cayley graph of this finite marked group. We’ll think of the vertices of H as
sitting on a k by k grid, with the horizontal axis corresponding to the first
coordinate and the vertical to the second. Accordingly, by a row of H we mean
a set of the form {(a, b) | a ∈ Zk} for some fixed b ∈ Zk, and by a column of
H we mean a set of the form {(a, b) | b ∈ Zk} for some fixed a ∈ Zk.

An independent subset of a graph is a pairwise-non-adjacent set of vertices.
Thus, a coloring is just a partition of the set of vertices into independent sets.
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Figure 1: A drawing of the graph H for k = 3. The edges shown are exactly
those meeting (0, 2). The three types of independent sets are shown in circles
and labeled: cardinality one (a), vertical (b), and horizontal (c).

Note that any independent subset of H of size greater than one must be either
completely contained in some row, or completely contained in some column,
(and not both). Call such sets horizontal and vertical, respectively (See Figure
1).

Lemma 3. Let c : Zk × Zk → {1, 2, . . . , 2k − 2} be a (2k − 2)-coloring of H.
Exactly one of the following holds:

• Every row contains a horizontal color set.

• Every column contains a vertical color set.

Proof. Since there are k rows and k columns, for both to hold simultaneously
would require 2k colors. Therefore at most one holds.

Suppose neither holds. Then there is some column C and some row R
such that C does not contain a horizontal color set and R does not contain a
vertical color set. Then every point in R ∪ C must have a different color, but
|R ∪ C| = 2k − 1. Therefore at least one holds.

We call c as in the lemma a horizontal coloring if the first condition holds,
and a vertical coloring if the second holds.

We can now define the marked group ∆k: It will be the group (Zk×Zk)×Z,
with generating set S×{−1, 0, 1}. Let G be the Cayley graph of ∆k. It’s easy
to see χ(G) = k: A k-coloring is given by sending the element ((a, b), n) to a
for all n ∈ Z and 0 ≤ a, b < k. Also note that G has two ends, as desired.
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Figure 2: A visual explanation of the proof of Lemma 4 in the case k = 3.
The two squares enclose neighboring (Zk × Zk)-orbits. The cirlces represent
color sets within each orbit. Most edges are omitted, but some are included
to show any horizontal color set from the first orbit must admit an edge to
every vertical color set from the second orbit. Others are included to show
that horizontal color sets in different rows of a single orbit always have edges
between them. The same is true for vertical color sets in different columns.

For each n ∈ Z, the restriction of G to the (Zk×Zk)-orbit (Zk×Zk)×{n}
can be identified with H in the obvious way. Thus, if c : (Zk × Zk) × Z →
{1, 2, . . . , 2k − 2} is a (2k − 2)-coloring of G, the restriction of c to the orbit
(Zk×Zk)×{n} is, for each n, either a horizontal coloring or a vertical coloring.
In the k-coloring defined in the previous paragraph, all these restrictions were
horizontal. The next lemma says that this was no accident:

Lemma 4. Let c : (Zk × Zk) × Z → {1, 2, . . . , 2k − 2} be a (2k − 2)-coloring
of G. Exactly one of the following holds:

• The restriction of c to every (Zk × Zk)-orbit is horizontal.

• The restriction of c to every (Zk × Zk)-orbit is vertical.

Proof. By symmetry, it suffices to show that if the restriction of c to (Zk ×
Zk) × {n} is horizontal, then so is the restriction to (Zk × Zk) × {n + 1}.
Suppose instead that it is vertical. For 1 ≤ i ≤ k, let Ri be a horizontal color
set contained in the i-th row of (Zk ×Zk)×{n}, and let Ci be a vertical color
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set contained in the i-th column of (Zk × Zk) × {n + 1}. Observe that for
every 1 ≤ i, j ≤ k, there is at least one edge between Ri and Cj (See Figure
2). Furthermore, if i 6= j, there is at least one edge between Ri and Rj, as well
as between Ci and Cj (Again see Figure 2). Therefore each Ri and Cj must
have a distinct color, but this requires 2k colors.

