
Automated Equational Reasoning

in Nondeterministic λ-Calculi

Modulo TheoriesH∗

by

Fritz H. Obermeyer

2009:05:01

Department of Mathematics

Mellon College of Science

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Richard Statman, Chair

Dana Scott

Kevin Kelly

James Cummings

Submitted for partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

1

Abstract

In this thesis I study four extensions of untyped λ-calculi all under the maximally coarse
semantics of the theory H∗ (observable equality), and implement a system for reasoning about
and storing abstract knowledge expressible in languages with these extensions. The extensions
are:

(1) a semilattice operation J, the join w.r.t the Scott ordering;
(2) a random mixture R for stochastic λ-calculus;
(3) a computational comonad 〈code, apply, eval, quote, {−}〉 for Gödel codes modulo provable

equality; and
(4) a Π1

1-complete oracle O.
I develop three languages from combinations of these extensions. The syntax of these languages
is always simple: each is a finitely generated combinatory algebra. The semantics of these lan-
guages are various fragments of Dana Scott’s D∞ models. Although the languages use ideas
from the theory of computer programming languages, they have no operational semantics and
do not describe programs.

The first language, SKJ , extends combinatory algebra with a join operation, with respect
to the information ordering on terms. I show that an interpretation of types-as-closures reflects
from D∞ down to this definable fragment. The main theorem for SKJ is that simple types are
definable as closures. The resulting type theory is very rich (ω-order polymorphism, depen-
dent types, a type-of-types, power-types, quotient types) but logically unsound (every type is
inhabited). However I demonstrate that this type system provides an expressive interpretation
of type-as-symmetry and join-as-ambiguity.

The second language, SKRJ , extends combinatory algebra with a random bit, then with join.
I show that SKRJ provides semantics for a monadic λ-calculus for convex sets of probability
distributions (CSPDs). This follows from our choice of join distributing over randomness –
the opposite of what one would expect from the usual interpretation of join-as-concurrency. I
conjecture that a weakened definable-types theorem also holds in SKRJ , and provide some
evidence to this effect. I also show that, in case simple types are definable, the monadic CSPD
types are polymorphic in the simple definable types.

The third language, SKJO , extends combinatory algebra with join, a comonadic type of
codes, and a carefully defined Π1

1-complete oracle, so that exactly the ∆1
1 predicates about SKJ

-terms are realized as total terms of type code→bool. This language is sufficient to represent
all of predicative mathematics, and can thus serve to represent virtually any kind of abstract
knowledge. As an example, I formulate the statement and proof of termination in Gödel’s ⊤ in
the language SKJO , but do not formally verify the proof.

The final component of this thesis is a system, Johann, for automated reasoning about equal-
ity and order in the above languages. Johann was used to formally verify many of the theorems
in this thesis (and even conjecture some simple theorems).

The general design focus is on efficient knowledge representation, rather than proof search
strategies. Johann maintains a database of all facts about a set of (say 10k) objects, or terms-
modulo-equivalence. The database evolves in time by randomly adding or removing objects.
Each time an object is added, the database is saturated with facts using a forward chaining
algorithm.

A specific design goal is to be able to run Johann for long periods of time (weeks) and ac-
cumulate useful knowledge, subject to limited memory. This requires statistical analysis of a
corpus of interest (e.g. the set of problems to be verified in this thesis), statistical search for
missing equations (from our Σ0

1 approximation to a Π0
2-complete theory), and careful choice of

sampling distributions from which to draw objects to add-to and remove-from the database.
The (add,remove) pair of distributions is chosen to achieve a detailed balance theorem, so that, at
steady state, Johann (provably) remembers simple facts relevant to the corpus.

2

Contents

Contents 3

1 Overview 7
1.1 Motivation and Philosophy . 7
1.2 Summary . 8
1.3 Future directions . 10
1.4 Format . 12
1.5 Notation . 12

2 Equational deduction in untyped λ-calculus (SK) 17
2.1 Axioms for Scott’s information order relation (⊑ and 6⊑) . 17
2.2 Axioms for basic combinators . 18
2.3 Theorems proved by η-conversion . 22
2.4 Axioms for divergent terms (approachingH) . 23

3 Untyped λ-calculus with ambiguity-as-join (SKJ) 27
3.1 Axioms for join-as-ambiguity (J) . 29
3.2 Axioms for a universal retract (U) . 32
3.3 Axioms for a universal closure (V) . 34
3.4 Axioms for a power closure (P) . 39
3.5 Axioms for the least strict closure (div) . 42
3.6 A simple type constructor (Simple) . 43
3.7 Types as closures . 52
3.8 Axioms for a few simple types . 60
3.9 Various-valued logics . 61
3.10 Tests for totality and correctness . 66
3.11 Axioms for a few simple tests . 69
3.12 Church numerals . 70
3.13 Coalgebraic numerals . 73
3.14 Dependent types for reduction proofs . 74

4 Untyped λ-calculus for convex sets of probability distributions (SKRJ) 83
4.1 Axioms for randomness . 84
4.2 A constructor for simple types of fuzzy terms . 87
4.3 Monadic types as closures . 88

5 Untyped λ-calculus with logical reflection (SKJO) 97
5.1 Related work . 98
5.2 Axioms for an extensional code type (code,A,E,Q, {−}) . 99
5.3 Injective codes for reflection . 105
5.4 Provability and reflection . 112

3

5.5 Axioms for a hyperarithmetic oracle (O) . 115
5.6 The logic of SKJ terms . 119
5.7 Types using reflection . 124

6 Examples and Applications 125
6.1 Proving properties of reduction in SKJ . 125
6.2 Type inference and termination in Gödel’s T . 130

7 Implementation of the Johann system 145
7.1 Background and related work . 145
7.2 Saturating a database . 147
7.3 Annealing a database of interest . 149
7.4 Automated Conjecturing . 153
7.5 Fitting a basis to a corpus of expressions . 155

A Syntactic algorithms 159
A.1 Term syntax . 159
A.2 Compiling to combinators . 160
A.3 Decompiling . 161
A.4 Reduction Strategies . 163
A.5 Statements . 163

B Reflected axiom schemata 165

Index 169

Bibliography 175

4

Acknowledgements

The author is most indebted to Rick Statman and Matthew Szudzik, for years of help in gaining a
perspective on λ-calculus and mathematical logic.

Thanks also to Kevin Kelly, Dana Scott, James Cummings, Frank Pfenning, Peter Lumsdaine,
Moritz Hardt, Jeremy Avigad, Bob Harper, Steve Awodey, Henk Barendregt, Bob Liebler, and
Alexander Hulpke for many fruitful discussions.

Thanks to Karl and Taya for putting up with obsessively bindboggled family. Thanks to Shaz
for helping me think from other people’s perspectives. Thanks to Matt Kahle for the random
discussion back in, like, 1999 that led to the first koan below, and this thesis topic.

And thanks to PJ for help in obtaining the office chair, and thus the foundations of this mathe-
matician.

Fritz Obermeyer,
2009:03:13

5

Chapter 1

Overview

Koan: If thoughts accumulated onto a structure,
as atoms accumulate to form a crystal,
what would that structure look like?

Koan: If we could store general results of mathematics in a table,
as we remember arithmetic in a multiplication table,
what would that table look like?

1.1 Motivation and Philosophy

Suppose we want to reason about the world by drawing analogies with mathematics, with some fixed uni-
versal mathematical structure. But we can only understand a finite approximation of this infinite universal
formal structure, e.g. all sets definable with n symbols.

What is the best universal structure to work with? The structure should, like mathematics, be some-
thing whose properties are discoverable. It should serve as a repository of scientifically acquired formal
knowledge. It should be an ontology of formal systems. There should be no place for uncertainty in the
structure itself, only in our finite approximation to it.

An example of such a structure is Gödel’s universe of constructible sets L. We can locate within L any
other formal system (r.e. theory, model, logic, etc.). We can translate questions about other formal systems
to questions about L. More importantly, we can translate knowledge and intuition from various formal
systems via L to other formal systems.

