BOREL VERSIONS OF THE LOCAL LEMMA AND LOCAL ALGORITHMS FOR
GRAPHS OF FINITE ASYMPTOTIC SEPARATION INDEX

ANTON BERNSHTEYN AND FELIX WEILACHER

ABSTRACT. Asymptotic separation index is a parameter that measures how easily a Borel graph
can be approximated by its subgraphs with finite components. In contrast to the more classical
notion of hyperfiniteness, asymptotic separation index is well-suited for combinatorial applications
in the Borel setting. The main result of this paper is a Borel version of the Lovisz Local Lemma—a
powerful general-purpose tool in probabilistic combinatorics—under a finite asymptotic separation
index assumption. As a consequence, we show that locally checkable labeling problems that are
solvable by efficient randomized distributed algorithms admit Borel solutions on bounded degree
Borel graphs with finite asymptotic separation index. From this we derive a number of corollaries,
for example a Borel version of Brooks’s theorem for graphs with finite asymptotic separation index.

1. Introduction and main results

1.1. Borel combinatorics and the asymptotic separation index

This paper is a contribution to the area of descriptive combinatorics, which investigates classical
combinatorial notions—such as colorings, matchings, etc.—from the standpoint of descriptive set
theory. Before we proceed, let us review some basic notation. We use N to denote the set of all
non-negative integers and identify each g € N with the g-element set ¢ = {i e N : i < ¢}. For a set
X and a natural number ¢ € N, we let

[X]T ={Ac X : |Al=¢} and [X]=* = {A< X : Ais finite}.

All graphs in this paper are undirected and simple. In other words, a graph G consists of a vertex
set V(G) and an edge set E(G) < [V(G)]?. When there is no possibility of confusion, we use the
standard graph-theoretic convention and write uv instead of {u, v} to indicate an edge joining u
and v. Given R € N, an R-ball around a vertex v in a graph G, denoted by Bg(v, R), is the set of
all vertices reachable from v by a path of at most R edges.

Throughout the paper, proper coloring of graphs will be used as a motivating example of a
combinatorial problem.

Definition 1.1 (Colorings and the chromatic number). Let G be a graph. Given g € N, a proper
g-coloring of G is a function f: V(G) — ¢ such that f(u) # f(v) for every edge uv € E(G). The
chromatic number x(G) of G is the smallest ¢ € N such that G has a proper g-coloring; if no such
q € N exists, we set x(G) = 00.*

Descriptive combinatorics applies graph-theoretic ideas to the study of Borel graphs:

Definition 1.2 (Borel graphs). A Borel graph is a graph G whose vertex set V(@) is a standard
Borel space and whose adjacency relation {(u,v) € V(G)? : uv e E(G)} is a Borel subset of V(G)2.
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The reader is referred to [Kec95; Tsel6] for descriptive set theory background, such as the
definition of a standard Borel space!, and to [KM20; Pik21] for an overview of Borel graph theory.
A useful observation is that if X is a standard Borel space, then the sets [X]? for ¢ € N and [X]<%
also carry natural standard Borel structures (see §2.1), and G is a Borel graph if and only if V(G)
is a standard Borel space and E(G) is a Borel subset of [V (G)]2.

Since every countable subset of a standard Borel space is Borel, countable graphs are (trivially)
Borel, and hence Definition 1.2 is only really interesting when V(@) is uncountable. On the other
hand, a large part of descriptive combinatorics deals with the case when G is locally countable
(or even locally finite), i.e., when every vertex of G has countably (resp. finitely) many neighbors.
Indeed, all graphs considered in this paper will be locally countable. Note that G is locally countable
if and only if every connected component of G is countable. As a result, locally countable graphs
studied in descriptive combinatorics usually have uncountably many components (this is in contrast
to classical, finite combinatorics, where it is common to only focus on connected graphs).

The fundamental question of descriptive combinatorics may be formulated as follows:

Question 1.3. When can a combinatorial construction (for example, a proper g-coloring) be
performed on a Borel graph G in a “constructive” fashion?

The word “constructive” here can mean different things depending on the context. The most basic
interpretation is to require all functions, sets, etc. appearing in the construction to be Borel. By
introducing additional structure on V(G), this requirement may be relaxed. For instance, one may
ask for a construction that is measurable with respect to a measure p on V(G) or Baire-measurable
with respect to a compatible Polish topology 7 on V(G). As a concrete example, we can apply this
perspective to proper colorings by modifying Definition 1.1 as follows:

Definition 1.4 (Borel, measurable, Baire-measurable chromatic numbers). Let G be a Borel graph.
A proper g-coloring f: V(G) — q of G is Borel if f~1(i) is a Borel subset of V(G) for all 0 < i < q.
The Borel chromatic number xg(G) of G is the smallest ¢ € N such that G has a Borel proper
g-coloring; if no such ¢ exists, we set xg(G) = 0.

Similarly, given a probability Borel measure p or a compatible Polish topology 7 on V(G), we
say that a proper g-coloring f: V(G) — ¢ of G is u-measurable or 7-Baire-measurable if f~1(i)
is a p-measurable, resp. 7-Baire-measurable subset of V(G) for all 0 < ¢ < ¢q. The u-measurable
chromatic number x,(G) and the 7-Baire-measurable chromatic number x,(G) are defined as
the smallest ¢ € N such that G has a y-measurable, resp. T7-Baire-measurable proper g-coloring if
such ¢ exists, and o otherwise.

Definition 1.4 is due to Kechris, Solecki, and Todorcevic, who initiated the systematic study of
Borel graphs and their combinatorics in the seminal paper [KST99]. Among other things, they
demonstrated that greedy algorithms may be implemented on locally finite Borel graphs “in a Borel
way,” leading, for instance, to the following result:

Theorem 1.5 (Kechris—Solecki-Todorcevic [KST99, Proposition 4.6]). If G is a Borel graph of
finite maximum degree A, then xg(G) < A + 1.

Unfortunately, later work revealed that without any additional assumptions, it is often impossible
to improve on the initial results obtained in the Borel setting using greedy algorithms. The following
theorem of Marks serves as a remarkable illustration of this, showing that the bound in Theorem 1.5
is optimal even if G has no cycles (graphs with no cycles are called forests):

Theorem 1.6 (Marks [Marl6]). For every A € N, there exists a Borel forest G of maximum degree
A such that xg(G) = A + 1.

TThe reader unfamiliar with this terminology may assume that the space is, say, the unit interval [0,1]. This
typically results in no loss of generality, thanks to the Borel isomorphism theorem [Kec95, Theorem 15.6].
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By contrast, every forest G satisfies x(G) < 2. Furthermore, Theorem 1.6 shows that the following
classical upper bounds on the chromatic number fail in the Borel setting:

Theorem 1.7 (Brooks [Bro4l; Diel7, Theorem 5.2.4]). If G is a graph of finite maximum degree
A > 3 and without a (A + 1)-clique, then x(G) < A.

Theorem 1.8 (Johansson [Joh96; MR02, §13]). There exist constants C, Ay > 0 such that if G is
a triangle-free graph of finite maximum degree A > A, then x(G) < CA/log A.

Both Brooks’s and Johansson’s theorems have analogs in the measurable/Baire-measurable setting
[CMT16; Ber23a, Theorem 3.9], showing that Marks’s Theorem 1.6 is a purely Borel phenomenon.

In view of the negative results such as Theorem 1.6, it is natural to look for additional assumptions
on a Borel graph G that improve the behavior of its Borel combinatorics. In this regard, a helpful
observation is that Borel combinatorics essentially trivialize on component-finite graphs, i.e., graphs
in which every connected component is finite. It is well understood in the field that a combinatorial
problem admits a Borel solution on a component-finite Borel graph G if and only if it admits any
solution on G at all (see [Pik21, §5.3] and §2.2 for two ways of making this statement precise). For
example, xg(G) = x(G) for every component-finite Borel graph G. Therefore, one may hope that
Borel combinatorics on a locally countable Borel graph G would become more approachable if G
could in some sense be “approximated” by its component-finite subgraphs.

One well-studied notion that attempts to capture this intuition is hyperfiniteness. As usual, a
subgraph of a graph G is a graph H such that V(H) € V(G) and E(H) < E(G). We write H € G
to indicate that H is a subgraph of G. If G and H are Borel graphs and V(H) < V(G) is a Borel
subset equipped with the relative o-algebra of Borel sets, we say that H is a Borel subgraph of G.
Given a set U € V(G), we let G[U] denote the subgraph of G induced by U, i.e., the graph with
vertex set U and edge set E(G[U]) := E(G) n [U]?. Note that when U < V(G) is a Borel set, G[U]
is a Borel subgraph of G.

Definition 1.9 (Hyperfinite graphs). A Borel graph G is hyperfinite if there is an increasing
sequence Gg € G1 € - -+ € G of component-finite Borel subgraphs of G whose union is G.

The systematic study of hyperfinite graphs was initiated by Weiss [Wei84] and Slaman and
Steel [SS88], with important foundational work done by Dougherty, Jackson, and Kechris [DJK94]
and Jackson, Kechris, and Louveau [JKLO02|, among others. For an overview of this topic, see
[Kec21]. While hyperfiniteness is in general a very powerful notion, with many applications to
measurable constructions (see, e.g., [CM16; BKS21]), counterexamples from [Con+20a] show that it
is largely unhelpful for obtaining Borel solutions to combinatorial problems. For example, Marks’s
Theorem 1.6 remains true under the hyperfiniteness assumption:

Theorem 1.10 (Conley—Jackson-Marks—Seward—Tucker-Drob [Con+20a]). For every A € N, there
exists a hyperfinite Borel forest G of maximum degree A such that xg(G) = A + 1.

In particular, Theorems 1.7 and 1.8 fail in the Borel setting for hyperfinite graphs.

Nevertheless, in the breakthrough paper [Con+20b], Conley, Jackson, Marks, Seward, and Tucker-
Drob succeeded in isolating a different and more subtle notion of “approximating” a graph by its
component-finite subgraphs that turns out to be extremely useful in combinatorial arguments. For
a graph G and an integer R € N, G® denotes the graph with V(GF) := V(@) in which two distinct
vertices u, v are adjacent if and only if they are joined by a path of at most R edges in G.

Definition 1.11 (Asymptotic separation index). Let G be a Borel graph. The separation index of
G, in symbols si(G), is the smallest s € N for which there exists a partition V(G) = Up u ... Uy of
V(G) into s+1 Borel subsets such that the induced subgraphs G[Up], ..., G[Us] are component-finite
(if no such s € N exists, we set si(G) := o0). The asymptotic separation index of G, in symbols
asi(@), is the supremum of si(G®) taken over all R € N,
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There is a growing body of literature demonstrating that various combinatorial problems admit
Borel solutions on Borel graphs with finite asymptotic separation index [BW21; Con+20b; QW22;
Wei2la|. For example, it turns out that the Borel chromatic number of a Borel graph is bounded
above by a function of its ordinary chromatic number and asymptotic separation index:

Theorem 1.12 (Conley—Jackson—-Marks—Seward—Tucker-Drob [Con+20b, Theorem 8.1)). If G is a
Borel graph with asi(G) < o0 and x(G) < o, then xg(G) < (asi(G) + 1)x(G) — asi(G).

Another example is a result of Qian and the second named author, who showed in [QW22] that a
Borel graph G of maximum degree A € N and with asi(G) < oo has a Borel proper edge-coloring
with A + 1 + asi(G) colors. Moreover, if G is bipartite, this bound can be improved to A + asi(G)
by a result of Bowen and the second named author [BW21]. (We discuss edge-colorings in more
detail in §1.4.2.)

Of course, these results are only impressive assuming there is a rich family of Borel graphs with
finite asymptotic separation index. Thankfully, this is indeed the case, as many natural classes of
graphs have asymptotic separation index at most 1. Here is a non-exhaustive list of examples (the
reader is referred to the cited papers for details and omitted definitions):

Theorem 1.13 (Conley—Jackson-Marks—Seward—Tucker-Drob [Con+20b]). Suppose that G is a
Schreier graph of a free Borel action of a finitely generated group I' on a standard Borel space. Then
asi(G) < 1, provided T" has at least one of the following properties:

e ' is virtually nilpotent;

I' is polycyclic;

I' = Z21 Z, the lamplighter group;
I' = BS(1,2), the Baumslag—Solitar group;

I' is solvable and linear over Q.

Theorem 1.14 (AB-Yu [BY23|). If G is a Borel graph of polynomial growth, then asi(G) < 1.

Furthermore, every locally finite Borel graph has asymptotic separation index at most 1 outside
of a meager set of vertices. To state this formally, we say that a set U < V(G) is G-invariant if
there are no edges between U and V(G)\U (i.e., if U is a union of connected components of G). As
usual, we call a set in a topological space comeager if its complement is meager.

