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Abstract. In this note, we show that if G is a Borel graph of finite
maximum degree, then its Baire measurable edge chromatic number is
at most 1 more than its (discrete) edge chromatic number. This bound
follows from a more general one stated in terms of asymptotic separation
index and which allows for multigraphs. Our arguments are largely
based on work of Kierstead, who in [Kie81] used similar arguments to
produce recursive colorings of graphs on, say, the natural numbers. In
a future paper, we will expand on this note by exploring the connection
between these two combinatorial settings more comprehensively.

1. Introduction

A theorem of Vizing states that if G is a multigraph with finite maximum
degree ∆ and finite maximum edge multiplicity p, then χ′(G) ≤ ∆+ p. In
this note, we are interested in bounding χ′ − ∆ in the descriptive setting.
Our main theorem gives such a bound in terms of the parameter asi(G).
This is the asymptotic separation index, defined in [CJM+20].

Theorem 1.1. Let G be a Borel multigraph with maximum degree ∆ ∈ ω
and maximum edge multiplicity p ∈ ω. Then

χ′
B(G) ≤ χ′(G) + p · asi(G) ≤ ∆+ p(asi(G) + 1).

Note that the second inequality is just the classical Vizing theorem. If
asi(G) is not finite, the Theorem simply asserts a countable Borel edge
coloring of G, which exists by local finiteness [KST99]. Therefore assume
asi(G) ∈ ω.

In the case p = 1, this theorem generalizes the main result from [BW21],
which proved the same bound for bipartite graphs. The overall proof struc-
ture of the two results is also identical. The bound in that result holds
regardless of p, however, whereas the bound of Theorem 1.1 becomes unop-
timal for bipartite multigraphs when p > 1.

This theorem and its proof, especially in the case asi(G) = 1, p = 1, are
heavily inspired by Theorem 4.1 from [Kie81]. That theorem gave a similar
bound in a setting which might be called “recursive graph combinatorics”:
One is given a countable graph which is in some sense computable, and
is asked to produce a similarly computable solution to some combinatorial
problem, e.g. an edge coloring. Kierstead’s techniques throughout that
paper, and related techniques from related papers, have a flavor similar to
many common proof structures in descriptive combinatorics, and in a future
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paper we will more comprehensively explore this connection. The function
of this note is to present a short proof of one striking byproduct of this
exploration.

The following results show that Theorem 1.1 has consequences in the
Baire category and measurable settings:

Theorem 1.2 (Essentially [CM16]). Let G be a locally finite Borel graph
on a Polish space X, and µ a Borel probability measure on X

(1) There is a G-invariant comeager Borel set C ⊂ X such that asi(G ↾
C) ≤ 1.

(2) If G is µ-hyperfinite, there is a G-invariant µ-conull Borel set C ⊂ X
such that asi(G ↾ C) ≤ 1.

Thus, for example, we get a ∆+2 bound on Baire measurable edge chro-
matic numbers of simple graphs, and likewise for measure edge chromatic
numbers of hyperfinite graphs.

For simple graphs, the best existing bound in these settings seems to
have been ∆+O((log3∆)

√
∆). This was pointed out to us by Anton Bern-

shteyn; It follows from a recent randomized distributed algorithm for edge
coloring [CHL+19] and a theorem of his linking such algorithms and mea-
surable colorings [Ber20]. It should be noted though that this bound holds
in the measurable setting even without an assumption of hyperfiniteness.
For multigraphs Matt Bowen has shown (personal communication) that
χ′
BM (G) ≤ ⌈3∆2 ⌉ + 1, and likewise for measure chromatic numbers with

hyperfiniteness. This is close to best possible in general, but is improved by
our bound when ∆ is much greater than the maximum edge multiplicity.

2. Proofs

For G a multigraph, U a set of vertices and r ∈ ω, define BG(U, r) to be
the set of vertices with path distance from U at most r. Also let NG(U)
denote the set of vertices adjacent to some vertex in U . The following is
essentially Lemma 2.1 from [BW21]:

Lemma 2.1. Let G be a locally finite Borel multigraph on X with asi(G) ≤
s ∈ ω. For any n ∈ ω, we can find Borel sets Sj

i ⊂ X for j < s and i < n

such that, letting Si =
⋃

j S
j
i ,

(1) The restrictions of G to BG(S
j
i , 3) for each i, j and to (X \ Si) for

each i are component finite.

(2) For each j and i ̸= i′, the path distance from Sj
i to Sj

i′ is at least 6.

The main combinatorial tool in our construction is the following form of
the Vizing adjacency lemma for multigraphs ([EFK84], Theorem 6):

Theorem 2.2. Let G be a multigraph with maximum degree at most k ∈ ω,
e an edge between vertices x and y. Letting µG(x

′, y′) denote the number of
edges in G between vertices x′ and y′, suppose
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(1) χ′(G− {e}) ≤ k
(2) For every z ∈ NG({x}), degG(z) ≤ k − µG(x, z) + 1.
(3) The number of z ̸= y for which equality holds in the previous condi-

tion is at most k − degG(y)− µG(x, y) + 1.

Then also χ′(G) ≤ k.