Suppose we built up a finite approximation to L, say an ontology, whose classes are sets and whose
relations between classes are the constructive axioms of set theory. When two sets are proved equal, we
ensure that they are represented by a single node in the ontology. We could in principle build all sets
definable in ≤ n symbols, construct all formulae expressible in ≤ m symbols, and automatically prove all
statements whose proofs use formulae bounded in size by m (narrow proofs rather than short proofs).

At any stage in growing such a structure, an approximation of L (imagine this process as crystal growth),
we would have sets that are provable equal, but only using wider proofs than we currently admit. Thus as
proof width increases, some of the ontology’s nodes are merged. We also have candidate expressions using
fewer than n symbols, but that are not narrowly provably sets (e.g. when constructing a set using choice,
we may not yet have proved the condition for existence). Thus as proof width increases, set candidates are
accepted or rejected.

Since set equality in L is undecidable, as set size grows, we find increasingly more pairs of sets whose
equality is unprovable, and increasingly more set candidates whose existence is unprovable. Are there
general reasoning principles whereby we can accumulate statistical evidence for equations and existence
decisions? Is there a physical basis for L?

Perhaps counting symbols or the number of axioms employed in constructing a set is not the best mea-
sure of complexity. We ought really weigh frequently-used axioms less and seldom-used axioms more.

7

And what about variable names? Is a set definable with 2 variables simpler than a set definable only with
at least 5?

How many symbols does it take to represent a typical mathematical entity, say the set of primes, or the
real number π? How many sets must we enumerate (uniformly, i.e. all sets definable with ≤ n symbols
for some n) before we come upon the number π? Could a machine automatically enumerate such sets, and
accumulate for us mathematical knowledge?

In this thesis we design a universal structure that serve these goals better, and for which it is easier to
answer these questions. The structure should have a simple grammar, so that its physical representation
is simple, and so expression complexity is easy to analyze. The structure should be real in the sense that
although we can’t finitely axiomatize it, we can look in the real world for statistical evidence partially
answering questions about it.1 More practically, we should be able to gain knowledge about the structure
using simple efficient reasoning principles, so that the acquisition of this knowledge can be automated.
The structure should be universal in the sense that all real formal structures can be found in it. 2 And the
structure should be dense in the quantitative sense that common “natural” mathematical structures should
have simple representations, so that we can practically construct the smallest n expressions and still see
many useful objects.

1.2 Summary

Untyped λ-calculus is the backbone of many theoretical and real-world programming languages. One gen-
erally starts with pure untyped λ-calculus and adds things (like numbers, booleans, etc. with reduction
rules) and takes things away (like ill-typed terms or non-convergent terms). The advantage of λ-calculus
and functional programming over imperative programming languages is the ease of equational reason-
ing: we can reason about λ-terms —programs— as we reason about numbers: writing equations, solving
equations, examining solution sets, etc.

This thesis follows the standard path of adding things to pure untyped λ-calculus, attempting to get
as much as possible out of as little extension as possible. Our main theorem (in 3.6) demonstrates that
Dana Scott’s λ-calculus of types-as-closures (from [Sco76]) can be interpreted in λ-calculus extended with
a semilattice operation, the join w.r.t. Scott’s information ordering. In that theorem we show that there are
λ-join-definable closures for each simple type, so that we can simulate the simply-typed λ calculus within
the untyped λ-join-calculus, implementing types as λ-join-terms.

By developing a typed λ-calculus within an untyped system, we can leverage simple equational reason-
ing principles to address type-conscious verification problems, e.g., typechecking, type-restricted equality,
and type-restricted convergence. In particular, we adapt the forward-chaining Todd-Coxeter algorithms
from computational group theory to the problem of program verification. The first two chapters have been
debugged and partially verified with our verification system Johann, described in Chapter 7.

All of our reasoning is done in H∗ = the coarsest equational theory never identifying a divergent term
with a normal form = the theory of Dana Scott’s D∞ and P(ω) models. The moderate success of our auto-
mated reasoning system provides evidence that H∗ can be of practical significance, despite being logically
complicated (Π0

2-complete) and admitting no operational semantics (you can’t run two programs to see if
they are the same, moduloH∗).

The λ-join-calculus admits some convenient programming idioms in addition to definable types-as-
closures. For example, we show in 3.9 that there are convenient-to-use closures corresponding to problems
of various complexity classes, e.g., Π0

1, Σ0
1, Π0

2, Σ0
2, and differences of Π0

2 sets. This is in contrast to pure
untyped λ-calculus, where equational specifications are more difficult to construct. We also demonstrate
a style of using closures to perform type-inference, in 3.7, 3.14, 6.1, and 6.2. Although the join operation

1Shapiro ([Sha97]) contrasts such theories, e.g. numbers, about specific real objects with “algebraic” theories about families of
objects, e.g. group theory. In the former we have set down finitely much axiom information in the endless process of seeking the true
theory of an object; in the latter we categorize all extensions of a particular finite theory, e.g. groups or topological spaces.

2Say a structure is real if it can be found in the real world, and is formal, if it can be found in many places, with computable
transformations among these views.

8

admits no new Curry-Howard corresponding types, it does allow simpler proofs, whereby proofs can be
“sketched”, and then raised to full proofs via a closure, as in type inference.

After developing and verifying a small library of expressions in λ-join-calculus, we experiment with
two further extensions of λ-join-calculus. (But we do not fully implement verifiers for these extensions.)

SKRJ

SKJO

SKJSKR

SK

Chapter 5.

Chapter 3.

Chapter 2.

Chapter 4.

ex
te

ns
ion

 b
y j

oin

Figure 1.1: From pure untyped λ-calculus SK , we extend to a nondeterministic λ-calculus SKJ ,
stochastic λ-calculus SKR , a λ-calculus for convex sets of probability distributions SKRJ , and a λ-
calculus for hyperarithmetic functions SKJO .

The second extension we study adds randomness to λ-calculus, and then adds join. We attempt but fail
to prove that simple types are still definable in this system; however the attempt sheds light on the simpler
proof in SKJ , and the nature of join in general. We do prove that the system where randomness distributes
over join (i.e., R x(J x y) = J(R x y)(R x z)) provides a language for convex sets of probability distribu-
tions (CSPDs), the natural system arising from interval-valued probabilities. We also prove that there is a
monadic type system for CSPDs, following Pfenning’s type system λO ([PPT05]). We show that, in case the
simple-types theorem does hold in SKRJ , the simple types and the CSPD monad combine gracefully.

Our third extension attempts to capture logically complex statements in the clean verification language
of SKJ , by adding a Π1

1-complete oracle O. By carefully limiting what kinds of questions O can answer,
we are able to extend the problem classes of 3.9 to hyperarithmetic analogs in 5.6. Our main innovation
in this extension is a type of Gödel-coded SKJO -terms, modulo the theorem-prover’s notion of equality
—a sort of provably extensional code type. This code type forms a computational comonad, as studied
by Brookes and Geva ([BG92]), and satisfies much better categorical properties than other types of quoted
or inert terms. More practically, these coded types allow a nearly 1-1 correspondence between terms and
codes for those terms, thus conserving space in our very memory-intensive verification algorithm (though
we have not implemented verifier for this fragment).

Finally, we describe in 7 algorithms for probabilistic proof search and statistical analysis, as part of the
Johann reasoning system. The first of these algorithms is a randomized database annealing algorithm,
based on the Metropolis-Hastings algorithm. This allows us to randomly acquire knowledge in service
of a probabilistically specified motive, such as “simplify this term” or “answer this query” or “prove this
assertion”. Our main theorem shows detailed balance: that we can achieve a desired steady state distribution
over databases by using a pair of easily-computable sampling distributions, one for adding terms to- and
one for removing terms from- the database.

A second algorithm searches for missing equations in our forward-chaining database. This “automated
conjecturing” algorithm was instrumental in developing the axioms in the first chapter (see subsections
entitled “Theorems conjectured by Johann”). It is tempting to use such an algorithm to automatically add

9

equations to the theory. However, we prove that this is impossible: automated conjecturing can focus
attention on interesting questions, but cannot provide probabilistic guesses as to the likelihood of truth.