Theorem 1.15 (Conley—Jackson-Marks—Seward—Tucker-Drob [Con+20b, Theorem 4.8(b)]). Let G
be a locally finite Borel graph. Fix a compatible Polish topology T on V(G). Then there exists a
G-invariant comeager Borel set U € G such that asi(G[U]) < 1.

And if G is hyperfinite, then similarly asi(G) < 1 on a set of full measure:

Theorem 1.16 ([Wei2lb]). Let G be a hyperfinite locally finite Borel graph. Fix a probability Borel
measure p on V(Q). Then there is a G-invariant pi-conull Borel set U € G such that asi(G[U]) < 1.

Both Theorems 1.15 and 1.16 are essentially present in the paper [CM16] by Conley and Miller,
albeit phrased without the term “asymptotic separation index.”

It is not a coincidence that in all the above examples, the asymptotic separation index is not
only finite but in fact bounded by 1: it is not known whether there exist any Borel graphs G with
1 < asi(G) < o [Con+20b, p. 15]. The problem of whether such graphs exist is especially interesting
in view of results such as Theorem 1.12 as well as some of our main results below.

The aim of this paper is to make several additions to the list of combinatorial constructions that
can be performed in a Borel way on graphs with finite asymptotic separation index. For example,
we establish a Borel version of Brooks’s Theorem 1.7 for Borel graphs G with asi(G) < co:
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Theorem 1.17 (Borel Brooks for finite asi). Let G be a Borel graph with finite maximum
degree A = 3 and without a (A + 1)-clique. If asi(G) < oo, then xg(G) < A.

We also establish a Borel version of Johansson’s Theorem 1.8 for Borel graphs G with asi(G) < oo.
A result of this type can already be derived from Theorem 1.12. Indeed, by combining the best
currently known bound on the chromatic number of triangle-free graphs (due to Molloy [Mol19])
with Theorem 1.12, we get the following result for triangle-free Borel graphs G with asi(G) < oo:

xg(G) < (1 +¢)(asi(G) +1) — asi(Q),

log A
for any given € > 0 and large enough A. In other words, this approach yields a factor in front of
A/log A that is close to asi(G) + 1. We prove a bound with a factor in front of A/log A that is
independent of asi(G). Furthermore, when G has no cycles of length 3 and 4, our bound matches
the best known bound on the ordinary chromatic number of G (due to Kim [Kim95]):

Theorem 1.18 (Borel colorings of graphs without short cycles and with finite asi). For every
€ > 0, there is Ag > 0 with the following property. Let G be a Borel graph of finite maximum
degree A > A with asi(G) < oo0. If G is triangle-free, then xg(G) < (4 +¢)A/log A, and if
G has no 3- and 4-cycles, then xg(G) < (1 +¢)A/log A.

It remains an interesting open question whether the 4 in the above theorem can be replaced by 1
in the triangle-free case.

While most work in descriptive combinatorics addresses specific combinatorial problems, several
recent papers attack the fundamental Question 1.3 for relatively general classes of problems [Ber19;
Ber21; Ber23a; Ber23b; Bra+21; Cs6+22; GR21a; GR21b; QW22; Wei22]. We continue this line
of research here by establishing a Borel version of a powerful and versatile tool from probabilistic
combinatorics, the so-called Lovasz Local Lemma, for Borel graphs with finite asymptotic separation
index. Statements such as Theorems 1.17 and 1.18 are among the consequences of our main result,
as we explain in §1.4.

1.2. The Lovasz Local Lemma and its Borel versions

Typical combinatorial problems require assigning a “color” (an element of some finite set) to every
member of a given structure (e.g., to every vertex of a graph) in a way that fulfills a prescribed set
of constraints. This idea is formally captured in the following definition:

Definition 1.19 (Constraint satisfaction problems). Let ¢ be a positive integer. By a ¢-coloring of
a set S we mean a function f: .5 — gq.

Given a set X and a finite subset D € X, an (X, g)-constraint (or simply a constraint if X
and ¢ are understood) with domain D is a set B < ¢” of g-colorings of D. If B is a constraint
with domain D, then we write dom(B) := D. We say that a g-coloring f: X — ¢ of X violates a
constraint B if f|qom(p) € B, and satisfies B otherwise.

A constraint satisfaction problem (a CSP for short) % on a set X with range ¢, in symbols

B X -’ q,

is a set of (X, q)-constraints. A solution to a CSP %: X — ¢ is a g-coloring f: X — ¢ that satisfies
every constraint B € 8. We say that & is satisfiable if it has a solution.

In other words, each constraint in a CSP #: X —7 ¢ is interpreted as a set of finite “forbidden”
(or “bad”) patterns that are not allowed to appear in a solution f: X — q.
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Example 1.20 (Proper coloring as a CSP). Finding a proper g¢-coloring of a graph G can be
represented by a CSP #: V(G) —" q as follows. For an edge uv € E(G), let B, be the constraint
with domain {u,v} given by By, = {(u+— i, v — i) : 0 <i < ¢}. Then a coloring f: V(G) — ¢
satisfies By, precisely when f(u) # f(v). Therefore, f is a solution to & = {B,, : w € E(G)} if
and only if it is a proper g-coloring of G.

The Lovasz Local Lemma (the LLL for short) provides a sufficient condition guaranteeing that a
CSP #: X - ¢ is satisfiable. To state it, we associate to % two numerical parameters, p(#) and
d(&), defined as follows. For a constraint B € %, the probability of B is the quantity

_ _|B|

In other words, P[B] is the probability that B is violated by a uniformly random g-coloring. Let

p(A) = jsglé%]P[B].

The maximum dependency degree d(#) of A is the value

d(%8) = Z’UEHB, € # : B # B and dom(B’) n dom(B) # @}|.
EO

Lemma 1.21 (Lovasz Local Lemma [EL75; Spe77; AS16, Corollary 5.1.2]). If % is a CSP such that
P(#) (d(#) +1) < 1/e,
where e = 2.71 ... is the base of the natural logarithm, then % has a solution.

Remarks 1.22. (i) The statement of the LLL given above is somewhat less general than the
more classical version usually found in the combinatorics literature. Specifically, the probabilities
of the constraints in Lemma 1.21 are computed by considering a uniformly random g-coloring
f: X — q; that is, we view (f(z) : x € X) as a collection of mutually independent discrete random
variables, each distributed uniformly over a g-element set. This specialized set-up for the LLL is
called the variable version of the LLL (the name is due to Kolipaka and Szegedy [KS11]). Even
though this setting is not the most general, it does encompass virtually all standard applications and
is often viewed as the “right one” for algorithmic considerations (see, e.g., [Bec91; MT10; FG17]).
For the statement of the LLL in abstract probability spaces, see [AS16, §5.1].

(ii) The LLL is usually stated and proved in the case when the CSP % comprises only finitely
many constraints. Nevertheless, a routine compactness argument shows that an infinite CSP %
is satisfiable if and only if all its finite subsets &' < % are satisfiable (see, e.g., [AS16, proof of
Theorem 5.2.2]), so the conclusion of Lemma 1.21 for infinite # follows from the finite case.

The LLL is used throughout combinatorics; for a sample of its applications, see [AS16, §5; MR02].

Here we are interested in the LLL from the perspective of descriptive combinatorics. This line of
research forms part of a broader program concerning versions of the LLL that are “constructive”
in various senses: algorithmic [Bec91; BGR20; FG17; MT10], computable [RS14], or—as in this
paper—DBorel/measurable [Ber19; Ber23a; Ber23b; Cs6+22].

Let X be a standard Borel space and let ¢ € NT. Then the set Const(X, ¢) of all (X, ¢)-constraints
also carries a natural standard Borel structure (see §2.1), so we can define Borel CSPs as follows:

Definition 1.23 (Borel CSPs). Let X be a standard Borel space and let ¢ € N*. A CSP 4: X -’ ¢
is Borel if it is a Borel subset of Const(X, q).

Heuristically, a CSP #: X — ¢ is Borel as long as the constraints that need to be satisfied are
specified “explicitly.”

Example 1.24 (Proper coloring as a Borel CSP). If G is a Borel graph, then the CSP from
Example 1.20 that encodes proper g-coloring problem on G is easily seen to be Borel.
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We now ask the following natural question:

Question 1.25. Given a Borel CSP #: X —’ ¢ on a standard Borel space X, what LLL-style
conditions guarantee that % has a Borel solution f: X — ¢?

Without any additional assumptions on %A, Question 1.25 has recently been fully resolved in a
series of contributions by several authors. In the following statement and in the remainder of the
paper, we say that a CSP 2 is bounded if sup .y |dom(B)| < 0.}

Theorem 1.26 (Brandt—Grunau-Rozhon [BGR20], AB [Ber23a], Thornton [Tho22]).
(i) Let #: X —" q be a bounded Borel CSP on a standard Borel space X. If

p(2) 247 < 1,
then % has a Borel solution f: X — q.

(ii) On the other hand, for every d € N, there exists a bounded Borel CSP % on a standard
Borel space such that d(%) = d and p(#) = 279, so

p(#) 297 = 1,
yet B has no Borel solution.

Let us say a few words about how Theorem 1.26 follows from the cited sources. In [BGR20],
Brandt, Grunau, and Rozhon designed an efficient deterministic distributed algorithm for finding
solutions to CSPs under the condition p2¢ < 1 (their work builds on earlier contributions of Brandt,
Maus, and Uitto [BMU19]). In [Ber23a], the first named author established certain general results
that allow using efficient distributed algorithms to derive conclusions in descriptive combinatorics.
In particular Theorem 1.26(i) follows immediately from the Brandt-Grunau-Rozhon algorithm
via [Ber23a, Theorem 2.10]. (See §1.3 for a more detailed discussion of the connections between
distributed computing and descriptive combinatorics.)

The second part of Theorem 1.26 is proved by analyzing the so-called sinkless orientation problem
on regular graphs. Let d € N and let G be a d-regular graph. An orientation of G is sinkless if the
outdegree of every vertex is positive. A sinkless orientation of G can be naturally encoded as a
solution to a certain CSP PByiniess: F(G) —* 2. Here the color of each edge e € F(G) indicates the
direction in which e is oriented. For example, we may fix a function ¢: E(G) — V(G) sending each
edge to one of its endpoints and say that an edge e is oriented towards c(e) if and only if its color is
0. Then we define, for each vertex v, a constraint B, with domain dom(B,) := {e € E(G) : e 3 v}
that requires the outdegree of v to be positive, and let

%Sinkless = {Bv tVE V(G)}

Clearly, we have d(Buinkless) = d and p(PBsinless) = 2~ ¢ Furthermore, if G is a Borel graph, then
the CSP Zginkless can be made Borel by choosing a Borel function ¢: E(G) — V(@) using the
Luzin—-Novikov theorem [Kec95, Theorem 18.10]. Nevertheless, Thornton [Tho22, Theorem 3.5]
applied the determinacy method of Marks [Marl6] to construct, for each d € N, a Borel d-regular
forest G that does not admit a Borel sinkless orientation. This verifies Theorem 1.26(ii).

While Theorem 1.26 provides a complete characterization of the range of values for the parameters
p and d under which a Borel version of the LLL holds, its downside is that the inequality p2¢ < 1 is
much harder to satisfy than the usual LLL condition p(d + 1) < 1/e. In fact, we are not aware of any
applications of substantial combinatorial interest where the bound p 24 < 1 holds and Theorem 1.26(i)
can be invoked. This motivates the search for other Borel versions of the LLL which make extra
assumptions on the structure of the CSP in question. To formulate such assumptions, it is convenient
to associate to each CSP a graph:

iThe boundedness assumption can likely be removed, but it makes the results of [Ber23a] easier to apply and is
satisfied in most applications.



Definition 1.27 (Graphs associated to CSPs). Let %: X —’ ¢ be a CSP. Then Gy is the graph
with vertex set X in which two vertices x, y € X are adjacent if and only if x # y and there is some
constraint B € # with z, y € dom(B).

Note that if Z: X —7 ¢ is a Borel CSP and d(2) is finite, then G is a locally finite Borel graph.
Moreover, if additionally £ is bounded, then the maximum degree of G4 is finite.

An important result of Cséka, Grabowski, Mathé, Pikhurko, and Tyros is a Borel version of the
LLL for CSPs whose associated graphs have subexponential growth. Here we say that a graph G is
of subexponential growth if for every € > 0 there is r > 0 such that for all R > r and all v € V(G),
the R-ball around v in G contains at most e vertices.