This leads us to a natural definition of the marked group Γk: Let ϕ ∈
Aut(Zk×Zk) be the coordinate swapping map: ϕ(a, b) = (b, a). Γk will be the
semi-direct product (Zk×Zk)o17→ϕZ, again with generating set S×{−1, 0, 1}.
Observe that the following gives an isomorphism between the Cayley graphs
of Γk and ∆k:

((a, b), n) 7→ ((a, b), n) for n even, ((a, b), n) 7→ ((b, a), n) for n odd, (3)

where a, b ∈ Zk and n ∈ Z. Thus we still have χ(F (2Γk)) = χ(Cay(Γk)) = k,
and this Cayley graph still has two ends as desired. We now compute the
Borel and Baire measurable chromatic numbers of F (2Γk), proving Theorem
3:

Proposition 1. χB(F (2Γk)) = χBM(F (2Γk)) = 2k − 1.

Proof. Theorem 2 gives us the upper bound χB(F (2Γk)) ≤ 2k−1, so it remains
to show there is no Baire measurable (2k − 2)-coloring of F (2Γk).

Suppose first that c : (Zk × Zk) o17→ϕ Z→ {1, 2, . . . , 2k − 2} is a (2k − 2)-
coloring of Cay(Γk). Note that the isomorphism (3) sends (Zk × Zk)-orbits
to (Zk × Zk)-orbits, but preserves the notions of “horizontal” and “vertical”
for those with even Z-coordinate and flips those notions for those with odd
Z-coordinate. Thus Lemma 4 has the following consequence for Γk: If for
some n the restriction of c to (Zk × Zk) × {n} is horizontal, the restiction to
(Zk × Zk)× {n+ 1} must be vertical, and vice versa.

Now suppose c : F (2Γk)→ {1, 2, . . . , 2k−2} is a Baire measurable (2k−2)-
coloring. Define the map d : F (2Γk)→ {1, 2} by sending a point x to 1 if the
restriction of c to the (Zk × Zk)-orbit of x is horizontal, and 2 if it is vertical.
It is clear that d is Baire measurable since c was. By the previous paragraph,
d(x) 6= d(((0, 0), 1) · x) for all x.

Now consider Z with generators {±1}, and let g : F (2Z)→ F (2Γk) be the
map given by

g(y)((a, b), n) =

{
y(n) if (a, b) = (0, 0)

0 else.
(4)

Then g is continuous, and g(1 · y) = ((0, 0), 1) · g(y) for all y. Therefore d ◦ g
is a Baire measurable 2-coloring of the shift graph F (2Z). It was established
in [5], though, that χBM(F (2Z)) = 3.

10



Finally, we compute the Borel and Baire measurable chromatic numbers of
F (2∆k), which gives Corollary 1 as promised:

Proposition 2. χB(F (2∆k)) = χBM(F (2∆k)) = k + 1.

Proof. We first show there is no Baire measurable k-coloring c : F (2∆k) →
{1, 2, . . . , k}. Suppose we had such a coloring. Observe that all k-colorings
of the Cayley graph of ∆k look essentially like the one defined before Lemma
4: Up to a relabeling of the colors, they either assign the color a to ((a, b), n)
for all b and n, or the color b to ((a, b), n) for all a and n. In particular, the
elements g and ((0, 0), 1) · g always have the same color.

Therefore, if we let Ci = c−1({i}) for each i, each Ci is sent to itself by the
action of the element ((0, 0), 1). Since the order of this element is infinite, a
standard argument (see Theorem 8.46 in [3]) shows each Ci is either meager
or comeager. Since the Ci’s partition F (2∆k), at least one, say, Ci0 , must be
meager. The sets ((a, b), 0) · Ci0 for a, b ∈ Zk cover F (2∆k), though, so this is
a contradiction.

It remains to construct a Borel (k+ 1)-coloring c : F (2∆k)→ {1, 2, . . . , k+
1}.

A subset of x is called r-discrete, for r a natural number, if the path
distance between any two points in A is greater than r. It is an easy corollary
of Proposition 4.2 in [5] that if G is a Borel graph of bounded degree, then X
contains a Borel maximal r-discrete subset for every r.

Applying this, let A ⊂ F (2∆k) be a Borel maximal 3k-discrete set. Then
every (Zk × Zk)-orbit contains at most one element of A. For every x ∈ A,
color the (Zk × Zk)-orbit of x by setting c(((a, b), 0) · x) = a for 1 ≤ a, b ≤ k.