The final algorithm tunes the probabilistic basis, or dually, the complexity norm with which we define
“simplicity”. This nonlinear optimization algorithm allows the verifier to assess which λ-terms should be
considered basic constants, and locally optimizes their weights. The goal of this optimizer is to decrease the
complexity of an example corpus —in our case this thesis. Although the local optimization was crucial in
identifying reasonable basis weights for successful proof search, global optimization is provably impossible.

1.3 Future directions

Operational semantics

Although λ-join-calculus modulo H∗ proves to be a succinct language for computable mathematics, it fails
as a true programming language, as it lacks an operational semantics. By finding a reasonable operational
semantics, we would be able to verify not only mathematics, but also programs.

Already the join operation can be interpreted as concurrency, but this proves difficult in the presence
of infinite joins (as in proof search in 3.14). A possibility is fault-tolerant semantics, where joins of threads
each compete to find the first total result, and additional results (e.g. error) are discarded thereafter. This
would require hard-coding a few datatypes, and restricting joins to domains with totality tests. In this
semantics we essentially take a minimal Σ0

1 fragment fromH∗ (exactly what is needed for type definability)
and discard the rest.

Additional knowledge representations

The Johann reasoning system does not scale well, with the most expensive inference rules requiring quintic
time in size of formula to be verified. Although the constant factor for these inference rules is extremely
small, it necessarily limits the size of databases we can build. For example, we can currently build databases
with N = 8000 obs overnight, but extending to N = 10000 obs takes two more days. Indeed it is typically
time and not memory that limits the system.

There are two problems to be addressed here. The first is that, since Johann searches for narrow proofs
only within the current database, it takes many annealing steps to acquire proof information. That is, to
increase the database size by one ob, while maintaining a specified knowledge density (e.g. percent of order
relations which are decided), Johann must add and remove many obs in the process of proof search.

The second problem is that about 90% of the theorem-proving time is taken spent enforcing about 8
axiom schemata instances. Of these, the associativity schema (for B, J, and P) is most expensive. In
addition to time-cost, associativity is also very space-intensive; e.g. to prove x◦(y◦z) = (x◦y)◦z requires 8
obs: B x, B y, B y z, B x y, B(B x y), and either B x(B y z) or B(B x y)z.

One possible solution to both of these problems is to add new knowledge representations: tables for
both composition and join. Since proofs in this augmented database would be narrower, Johann would
not need as many annealing steps to achieve a given density. Moreover, the associativity schemata for B

and J could be re-implemented to use the more appropriate data structures. It is also likely that adding
composition to the probabilistic basis (and randomly generating compositions of terms x◦y) would be more
optimal in simplifying the corpus. This is suggested by the empirical observation that the composition atom
B havs very high weight in the optimized basis found by Johann —B was used twice as often as any other
atom.

An interface for problem-solving

The Johann system is better suited to statistical analyses and term search algorithms than verification tasks.
Thus we would like to develop a natural interface to harness this computing power. On example such
interface is that of hole filling in a language with partially defined terms.

Example 1.3.1. Say you’re defining/constructing a mathematical entity, say a function. You already know

10

• its input- and output- types;
• some facts about- and relating- its inputs and outputs, e.g.

– some of its symmetries (preserving transformations) and
– some example inputs and outputs; and

• a rough idea of how to build it.

You sketch out what you know

gcd := (
P (nat → nat → nat) input and output types

(λg, x, y. g y x) symmetric binary function
) (

λx, y. inputs a couple numbers
is zero x 0.
is zero y 0.
??? then what?

).
!assert gcd 3 6 = 3. an example input
!assert x :nat ⊢ gcd 0 x = 0. zero is a special case
!assert x :nat ⊢ gcd 1 x = x. one is a special case
!assert x :nat ⊢ gcd x x = x. idempotent
!assert gcd x(gcd y z) = gcd(gcd x y)z. associative

But there’s still a hole (???) in your definition. How could you fill the hole? Could a computer create a
short list of completions? Or break the hole into smaller parts? Or fill in some of the hole and ask for help?

Johann seems to have just the right information to solve such problems: a large database of terms to
search through, basic equational theorem proving to cut down the search space, and very accurate com-
plexity estimates to rank solution candidates.

If combined with a reasonable operational semantics as above, such a tool for programming-by-menu-
selection would be very powerful.

Practical Solomonoff inference

Historically the first application of Kolmogorov-Solomonoff-Chaitin complexity (even preceding Kolmogorov’s
publication [Kol65]) was Ray Solomonoff’s pseudo-algorithm for inferring the program generating a partially-
observed infinite binary stream ([Sol64], [Sol78]). The pseudo-algorithm basically runs all possible pro-
grams at once, assigning to each a probability exponentially decreasing in its size. However, Solomonoff’s
work was posed in terms of Turing machines, which, while easy to describe, are theoretically cumbersome
to work with.

An original motivation of the Johann systemwas to determine howmany of the programs in Solomonoff’s
ensemble could be enumerated. Naturally, programs with similar behavior may be lumped into a single
term in the probability distribution; thus the more equations we can enumerate, the smaller the space of
programs becomes, and conversely the more program behaviors we can enumerate within given memory
limitations. In fact this was our original motivation to study the theory H∗, as it is a maximally-coarse
semantics of λ-calculus.

As future work, we would like to implement Solomonoff inference (namely the prediction/transduction
problem) using Johann. The first research to be done is determine how to parametrize probability distribu-
tions over the entire space by the values they take on the finite database support, apply existing theory of
extrapolation or kriging.

11

1.4 Format

Many of the theorems in this document are verified by the automated reasoning system Johann. Displayed
formulas for casual readers are printed plainly like

nat := (Simpleλa, a′. (a′→a)→a→a′). a definition

whereas formulas for Johann are displayed with a vertical bar on the left

zero := (λf, x. x). more definitions
succ := (λn, f, x. n f(f x)).
!check succ zero = (λx. x). a Johann command, preceeded by !

Comments are italicized and, in color versions, displayed in blue. Some exercises for Johann are not
printed in the latex’d version of this thesis; interested readers may consult the .jtext source or the html
documentation at http://www.askjohann.org .

1.5 Notation

This section is a brief notational reference. Syntactic algorithms are detailed in Appendix A, e.g., compila-
tion from λ-calculi to combinator algebras, and interpretation of statements as sets of equations and order
relations.

Constants

All structures will have least and greatest elements

!using ⊥ ⊤.
Top := ⊤.
Bot := ⊥.

We use an abundance of proper combinators: to keep proof length short.

!using I K B C W S.

To define a term and add it to the basis, we write

!define F := K I. adds F to basis

which abbreviates

!using F.
!assume F = K I.

To simply define syntax we use :=, e.g. in naming the standard booleans

true := K. define true as K

false := F. define false as F

Fixedpoints and other combinators are quite useful (B′,Φ,Ψ, Jay are defined by Curry in CurryFeys58).

B′ := (λx, y, z. y(x z)).
!define Y := S B B′(W I).
Θ := (λx, y. y(x x y))(λx, y. y(x x y)).
Φ := (λa, f, g, x. a(f x)(g x)).
Ψ := (λa, f, x, y. a(f x)(f y)).
Jay := (λa, x, y, z. a x(a z y)).
S′ := (λx, y, z. x y(x z)).
exp := (λa, b, f. b◦f◦a).
ω := B Y B.

12

http://www.askjohann.org

We also use optional values and sum types with values

none := (λf,−. f).
some := (λx,−, g. g x).
!define inl := (λx, f,−. f x).
!define inr := (λx,−, g. g x).

Convergence testing has three values

fail := ⊥.
success := I.
error := ⊤.

Other combinators common in literature are

∆ := W I. the doubling combinator
Ω := ∆ ∆. the cannonical unsolvable

We list equational definitions for reference

I x = x

K x y = x

F x y = y

W x y = x y y

B x y z = x(y z)
B′ x y z = y(x z)
C x y z = x z y

S x y z = x z(y z)
S′ x y z = x y(x z)

Φ f x y z = f(x z)(y z)
Ψ f x y z = f(x y)(x z)

Y f = f(f(f(. . .)))
U f = f | f◦f | f◦f◦f | . . .
V f = I | f | f◦f | f◦f◦f | . . .