Theorem 1.28 (Borel LLL for subexponential growth; Cséka—Grabowski-Mathé—Pikhurko—Tyros
[Cs6+22, Theorem 4.5)). Let : X —7 q be a Borel CSP on a standard Borel space X. Suppose
that the graph G g is of subexponential growth. If

P(Z)(d(#) +1) < 1/e,
then % has a Borel solution f: X — q.

We investigate the situation where instead of subexponential growth, the graph G4 has finite
asymptotic separation index. Actually, for our first main result, we only need an upper bound on
the separation indezx of G4 rather than its asymptotic separation index. (Even more precisely, we
use a bound on a certain auxiliary parameter closely related to si(G ), which we call the shattering
number of #; see §3.1 for details.)

Theorem 1.29 (Borel LLL with bounded separation index). Let #: X —7 q be a Borel
CSP on a standard Borel space X. Suppose that si(Gg) < s < 0. If

p(#) (d(%) +1)*" < e,
then % has a Borel solution f: X — q.

It is a standard observation (see, e.g., [Bec91; Ber23a; CP19; FG17; GHK18]) that for a majority
of applications, instead of the usual LLL condition p(d + 1) < 1/e, it is enough to have a version of
the LLL that holds under a polynomial criterion, i.e., with a bound of the form p f(d) < 1 for some
polynomial f. When s is treated as a constant parameter, our Theorem 1.29 is precisely of this type.
(This should be contrasted with the exponential bound p 24 < 1 in Theorem 1.26.) For instance, if
G 2 has asymptotic separation index at most 1 (which happens in the numerous situations discussed
in §1.1), we can apply the trivial inequality si(G4) < asi(G %) to obtain the following special case of
Theorem 1.29:

Corollary 1.30 (Borel LLL for asi < 1). Let #: X —’ q be a Borel CSP on a standard
Borel space X. Suppose that asi(Gg) < 1. If
(

then & has a Borel solution f: X — q.

. J

Most of the examples listed in Theorem 1.13 have or can have exponential growth rate. In such
cases, Corollary 1.30 is an advancement over both Theorems 1.28 and 1.26(i). Interestingly, it is not
known whether there exist any Borel graphs G of subexponential growth with asi(G) > 1.

Of course, the result of Corollary 1.30 holds for other finite values of asi(G %) as well, but with
the exponent 2 replaced by asi(G%) + 1. Our second main result is a Borel version of the LLL for
the case asi(G») < o with a polynomial criterion independent of the value of asi(Gy):
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Theorem 1.31 (Borel LLL for finite asi). Let #: X —’ q be a bounded Borel CSP on a
standard Borel space X. Suppose that asi(Gg) < co. If

p(#) (d(#) +1)° < 277,
then % has a Borel solution f: X — q.

The above results add further impetus to solve the problem of whether there exist Borel graphs
G with 1 < asi(G) < oo, since if they do not, Corollary 1.30 would supersede Theorem 1.31.

In addition to Borel versions of the LLL, we can also consider its measurable and Baire-measurable
versions. To date, the most general result along these lines is the following:

Theorem 1.32 (AB [Ber23a, Theorem 2.20]). Let #: X —’ ¢ be a bounded Borel CSP on a
standard Borel space X. Suppose that

p(RB) (d(A) +1)% < 2715,

Then the following conclusions hold:
(i) If u is a probability Borel measure on X, then % has a p-measurable solution.

(ii) If 7 is a compatible Polish topology on X, then 9 has a T-Baire-measurable solution.

Thus, the LLL holds measurably/Baire-measurably with a polynomial criterion. However, it is
still not known whether the usual criterion p(d + 1) < 1/e suffices (we conjecture that it does). By
combining Corollary 1.30 with Theorem 1.15, we immediately obtain a quantitative improvement to
Theorem 1.32 in the Baire-measurable case:

Corollary 1.33 (Baire-measurable LLL). Let #: X —’ q be a Borel CSP on a standard
Borel space X. Suppose that

p(#) (d(B) +1)* < e

If 7 is a compatible Polish topology on X, then % has a T-Baire-measurable solution.

Similarly, if G is hyperfinite, Theorem 1.16 yields an improvement in the measurable setting:

N

Corollary 1.34 (Measurable hyperfinite LLL). Let : X — q be a Borel CSP on a standard
Borel space X. Suppose that the graph G4 is hyperfinite and that

p(B) (d(B) +1)? < e 2.

If i1 is a probability Borel measure on X, then 9% has a u-measurable solution.

1.3. Distributed algorithms

A recent trend in descriptive combinatorics, initiated by the first named author in [Ber23a], is to
investigate the surprisingly intimate relationship between descriptive combinatorics and distributed
computing—an area of computer science concerned with problems that can be solved efficiently
by a decentralized network of processors. It turns out that the existence of an efficient distributed
algorithm that solves a combinatorial problem on a class of finite graphs often implies that the same
problem admits Borel, measurable, etc. solutions on certain Borel graphs [Ber23al, and sometimes
the reverse implication also holds [Ber23b; Bra+21; GR21b]. Using Theorem 1.29, we contribute a
new result to this avenue of research, which allows using randomized distributed algorithms to solve
combinatorial problems in a Borel way on graphs with finite asymptotic separation index.
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The class of combinatorial problems we consider here are the so-called locally checkable labeling
(LCL) problems, which were isolated by Naor and Stockmeyer in [NS95] (in [Ber23a] the term
“local coloring problems” is used instead). The definition of an LCL problem is very similar to the
definition of a CSP given in Definition 1.19; the main difference is that an LCL problem is defined
on an underlying graph using the graph’s structure:

Definition 1.35 (Locally checkable labeling problems). A labeled graph is a pair (G, f), where G
is a graph and f: V(G) — N is a function, called a labeling. A rooted labeled graph is a triple
(G, f,v), where (G, f) is a labeled graph and v € V(G) is a vertex, called a root. Two rooted labeled
graphs (G, f,v) and (G’, f’,v’) are isomorphic if there is a graph isomorphism between G and G’
that sends v to v' and preserves the labeling. Given a labeled graph (G, f), a vertex v € V(G), and
an integer R € N, we let [G, f,v]r be the isomorphism type of the rooted labeled graph

(G[BG(UvR)]7 f’Bg(v,R)a U),

where Bg(v, R) is the R-ball around v in G.

A locally checkable labeling problem (an LCL problem for short) of radius R is a pair IT = (R, P),
where R € N and P is a map that sends isomorphism classes of finite rooted labeled graphs to {0, 1}.
If IT = (R, ?P) is an LCL problem and (G, f) is a locally finite labeled graph, then f solves II on G,
or is a II-coloring of G, if P([G, f,v]r) = 1 for all v € V(G). A graph G is II-colorable if it has a
II-coloring f: V(G) — N.

Informally, an LCL problem II = (R, P) is a “rule” that decides whether a labeling f of G is
“valid” by looking at the restrictions of f to R-balls around individual vertices.

Example 1.36 (Proper coloring as an LCL problem). A typical example of an LCL problem is
proper g-coloring, since whether a coloring of a graph G is proper is determined by its restrictions to
1-balls in G. Explicitly, given (the isomorphism type of) a finite rooted labeled graph (G, f,v), set
P(G, f,v) == 11if and only if f(v) < ¢ and f(u) # f(v) for all neighbors u of v. If we let IT := (1, P),
then a Il-coloring of a locally finite graph G is the same as a proper g-coloring of G.

The model of distributed computation relevant to our work is called LOCALS. It was introduced
by Linial in [Lin92] (although there are some earlier related results, e.g., by Alon, Babai, and Itai
[ABI86], Luby [Lub86], and Goldberg, Plotkin, and Shannon [GPS88]). For an introduction to this
subject, see the book [BE13] by Barenboim and Elkin.

The LOCAL model is intended to quantify the difficulty of transforming local data into a global
solution to a problem on a large (but finite!) decentralized communication network. Informally, we
imagine each vertex of an n-vertex graph GG to be occupied by a processor that may pass messages to
its neighbors. The length of the messages is unrestricted, and the computational power available to
each processor is unlimited (in other words, any computations carried out by individual processors
take a single unit of time). Eventually, every processor must decide on its own part of the output;
in the context of LCL problems, each vertex must decide on its own label. Since the processors may
only communicate along the edges of G, in T' time units, a processor can only collect information
from its T-ball in G—this is why the model is called “LOCAL”. In effect, a LOCAL algorithm with
running time 7' can be thought of as a function that determines the output at each vertex of G
based only on the isomorphism type of the T-ball around it [BE13, §4.1.2]. Formally, in addition
to the graph itself, a LOCAL algorithm also takes as input a labeling of G, used to distinguish the
vertices from each other.

Definition 1.37 (LOCAL algorithms). A LOCAL algorithm is a function A that sends isomorphism
classes of finite rooted labeled graphs to N. Given a locally finite labeled graph (G, f) and T € N,
the output of A on G after time T is the function Ar(G, f): V(G) — N given by

(Ar(G, f))(v) = A([G, f,v]r) forallve V(G).
S$This is not an acronym.
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Observe that an LCL problem, as defined in Definition 1.35, is a pair II = (R, P) such that Re N
and P is a LOCAL algorithm taking values in {0, 1}, and a labeling f: V(G) — N is a II-coloring of
G exactly when Pr(G, f) is the constant 1 function on V (G).

There are two variations of the LOCAL model, depending on the way the symmetry-breaking
labeling f in Definition 1.37 is chosen. In the deterministic version of the model, f assigns a unique
identifier to each vertex, and the output of the algorithm must provide a valid solution to the
problem regardless of the specific assignment of the identifiers:

Definition 1.38 (Deterministic LOCAL complexity of LCL problems). Let IT be an LCL problem
and let G be a class of finite graphs. The deterministic LOCAL complexity of II on the class G is
the function Detyyg: N* — N U {00} defined by letting Detryg(n) be the smallest T € N such that
there exists a LOCAL algorithm A with the following property:

For every n-vertex graph G € G and every bijection ID: V(G) — n, the function Ar(G,ID) is a
II-coloring of G.

If no such T" € N exists, we set Detyyg(n) := c0.
In the randomized version of the LOCAL model, the symmetry is broken using a random labeling:

Definition 1.39 (Randomized LOCAL complexity of LCL problems). Let II be an LCL problem
and let G be a class of finite graphs. The randomized LOCAL complexity of II on the class G is
the function Randpg: Nt — N U {00} defined by letting Detryg(n) be the smallest 7 € N such that
there exist £ € N* and a LOCAL algorithm A with the following property:

For every n-vertex graph G € G, if a mapping ¥: V(G) — ¢ is chosen uniformly at random, then
1

P[the function A7 (G,9) is a Il-coloring of G| > 1 — -

If no such T € N exists, we set Detyyg(n) := 0.

Unsurprisingly, the randomized version of the model is more computationally powerful than the
deterministic one, and there exist many instances where a problem’s randomized LOCAL complexity
is significantly lower than its deterministic LOCAL complexity [CKP19].

In [Ber23a], the first named author showed that fast deterministic LOCAL algorithms for LCL
problems yield Borel solutions to these problems:¥

Theorem 1.40 (AB [Ber23a, Theorem 2.10]). Let IT be an LCL problem and let G be a class of
II-colorable finite graphs such that Detrg(n) = o(logn). If G is a Borel graph of finite maximum
degree all of whose finite induced subgraphs are in G, then G has a Borel 1l-coloring.

Similarly, a fast randomized LOCAL algorithm yields measurable/Baire-measurable solutions:

Theorem 1.41 (AB [Ber23a, Theorem 2.14]). Let I be an LCL problem and let G be a class of
II-colorable finite graphs such that Randp g(n) = o(logn). If G is a Borel graph of finite maximum
degree all of whose finite induced subgraphs are in G, then the following conclusions hold:

(i) If p is a probability Borel measure on V(G), then G has a p-measurable II-coloring.

(ii) If 7 is a compatible Polish topology on V(G), then G has a T-Baire-measurable II-coloring.

In other words, if we are willing to sacrifice Borelness and settle for measurable or Baire-measurable
solutions, then we may use the much more powerful randomized version of the LOCAL model to find
them. Here we show that if the graph G has finite asymptotic separation index, then no sacrifice is
necessary: we can obtain Borel II-colorings of G from randomized LOCAL algorithms:

Tror simplicity, Theorems 1.40 and 1.41 are presented here in a somewhat less general way than the corresponding
statements in [Ber23a]. However, these less general formulations are sufficient for most applications. See the discussion
in §3.2 and [Ber23a, §2.B] for more details.
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Theorem 1.42 (Borel colorings using randomized algorithms and finite asi). Let IT be an LCL
problem and let G be a class of II-colorable finite graphs such that Randp g(n) = o(logn).
Let G be a Borel graph of finite maximum degree all of whose finite induced subgraphs are in
G. If asi(G) < oo, then G has a Borel Il-coloring.