We will use the following consequence of this theorem, which is an analog
of Lemma 4.0 from [Kie81] for multigraphs:

Lemma 2.3. Let G be a multigraph on X with maximum degree at most
k ∈ ω, maximum edge multiplicity at most p ∈ ω, and U ⊂ X. Suppose

(1) χ′(G ↾ (X \ U)) ≤ k.
(2) For every y ∈ NG(U), degG(y) ≤ k − p.

Then also χ′(G) ≤ k.

Proof. We add one edge from G\(G ↾ (X \U)) at a time, using Theorem 2.2
each time to argue that the edge chromatic number stays below k. Indeed,
if e is an added edge and we apply the theorem with x an endpoint of e in
U , then for all z ∈ NG({x}), the inequality in (2) of the theorem is strict by
hypothesis (2) of this lemma. Thus (2) and (3) from the theorem hold, as
desired. □

We can now describe the inductive step in our construction:

Lemma 2.4. Let G Borel multigraph graph on X with maximum edge mul-
tiplicity at most p ∈ ω, and χ′(G) ≤ k + 1 ∈ ω. Let Sj ⊂ X Borel for j < s
such that, letting S =

⋃
j S

j, the restrictions of G to X \S and to BG(S
j , 3)

for each j are component finite. Then there are Borel matchings M and N j
i

for i < p, j < s such that each edge of each N j
i is contained in BG(S

j , 3),

and letting G′ = G \ (M ∪
⋃

i,j N
j
i ), χ

′(G′) ≤ k.

Proof. Consider the component finite bipartite Borel graphs G ↾ BG(S
j , 3)

for j < s. By hypothesis, each component of each of these graphs admits
a k + 1-coloring. By the Lusin-Novikov uniformization theorem, there is a
Borel way of picking such a coloring for each component. Thus, let dj : G ↾
BG(S

j , 3) → k+1 be a Borel k+1-coloring for each j. For each j and i < p,

let N j
i = (dj)−1({i}). Let G∗ = G \

⋃
i,j Ni.

G∗ ↾ (X \ S) is also component finite since G∗ ⊂ G, so by the same
argument, let G∗ ↾ (X \S) → k+1 be a Borel k+1-coloring. Then c−1({0})
is a Borel independent set of edges, so by [KST99], it is contained in some
maximal Borel independent set of edges, call it M . Then G′ = G∗ \M .

It remains to check χ′(G′) ≤ k. First note ∆(G′) ≤ k: If x ∈ BG(S
j , 2)

for some j, then BG({x}, 1) ⊂ BG(S
j , 3), so dj gave a k + 1-coloring of the

edges with x as an endpoint. We removed p color sets in the construction
of G∗, though, so in fact

degG′(x) ≤ degG∗(x) ≤ k − p+ 1 ≤ k.
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Else, BG({x}, 1) ⊂ X \S, so the same argument with c in place of dj works.
Let W = {x ∈ BG(S, 2) | degG′(x) > k − p}. We wish to apply Lemma

2.3 with U = V := W ∩ BG(S, 1). For condition 2 from the lemma, it
suffices to show W is G′-independent. Suppose to the contrary x, y ∈ W
are adjacent. By the inequality in the previous paragraph, we must then
have degG∗(x) = degG∗(y) = k − p + 1. In the construction of G′ from G∗,
though, we removed a maximal matching, and so the degree of at least one
of x and y must have dropped by one, contradicting the definition of W .

For condition 1, we need to see χ′(G′ ↾ (X \ V )) ≤ k. Call this graph
H. We will apply Lemma 2.3 to H with U = S \W . For condition 2 from
the lemma, note that if y ∈ NH(S \ W ), y ∈ BG(S, 1) \ W , so degH(y) ≤
degG′(y) ≤ k − p by definition of W . Condition 1 of the lemma holds since
c was a k+ 1-coloring of G∗ ↾ (X \ S) and we removed a color in passing to
G′. □

We now prove Theorem 1.1:

Proof. Apply Lemma 2.1 with n = χ′(G) to get Borel sets Sj
i ⊂ X for j < s

and i < χ′(G). Let G0 = G.
Suppose i < χ′(G) and we have Borel Gi ⊂ G with χ′(Gi) ≤ χ′(G) − i.

Apply Lemma 2.4 to Gi and the Sj
i ’s to get Borel matchings Mi and N j

i,l

for l < p, j < s so that each edge of each N j
i,l is contained in BG(S

j
i , 3) and,

letting Gi+1 = Gi \ (Mi ∪
⋃

i,j N
j
i,l), χ

′(Gi+1) ≤ χ′(G) − (i + 1). This last

condition lets us continue the construction.
At the end, Gχ′(G) has edge chromatic number at most χ′(G)−χ′(G) = 0,

and so is empty. Therefore the matchings we removed along the way union

to all of G. Furthermore, for each fixed j < s and l < p,
⋃

iN
j
i,l is still a

matching. This because each edge of each N j
i,l is contained in BG(S

j
i , 3),

and by condition 2 from Lemma 2.1, these sets are disjoint for different i.
Therefore we have χ′(G) + ps Borel matchings which union to G: They are

Mi for i < χ′(G) and
⋃

iN
j
i,l for j < s, l < p. □
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