P x y = V(x | y)

Remark. β- and η- reduction rules must be defined for all =:-defined atoms.

Operators

We use the following infix operators, ordered by precedence.

name associativity syntax semantics
composition left (=right) M◦M′ := λx.M(M′ x) = B M M′

type exponential right M→M′ := λf.M′◦f◦M
application left M M′ := M(M′)
randomness none M + M′ := R M M′

join/ambiguity right (=left) M | M′ := J M M′

precomposition right (=left) M;M′ := λx.M′(M x) = B M′ M

Church’s dot right (M.M′) := M M′

Note that where operators are semantically associative, their syntactic associativity is set to a default, e.g.
left for composition and right for join and precomposition.. Note that the comma has lowest precedence
wherever it appears.

13

Tuples

We use the standard tuple notation

〈M1, . . . ,Mn〉 := λf.f M1 . . . Mn

〈〉 := λf.f = I

As observed by Corrado Böhm, in this notation, church numerals multiply tuples, e.g.,

3〈M〉 = 〈M〉; 〈M〉; 〈M〉
= (λf.f M); (λf.f M); (λf.f M)
= (λf.f M); (λf.f M M)
= (λf.f M M M)
= 〈M,M,M〉

and the precomposition operator concatenates tuples

〈M1, . . . ,Mm〉; 〈N1, . . . ,Nn〉 = (λf.f M1 . . .Mm); (λf.f N1 . . .Nn)
= (λf.f N1 . . .Nn)◦(λf.f M1 . . .Mm)
= (λf.f M1 . . .Mm N1 . . .Nn)
= 〈M1, . . . ,Mm,N1, . . . ,Nn〉

We often use this to denote long argument lists as in

f a b c M∼m u v N∼n x y z = 〈f〉. 〈a, b, c〉; n〈M〉; 〈u, v〉; n〈N〉; 〈x, y, z〉

Binders

We interpret typed abstraction (in 3.7), convergence-tested abstraction (in 3.10), and patterned abstraction
into pure untyped λ calculus.

Definition 1.5.1. Typed, tested, and patterned abstraction.

λx :a.M := (λx.M)◦(V a) pre-compose with the closure a

λx :: t.M := λx. semi(t x) M test with t

λ〈x1, . . . , xn〉.M := 〈λx1, . . . , xn.M〉 sugar for currying

This allows convenient repartitioning of vector functions as in

splitmn := λf, 〈x1, . . . , xm〉, 〈y1, . . . , yn〉. f 〈x1, . . . , xm, y1, . . . , yn〉

Remark. An alternative definiton of patterned abstraction is as

λ〈x1, . . . , xn〉.M := λX.(λx1, . . . , xn.M) (X.sel 1 n) . . . (X.sel n n)

This definiton is “safer” in the sense that a poorly-typed M can’t “crash” a program not depending on the
tuple’s components, but translates to more complicated combinators.

Definition 1.5.2. Quantification.

∀a.M := λa, x.M(x a) where x is not free in M

∃a.M := λ〈a, x :M〉.〈a, x〉 where x is not free in M

or equivalently, letting f be a free variable,

∀a.f a := λa, x.f a(x a)
∃a.f a := λ〈a, x : f a〉.〈a, x〉 = λ〈a, x〉.〈a,V(f a)x〉

Both definitions are typically closed with V, as described in 3.3 and employed in 3.7.

14

Relations and Statements

We use the following semantics for atomic relations:

x :y ⇐⇒ x = V y x x is a fixed-point of V y

x! :y ⇐⇒ x 6= V y x x is not a fixed-point of V y

x <: y ⇐⇒ V x :P y x is a subtype of y

x!<: y ⇐⇒ V x! :P y x is not a subtype of y

x ::y ⇐⇒ semi(y x) = I x passes test y

x! ::y ⇐⇒ semi(y x) 6= I x fails test y

In proofs of typing we will often use the (meta-level) set of inhabitants of a type inhab(a) := {x | x :a},
as a subset of whatever finitely generated algebra we are working in.

Universally quantifed statements are interpreted by λ abstraction (where ∼ is one of the basic relatoins
=, ⊑, or ⊒)

∀x. M ∼ N ⇐⇒ (λx.M) ∼ (λx.N)
∀x :a. M ∼ N ⇐⇒ (λx :a.M) ∼ (λx :a.N)
∀x :: t. M ∼ N ⇐⇒ (λx :: t.M) ∼ (λx :: t.N)

See A for details of statements.

Naming Conventions

Wewill use the following naming conventions for common idioms, e.g. types as closures in 3.7, convergence
tests and correctness checks in 3.10.

xxx : V a type of, say, xxx’s
Xxx : any→V a polymorphic version of xxx

test xxx : xxx→semi a convergence test for xxx’s
check xxx : xxx→unit a correctness check for xxx’s
Join xxx : Sset xxx joins over all total xxx’s
eq xxx : xxx→xxx→bool equality predicate for xxx’s

ppp : xxx→bool a predicate of xxx’s
if ppp : xxx→semi a test for ppp

assert ppp : xxx→unit a check for ppp

15

Chapter 2

Equational deduction in untyped λ-calculus (SK)

This chapter introduces untyped λ-calculus and combinatory algebra (SK) and basic inference rules for
reasoning about equality and Scott’s information ordering relation (⊑).

Amajor component of this thesis is the Johann system, a piece of software to prove and verify statements
about various untyped λ-calculi. We begin in this chapter by proving very simple statements, equations and
order relations between untyped λ-terms. In later chapters 3, 4, 5, and 6, we progressively extend to more
expressive extended untyped λ-calculi. The extensions allow us to interpret progressively stronger logics
into our present equational logic. For example in 3.3 and 3.7 we show how to interpret typed equations
or equations with typing contexts into a λ calculus with join (and types-as-closures). Then in 3.10 do the
same with a different notion of types (types-as-convergence-tests). Finally in 5.6 we show how to interpret
first-order logic and even LωCK

1
,ω into the equational logic of a λ-calculus extended with an oracle.

One of the advances of this thesis is the demonstration that combinatory algebra / combinatory logic is
not as prohibitively unreadable and combinatorially explosive as is commonly thought. Our demonstration
consists of two components:
• a “decompilation” algorithm to translate combinators back to λ-let-terms, modulo an extensional
theory; and
• an generalization of the Todd-Coxeter algorithm from finitely presented groups to finitely generated
combinatory algebras.

The decompilation algorithm, detailed in A.3, is not used in this printed thesis, but is a main tool of the
Johann system, translating the system’s internal representation to a human-readable form.

The generalized Todd-Coxeter algorithm (discussed in 7.2) is the main component of the Johann system
(the remainder being syntactic algorithms, in A, and probability and statistics calculations in 7). The T-C
algorithm is essentially a forward-chaining algorithm for proving equations in a finitely generated algebra,
and is very similar to Robinson’s unification algorithm ([CDJK99], [BS01]).

Readers interested in verification and implementation aspects of this thesis should read 7.1 and 7.2 be-
fore continuing. Readers interested only in λ-calculus and denotational semantics may safely skip the veri-
fication related material in this chapter; chapters 3, 4, 5, and 6 make sense even without an understanding
of the Johann system.

2.1 Axioms for Scott’s information order relation (⊑ and 6⊑)

!using ⊥ ⊤.

We enforce the following partial order and monotonicity axiom schemata for the ordering relation.

17

partial order

x ⊑ x
(refl)

x ⊑ y y ⊑ x

x = y
(antisym)

x ⊑ y y ⊑ z

x ⊑ z
(trans)

x ⊑ y x 6⊑ z

y 6⊑ z
(trans−R)

x 6⊑ y y ⊑ z

x 6⊑ z
(trans− L)

monotonicity

f ⊑ g

f x ⊑ g x
(µ)

f x 6⊑ g x

f 6⊑ g
(µ′)

x ⊑ y

f x ⊑ f y
(ν)

f x 6⊑ f y

x 6⊑ y
(ν′)

We had originally implemented the stronger monotonicity schema

f ⊑ g x ⊑ y

f x ⊑ g y
(µ+ ν)

whose enforcement takes quartic time (searching through four variables f, g, x, y; see [McA99] for com-
plexity analysis techniques). However this was very slow, taking far more time than all other schemata
combined. Thus we split the rule (µ+ ν) into two cubic-time schemata, (µ) and (ν) above.