We in fact prove somewhat stronger (and numerically explicit) versions of Theorem 1.42, which
are presented in §3.2. We should also note that Theorems 1.40 and 1.41 are stated in [Ber23a]
in the more general context of so-called structured graphs, i.e., graphs equipped with additional
combinatorial data such as an orientation, a labeling, an ordering of the vertices, etc. Our results
also hold for structured graphs, as we explain in §3.2.

Although it may at first seem unrelated, Theorem 1.42 is actually a relatively straightforward
consequence of our main results concerning Borel versions of the LLL. As demonstrated in [Ber23a/,
randomized LOCAL algorithms and the LLL are closely linked. Specifically, [Ber23a, Lemma 4.6]
gives a way to reduce an LCL problem II to an application of the LLL with a polynomial criterion
using a sufficiently fast randomized LOCAL algorithm. As a result, Theorem 1.42 follows in a fairly
routine manner from Theorem 1.29 and [Ber23a, Lemma 4.6]; the details are presented in §3.2.
Curiously, the relationship between LOCAL algorithms and the LLL is reciprocal: in order to prove
Theorem 1.31, we combine Theorem 1.42 with a fast randomized LOCAL algorithm for solving
instances of the LLL due to Fischer and Ghaffari [FG17] and Ghaffari, Harris, and Kuhn [GHK18];
see §3.3 for the details.

1.4. Combinatorial applications
1.4.1. Bounds on the Borel chromatic number

We have already mentioned two applications of our general results to the study of Borel proper
colorings of graphs with finite asymptotic separation index: Theorem 1.17 (Borel version of Brooks’s
theorem) and Theorem 1.18 (Borel version of Johansson’s theorem). Both of these results are derived
from Theorem 1.42 by citing relevant randomized LOCAL algorithms.

PROOF of Theorem 1.17. Fix an integer A > 3 and let Brooksa be the class of all finite graphs of
maximum degree at most A with no (A + 1)-cliques. Ghaffari, Hirvonen, Kuhn, and Maus [Gha+18§]
developed a randomized LOCAL algorithm for A-coloring n-vertex graphs in the class Brooksa with
running time O((loglogn)?) = o(logn). If G is a Borel graph of maximum degree A and without a
(A + 1)-clique, then all its finite induced subgraphs are in Brooksa, so if asi(G) < oo, then G has a
Borel proper A-coloring by Theorem 1.42, as desired. |

Theorem 1.18 is proved in exactly the same way by invoking randomized LOCAL algorithms due
to Chung, Pettie, and Su [CPS17]; see §4.1 for the details. As one more illustration, we show that if
the Borel chromatic number of a Borel graph G with finite asymptotic separation index is close to
the maximum degree of G, then it must be equal to the ordinary chromatic number of G:

Theorem 1.43 (Borel colorings with A — O(v/A) colors). There exists a constant Ag € N
with the following property. Let G be a Borel graph with finite maximum degree A = Ag
and let k := |\/A + 1/4 —7/2|. If asi(G) < o0 and xg(G) = A — k, then xg(G) = x(G).

PRrROOF. Clearly, x(G) < xg(G). To show x(G) = xg(G), set ¢ := xg(G) — 1 and suppose, toward
a contradiction, that x(G) < ¢. Let II, be the LCL problem that encodes proper g-coloring of
graphs (see Example 1.36) and let Colp 4 be the class of all finite graphs with maximum degree
at most A and chromatic number at most ¢q. For large A and ¢ > A — k — 1, Bamas and Esperet
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[BE19, Theorem 1.3] proved that
Randp, col, ,(7) < exp(O(4/loglogn)) = o(logn).

Since all finite induced subgraphs of G are in Colp 4, Theorem 1.42 implies that G' has a Borel
proper g-coloring, which contradicts the choice of g. [

When A is sufficiently large, Theorem 1.17 is a consequence of Theorem 1.43 and Brooks’s
Theorem 1.7 for the ordinary chromatic number. Similarly, we have:

Corollary 1.44 (Borel colorings with A — 1 colors). There exists a constant Ag € N with the
following property. Let G be a Borel graph with finite maximum degree A > Ay and without
a A-clique. If asi(G) < o, then xg(G) < A — 1.

PRrROOF. For large A, Reed [Ree99] showed that graphs with maximum degree A and without A-
cliques have chromatic number at most A—1. Hence, the desired result follows from Theorem 1.43. W

1.4.2. Borel edge-colorings

Alongside proper coloring, another classical concept in graph theory is proper edge-coloring, which
is defined as follows:

Definition 1.45 (Edge-colorings and the (Borel) chromatic index). Let G be a graph and let g € N.
A proper g-edge-coloring of G is a function f: E(G) — ¢ such that f(e) # f(e’) for all distinct
edges e, €/ € E(G) that share a vertex. The chromatic index x/'(G) of G is the smallest ¢ € N such
that G has a proper g-edge-coloring; if no such ¢ € N exists, we set x'(G) := oo. Similarly, if G is a
Borel graph, then the Borel chromatic index xg(G) of G is the smallest ¢ € N such that G has a
Borel proper g-edge-coloring; if no such ¢ exists, we set xg(G) == .

A proper g-edge-coloring of a graph G is exactly the same thing as a proper g-coloring of the line
graph of G, i.e., the graph L(G) with vertex set E(G) and edge set {{e,e'} € [E(G)]? : lené| = 1}.
If G is a Borel graph of finite maximum degree A, then the maximum degree of L(G) is at most
2A —2, and hence the Borel chromatic index of G is at most 2A —1 by the Kechris—Solecki-Todorcevic
Theorem 1.5. Marks [Marl6] proved that there exist Borel forests G for which this bound is optimal,
and Conley, Jackson, Marks, Seward, and Tucker-Drob [Con+20a] further showed that such G can
be taken to be hyperfinite. The following theorem summarizes these facts:

Theorem 1.46 (Kechris—Solecki-Todorcevic [KST99, p. 15], Marks [Mar16, Theorem 1.4], Conley—
Jackson-Marks—-Seward-Tucker-Drob [Con+20a, Theorem 1.4(2)]). Fix an integer A € N.

(i) Every Borel graph G of maximum degree A satisfies xg(G) < 2A — 1.

(ii) There exists a hyperfinite Borel forest G of maximum degree A with xg(G) = 2A — 1.

By contrast, a celebrated result of Vizing asserts that the ordinary chromatic index of a graph of
maximum degree A cannot exceed A + 1:

Theorem 1.47 (Vizing [Viz64]). If G is a graph of finite maximum degree A, then x'(G) < A + 1.

See [Sti+12, §A.1] for an English translation of Vizing’s paper and [BM08, §17.2; Diel7, §5.3] for
modern textbook presentations.

Theorem 1.46 precludes a Borel version of Vizing’s theorem when A > 3. On the other hand,
a measurable version of Vizing’s theorem was recently proved by Grebik [Gre23| (building on the
earlier breakthrough work of Grebik and Pikhurko [GP20]). Naturally, we would like to know what
additional assumptions on G bring the Borel chromatic index of G closer to x/(G). For example,
Dhawan and the first named author [BD23a] showed that x5(G) < A + 1 if G is of subexponential
growth. In this direction, the asymptotic separation index turns out to be an extremely helpful
parameter, as demonstrated by Qian and the second named author [QW22]:
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Theorem 1.48 (Qian—-FW [QW22, Theorem 3.7]). If G is a Borel graph with finite maximum
degree A and with asi(G) < oo, then xg(G) < X'(G) + asi(G), and hence x5(G) < A+ 1 + asi(G).

In the case when G has no odd cycles, Theorem 1.48 was established earlier by Bowen and the
second named author [BW21]. Note that for graphs G with asi(G) < 1, examples of which are given
in §1.1, Theorem 1.48 yields the bound x5(G) < A + 2. It is still an open problem whether this can
be reduced to A + 1. It is also not known whether a bound of the form x5(G) < A + ¢ for some
fixed ¢ (perhaps even ¢ = 1) holds for all graphs G with asi(G) < o regardless of the value of asi(G).
As a consequence of our main results, we obtain an upper bound on xg(G) for graphs G with finite
asymptotic separation index that is asymptotic to A and independent of the value of asi(G):

Theorem 1.49 (Borel edge-colorings with A + O(+v/A) colors). For every & > 0, there exists
Ag € N such that if G is a Borel graph of finite maximum degree A > Ay and with asi(G) < o0,
then x5(G) < A ++v/Alog?® A.

Theorem 1.49 is proved by appealing to a randomized LOCAL algorithm for edge-coloring due
to Chang, He, Li, Pettie, and Uitto [Cha+19]; see §4.2 for the details. In view of Theorem 1.48,
Theorem 1.49 is only interesting for graphs G whose asymptotic separation index is non-negligible
compared to their maximum degree. This again highlights the importance of determining whether
there exist Borel graphs G with 1 < asi(G) < o0.

1.4.3. Borel edge-colorings of Schreier graphs

Some of the most well-studied examples in descriptive combinatorics are the so-called Schreier
graphs [KM20, §6.5]. These graphs are associated to group actions and arise naturally in measurable
and topological dynamics. For the remainder of §1.4.3, we fix a finitely generated group I' with a
finite symmetric generating set F' < I'\{1r}, where 1 is the identity element of I" (a subset of a
group is symmetric if it is closed under taking inverses). Recall that a group action a: I' C X is
free if v-q x # x for all x € X and v € I'\{1r}, i.e., if the stabilizer of every point in X is trivial.

Definition 1.50 (Schreier graphs). The Schreier graph of a free action a: I' G X is the graph
Sch(a, F') with vertex set X and edge set {{z,0 a2z} : v € X, 0 € F}.

Note that if X is a standard Borel space and a: I' G X is a free Borel action (meaning that the
map = — 7 -q « is Borel for each v € T'), then the corresponding Schreier graph Sch(a, F) is a Borel
graph of maximum degree |F'|. In contrast to general Borel graphs, the bound in Theorem 1.46(i) is
not sharp when G is a Schreier graph, as it can be easily seen [KM20, p. 67] that

Xg(Sch(a, F)) < [{c € F : ord(o) is even}| + g|{a € I : ord(o) is odd or infinite}| < %|F|

It is an open problem to determine the optimal upper bound on xg(Sch(a, F')) in terms of |F|.
The investigation of Borel edge-colorings of Schreier graphs with finite asymptotic separation
index was initiated by the second named author in [Wei2la]. There it is shown that a Borel version
of Vizing’s theorem holds for Schreier graphs with asymptotic separation index at most 1 under
the assumption that no element of F' is of odd order (this is also a consequence of Theorem 1.48,
which was proved later). Here we generalize this result by extending it to the case of arbitrary finite
asymptotic separation index and allowing F' to contain elements of sufficiently large odd order:

Theorem 1.51 (Borel edge-colorings of Schreier graphs). Suppose that |F'| > 2 and for each
o € I, the order of o is either even or at least 2%° |F|log |F|. Let a: T' & X be a free Borel
action of T on a standard Borel space X and let G := Sch(a, F') be the corresponding Schreier
graph. If asi(G) < o, then xg5(G) < |F| + 1.
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When |F'| < 1, the corresponding Schreier graphs G trivially satisfy xg(G) < |F|, so there is no
harm in only considering the |F'| = 2 case. The assumption that |F| > 2 in Theorem 1.51 ensures
that log |F'| > 0. We made no attempt to optimize the constant factor 23°. Note that Theorem 1.51
applies to some groups of exponential growth thanks to Theorem 1.13 (a Borel version of Vizing’s
theorem for graphs of subexponential growth is already known [BD23a]).

Theorem 1.51 cannot be easily derived using Theorem 1.42, because no o(log n)-time randomized
LOCAL algorithm for Vizing’s theorem is known (although the existence of such an algorithm has
not been ruled out), with the most efficient currently available algorithm running in time O(log?n)
[BD23b]. Instead, we prove Theorem 1.51 by invoking our Borel LLL (i.e., Theorem 1.31) directly.
More precisely, we apply Theorem 1.31 to prove a certain general result about Borel independent
complete sections, which is described in §1.4.4, and then use it to deduce Theorem 1.51.

1.4.4. Borel independent complete sections

For a graph G, a set I < V(G) is G-independent if no two vertices in I are adjacent. If F is a family
of pairwise disjoint sets, then a complete section for F is a set S that includes at least one element
from every set in F. The following classical fact is proved by a simple application of the LLL:

Theorem 1.52 (Alon [Alo88; Alo94; AS16, Proposition 5.5.3]). Let G be a graph of finite maximum
degree A and let F be a family of pairwise disjoint subsets of V(G). If |S| = 2eA for all S € &, then
there is a G-independent complete section for F.

