ASSIGNMENT 5 Due Thursday, October 14, 2004

Problem 1: Let a < b and let f(x) be defined for all $x \in [a, b]$. Assume there exists a constant L such that $|f(x) - f(y)| \le L|x - y|$ for all x and y in the interval [a, b] (f is said to be Lipschitz continuous on [a, b]). Prove that f is integrable on [a, b].

Problem 2: Let a < b and let f and g be bounded functions on [a, b]. Prove that

$$\overline{I}(f+g) \leq \overline{I}(f) + \overline{I}(g).$$

Problem 3: Assume that $\sum_{i=1}^n \sqrt{i} \leq \frac{2}{3} n \sqrt{n} + \sqrt{n}$ and $\sum_{i=1}^{n-1} \sqrt{i} \geq \frac{2}{3} n \sqrt{n} - \sqrt{2n}$ hold for all positive integers, n. Prove that \sqrt{x} is integrable on [0,1] and that $\int_0^1 \sqrt{x} dx = \frac{2}{3}$.

Problem 4: Exercise 23 on page 83.

Problem 5: Exercise 15 on page 94.