We also assume that the Scott ordering has least- and greatest elements

!assume ⊥ ⊑ x ⊑ ⊤.
!assume ⊥ 6⊒ ⊤. for absolute consistency

This latter is the only negative axiomwe assume; two termsM,N are distinct moduloH∗ iffM = N ⊢ ⊥ ⊒ ⊤.
Both ends are constant

!assume ⊥ x = ⊥.
!assume ⊤ x = ⊤.

2.2 Axioms for basic combinators

Axiom Schemata

A few axiom schemata are hard-coded in Johann: β-reduction

I x = x Y g = f(Y f) K x y = x W x y = x y y B x y z = x(y z) C x y z = x z y

S x y z = x z(y z)

and some η schemata, including two fixed-point schemata for Y

x◦(y◦z) = (x◦y)◦z
(B− assoc)

y = S I y

y = Y
(Y1)

f x ⊑ x

Y f ⊑ x
(Y2)

where (Y2) is just a pointwise version of (Y1). (The (Y1) rule was proved independently by Böhm and van
der May; see [Bar84] Lemma 6.5.3)

18

Axioms for extensionality

First let us define all other atoms in terms of S and K.

!assume I = S K K.
!assume F = K I.
!assume B = S(K S)K.
!assume C = S(S(K B)S)(K K) = S(B B S)(K K).
!assume W = C S I.
!assume Y = S B B′(W I) = B(W I)(B′.W I).
!assume Y = S(B′.W I)(B′.W I). a la Rosenbloom
!assume Y = B(S I)(W I)(B(S I).W I). a la Turing
!assume Y = S S K(S(K.S S.S.S S K)K). a la Tromp (see [Tro02])

For extensionality we need β-reduction to commute with Curry’s bracket abstraction algorithm, i.e.,
M։ N =⇒ λx.M = λx.N. This entails

• β-reducuction axioms, where each reduction leads to an η axiom, and
• (bracket) abstraction axioms, so that the abstraction algorithm commutes with β-reduction.

First, the β-reduction axioms ensure that M։ N =⇒ M = N.

!assume 0 x y = y. i.e., F x y = y.
!assume 1 x y = x y. i.e., I x = x.
!assume 2 x y = x(x y). i.e., W B x = x◦x.
!assume K x y = x.
!assume W I x = x x.
!assume W x y = x y y.
!assume B x y z = x(y z).
!assume C I x y = y x.
!assume C x y z = x z y.
!assume S x y z = x z(y z). very expensive!
!assume Y x = x(Y x).
!assume B′ x y z = y(x z).
!assume S′ x y = (x y)◦x.

Second, the abstraction axioms ensure that M։ N =⇒ λx.M = λx.N. We extend Hindley’s extensionality
proof ([Hin67]) to the (bracket) abstraction algorithm S,K, I,B,C,W, η compiling λx.M by the following
rules

rule λx.M condition
K. K M if x not free in M

I. I if M ≡ x

otherwise M = M′ M′′ is an application:
η. M′ if M′′ ≡ x

B. B M′(λx.M′′) if x free in M′′ but not M′

C. C(λx.M′)M′′ if x free in M′ but not M′′

W. W(λx.M′) if x free in M′ and M′′ = x

S. S(λx.M′)(λx.M′′) if x free in M′ and M′′ and M′′ 6= x

each abstraction axiom identifies a pair of paths through this algorithm, which are not otherwise indepen-

19

dent of β reduction. E.g., for M։ N, certainly FV(N) ⊆ FV(M), but x may appear free in M but not N.

!assume K(a b) λx.a b

= C(K a)b Kև B

= B a(K b) Kև C

= S(K a)(K b). Kև S

!assume I λx.x
= C K a Iև C

= W K IևW

= S K a. Iև S

!assume a λx.a x

= B a I η և B

= B I a η և B

= W(K a) η ևW

= S(K a)I η և S

= S(K I)a. η և S

!assume B a b λx.a(b x)
= S(K a)b. Bև S

!assume C a b λx.a x b

= S a(K b). Cև S

!assume W a λx.a x x

= S a I. Wև S

In addition to the “syntactic schemata” above, Hindley’s finite axiomatization of strong reduction requires
a semantics of the closure operation on equations. The simplest such closure would be

closure(M = N) = {λx1, . . . , xn.M = λx1, . . . , xn.N}

where {x1, . . . , xn} = FV(M) + FV(N). For example from above,

closure(K(a b) = B a(K b)) = {λa, b.K(a b) = λa, b.B a(K b)}

where as always λx.M is the bracket abstraction of x out of M.
Hindley’s closure operation produces a set of equations, each of which must be “assumed”. The set is

constructed by allowing each free variable to also be “wrapped” in a fresh free variable, so, e.g.,

closure(K(a b) = B a(K b)) = {
λa, b.K(a b) = λa, b.B a(K b), neither are wrapped
λf, a, b.K(f a b) = λf, a, b.B(f a)(K b), a is wrapped
λf, a, b.K(a(f b)) = λf, a, b.B a(K(f b)), b is wrapped
λf, a, b.K(f a(f b)) = λf, a, b.B(f a)(K(f b)) Sub are wrapped

}

As the combinatory axioms form the core of Johann, and proof search capabilities are limited, we use a
much stronger closure semantics. Our closure is in two parts: first a wrapping operation of orderm = 2|FV |

and then a mapping operation of factorial order, where every permutation and combination of variables is

20

considered. Extending the example above, the first operation yields

wrap(K(a b) = B a(K b)) = {
K(a b) = B a(K b), neither are wrapped
K(f a b) = B(f a)(K b), a is wrapped
K(a(f b)) = B a(K(f b)), b is wrapped
K(f a(f b)) = B(f a)(K(f b)) Sub are wrapped

}

simply the open versions of Hindley’s, and the second operation yields, say on the second in the list

closure(K(f a b) = B(f a)(K b)) = {
λ{f, a, b}.K(f a b) = λ{f, a, b}.B(f a)(K b), 6 permutations of {f, a, b}
λ{x, b}.K(x x b) = λ{x, b}.B(x x)(K b), 2 permutations when f = a = x

λ{x, a}.K(x a x) = λ{x, a}.B(x a)(K x), 2 permutations when f = b = x

λ{x, f}.K(f x x) = λ{x, a}.B(f x)(K x), 2 permutations when a = b = x

λx.K(x x x) = λx.B(x x)(K x) the case when all coinincide
}

This closure semantics is prohibitively expensive for large numbers of variables, say four or more (see
Sloan’s A000670, [Slo])

number of free variables 0 1 2 3 4 5 6 7
number of closures 1 3 13 75 541 4683 47293 545835

so axioms involving a large number of variables should be partially abstracted by hand. This was done in
the reduction axiom for S′ above, where the variable z is abstracted from the schema S′ x y z = x y(x z) to
yield the simpler S′ x y = (x y)◦x.

In this semantics, Johann’s most expensive axioms all involve three variables
• the S axiom S x y z = x z(y z) costing 221 obs;
• the J linearity axioms J(x y)(x z) ⊑ x(J y z) and J x y z = J(x z)(y z) costing 216 and 173 obs,
respectively (see 3.1);
• the associativity of composition axiom

!assume x◦(y◦z) = (x◦y)◦z.

costing 131 obs; and
• the B axiom B x y z = x(y z) costing 119 obs;
• the C axiom C x y z = x z y costing 83 obs.

Relations to other axiomatizations of η

Barendregt’s axioms for extensionality are immediately satisfied (see [Bar84], pp. 158-161):

!check S B(K I) = I. SKIBCη = SKIBC
!check S(K x)(K y) = K(x y). SKI(= λ∗) = λ1

!check S(K x)y = B x y. SKIB = SKI
!check S x(K y) = C x y. SKIBC = SKIB

Hindley’s axioms for strong reduction are immediately satisfied (see [Hin67]):

!check S x y z = (x z)(y z).
!check K x y = x.
!check I x = x.
!check S(K x)I = x.
!check S(K x)(K y) = K(x y).
!check S(K I) = I.
!check x = x.