Theorem 1.52, and independent complete sections in general, have been a subject of considerable
interest, not least because of their many applications to other combinatorial plroblems.H The required
lower bound on the sizes of the sets in F has been subsequently improved from 2eA to 2A by Haxell
[Hax01], which is best possible [BES75].

We prove a Borel version of Theorem 1.52 under a finite asymptotic separation index assumption.
To simplify the statement of our result, we say that a set S € V(G) is a complete section for a
graph G if it meets every connected component of G. In other words, S is a complete section for G
if and only if it is a complete section for the following family of sets:

F = {V(C) : C is a connected component of G}.
A subgraph G’ of G is spanning if V(G') = V(G).

Theorem 1.53 (Borel independent complete sections). Let H be a Borel graph with asi(H) <
oo and let G1, G2 be two spanning Borel subgraphs of H. Suppose that the maximum degree
of Gy is at most A € N, where A > 2. If every component of Gy contains at least 225 Alog A
vertices, then there is a Borel G1-independent complete section for G.

The assumption that asi(H) < c in Theorem 1.53 cannot be removed. Indeed, Marks [Mar16,
Theorem 1.6] gave an example of a Borel graph H and two spanning Borel subgraphs G, G2 such
that both G; and G2 have maximum degree 2, all their components are infinite, and every Borel set
A < V(H) either includes an entire component of G (and hence it is definitely not Gi-independent),
or misses a component of G (i.e., it is not a complete section for G2).

The usual proof of Theorem 1.52 is one of the rare applications of the LLL for which the bound
p(d + 1) < 1/e is sharp and a polynomial criterion is insufficient. As a result, we cannot establish
Theorem 1.53 by simply following the standard proof of Theorem 1.52 and substituting Theorem 1.29
or Theorem 1.31 in place of the LLL. Nevertheless, we are able to prove Theorem 1.53 using a

IA related notion considered in the literature is that of an independent transversal—i.e., a set that meets each
member of F in ezactly one point. For our purposes, working with complete sections will be more natural. Note that
the existence of a G-independent complete section for J is equivalent to the existence of a G-independent transversal
(although this equivalence may fail in the Borel setting).
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different approach, which unfortunately results in a superlinear lower bound on the size of the
components of G5. However, we suspect that the conclusion of Theorem 1.53 should hold even if
the components of GGo have size bounded below by some linear function of A:

Conjecture 1.54. There exist constants C'; Ag > 0 with the following property: Let H be a Borel
graph with asi(H) < o and let G1, G2 be two spanning Borel subgraphs of H. Suppose that the
maximum degree of G is at most A € N, where A > Ag. If every component of G contains at
least C'A vertices, then there is a Borel GGi-independent complete section for Gs.

One way to settle Conjecture 1.54 would be to prove a version of Theorem 1.31 under the usual
LLL assumption p(d+1) < 1/e. Since we suspect that Alog A is not the optimal order of magnitude
in Theorem 1.53, we made no attempt to optimize the constant factor 22°. We prove Theorem 1.53
in §4.3 and then use it to derive Theorem 1.51 in §4.4. If Conjecture 1.54 is true, then the same
argument would improve Theorem 1.51 by replacing the bound 23° |F|log |F| by a linear function of
|F'|. We expect that this can also be achieved by following a “nibbling” approach similar to the one
in the paper [RS02] by Reed and Sudakov, but the resulting argument would be quite technical,
and since we do not see how to generalize it to prove Conjecture 1.54 in full, we do not pursue it in
this paper.

2. Preliminaries
2.1. The spaces of finite sets and constraints

In this subsection, given a standard Borel space X and an integer ¢ € N, we describe a way of
endowing the set Const(X, q) of all (X, ¢)-constraints with the structure of a standard Borel space
(this is necessary for Definition 1.23 to make sense). The material in this subsection is entirely
standard; nevertheless, we decided to include it here for completeness.

Let X be a standard Borel space. We begin by equipping [X 1¥ for k € N with the structure of a
standard Borel space. To this end, let (X)* be the set of all k-tuples (zq,...,xr_1) € X* of distinct
points, and let ~, be the equivalence relation on (X)* given by

(@0, @h—1) ~k Wo,--- Uk—1) = Ao, w1} = {yo,- - Y1}
By [KMO04, Example 6.1 and Proposition 6.3], the quotient space [X]* = (X)*/ ~}, is standard
Borel. It follows that the disjoint union [X]<* = [X]%u [X]' U [X]?u... is standard Borel as well
[Tsel6, Proposition 1.4].

Next, given ¢ € N* | we let [X --» ¢]=% be the set of all partial functions ¢: X --» ¢ such that
dom(¢p) is a finite subset of X. Each ¢ € [X --» ¢]=% can be identified with a finite subset of X x g,
namely, with its graph {(z,¢(z)) : € dom(p)}. Using this identification, it is routine to check
that [X --» ¢]=% is a Borel subset of [X x g]<%*.

Finally, since an (X, g)-constraint is a finite subset of [X --+ ¢]=%, we may define

Const(X,q) = {B € [[X --» ¢]=*]=* : all functions in B have the same domain}.

It can be easily verified that Const(X, q) is a Borel subset of the standard Borel space [[X --» ¢]<®]<%,
and therefore, equipped with the relative o-algebra of Borel sets, it is also standard Borel.

2.2. Borel combinatorics on component-finite graphs

As mentioned in the introduction, the reason we expect graphs with finite asymptotic separation index
to have well-behaved Borel combinatorics is that Borel combinatorics “trivialize” on component-finite
graphs. The following statement makes this intuition rigorous:

Proposition 2.1 (Borel combinatorics on component-finite graphs). Let #: X —" ¢ be a Borel
CSP on a standard Borel space X. If the graph GG is component-finite and 9 has a solution, then
it has a Borel solution as well.
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The proof of Proposition 2.1 relies on the following deep and classical result (which we shall use
throughout the paper without mention):

Theorem 2.2 (Luzin—Novikov uniformization [Kec95, Theorem 18.10]). Let X, Y be standard
Borel spaces and let R <€ X x Y be a Borel subset. If for every x € X, the set

R, ={yeY : (z,y) € R}

is countable, then there exists a sequence (fy)nen of Borel partial functions f,: X --» Y defined on
Borel subsets of X such that for all x € X, R, = {fn(z) : ne N, x € dom(f,)}.
If additionally each set R, is nonempty, then the mapping f: X — Y given by

f(x) == fu@)(x), where n(z) = min{n e N : x € dom(f,)},
is a Borel function such that f(z) € R, for all z € X.

PROOF of Proposition 2.1. This is a standard argument in descriptive combinatorics, so we only
provide a proof sketch. Roughly, since on each component of G4 the problem can be solved in
only finitely many ways, the Luzin—Novikov theorem yields a Borel choice of one solution on every
component; putting the chosen solutions together solves the problem on the whole space.

In a little more detail, let € := {V(C) : C is a connected component of G4}. This is a Borel
subset of [X]|=®. Say that a finite partial solution to & is a map ¢ € [X --» ¢|=% such that ¢
satisfies every constraint B € % with dom(B) < dom(p). Then the set 8§ < [X --» ¢]=% of all finite
partial solutions to 4 is also Borel. Since Z# has a solution, for each finite set U € X, there is some
¢ € § with dom(p) = U. Let

R = {(U,p) e € x 8 : dom(yp) = U}.

Then R is a Borel subset of € x 8, and for each U € C, the set Ry = {p € § : (U,p) € R} is
finite and nonempty. Therefore, by the Luzin—Novikov theorem (Theorem 2.2), there exists a Borel
function € — 8: U — ¢y such that dom(py) = U for all U. For each x € X, let [x] € € be the
vertex set of the component containing z. Then the map f: X — ¢ given by

f(x) == pp(z) forall xe X,
or, equivalently, f :=| |;ce ¢u, is a Borel solution to %, as desired. |
Corollary 2.3. If G is a component-finite Borel graph and x(G) < o, then xg(G) = x(G).

ProOOF. Clearly, xg(G) = x(G). To see that xg(G) < x(G), recall from Example 1.24 that the
proper x(G)-coloring problem for G can be encoded via a Borel CSP %: V(G) —* x(G) given by

B = {{lu—i,v—i): 0<i<x(G)}: weE(G)}.
Since Gy = G is component-finite, it has a Borel proper x(G)-coloring by Proposition 2.1. |

Another useful consequence of the Luzin—Novikov theorem is the fact that if f: X — Y is a
countable-to-one Borel function between standard Borel spaces, then its image f(X) is a Borel
subset of Y [Kec95, Exercise 18.14].

3. Proofs of the main results
3.1. Proof of Theorem 1.29

As stated in §1.2, in our proof of Theorem 1.29 we will use an auxiliary parameter in place of the
separation index. The following definition is reminiscent of (and inspired by) an alternative way of
defining asymptotic separation index given in [Con+20b, Lemma 3.1(1")].
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Definition 3.1 (Shattering number). Let %: X —° ¢ be a Borel CSP on a standard Borel space
X. The shattering number of %, denoted by sh(#), is the smallest s € N for which there exists a
Borel family P < [X]=% of finite subsets of X such that P is a partition of X and for each B € 4,
dom(B) intersects at most s members of P (if no such s € N exists, we set sh(£) := ).

Some readers may be more familiar with describing a partition of a standard Borel space X into
finite sets as an equivalence relation on X with finite classes. For their benefit, we remark that a
partition P is a Borel subset of [X]|=% if and only if the equivalence relation whose classes are the
members of P is a Borel subset of X? [BY23, Lemma 3.8].

Let us observe two easy upper bounds on the shattering number of a Borel CSP.

Lemma 3.2. If Z: X —" q be a Borel CSP on a standard Borel space X, then:
(i) sh(#) <si(Gz) + 1, and
(i) sh(A) < suppey |dom(B)|.

ProOOF. For (i), suppose that X = Uy u ... Us is a partition witnessing si(G») = s. Then
P = {V(C) : C is a connected component of G[U;] for some 0 < i < s}

is a family of finite sets witnessing sh(#) < s + 1. For (ii), take P = {{z} : z € X}. [

We can now state the strengthening of Theorem 1.29 using the shattering number:

Theorem 3.3 (Borel LLL with bounded shattering number). Let %: X —’ ¢ be a Borel
CSP on a standard Borel space X. Suppose that sh(%) < s for some s € Nt. If

p(B) (d(B) + 1)* < e, (3.1)
then % has a Borel solution f: X — q.

Theorem 1.29 is a direct consequence of Theorem 3.3 and Lemma 3.2(i). On the other hand,
combining Theorem 3.3 with Lemma 3.2(ii) gives a conclusion reminiscent of, though slightly weaker
than, [Ber23b, Corollary 1.8].

The technique we employ to prove Theorem 3.3 is known as the method of conditional probabilities
in computer science, where it is commonly used for derandomization [AS16, §16; MR95, §5.6]. This
method has already been applied to obtain “constructive” versions of the LLL, for instance by
Beck [Bec91], Fischer and Ghaffari [FG17], and the first named author [Ber23b]. We especially
highlight the connection to [FG17, Theorem 3.6] by Fischer and Ghaffari, which uses so-called
network decompositions to design efficient distributed algorithms in a way that is rather analogous
to our use of the shattering number.

Our proof of Theorem 3.3 is inductive: we shall construct the desired g-coloring of X that solves
P by iteratively coloring subsets of X. Throughout the iterations, the domains of the constraints
will be shrinking until they become empty. Note that there are precisely two constraints with the
empty domain: @ and {&}. The constraint {@&} has probability 1/¢° = 1 and is violated by every
coloring, while the constraint @ has probability 0 and is always satisfied. The distinction between
these two cases will play a decisive role in the last stage of our proof.

To facilitate the analysis of the iterative process, the following notation will be useful. Fix a set X
and an integer ¢ € N and let f: U — ¢ be a g-coloring of a subset U < X. For an (X, ¢)-constraint
B, we write B/f to denote the constraint with dom(B/f) := dom(B)\U given by

B/f = {¢: (dom(B)\U) = ¢ : flaomm)nv v ¢ € B}

18



In other words, ¢ € B/f if and only if the coloring f L1 ¢ violates B. We emphasize that it is possible
to have dom(B) < U, in which case dom(B/f) = &. More specifically, if dom(B) < U, then

gt if f violates B;
Bp - {120 1S
I} if f satisfies B.

Observe that if f': U’ — ¢ is another g-coloring of some set U’ < X\U, then
(B/N/f" = B/(fuf)

Given a CSP %: X —" ¢, we define a CSP %/f: (X\U) —’ ¢ by
Blf = {B/f : Be #}.