We now color the (Zk × Zk)-orbits between those meeting A. Let x ∈ A
with (Zk × Zk)-orbit E, and let N be the smallest positive number such that
((0, 0), N) · E contains a point of A. Call that point y. Also note N > 3k by
definition of A. There are elements 1 ≤ a0, b0 ≤ k such that y = ((a0, b0), N)·x.
Also let En denote the orbit ((0, 0), n)·E for n ∈ Z, so for example y ∈ A∩EN .
We need to extend c by coloring all the En’s for 0 < n < N . We’ll proceed
one n at a time:

Given a (Zk×Zk)-orbit E ′ colored already by c and a positive integer n, let
cn(E ′) denote the coloring on ((0, 0), n)·E ′ given by cn(E ′)(z) = c(((0, 0),−n)·
z). We could try to extend our coloring c, by coloring E1 with c1(E), then E2

with c1(E1), and so on. If we happened to have c � EN = cN(E), this would
work out, but otherwise we will have a conflict. We can use our additional
color to fix this:

Now, color E1 by using c1(E), but then swapping the color k with the color
k + 1. Since c � E does not use the color k + 1, this is OK. Then c � E1 does
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not use the color k, so we can color E2 by using c1(E1), but then swapping
the color a0 with the color k. Then c � E2 does not use the color a0, so we can
color E3 by using c1(E2), but then swapping the color k+ 1 with the color a0.
Now c � E3 does not use the color k + 1, and furthermore it looks like c3(E),
but with the colors k and a0 swapped. Note that by performing this swap, we
have arragned that cN−3(E3) agrees with c � EN on the a0-th row.

We can repeat this process k times, so that for each i ≤ k, E3i will not use
the color k + 1 and cN−3i(E3i) will agree with c � EN on i rows. In particular,
we will have cN−3k(E3k) = c � EN . Thus, we can color the remaining orbits
E3k+i for 0 < i < N − 3k using ci(E3k). Thus we have a (k + 1)-coloring c as
desired. Since A was Borel, it is clear that c is Borel, so we are done.

4 Measure Chromatic Numbers

In this section, we extend our results to the measurable setting.
LetG be a Borel graph on a spaceX, now equipped with a Borel probability

measure µ. Just as we defined Borel and Baire measurable colorings, we
can define µ-measurable colorings and the µ-measurable chromatic number,
denoted χµ(G). The measure chromatic number of G, denoted χM(G), is the
supremum of χµ(G) over all Borel probability measures µ on X.

An equivalence relation E on X is called Borel if it is Borel as a subset of
X × X. E is called finite if its equivalence classes are all finite. E is called
hyperfinite if it can be written as E =

⋃
n∈ω En for some increasing sequence

En of finite Borel equivalence relations. G is called hyperfinite if its connected
component equivalence relation is hyperfinite.

In [2] (Theorem A), Conley and Miller prove an analogue of Theorem 1 for
measure chromatic numbers with the added assumption of hyperfiniteness:

Theorem 5. Let G be a hyperfinite locally finite Borel graph such that χ(G) <
ℵ0. Then χM(G) ≤ 2χ(G)− 1.

As in the Baire measurable situation, the sharpness of this bound was
previously unknown. All of the arguments we made in Section 3 in the Baire
measurable setting still work in the measurable setting. Most crucially, we have
χM(F (2Z)) = 3 just as we did for the Baire measurable chromatic number,
and the arguments regarding χBM(F (2∆k)) in the proof of Proposition 2 still
go through in the measure theoretic setting upon replacing “meager” and
“comeager” with “measure 0” and “measure 1” respectively. Therefore,

Proposition 3. For all k ≥ 3, χM(F (2Γk)) = 2k−1 and χM(F (2∆k)) = k+1.
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As was noted in the introduction, these graphs are hyperfinite since their
connected components all have two ends. Thus the bound in Theorem 5 is
indeed sharp:

Theorem 6. Let k ≥ 3. There is a Borel hyperfinite 3(k − 1)2-regular graph,
say, Gk, for which χ(Gk) = k but χM(Gk) = 2k − 1.

Similarly, alongside Theorem 4, Weilacher [8] proves that there are marked
groups with isomorphic Cayley graphs can have measure chromatic numbers
which differ by one, but notes that it is open whether or not these numbers
can differ by more than one. By Proposition 3, we have resolved this as well:

Corollary 2. Let k be a natural number. There are marked groups Γ and ∆
with isomorphic Cayley graphs but for which |χM(F (2Γ))− χM(F (2∆))| > k.
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