21

http://www.research.att.com/~njas/sequences/A000670

The Meyer-Scott axiom is immediately satisfied (see [Bar84], pp. 95):

!check S(K I) = I.

Derived properties

Definitions of common combinators

!check 2 = W B.
!check B′ = C B.
!check ∆ = W I.
!check Φ = (B S)◦B.
!check Ψ = W◦(B C)◦(B.B B)◦B.
!check Jay = S C◦(W B.B B)C.

Alternate definitions

!check 2 = W B′.
!check S = Φ I.
!check S′ = Ψ I.
!check Y = (λx, f. f(x x f))(λx, f. f(x x f)).
!check Y = (λf. (λx. f(x x))(λx. f(x x))). = S(B′.W I)(B′.W I)
!check Y = W S(B′ ∆).

2.3 Theorems proved by η-conversion

Finite η-expansion

C commutes with Curry’s Φ = λf, x, y, z.f(x z)(y z)

!assume C◦Φ = Φ◦C.

Proof. (requiring four η-instances)

C◦Φ f x y z = C(Φ f)x y z

= Φ f y x z

= f(y z)(x z)
= C f(x z)(y z)
= Φ(C f)x y z

= Φ◦C f x y z

Theorems conjectured by Johann and proved by finite η expansion:1

!assume I = C◦C = B I = S(C I)K = B W K = B Y K = S(S K).
!assume W = S(C I).
!assume C C = B B(C I).
!assume W S = B(W I).
!assume B(C I) = C◦B′.
!assume B B K = B K K.
!assume 〈⊥〉 ⊑ W. i.e., f ⊥ x ⊑ f x x

!assume C C ⊥ ⊑ W. i.e., f x ⊥ ⊑ f x x

1The conjecturing algorithm is discribedin 7.4.

22

Infinite η-expansion

Lemma 2.3.1.

!assume Y B′ = I.

Proof. (by infinite η-expansion) This is like Wadsworth’s J ([Bar84], remark 16.2.3, pp 420)

Y B′ x y → B′(Y B′)x y

→ B x(Y B′)y
→ x(Y B′ y)

Lemma 2.3.2.

!assume Y◦B′ = ⊥.

Proof. (by infinite precomposition)

Y◦B′ x = Y(B′ x)
= B′ x(Y.B′ x)
= B(Y.B′ x)x
= (Y.B′ x)◦x
= (Y.B′ x)◦x◦x◦x◦x◦. . . iterating the above argument
= ⊥

and hence Y◦B′ = K ⊥ = ⊥.

The next theorem identifies two representations of the infinite extended church numeral ω

Lemma 2.3.3.

!assume Y◦B = K◦Y.

Proof. we take the directed limit of a sequence of church numerals

Y◦B f x = Y(B f)x
= f◦(Y(B f))x
= (f◦f◦. . .)x
=

⊔

n. n f ⊥
= Y f

Theorems conjectured by Johann and proved by infinite η expansion:

!assume B Y = Y(S S).
!assume C(K Y) = Y◦B.

2.4 Axioms for divergent terms (approachingH)

The fixed-point combinator diverges on many arguments

!assume ⊥ = Y K = Y S = Y W = Y B = Y C = Y I = Y Y.
!assume ⊥ = Y(B K). (suggested by Johann)

Lemma 2.4.1.

!assume ⊥ = W W W.

Proof. by ⊥-reduction: W W W head-reduces to itself.

23

Theorems conjectured by Johann

Lemma 2.4.2.

!assume ⊥ = Y K◦W.

Proof. Y K◦W x y → Y K◦W y y

Lemma 2.4.3.

!assume ⊥ = Y(S C)(K I).

Proof. by η −⊥-reduction: Y(S C)(K I) x head-reduces to Y(S C)(K I)

Y(S C)(K I) x → S C(Y(S C))(K I)x
→ C (K I) (Y(S C)(K I))x
→ K I x (Y(S C)(K I))
→ Y(S C)(K I)

Lemma 2.4.4.

!assume ⊥ = W I(W W).

Proof. by reduction to super-term:

W I(W W) → I(W W)(W W)
→ W W(W W)
→ W(W W)(W W)
→ . . .

whose reduction sequence never terminates.

Lemma 2.4.5.

!assume ⊥ = Y(C I)(Y(C I)).

Proof. by reduction loop:

Y(C I)(Y(C I)) → 〈Y(C I)〉(Y(C I)) → Y(C I)(Y(C I))

Lemma 2.4.6.

!assume ⊥ = W Y(C W).

Proof. by reduction to super-term:

W Y(C W) → Y(C W)(C W) → C W(Y(C W))(C W)
→ W(C W)(Y(C W)) → C W(Y(C W))(Y(C W))
→ W(Y(C W))(Y(C W))
→ Y(C W)(Y(C W))(Y(C W))
→ Y(C W)(Y(C W))(Y(C W))(Y(C W))
→ Y(C W)(Y(C W))(Y(C W))(Y(C W))(Y(C W))(Y(C W))
→ . . .

24

Lemma 2.4.7.

!assume ⊥ = Y(S S S).

Proof. by reduction to everywhere-infinitely-deep tree

Y(S S S) → S S S(Y(S S S))
→ S(Y(S S S))(S(Y(S S S)))
։ S(S(. . .)(. . .))(S(. . .)(S(. . .))

whence Y(S S S)x → Y(S S S)x(Y(S S S) x)

Lemma 2.4.8.

!assume ⊥ = Y◦(C I).

Proof. by reduction to sub-term

Y◦(C I) x → Y〈x〉 → 〈x〉(Y〈x〉)
→ Y〈x〉x → 〈x〉(Y〈x〉)x
→ Y〈x〉x x → 〈x〉(Y〈x〉)x x

→ Y〈x〉x x x → . . .

Lemma 2.4.9.

!assume ⊥ = C(Y(C(K C)))B.

Proof. . . . x → . . .

Theorems suggested by solutions to equations

These were suggested by the fixed point definition of nil:

x ∈ {⊤,⊥} ⇐⇒ K x = x

!assume ⊥ = Y(W B K) = Y K◦B.

25

Chapter 3

Untyped λ-calculus with ambiguity-as-join (SKJ)

This chapter introduces an untyped λ-calculus with a binary semilattice operation, the join with respect to
Scott’s information ordering. We call this system SKJ , as it is the fragment of Scott’s D∞ model generated
by S, K, and binary join. λ-calculus with join has long been studied as a model for concurrency / par-
allelism and ambiguity / multiplicity; nondeterminism also satisfies the semilattice axioms, but is better
modelled by meet ([DCL02]).

The main discovery of this thesis is that, under the theory H∗, that there is an interpretation of typed
λ-calculus SK into untyped λ-join-calculus SKJ , where types are interpreted as closure operations (SKJ

-terms a satisfying I ⊑ a = a◦a). Specifically we show in 3.6 the following:

Theorem 3.0.10. Let τ be a simple type (with any number of free type variables). Then there is an SKJ -definable
closure [τ] whose fixedpoints are exactly the terms of type τ . Moreover, the interpretation [−] is effective.

For example, the boolean type [a→a→a] has five inhabitants {⊥, λx, y.x, λx, y.y, λx, y.(x | y), ⊤}.
Dana Scott proved a similar definability theorem in [Sco76], showing that simple types are definable us-
ing step functions. The advantage of our approach is economy of language: we achieve the same rich type
theory using only a finitely generated magma. Cardelli in [Car86] observes that Scott’s types-as-closures
models ω-order polymorphism and dependent types, although the Curry-Howard corresponding logic is
inconsistent. These results do not depend on step functions, and hence also apply to SKJ .

One already well-known motivation for adding a join operation is to achieve a more robust notion of
recursively enumerable set, as discussed by Constable and Smith [CS88]. It is a basic theorem of com-
putability theory that the recursively enumerable sets are exactly the recursively semidecidable sets, and
that these sets are closed under intersection and union. More generally the equivalence and intersection
theorem results extend from SK to arbitrary extensions of SK ; however the proof of closure under union
may fail in some extensions. 1 The join operation can be seen as an internalization of the closure-under-
unions theorem, allowing a proof of closure that generalizes to arbitrary extensions.