By construction, f’: (X\U) — ¢ is a solution to %/ f if and only if f L f’ is a solution to %B. Note
that we always have d(#/f) < d(Z), but there is no a priori relation between p(%/f) and p(A).
The following lemma describes the inductive step in the proof of Theorem 3.3:

Lemma 3.4. Let Z: X —’ ¢ be a Borel CSP on a standard Borel space X and let s: 2 — N be a
Borel function such that for all B € £,

P[B] (d(#) + 1)*B) < ¢=3(B), (3.2)
Let U € X be a Borel set such that the graph G [U] is component-finite. For each B € 4, define
RS i
Then there exists a Borel function f: U — q such that for all B € A,
P[B/f]1(d(#/f) + 1)*B)=1B) < e=s(B)tn(B), (3.3)

ProOOF. Note that if B € 4 is a constraint such that dom(B) nU = &, then (3.3) holds for this B
regardless of the choice of f: U — ¢, since B/f = B, d(#/f) < d(#), and n(B) = 0. Therefore, we
only need to focus on the constraints B € & with dom(B) n U # @. Consider any such constraint
B. For a function ¢: (dom(B) n U) — ¢, let the probability of B conditioned on ¢ be

‘{(10 €B: (p‘dom(B)mU = w}‘
PIB|v] = gldom (BN '

In other words, P[B | %] is the probability that a uniformly random g-coloring of dom(B) violates
B given that it agrees with 1) on dom(B) n U. Observe that for any f: U — ¢, we have

P[B/f] = PIB| flaoms)~v]- (3.4)
Let B* be the constraint with dom(B*) := dom(B) n U given by
B* = {¢: (dom(B) nU) —>q : P[B|y] > (e(d() + 1)) A1},

Simple double counting shows that

(e(d(#) + 1))@ L p[p] = glem®OUL ST p[p |y
¥ (dom(B)nU)—q

> g 1OmBUN B (e(d(2) + 1)) = P[B*] (e(d(#) + 1)) (DL,
(This is essentially Markov’s inequality from probability theory.) We conclude that
P[B*] (d(#) +1) < 1/e. (3.5)
Now let #*: U — ¢ be the Borel CSP defined by
PB* = {B* : Be A, dom(B) nU # o}.
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Since d(#*) < d(#) by construction, it follows from (3.5) that 2 satisfies the assumptions of the
ordinary LLL, i.e., of Lemma 1.21. Therefore, %* has a solution. Note that Gg+ = G»[U], which
is component-finite by hypothesis. Thus, £* has a Borel solution f: U — ¢ by Proposition 2.1. We
conclude from (3.4), the definition of %*, and the inequality d(#/f) < d(#) that f is as desired. W

PROOF of Theorem 3.3. Let P < [X]|=% be a Borel family of finite sets witnessing that sh(#) < s.
We claim there exists a partition P = | |, . Pn of P into countably many Borel sets such that for
each B € # and n € N, dom(B) meets at most one member of P,,. Indeed, let H be the Borel graph
with vertex set P in which distinct sets S, R € P are adjacent if and only if there is a constraint
B € # such that dom(B) meets both S and R. Each set S € P is finite, and every point in §
belongs to at most d(#) < w0 constraints in & (d(Z) is finite by (3.1)). Since every constraint
intersects finitely many sets in P, it follows that the graph H is locally finite. Therefore, by [KST99,
Proposition 4.5], there is a Borel function ¢: P — N such that ¢(S) # ¢(R) whenever S and R are
adjacent in H (i.e., c is a Borel proper N-coloring of H). Setting P, := ¢~ 1(n) gives the desired
partition of P.

For n € N, let U, := |JPn, so X = | |,.yUn is a partition of X into Borel sets. For each
n € N, each connected component of G4[U,] is contained in an element of P,,, and so G»[U,] is
component-finite. For each B € # and n € N, let t,,(B) be the number of sets U; with i < n such
that dom(B) nU; # @ and set s, (B) := s —t,(B) (thus, to(B) = 0 and so(B) = s). By assumption,
tn(B) < s for all n € N and thus s, (B) = 0. Hypothesis (3.1) yields

P[B] (d(#) + 1)*°B) < ¢=B)  for all B e 2.

In fact, this inequality is strict, since its left-hand side is rational, while its right-hand side is not.
We may now set B := B for all B € # and ) := 2 and then iteratively apply Lemma 3.4 to
produce a sequence of Borel g-colorings f,,: U, — ¢ such that for each n € N and B € A,

P[BT+D] (d(B D) + 1)sn1(B) < ¢msni1(B) (3:6)

where B .= B/(fou...u f,) = BM™/f, and B+ .= B/(fou...u f,) = B™/f,. We claim
that the Borel function f :=| | . fn is & solution to . Indeed, consider any constraint B € #. To
see that f satisfies B, note that since dom(B) if finite, there is some n € N such that

flaoms) = (fou ... 0 fa)ldom(B)-

Hence, by (3.6),
P[B/f]

Since dom(B/f)

]P’[B/(fo [ fn)] = P[B(n+1)] < (e(d(@(n+1)) + 1)>_5n+1(B) < 1.
@, it follows that B/f = @, i.e., f satisfies B, as desired. [

3.2. From the LLL to LOCAL algorithms

As briefly mentioned in the introduction, LCL problems and LOCAL algorithms can be defined in
the situation when the underlying graph is equipped with additional combinatorial structure, such as
an orientation, a labeling, etc. Since we will need this general set-up for the proof of Theorem 1.31,
we recall the necessary definitions here. Our presentation follows that in [Ber23a, §2.A].

For a set X, let X<® := X, X' 5 X? i ... be the set of all finite tuples of elements of X.

Definition 3.5 (Structured graphs). Let G be a graph. A structure map on G is a partial function
o: V(G)=® --s N such that for some ¢ € N, every tuple x € dom(o) is of length at most ¢. A
structured graph is a pair G = (G, o), where G is a graph and o is a structure map on G.

Examples 3.6. (i) A labeled graph (G, f) in the sense of Definition 1.35 can be viewed as a
structured graph by identifying V(G) with V(G)! in the obvious way.
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(ii) A directed graph G can be viewed as a structured graph by encoding the directions of the
arcs of G using the function o: V(G)? — 2 that sends a pair (u,v) to 1 if and only if there is an arc
from u to v in G.

(iii) An ordered graph is a pair (G, <), where G is a graph and < is a linear order on V' (G). These
objects are of interest in extremal combinatorics [Tar19]. An ordered graph can be represented by a
structured graph using the map o: V(G)? — 2, where o(u,v) = 1 if and only if u < v.

A structured graph G = (G, 0) is Borel if G is a Borel graph and o is a Borel function (that is,
o~ 1(i) is a Borel subset of V(G)<® for all i € N).

We naturally extend standard graph-theoretic notation and terminology to structured graphs.
For example, given a structured graph G = (G, o), we write V(G) := V(G) and E(G) = E(G).
Similarly, given v € V(G) and R € N, we let

Bg(v,R) == Bg(v,R) € V(G).
For a subset U < V(G), the subgraph of G induced by U is the structured graph G[U] given by
GIU] = (GIUL,olu==).

Isomorphisms between structured graphs are required to preserve the values of the structure maps.

With this we can define labelings of structured graphs, rooted (labeled) structured graphs,
LCL problems and their solutions, LOCAL algorithms, and deterministic and randomized LOCAL
complexity of LCL problems on structured graphs by simply repeating Definitions 1.35, 1.37, 1.38,
and 1.39 with every occurrence of the word “graph” replaced by “structured graph.” Theorems 1.40
and 1.41 remain true in this more general context [Ber23a, Theorems 2.10 and 2.14], and the same
is true for our Theorem 1.42:

Theorem 3.7 (Theorem 1.42 for structured graphs). Let IT be an LCL problem and let G
be a class of Il-colorable finite structured graphs such that Rand g(n) = o(logn). Let G be
a Borel structured graph of finite maximum degree all of whose finite induced subgraphs are
in G. If asi(G) < oo, then G has a Borel Il-coloring.

In fact, we can strengthen Theorem 3.7 by avoiding the asymptotic notation o(logn). Let G be a
class of finite structured graphs and let R, n € N. A structured graph G is (R, n)-locally in G if for
all v € V(G), there is exist an n-vertex structured graph H € G and v € V(H) such that

(G[Ba(v,R)], v) = (H[Bu(u,R)], u)

as rooted structured graphs.

Theorem 3.8. Let IT = (R, P) be an LCL problem and let G be a class of finite structured
graphs. Fix n € NT such that Rand g(n) < 00 and set R* := Randp g(n) + R. Suppose G is
a Borel structured graph with the following properties:

e G is (R*,n)-locally in G,

e asi(G) < s < o0, and

e |Bg(v,2R*)| < nV/*t e for all v e V(G).
Then G has a Borel 1I-coloring.

The bound on |Bg(v,2R*)| in Theorem 3.8 depends on the exact value of asi(G). We also prove
an analogous statement with a uniform bound for all G with asi(G) < co:

21



Theorem 3.9. Let IT = (R, P) be an LCL problem and let G be a class of finite structured
graphs. Fix n € NT such that Rand g(n) < 00 and set R* := Randp g(n) + R. Suppose G is
a Borel structured graph with the following properties:

e G is (R*,n)-locally in G,

e asi(G) < o0, and

e |Bg(v,2R*)| < n'/?/4 for allv e V(G).
Then G has a Borel 1I-coloring.

The chain of implications between our main results is as follows:

Th ) (B) (©) D)
eorem 1.29 == Theorem 3.8 == Theorem 3.7 == Theorem 1.31 == Theorem 3.9.
Theorem 1.29 has been verified in §3.1, so now we are left with proving the four implications in
the above diagram. In this subsection, we shall establish implications (A), (B), and (D). The only
remaining implication, (C), will be proved in §3.3.
We start with implication (B), which is proved by a straightforward computation.

PROOF of implication (B): Theorem 3.8 => Theorem 3.7. This argument is essentially present
in [Ber23a] (immediately following [Ber23a, Theorem 2.10]). Assume that Theorem 3.8 holds and
let IT = (R, P), G, and G be as in Theorem 3.7. If G is finite, then G itself is in G, and so it has
an (automatically Borel) II-coloring. Thus, we may assume that G is infinite. We now claim that
the conditions of Theorem 3.8 are satisfied for all large enough n € N, and thus G has a Borel
II-coloring, as desired.

Let the maximum degree of G be A and let s := asi(G). Let

t(n) = Randpg(n) and R*(n) == t(n) + R.
Consider any vertex v € V(G) and let B := Bg(v, R*(n)). If n > |B|, then we can extend B to an
n-element set U 2 B of vertices and observe that the R*(n)-balls around v in G and G[U] are the
same. Since every finite induced subgraph of G is in G, it follows that G is (R*(n),n)-locally in G
provided that n is at least as large as the size of every R*(n)-ball in G.

Since t(n) = o(logn) and hence A'™ = n°() | the following chain of inequalities holds for all
sufficiently large n € N:

1+ AR*(n) <1+ AZR*(n) =1+ A2t(n)+2R < nl/(s-i—l)/e < n. (37)
As every r-ball in G contains at most 1 + A" vertices, any n satisfying the bounds in (3.7) fulfills
all the requirements of Theorem 3.8, and we are done. |

To prove implications (A) and (D), we rely on the following technical lemma from [Ber23a]:

Lemma 3.10 ([Ber23a, Lemma 4.6]). Let IT = (R, P) be an LCL problem and let G be a class of
finite structured graphs. Fix n € N* such that T := Randp g(n) is finite and set R* := T + R. Let
¢ e Nt and a LOCAL algorithm A witness the bound Randr g (n) < T (as in Definition 1.39). If G
is a Borel structured graph of finite maximum degree that is (R*,n)-locally in G, then there exists
a bounded Borel CSP %: V(G) —' { such that:

(i) for every solution ¥: V(G) — ¢ to A, the function Ar(G,V) is a ll-coloring of G, and
(ii) p(Z) < 1/n and d(#) < supey (@) | Ba (v, 2R*)| — 1.
Moreover, the associated graph G is a subgraph of G*®* | and hence asi(G3) < asi(Q).

