DEFINABLE VIZING THEOREMS

LONG QIAN, FELIX WEILACHER

ABSTRACT. In this note, we show that if G is a Borel graph of finite
maximum degree, then its Baire measurable edge chromatic number is
at most 1 more than its (discrete) edge chromatic number. This bound
follows from a more general one stated in terms of asymptotic separation
index and which allows for multigraphs. Our arguments are largely
based on work of Kierstead, who in [Kie81] used similar arguments to
produce recursive colorings of graphs on, say, the natural numbers. In
a future paper, we will expand on this note by exploring the connection
between these two combinatorial settings more comprehensively.

1. INTRODUCTION

A theorem of Vizing states that if G is a multigraph with finite maximum
degree A and finite maximum edge multiplicity p, then x'(G) < A +p. In
this note, we are interested in bounding x’ — A in the descriptive setting.
Our main theorem gives such a bound in terms of the parameter asi(G).
This is the asymptotic separation indez, defined in [CIM™20].

Theorem 1.1. Let G be a Borel multigraph with maximum degree A € w
and maximum edge multiplicity p € w. Then

X5(G) < X(G) +p-asi(G) < A+ p(asi(G) + 1).

Note that the second inequality is just the classical Vizing theorem. If
asi(G) is not finite, the Theorem simply asserts a countable Borel edge
coloring of G, which exists by local finiteness [KST99]. Therefore assume
asi(G) € w.

In the case p = 1, this theorem generalizes the main result from [BW21],
which proved the same bound for bipartite graphs. The overall proof struc-
ture of the two results is also identical. The bound in that result holds
regardless of p, however, whereas the bound of Theorem 1.1 becomes unop-
timal for bipartite multigraphs when p > 1.

This theorem and its proof, especially in the case asi(G) = 1,p = 1, are
heavily inspired by Theorem 4.1 from [Kie81]. That theorem gave a similar
bound in a setting which might be called “recursive graph combinatorics”:
One is given a countable graph which is in some sense computable, and
is asked to produce a similarly computable solution to some combinatorial
problem, e.g. an edge coloring. Kierstead’s techniques throughout that
paper, and related techniques from related papers, have a flavor similar to
many common proof structures in descriptive combinatorics, and in a future
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paper we will more comprehensively explore this connection. The function
of this note is to present a short proof of one striking byproduct of this
exploration.

The following results show that Theorem 1.1 has consequences in the
Baire category and measurable settings:

Theorem 1.2 (Essentially [CM16]). Let G be a locally finite Borel graph
on a Polish space X, and p a Borel probability measure on X

(1) There is a G-invariant comeager Borel set C' C X such that asi(G |
C)<1.

(2) If G is pu-hyperfinite, there is a G-invariant p-conull Borel set C C X
such that asi(G | C) < 1.

Thus, for example, we get a A + 2 bound on Baire measurable edge chro-
matic numbers of simple graphs, and likewise for measure edge chromatic
numbers of hyperfinite graphs.

For simple graphs, the best existing bound in these settings seems to
have been A + O((log® A)v/A). This was pointed out to us by Anton Bern-
shteyn; It follows from a recent randomized distributed algorithm for edge
coloring [CHL"19] and a theorem of his linking such algorithms and mea-
surable colorings [Ber20]. It should be noted though that this bound holds
in the measurable setting even without an assumption of hyperfiniteness.
For multigraphs Matt Bowen has shown (personal communication) that
Xpur(G) < [28] + 1, and likewise for measure chromatic numbers with
hyperfiniteness. This is close to best possible in general, but is improved by
our bound when A is much greater than the maximum edge multiplicity.

2. PROOFS

For G a multigraph, U a set of vertices and r € w, define Bg(U,r) to be
the set of vertices with path distance from U at most r. Also let Ng(U)
denote the set of vertices adjacent to some vertex in U. The following is
essentially Lemma 2.1 from [BW21]:

Lemma 2.1. Let G be a locally finite Borel multigraph on X with asi(G) <
s € w. For any n € w, we can find Borel sets Sg CX forj<sandi<n
such that, letting S; = Uj Sij,
(1) The restrictions of G to Bg(Sf,3) for each i,j and to (X \ S;) for
each i are component finite.
(2) For each j and i # i, the path distance from Sg to Sij, is at least 6.

The main combinatorial tool in our construction is the following form of
the Vizing adjacency lemma for multigraphs ([EFK84], Theorem 6):

Theorem 2.2. Let G be a multigraph with maximum degree at most k € w,
e an edge between vertices x and y. Letting uc(z',y’) denote the number of
edges in G between vertices ' and 1y, suppose
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(1) X(G—A{e}) <k

(2) For every z € Ng({z}), degq(2) < k — pg(x,z) + 1.