Another motivation for join comes from type theory. Under the Curry-Howard correspondence, the join
operation does not prove any new theorems, but allows us to add ambiguity to existing proofs. The hu-
man proof idiom most closely corresponding to join is probably the without-loss-of-generality construct. But
ambiguity and types-as-closures also allows for a much more powerful proof technique, a sort of semantic
type inference that allows us to raise untyped proof sketches up to complete well-typed proofs using the
theorem-as-closure-operator they are intended to prove. We illustrate the WLOG construct here, but delay
discussion of semantic type inference until we build up some dependent type theory in 3.14. Then in 6 we
present two case studies makeing extensive use of proof sketching and type inference.

To see how the WLOG construct works in SKJ , let us consider a simple theorem.

Theorem 3.0.11. In a list of three booleans (with values K,F), at least two items are the same.

1The proof exploits details of β reduction to dovetail two computations in a virtual machine; general extensions may not allow
the definition of such a virtual machine.

27

A purely sequential proof must case-analyze each item.

Proof. Let (x, y, z) be given.
Case: if x = K,

Subcase: if y = K then x=y.

Subcase: if y = F

Subsubcase: if z = K then x = z.

Subsubcase: if z = F then y = z.

Case: if x = F,
Subcase: if y = K

Subsubcase: if z = F then x = z.

Subsubcase: if z = K then y = z.

Subcase: if y = F then x=y.

Since the two cases x = K and x = F are symmetric under a K↔ F reversal, we can simplify the proof
to

Proof. Let (x, y, z) be given. Note that the theorem is symmetric under K↔ F reversal. Thus assumeWLOG

that x = K.
Case: if y = K then x=y.

Case: if y = F

Subcase: if z = K then x = z.

Subcase: if z = F then y = z.

Now consider a Curry-Howard corresponding type.

thm := ∀x :bool, y :bool, z :bool.
Sum (iff x y unit nil). an equality dependent type
Sum (iff y z unit nil).

iff x z unit nil

A purely sequential inhabitant is

pf := λx :bool, y :bool, z :bool.
x (y (inl 〈〉)

(z (inr(inr 〈〉))
(inr(inl 〈〉))))

(y (z (inr(inl 〈〉))
(inr(inr 〈〉)))

(inl 〈〉))

but a simpler proof could use a join operation.

pf′ := (I | λp, x, y, z. p(not x)(not y)(not z)) express symmetry
λx :bool, y :bool, z :bool.

x (y (inl 〈〉) WLOG x = K

(z (inr(inr 〈〉))
(inr(inl 〈〉))))

⊥ ignore other cases

28

3.1 Axioms for join-as-ambiguity (J)

!using J.

We write J x y = x | y for the ambiguous join operation. This follows Dijkstra’s notation for guarded
commands, as we can write, e.g.

fun := (λx. cond1 x action1 | cond2 x action2 | . . . | condN x actionN).

where the conditions either succeed (with value I) or fail (with value ⊥).

Axioms and axiom schemata

The following axiom shemata are enforced for the atom J:

x | x = x
(idem)

x | y = y | x
(comm)

x | (y | z) = (x | y) | z
(assoc)

x | y ⊒ x
(join− L)

x | y ⊒ y
(join−R)

z ⊒ x z ⊒ y

z ⊒ x | y
(subconvex)

(x | y)z = x z | y z
(distrib−R)

We first assume the semilattice axioms and schemata (idem), comm, and (assoc).

!assume x | x = x AND J x x = x. idempotence
!assume x | y = y | x AND J x y = J y x. commutativity
!assume x | (x | y) = x | y AND J x(J x y) = J x y. idempotence+assoc
!assume x | (y | z) = (x | y) | z AND J x(J y z) = J(J x y)z. associativity
!assume Y(J x) = x. idempotence+fixedpoint

Next we relate join to the partial order with schemata (join) and (subconvex) and axioms

!assume (x, y ⊑ x | y).
!assume ⊥ | x = x AND J ⊥ x = x AND J x ⊥ = x.
!check ⊤ | x = ⊤ AND J ⊤ x = ⊤ AND J x ⊤ = ⊤.

Finally we assume that join is almost a combinatory algebra homomorphism, in that application right-
distributes and almost left-distributes over joins.

!assume (x | y)z = x z | y z AND J x y z = J(x z)(y z).
!assume (x | y)◦z = x◦z | y◦z AND B(J x y) = J(B x)(B y).
!assume x(y | z) ⊒ x y | x z AND x(J y z) ⊒ J(x y)(x z).
!assume x◦(y | z) ⊒ x◦y | x◦z AND B′(J y z) ⊒ J(B′ y)(B′ z).

Note that left-distributivity and left-composition are only one-sided:

!check (K | F) ⊤ ⊥ = (K | F) ⊥ ⊤ = ⊤.
!check (

probe bool := (λx. x (x ⊥ ⊤) (x ⊤ ⊥)).
probe bool K = ⊥ AND

probe bool F = ⊥ AND

probe bool (K | F) = ⊤
).
!check x(y | z) 6⊑ x y | x z. left-distributivity
!check B′(x | y) 6⊑ B′ x | B′ y. left-composition-distributivity

29

Lemma 3.1.1. ⊤ can be obtained by joining over all S,K-terms

!assume ⊤ = Y(λt.S | K | t t). simpler is just Y J, as below

Proof. We need to show ∀x.Y(λt.S | K | t t) ⊒ x for each x. First note that K, F, and hence J are in the join

!check (F,K,J ⊑ Y(λt.S | K | t t)).

so that we’re really joining over SKJ -terms

!check Y(λt.S | K | t t) = Y(λt.S | K | J | t t).

whence every SKJ term is below the join.

Lemma 3.1.2.

!assume ⊤ = Y(J I)◦K. the ambiguous Ogre

Proof. This uses the representation of ⊤ as the join of all its arguments

⊤ = I | K I | K◦K I | K◦K◦K I | . . .
= Yλx.I | K x

= Y (J I)◦K

Join is injective and has two simple left-inverses

!check Y◦J = I = 〈⊥〉◦J.
!check Y(J x) = x = J x ⊥.

The basic combinators distribute over J.

!assume K(x | y) = K x | K y.
!assume F(x | y) = F x | F y.
!assume C(x | y) = C x | C y.
!assume B(x | y) = B x | B y.
!assume W(x | y) = W x |W y.
!assume S(x | y) = S x | S y.
!assume J(x | y) = J x | J y.

(these are all easily provable, but we want them in the core theory, so we !assume rather than !check). The
parametrized binary join operation will be especially important

!define J′ = (λf, x, y. f x | f y).

Theorems conjectured by Johann

Lemma 3.1.3.

!assume Y J = ⊤.

Proof. Expanding, Y J = J(Y J) ⊒ I, so Y J = J(Y J) ⊒ J I ⊒/ I. Continuing this way,

Y J = I | J I | J◦J I | · · · | n J I | . . .

Now observing Y J under any trace 〈x1, . . . , xn〉

Y J x1 . . . xn ⊒ (n + 1) J I x1 . . . xn

⊒ J I

⊒/ I

whence Y J = ⊤.

30

Böhm trees and Scott topology in the presence of join

Definition 3.1.4. A join is a J-term (closure under J), defined by the language

m term

m join
(unary)

m join n join

m | n join
(binary)

M set(terms)
⊔

M join
(infinitary)

For example the nullary join is ⊥ =
⊔

{}.

Definition 3.1.5. A λ-
⊔

-term M is in head normal form (h.n.f.) if it is of the form

M = λx1, . . . , xm. h M1 . . . Mn

for m ≥ 0 variables and n ≥ 0 terms. The variable h is called the head variable of M.

Requiring the M1, . . . ,Mn to also be in head normal form gives rise to the notion of a Böhm tree.

Definition 3.1.6. A J-Böhm tree (J-BT or just BT) is the SKJ notion of Böhm tree, defined by limits in the
language

x var

x BT
(var)

x vars h var m join(BT)s

λx. h m BT
(abs− app)

A finite BT consists of only finite joins and finitely many applications of rule abs-app.