We point out that the “moreover” part of Lemma 3.10 is not explicitly stated in [Ber23a], but it is
an immediate consequence of the proof of [Ber23a, Lemma 4.6], since the domain of each constraint
in the CSP % constructed there is the R*-ball around some vertex of G.
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PROOF of implication (A): Theorem 1.29 = Theorem 3.8. Let Il = (R,P), G, n e Nt R* G,
and s be as in Theorem 3.8. Set T":= Randyg(n), so that R* =T + R. Let £ € N* and a LOCAL
algorithm A witness the bound Randp g(n) < 7. Since G is (R*, n)-locally in G, Lemma 3.10 yields
a bounded Borel CSP %: V(G) —7 ¢ such that:

(i) for every solution ¥: V(G) — ¢ to A, the function Ar(G, ) is a Il-coloring of G,
(i) p(#) < 1/n and d(%) < sup,ey(q) |Ba(v, 2R*)| — 1 < nY/(+D /e — 1, and
(iii) asi(Gg) < s.
It follows from (ii) that

s+1
() (d(#) + )™ < & (w00 2 e,
n

Therefore, (iii) implies that % has a Borel solution ¥: V(G) — ¢ by Theorem 1.29. Then, by (i),
f=Ar(G,9) is a II-coloring of G, and it is Borel by [Ber23a, remark after Lemma 4.1]. [

Implication (D), i.e., Theorem 1.31 = Theorem 3.9, is proved in exactly the same way, mutatis
mutandzis.

3.3. From LOCAL algorithms to the LLL

In this section we verify the only remaining implication from the diagram in §3.2, namely (C):
Theorem 3.7 = Theorem 1.31. Our argument follows the strategy outlined in [Ber23a, §5.D]. The
key point is that there exist efficient randomized LOCAL algorithms that solve CSPs satisfying a
polynomial LLL criterion, and combining such an algorithm with Theorem 3.7 yields Borel solutions
to such CSPs when the associated graph has finite asymptotic separation index.

To make the above idea precise, we need to be able to encode a given CSP as an LCL problem
on an auxiliary structured graph. There are several natural ways of doing so; here we follow the
approach described in [Ber23a, §5.D].

Definition 3.11 (Graph-CSPs). A graph-CSP with range ¢ € N is a pair (G, #), where G is a
graph and %: V(G) —" ¢ is a bounded CSP such that d(%) < o and Gz is a subgraph of G.

A graph-CSP (G, %) can be viewed as a structured graph in the following way. For each tuple

of vertices v = (vg,...,vp—1) € V(G)=%, the structure map o will contain the information about
the constraints B € 4 such that dom(B) = {vy,...,vg_1}. Formally, let (V(G))<% be the set of all
finite tuples of distinct vertices and for each v = (v, ...,vk—1) € (V(G))=%, define

By = {Be B : dom(B) = {vg,...,vp_1}}

The domain of ¢ is the set of all v € (V(G))<* with %, # @. Note that since & is bounded, o is
defined on tuples of bounded length. For v = (vp,...,vx_1) € dom(o), let ¢y: {vo,..., 061} — k
be the bijection given by ty(x;) := i, and for each B € 4, define

B = {p:k—>q:poi,€ B}
Note that the mapping By — B: ¢ — @ 01, is a bijection. Now let the type of v be

type(v) = {Bj : B € %,}.
Observe that the set Types of all possible types of tuples in dom(o) is countable (indeed, it is a
subset of [[[N --» N]=%®]<%®]<%), so we can fix an arbitrary injection code: Types — N and let
o(v) = code(type(v)).

The pair (G, o) now represents exactly the same information as (G, %), and since o is defined on
tuples of bounded length, (G, o) is a structured graph (as in Definition 3.5). Moreover, it is routine

to check that if G is a Borel graph and 4 is a Borel CSP, then o is a Borel function, and thus (G, o)
is a Borel structured graph.
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Let (G, %) be a graph-CSP. The requirement that G is a subgraph of G means that the 1-ball
around every vertex of G includes the domains of all constraints that involve that vertex. That is,
the problem of solving a graph-CSP is an LCL problem of radius 1, which we denote by Ilcsp 4
(here ¢ € N* is the range of %). Given parameters q, k, p, and d, let CSP(q, k, p, d) be the class of
all finite graph-CSPs (G, %) (viewed as structured graphs) such that:

e the range of A is q;
® SUDpcy |d0m(B)| K

After these technical preliminaries, we can rigorously formulate a result regarding LOCAL algo-
rithms for the LLL that we shall use:

Theorem 3.12 (Ghaffari-Harris-Kuhn [GHK18]). If ¢, k, p, and d satisfy p(d + 1)® < 271° then

Rand i1y, ceb(ukpa) (1) = exp(O(y/loglogn)) = o(logn).

The first o(logn)-time randomized LOCAL algorithm for the LLL with a polynomial criterion
is due to Fischer and Ghaffari [FG17]. We are using the Ghaffari-Harris—-Kuhn version instead
because it improves the criterion from p(d + 1)32 < e732 to p(d + 1)® < 271%. In subsequent work,
considerable effort has been put into making the running time of the algorithm even lower [RG20;
Dav23]. On the other hand, we are not aware of any improvements to the required bound on p as a
function of d, and it remains an open problem whether the exponent 8 can be reduced, ideally all
the way down to 1.

With Theorem 3.12 in hand, we are ready to deduce Theorem 1.31 from Theorem 3.7:

PROOF of implication (C): Theorem 8.7 = Theorem 1.31. Let #: X —" q be a bounded Borel
CSP on a standard Borel space X such that asi(G#) < o0 and

p(B) (d(B) +1)% < 2715,

Let p == p(#), d :== d(#), and k := suppe 4 |[dom(B)|, and let II := Ilcgp , and G := CSP(q, k,p,d).
By the usual LLL, the structured graphs in G are Il-colorable. Furthermore, by Theorem 3.12, we
have Randpg(n) = o(logn). Consider the graph-CSP G := (G g, %), viewed as a Borel structured
graph. The maximum degree of G is bounded above by kd, and all finite induced subgraphs of G are
in G (taking an induced subgraph corresponds to passing to a subset of the vertices and only retaining
the constraints whose domains are contained in that subset). Since asi(G) < o by assumption, we
conclude that G has a Borel II-coloring—i.e., 4 has a Borel solution—by Theorem 3.7. |

4. Applications
4.1. Coloring graphs without short cycles

Here we present the derivation of Theorem 1.18 from our main results. For A € N, let TrFreea be
the class of all triangle-free finite graphs of maximum degree at most A. Given € > 0 and A > 2, let

g(Ae) = [(4+s)10gAJ.

Let II, denote the LCL problem that encodes proper g-coloring of graphs (see Example 1.36). Chung,
Pettie, and Su [CPS17, Theorem 9] showed that for each € > 0, there exist C, §, Ag > 0 (depending
on ¢) such that for every A > Ay, we have

Randr, , ., Trfree (7) < CA™’logn. (4.1)
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Although this bound is not strong enough to invoke Theorem 1.42 (it is of order O(logn) rather than
o(logn)), it is still sufficient for a direct application of Theorem 3.9.** Indeed, the same analysis as
in the proof of the implication Theorem 3.8 = Theorem 3.7 on page 22 reduces the problem to
showing that for all sufficiently large n € N,

1+A20A*510gn+2 < }nl/s.

This is indeed the case as long as A is large enough as a function of ¢, since

2C0A % logn 20A= % 1log A
A g — pn e

and 2CA % log A < 1 /8 for sufficiently large A. This establishes the part of Theorem 1.18 regarding
triangle-free graphs. The part of Theorem 1.18 concerning graphs without 3- and 4-cycles is proved
in exactly the same way, but with [CPS17, Theorem 9] replaced by the randomized LOCAL algorithm
of Chung, Pettie, and Su for [(1 + €)A/log A|-coloring graphs without cycles of length at most 4
(see the remark in [CPS17] after [CPS17, Theorem 9]).

4.2. Edge-colorings with A + O(+v/A) colors

In this subsection, we prove Theorem 1.49. We begin by explaining how to frame proper edge-coloring
as an LCL problem. The obvious approach is to view proper g-edge-coloring of a graph G as a
proper g-coloring of the line graph L(G) and use the LCL problem defined in Example 1.36. The
drawback of this strategy is that LOCAL algorithms for edge-coloring typically reference both edges
and vertices of GG, and the information about the vertices of G is apparently lost when working on
L(G). However, this issue can be easily rectified by incorporating both the vertices and the edges
of G into an auxiliary structure. For example, we can use the following construction, suggested in
[Cha20, p. 5]. Let G be a graph. Define a new graph G’ with vertex set V(G’) .= V(G) u E(G) and
edge set E(G') .= {{v,e} : ve V(Q), e€ E(G),vee}. Forallve V(G) and e € E(G), let o(v) =0
and o(e) := 1. This defines a function o: V(G’) — 2 and yields a structured graph G’ := (G’, o),
which contains information about the vertices and edges of GG, distinguished from each other via the
map o. Proper g-edge-coloring of G can be encoded as an LCL problem on G’ of radius 2, which
requires every vertex x of G’ with o(z) = 1 to receive a label in ¢ that is distinct from the labels of
the vertices joined to = by paths of length 2.

Fix A € N and let ¢ := |A + v/Alog® A|. Combining a result of Chang, He, Li, Pettie, and Uitto
[Cha+19, Theorem 4] with a randomized LLL algorithm due to Fischer and Ghaffari [FG17] (or with
Theorem 3.12), we see that the proper g-edge-coloring problem can be solved on n-vertex graphs
of maximum degree A by a randomized LOCAL algorithm with running time o(logn), assuming A
is sufficiently large. By Theorem 3.9, it follows that every Borel graph G with finite asymptotic
separation index and of maximum degree A has a Borel proper g-edge-coloring, as desired.

For further discussion of the state of the art in distributed edge-coloring, see [Dav23].

4.3. Borel independent complete sections

Here we prove Theorem 1.53, restated below for ease of reference.

Theorem 1.53. Let H be a Borel graph with asi(H) < oo and let G, G2 be two spanning Borel
subgraphs of H. Suppose that the maximum degree of GGy is at most A € N, where A > 2. If
every component of Gy contains at least 22> Alog A vertices, then there is a Borel G1-independent
complete section for Gs.

**Actually, the running time of the Chung—Pettie-Su algorithm can be improved to o(logn) via generic “speed-up”
theorems in distributed computing, namely by combining a result of Chang and Pettie [CP19, Theorem 6] with an
o(log n)-time randomized LOCAL algorithm for the LLL such as Theorem 3.12. That being said, the bound (4.1)
suffices for our purposes.
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PROOF of Theorem 1.53. For brevity, let V := V(H). Let k := [22°Alog A], so every component
of GGo has at least k vertices. In fact, we may assume that every component of Gy contains exactly
k vertices. Indeed, let R < [V]<% be the family of all finite sets R such that:

e |R| =k, and
e the graph G3[R] is connected.

By [KM04, Lemma 7.3], there exists a Borel set R’ € R such that the members of R" are pairwise
disjoint and every set in R intersects some member of R’. It follows that the vertex set of every
connected component of G includes at least one member of R’ as a subset. Now define U = | R,
H' = H[U], G = G1[U], and let G4 be the spanning subgraph of G2[U] obtained by only retaining
the edges of the graphs G3[R] with R € R’ (in other words, G is the graph whose connected
components are precisely the graphs Ga[R] with R € R). Then H', G/, and G, are Borel graphs
satisfying the assumptions of Theorem 1.53. Furthermore, by construction, every component of G
contains exactly k vertices. Suppose we can find a Borel G}-independent complete section S for GY.
Then S is Gi-independent (because G} is an induced subgraph of G;) and a complete section for
G2 (because every component of Gy includes a component of G%). Therefore, proving the theorem
under the assumption that every component of Go contains exactly k vertices implies the theorem
in general.

Let G := Gy and ¥ := {V(C) : C is a connected component of G2}. Then F is a Borel subset
of [V]¥, and our goal is to find a Borel G-independent complete section for F. Without loss of
generality, we may assume that each set F' € F is G-independent. To see this, let G’ be the spanning
subgraph of G in which two vertices are adjacent if and only if they are adjacent in G and do
not belong to the same set in F (so each set F' € F is G’-independent by construction). Suppose
we can find a Borel G’-independent complete section S for F. Using the Luzin—Novikov theorem
(Theorem 2.2), we can choose, for each F' € F, a single vertex vp € S n F so that the mapping
F — S: F — vp is Borel. Then S’ := {vp : F € F} is a Borel subset of S that meets every set in F
in exactly one vertex. It follows that S’ is G-independent, so we have found a Borel G-independent
complete section for F.

With these preparations, we may start the main part of the proof. Given a A-coloring f: V — A,
we define a set Sy < V by

Sp = {veV : f(v)=0and f(u) # 0 for all uv € E(G)}.

By construction, Sy is a G-independent set, and if f is a Borel function, then Sy is Borel. Our aim
is to find a Borel function f: V' — A such that Sy meets every set in J.