(3) The number of z # y for which equality holds in the previous condi-
tion is at most k — degq(y) — pa(z,y) + 1.

Then also xX'(G) < k.

We will use the following consequence of this theorem, which is an analog
of Lemma 4.0 from [Kie81] for multigraphs:

Lemma 2.3. Let G be a multigraph on X with mazximum degree at most
k € w, mazimum edge multiplicity at most p € w, and U C X. Suppose

(1) X(GT(X\U)) <k.

(2) For everyy € Na(U), degg(y) < k —p.
Then also xX'(G) < k.

Proof. We add one edge from G\ (G | (X\U)) at a time, using Theorem 2.2
each time to argue that the edge chromatic number stays below k. Indeed,
if e is an added edge and we apply the theorem with z an endpoint of e in
U, then for all z € Ng({z}), the inequality in (2) of the theorem is strict by
hypothesis (2) of this lemma. Thus (2) and (3) from the theorem hold, as
desired. g

We can now describe the inductive step in our construction:

Lemma 2.4. Let G Borel multigraph graph on X with mazimum edge mul-
tiplicity at most p € w, and X'(G) < k+1€w. Let 8 C X Borel for j < s
such that, letting S = Uj S7, the restrictions of G to X \ S and to Bg(57,3)

for each j are component finite. Then there are Borel matchings M and Nz-j
fori < p, j < s such that each edge of each N} is contained in Bg(S7,3),
and letting G' = G\ (M U, ; N), X'(G") < k.

Proof. Consider the component finite bipartite Borel graphs G | Bg(S7, 3)
for j < s. By hypothesis, each component of each of these graphs admits
a k + 1-coloring. By the Lusin-Novikov uniformization theorem, there is a
Borel way of picking such a coloring for each component. Thus, let d7 : G |
Bg(57,3) — k+1 be a Borel k + 1-coloring for each j. For each j and i < p,
let N/ = (&/)7({i}). Let G* = G\Ui,j N;.

G* | (X\S) is also component finite since G* C G, so by the same
argument, let G* | (X\S) — k+1 be a Borel k + 1-coloring. Then ¢~1({0})
is a Borel independent set of edges, so by [KST99], it is contained in some
maximal Borel independent set of edges, call it M. Then G' = G*\ M.

It remains to check x'(G’) < k. First note A(G’) < k: If x € Bg(57,2)
for some j, then Bg({z},1) C Bg(S7,3), so &/ gave a k + 1-coloring of the
edges with x as an endpoint. We removed p color sets in the construction
of G*, though, so in fact

deger(z) < dega«(z) <k —p+1<k.
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Else, Bg({z},1) C X\ S, so the same argument with c in place of d’ works.
Let W = {zx € Bg(S,2) | dege/(z) > k — p}. We wish to apply Lemma
2.3 with U = V := W N Bg(S,1). For condition 2 from the lemma, it
suffices to show W is G’-independent. Suppose to the contrary z,y € W
are adjacent. By the inequality in the previous paragraph, we must then
have degg, () = degg-(y) = k — p + 1. In the construction of G’ from G*,
though, we removed a maximal matching, and so the degree of at least one
of x and y must have dropped by one, contradicting the definition of W.
For condition 1, we need to see x'(G' | (X \ V)) < k. Call this graph
H. We will apply Lemma 2.3 to H with U = S\ W. For condition 2 from
the lemma, note that if y € Nyg(S\ W), y € Bg(S,1) \ W, so degy(y) <
degq (y) < k — p by definition of W. Condition 1 of the lemma holds since
c was a k + 1-coloring of G* [ (X \ S) and we removed a color in passing to
G O

We now prove Theorem 1.1:

Proof. Apply Lemma 2.1 with n = x/(G) to get Borel sets Sf C X forj<s
and i < X'(G). Let Go = G.

Suppose i < x'(G) and we have Borel G; C G with x/(G;) < X/(G) —i.
Apply Lemma 2.4 to GG; and the S’ij’s to get Borel matchings M; and Ni];l
for [ < p, j < s so that each edge of each NZ.];Z is contained in B(;(Sg, 3) and,
letting Gi1 = G \ (M; UU; ; N7)), X/(Gig1) < X/(G) — (i +1). This last
condition lets us continue the construction.

At the end, G /() has edge chromatic number at most x'(G) —x'(G) = 0,
and so is empty. Therefore the matchings we removed along the way union
to all of G. Furthermore, for each fixed j < s and [ < p, |J; Nil is still a

matching. This because each edge of each Nij ; is contained in B(;(Sf,?)),

and by condition 2 from Lemma 2.1, these sets are disjoint for different <.
Therefore we have x'(G) + ps Borel matchings which union to G: They are

M; for i < x/(G) and |J; N}, for j < s, 1 <p. O
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