PRACTICE FOR TEST 3, November 19, 2004

MATERIAL COVERED: up to - and including - 3.16

Problem 1: Find the area of the region that lies inside the curve $r=2|\sin\theta|$ and outside the curve $r=\frac{\sqrt{2}}{2}+|\sin\theta|$.

Problem 2: Exercise 20, page 125.

Problem 3: Assume that $\lim_{x\to p} f(x) = L$ and that L > 0. Prove that

$$\lim_{x \to p} (f(x))^{\frac{1}{3}} = L^{\frac{1}{3}}.$$

Problem 4: Assume that $\lim_{x\to p} f(x) = \lim_{x\to p} g(x) = L$ and define h(x) by h(x) = 2f(x) + g(x) if x is rational and h(x) = f(x) + 2g(x) if x is irrational. Prove that

$$\lim_{x \to p} h(x) = 3L.$$

Problem 5: Assume that f is continuous at every point of [0,3/2] and that $f(x) \geq \frac{1}{1-x}$ for every $x \in (1,2]$. Show that f is bounded below on [0,2], that is show that the set $\{f(x): x \in [0,2]\}$ is bounded from below.

Problem 6: Exercise 21, page 142.

Problem 7: Exercise 5, page 145.

Problem 8: Prove that

- (i) Prove that the equation $x^3 + 2x = x^2 + 1$ has a solution in (0,1).
- (ii) there exists $c \in \mathbb{R}$ such that f(c) = 10, where $f(x) := x^3 x^2 + x$.