21-131 Analysis I – PRACTICE FOR TEST 2 Test 1– 11:30 October 20, 2004 I. Fonseca

ON ALL PROBLEMS, EXPLAIN HOW YOU REACH YOUR CONCLUSIONS

MATERIAL COVERED: CHAPTER I UP TO – AND EXCLUDING – Section 2.5

1 Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Prove that

$$\bar{I}(f)[a,b] = \bar{I}(f)[a,c] + \bar{I}(f)[c,b]$$

for all $c \in (a, b)$.

Note: Here we are using the notation

$$ar{I}(f)([a,b]) := \inf \left\{ \int_a^b t : t \geq f \ \ ext{on} \ [a,b], \quad t ext{ is a step function}
ight\}.$$

2 Let $g:[-2,0]\to\mathbb{R}$ be a bounded function such that

$$g(x) = -g(-x - 2)$$

for all $x \in (-2, 1)$. Prove that $\bar{I}(g)[-2, 0] = 0$.

Note: The translation f(x) := g(x-1) defined on [-1,1] is odd, i.e. f(x) = -f(-x) for all $x \in (-1,0)$.

3 Prove that if f is a Lipschitz function on [0,b] satisfying $|f(x)-f(y)| \le L|x-y|$ for all $x,y \in [0,b]$ and for some L>0 then

$$\int_0^b f(x) \, dx \le f(0)b + \frac{b^2}{2}L.$$

4 Let $f:[-1,4]\to\mathbb{R}$ be defined by

$$f(x) := \begin{cases} x^2 + 1 & -1 \le x \le 0, \\ 3 & 0 < x < 1, \\ x^3 & 1 \le x \le 4. \end{cases}$$

Prove that f is integrable and find $\int_{-1}^{4} f(x) dx$.

- **5** Let $f:[a,b]\to [0,+\infty)$ be integrable. Prove that f^2 is also integrable.
- **6** Assume that for all $n \in \mathbb{N}$ the following hold:

$$\sum_{i=1}^{n} \sqrt{i} \le \frac{2}{3} n \sqrt{n} + C \sqrt{n}, \quad \sum_{i=1}^{n-1} \sqrt{i} \ge \frac{2}{3} n \sqrt{n} - C \sqrt{2n}$$

for some constant $c \in \mathbb{R}$. Show that $x \mapsto \sqrt{x}$ is integrable on [0,2] and that $\int_0^2 \sqrt{x} \, dx = \frac{4\sqrt{2}}{3}$.

7 Assume that for all $n \in \mathbb{N}$ the following hold:

$$\sum_{i=n}^{2n-1} i^{-2} \le \frac{1}{2n} + \frac{3}{n^2}, \quad \sum_{i=n+1}^{2n} i^{-2} \ge \frac{1}{2n} - \frac{1}{n^2}.$$

Prove that $x \mapsto x^{-2}$ is integrable on [1,2] and that $\int_1^2 x^{-2} dx = \frac{1}{2}$.

8 Prove that

$$\frac{1}{4} \le \int_0^1 \frac{x}{1+x^4} \, dx \le \frac{1}{2}$$

9 Let $f:[0,2] \to \mathbb{R}$ be defined by

$$f(x) := \left\{ \begin{array}{ll} x & x \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{array} \right.$$

Is f integrable on [0,2]?

10 Find the area of the region between the curves $y = x^3$ and $y = \sqrt{x}$ on [0,2].