The membership of a vertex v in Sy is determined by the values of f at v and the neighbors of v.
Thus, whether Sy meets a set F' € F only depends on the restriction of f to Bg(F,1), i.e., the set of
all vertices that are in F' or have a G-neighbor in F. Hence, we can define a (V, A)-constraint Bp
with domain Bg(F,1) such that f: V — A satisfies Bp if and only if Sy meets F. Explicitly,

Bp = {¢: Bg(F,1) > A : forallve F, ¢(v) # 0 or ¢(u) =0 for some uv € E(G)}.

Let % := {Bp : F'€ F}. This is a bounded Borel CSP such that if f: V — A is a solution to 4,
then Sy is a Borel G-independent complete section for F. It remains to argue that % has a Borel
solution, to which end we shall employ Theorem 1.31.

To begin with, we observe that asi(Gg) < oo. Indeed, if u and v are neighbors in Gz, then there
is some F' € F such that u, v € Bg(F,1). Since H[F] is a connected graph with at most k vertices,
it follows that v and v are joined by a path of at most k£ + 1 edges in H. Thus, GGz is a subgraph of
H**1 and hence asi(G») < asi(H) < co. We will not use the graph H again, so all the references
to neighbors, adjacency, edges, etc. in the sequel are in relation to the graph G.

Next we need to bound the parameters d(#) and p(#). We start with d(%), which is the easier
one. Take F € F and suppose that F’ € F\{F'} satisfies Bg(F’,1) n Bg(F,1) # @. Consider any
vertex v € Bg(F,1) n Bg(F’,1). Since v € Bg(F, 1), there are at most k + Ak choices for v. As
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v € Bg(F', 1), either v itself or a neighbor of v is in F’. Since the sets in F are disjoint, it follows
that, given v, there are at most 1 + A choices for F’. In total, for fixed F', there are at most
(k + Ak)(1 + A) — 1 options for F’ (we are subtracting 1 since F itself should not be counted), so

d(B) < (k+Ak)(1+A)—1 < 4A%k —1 < 22TA° — 1.

Now we turn our attention to p(#). Consider any set F' € . We need to bound P[Bpr], i.e., the
probability that a uniformly random A-coloring ¢: Bg(F,1) — A belongs to the set Bp. Let N be
the set of all neighbors of the vertices in F', and let ©»: N — A and &: F' — A be the restrictions of
¢ to N and F respectively. By our assumption, the set F' is G-independent, so, Bg(F,1) = F u N,
which means that ¢ and & are chosen independently and uniformly at random from the sets of all
A-colorings of N and F respectively. Let

F* == {ve F : ¢(u) # 0 for all neighbors u of v}. (4.2)
Note that ¢ € By if and only if {(v) # 0 for all v € F*. Therefore,
P[Br] = P[¢(v) # 0 for all v e F*]. (4.3)

The key observation is that |F*| is unlikely to be too small:
Claim 4.1. P[|F*| < k/8] < 4A™°%.
Proof. Observe that, since (1 — 1/x)® > (1 — 1/2)? = 1/4 for all z > 2, we have

A
1 k
1] = -— = -.
E[[F*(] |F<1 A) 1

Therefore, we need to find an upper bound on the probability that |F*| < E[|F*|] — k/8. To this end,
we shall apply a concentration of measure result that is often used in probabilistic combinatorics
and is a consequence of Talagrand’s isoperimetric inequality [Tal95]. There are several variants of
this inequality in the literature [MR14; BJ18; KP20], and designing new and improved versions of
it is an active area of research. We shall use a (simplified form of) the recent formulation due to
Delcourt and Postle [DP22]. Given two finite strings x = (z1,...,z,) and y = (y1,...,Yn), and a
vector ¢ = (c1,...,¢,) € R™, we let

diste(z,y) == . lail.
1T FY;
Theorem 4.2 (Talagrand’s inequality; Delcourt—Postle [DP22, Theorem 4.4]). Let (1, p1), .. .,
(. f1n) be discrete probability spaces and let (2, 1) := [ i, (%, f15) be their product space. Suppose
that X : Q — R is a non-negative random variable satisfying the following for some r, d > 0:
(T) For all s > 0 and w € 2 with X (w) = s, there exists a vector ¢ € R™ such that |c|; < rs,
lelon < d, and for all W' € Q, we have X (w') = s — dist.(w',w).

Then for any t > 96+/rdE[X] + 128rd,

2
P[IX —E[X]| > t] < 4exp <_87“d(4E[X] +t)> :

To apply this in our setting, we view ¢: N — A as a point in the product of |N| copies of the
space (A, v), where v is the uniform probability measure on the set A = {0,1,..., A —1}. Let
X = |F|—|F*|.
We claim that condition (T) of Theorem 4.2 holds for this random variable X with » = 1 and d = A.

Indeed, suppose that s > 0 and ¢: N — A are such that X (¢)) > s. For clarity, we write F*(1)) to
denote the set F* < F' constructed according to (4.2) using this function . Let T be an arbitrary
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subset of F\F*(1) of size exactly s. For each vertex v € T', we arbitrarily pick a neighbor u, € N
such that ¥ (u,) = 0 and define a function ¢: N — N by

cu) = |{veT : u=uy}l.

We have |c|li = X,y c(u) =|T] = s and [¢|o < A, since u must be adjacent to every vertex v
such that u = u,. Now take any ¢': N — A and note that if v € T n F*(¢’), then ¢’ (u,) # 0, so

X@) zs—TnF*@) =s=— Y cu) =s—dist(y,),

w: ! (u)#0

as desired. Since E[X] < k and k/8 > 96V Ak + 128A, we may now apply Theorem 4.2 with r = 1,
d = A, and t = k/8 to conclude that

P[|F*| < E[|F*[] — k/8] = P[X — E[X] > k/8]

k? /64 k —500
< VAL )<
dexp ( SA(4k + k/8)) dexp ( 2112A> a7

where the last inequality uses the bound k > 22° Alog A.
Note that the definition of the set F'* depends on % but not on £. Since the functions ¥»: N — A

and £: F — A are chosen independently, conditioned on the choice of i, we can write

1\ ¥
P[&(v) # 0 for all v e F*|¢] = (1*A> )

Therefore, thanks to Claim 4.1, we have

1\ F/8
P[¢(v) # 0 for all v e F*] < 4A7°0 4 (1 — A)
k
(since l—x<e ®forallze R) < 4A70 4 oexp <_8A> < 5AT0

where the last inequality uses the bound k > 22°Alog A. Remembering (4.3), we conclude that
P[Br] < 5A7°%.

Since this bound holds for all F' € 7, it follows that p(%) < 5A~°%.
Putting everything together, we see that

p(@) (d(%) + 1)8 < 5A_500 . 2216A40 =5. 2216 X A_460 <5- 2—244 < 2—157
and thus & has a Borel solution by Theorem 1.31, as desired. |

4.4. Edge-colorings of Schreier graphs

In this subsection, we derive Theorem 1.51 from Theorem 1.53. The main idea of the proof of
Theorem 1.51 is to decompose the line graph L(G) of G into certain induced subgraphs with a
simple structure and then combine colorings of those subgraphs into a coloring of L(G). We begin
with a couple lemmas that facilitate this approach. The following observation is almost trivial:

Lemma 4.3. Let G be a Borel graph and let V(G) = Uy u ... 1 U, be a partition of the vertex set
of G into Borel subsets such that xg(G|[U;]) < oo for all 1 <i <mn. Then

(@) < 3 xe(CIU).
i=1
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PROOF. Let ¢; := xg(G[U;]) and let f;: U; — ¢; be a Borel proper g;-coloring of G[U;]. Define

i—1
fiw) = fi(v) + Z q; forallveU;.

j=1
Then f:= f{ u...u f}, is a Borel proper (>}, gi)-coloring of G. [

For a graph G, let A(G) denote the maximum degree of G. If in the setting of Lemma 4.3 each
graph G[U;] has finite maximum degree, then we can use Theorem 1.5 to write

x8(G) < ZXB(G[Ui]) < Z(A(G[Ui]) +1) = n+ZA(G[Ui])-

The next lemma, which we deduce from Theorem 1.53, allows us to improve this bound when G has
finite asymptotic separation index and the graphs G[U;] do not have small components:

Lemma 4.4. Let G be a Borel graph of maximum degree at most A € N, where A > 2, and let
V(G) =U; u...u U, be a partition of the vertex set of G into Borel subsets. Suppose that for all
1 < i < n, every component of G[U;] contains at least 225 Alog A vertices. If asi(G) < oo, then

\s(G) < 1+ 3 AGIU)).
=1

PROOF. Let G’ be the spanning subgraph of G with E(G’) := E(G[U1])u...uE(G[U,]). Applying
Theorem 1.53 with H = G7 = G and G5 = G’ yields a Borel G-independent complete section S for
G'. For each 1 < i < n, let U] == U;\S. Clearly, A(G[U/]) < A(G[U;]). Moreover, since S meets
every connected component of G[U;], every component of G[U/] includes a vertex that is adjacent
to S in G[U;] and hence has degree at most A(G[U;]) — 1 in G[U/]. Therefore, by a result of Conley,
Marks, and Tucker-Drob [CMT16, p. 16, proof of Theorem 1.2], xg(G[U]]) < A(G[Ui)).

To finish the argument, we apply Lemma 4.3 to the partition V(G) = S u U] u ... u U}, to get
x8(G) < xg(G[S]) + D xe(GIU]]) < 1+ ) A(G[UY]). u
i=1 ‘

For the remainder of §4.4, we fix a group I" generated by a finite symmetric set F' < I'\{1r}. For
ease of reference, let us restate Theorem 1.51 here:

Theorem 1.51. Suppose that |F'| = 2 and for each o € F, the order of o is either even or at least
239 |F|log|F|. Let a: T & X be a free Borel action of I' on a standard Borel space X and let
G = Sch(a, F) be the corresponding Schreier graph. If asi(G) < oo, then xg5(G) < |F| + 1.

PROOF. Recall that the line graph of G is the graph L(G) with vertex set E(G) and edge set
{{e.e'} € [E(G)]? : le n€/| = 1}. Note that we have x5(G) = xg(L(G)). To bound xg(L(G)), we
shall apply Lemmas 4.3 and 4.4 to certain partitions of E(G).

To begin with, we show that asi(L(G)) < asi(G) < o. Set s := asi(G) < . By the Luzin—Novikov
theorem (Theorem 2.2), there is a Borel function c¢: E(G) — X such that c(e) € e for all e € E(G).
Take any R e N and let X = Uy L ... L Us be a partition witnessing that si(G¥*1) < s. Define a
partition E(G) = Ey u ... U Es by E; := ¢ Y(U;). If e, € € E(G) are joined by a path of length at
most R in L(G), then c(e) and c(e’) are joined by a path of length at most R + 1 in G. It follows
that the graphs L(G)®[E;] are component-finite, and hence si(L(G)%) < s, as desired.

Let F5 be the set of all generators o € F' of order 2 and let F.o & F\F5 be a subset formed by
picking one member from each pair {o,0~!} € F\F,. Then we have

|F| = |F2| + 2|Fsa.
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We split the set FLo as Fuo = Feyen U Fodd U Fop, Where Feyen, Fodd, and F, comprise the elements
o € F.o whose order is even, odd, or infinite respectively. For o € F5 U Fo, define
E, = {{z,0-qx} : z€ X}.
Note that the sets (Ey : 0 € Fy U F~9) form a partition of E(G).
Let L, := L(G)[E,]. If 0 € Fy, then E, is an L(G)-independent set. For 0 € Feyen U Fodd, every
component of L, is a cycle of length ord(c), and for o € F,,, every component of L, is an infinite
path. If o0 ¢ F,, then L, is component-finite and hence, by Corollary 2.3, xg(Ls) = x(Lo)-

Let Lo and Ly be the subgraphs of L(G) induced by (J,cp, £,,., Eo and (,e Fogguk,, Po respectively.
By Lemma 4.3,

XB(LO) < Z XB(LU) = ‘F2| + 2’Feven’-
0€F5U Feyen

Note that A(L(G)) < 2|F|. Since every component of L, for o € Fy4q U Fy, contains at least
2% |F|log |F| = 2% - 2|F|log(2|F|)
vertices, we may apply Lemma 4.4 to conclude that

xe(L1) <1+ > A(Ly) = 1+ 2|Foad| + 2|Fi).

O'EFoddUF:x)

By Lemma 4.3 again,
x8(L(G)) < xB(Lo) + x8(L1) < [Fof + 2|Feven| + 1+ 2|Fodd| + 2|Fio| = |F|+ 1,

and the proof is complete. |
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