Theorem 3.1.7. (Böhm Tree) Every SKJ term isH∗-equivalent to a join of J-BTs.

Proof. By straightforward extension of the BT-theorem of SK .

The Böhm tree theorem is crucial to our type-definability theorem below, but fails in Scott’s D∞ and
P(ω) models.

Corollary 3.1.8. If q converges then q extends a h.n.f.

Corollary 3.1.9. (interpolation) if q 6⊑ q′ then q ⊒ m 6⊑ q′ for some h.n.f. m.

Corollary 3.1.10. (approximation) Every SKJ term is equivalent to a directed join of some sequence of finite J-BTs
(with finite joins).

SKJ is a much better-behaved algebra than SK , as evidenced by the following. First, SKJ avoids the
range property ([Bar93], [Bar08]).

Theorem 3.1.11 (Myhill,Barendregt). (range property) In SK , every non-constant term has infinite range.

Theorem 3.1.12. (all ranges) In SKJ , every finite cardinality is achieved by the range of some closure.

Second, SKJ avoids the indefinability of compact points.

Definition 3.1.13. (compactness) An element x of a complete join-semilattice L is a compact point iff

∀Y ⊆ L. x ⊑
⊔

Y =⇒ ∃finite Y′ ⊆ Y. x ⊑
⊔

Y′

Theorem 3.1.14. (noncompactness) In SK , no term is a compact point.

31

Proof. By example: consider the infinite η-expansion of the identity.

I = λx0. λx1. x0 λx2. x1 λx3. x2 . . .

and its truncations at the nth level

In = λx0. λx1. x0 λx2. x1 λx3. x2 . . . λxn. ⊥

Then I =
⊔

n

In, but I is not below any finite join of the Ins.

By contrast in SKJ , the Simple type constructor defined in 3.6 furnishes closures with definable compact
points.

Theorem 3.1.15. (compactness) In SKJ , there is a closure whose range is a partial numeral system, and every of
whose inhabitants is a definable compact point (except for a single limit point ω).

Proof. Consider nat defined in 3.12.

Definition 3.1.16. Let M be an SKJ -term. An SKJ -term q is M- solvable iff we can solve the equation
q M1 . . . Mn = M for some sequence of arguments M1, . . . ,Mn. A term is solvable iff it is ⊤-solvable.

Contrasting solvability in SK , there are ⊤-solvable SKJ -terms terms that are not I-solvable.

Example 3.1.17. div = V〈⊤〉 has range {⊥,⊤}, and since ⊥ x = ⊥ and ⊤ x = ⊤, div cannot be solved for I.

3.2 Axioms for a universal retract (U)

Definition 3.2.1. Let (A,⊑) be a poset, f :A→A be an endomorphism. Let us say that f is a retract iff f◦f ⊑ f.

We can construct a universal retract operator in SKJ as

!define U := (λf. Yλy. f | y◦f).
!check U = Y◦(K | B′).

An infinitary representation of U is

U f = Yλy. f | y◦f
= f | (Yλy. f | y◦f)◦f
= f | (U f)◦f
= f | (f | (U f)◦f)◦f
= f | f◦f | (U f)◦f◦f
...
= f | f◦f | f◦f◦f | . . . =

⊔

0<n<ω
fn

Theorem 3.2.2. U is a universal retract, i.e.

(a) U is idempotent: U◦U = U;
(b) points in the range of U are retracts: x = U y =⇒ x◦x ⊑ x;
(c) all retracts are in the image of U: x◦x ⊑ x =⇒ U x = x.

Proof.

32

(a) Using the infinitary representation, and rearranging terms of U◦U, we have

U(U f) =
⊔

n>0
(U f)n

=
⊔

n>0

⊔

m>0
f(n m)

=
⊔

n>0
fn

= U f

whence U◦U = U.
(b) Suppose x = U y for some y. Since U is idempotent,

x = U y = (U◦U)y = U(U y) = U x = x | x◦x | . . . ⊒ x◦x

(c) If x◦x ⊑ x then all terms in the infinitary join collapse into the first term: U x = x, as required.

Axioms and axiom schemata

The following axiom shemata are enforced for the atom U:

x = U x

x◦x ⊑ x
(retract)

x◦x ⊑ x

x = U x
(retracts)

f x ⊑ x

U f x = f x
(fixed)

Remark. Together the retract, retracts schemata imply that U fixes exactly the retracts.

Question 3.2.3. Is the fixed schema necessary?

U is a closure

!assume I ⊑ U = U◦U.

whose images are retracts

!assume (U f)◦(U f) ⊑ (U f).

An algebraic characterization:

Lemma 3.2.4.

!assume U f = f | (U f)◦f.

Proof. Using the infinitary representation

U f = f | f◦f | f◦f◦f | . . .
= f | (f | f◦f | . . .)◦f
= f | (U f)◦f

Indeed U is the least solution to the above, by definition. However

!check U f 6= f | f◦(U f).

33

Derived properties

Regarding types-as-idempotents,

!check U ⊒ Y◦B.
!check U = U U. a type of types
!check I = U I. a maximum type –everything is fixed
!check K x = U(K x). minimal types / singletons –only x is fixed

Lemma 3.2.5. Expnentials of idempotents are idempotents

!assume (U a → U b) = U (U a → U b).

Proof. For any a, b, f, by definition (U a)→(U b) f = (U b)◦f◦(U a). To show retraction,

2 (U a)→(U b) f = (2. U b)◦f◦(2. U a) def of→
⊑ (U b)◦f◦(U a) since (U a), (U b) :U
= (U a)→(U b) f def of→

We can now represent J in terms of U:

!check J = K | F = U C K = U C F.

3.3 Axioms for a universal closure (V)

Definition 3.3.1. Let 〈A, [≥ be a poset, f :A→A be an endomorphism. Let us say that f is a closure iff
f◦f = f ⊒ I, where I is the identity on A.

We construct the universal closure from the universal idempotent

!define V := (λa. U(I | a)).
!check V = (λa. U(a | I)).
!check V a = U(I | a).

An infinitary representation of V follows from that of U

V a = (a | I) | (a | I)◦(a | I) | . . .
= I | (a | I) | (a | I)◦(a | I) | . . .
=

⊔

n<ω
(a | I)n

Theorem 3.3.2. V is a universal closure, i.e.
(a) V is a closure: V ⊒ I, V◦V = V;
(b) points in the range of V are closures: x = V y =⇒ x ⊒ I, x◦x = x;
(c) all closures are in the image of V: x ⊒ I, x◦x = x =⇒ V x = x;

Proof.
(a) Using the infinitary representation, V ⊒ I is immediate. Rearranging terms of V◦V, we have

V(V a) =
⊔

n<ω
(V a | I)n

=
⊔

n<ω

⊔

m<ω
(a | I)n m

=
⊔

n<ω
(a | I)n

= V a

whence V◦V = V.

34

(b) Suppose x = V a for some a. By the infinitary representation x = V a = I | . . . ⊒ I. Since V is
idempotent, and since x ⊒ I,

x = V a = V(V a) = V x ⊒ I | x | x◦x | . . . ⊒ x◦x

On the other hand, x = I◦x ⊑ x◦x, whence x = x◦x.
(c) If x ⊒ I and x = x◦x then also

(x | I)◦(x | I) = x◦x = x = x | I

so the infinitary representation of V x collapses to (I | x) = x.

We have in addition a variety of equivalent definitions, e.g. Scott’s ([Sco76]),

!check V = (λa, x. Yλy. x | a y). = (B Y)◦(C B◦J)

and as a least fixed-point,

!check V = Y(λy, a. I | a◦(y a)).

Types as closures

Closures allow an interpretation of various typed λ calculi in the untyped calculus SKJ . In particular, this
provides convenient notation.

Definition 3.3.3. (types as closures)

(λx :a. M) = (λx. M)◦(V a) typed abstraction
x :a ⇐⇒ V a x = x type inhabitation

∀x :a. M = N ⇐⇒ (λx :a. M) = (λx :a. N) universal closure of equations
a <: b ⇐⇒ V a :P b subtyping

where the powertype P will be discussed in 3.4.

Lemma 3.3.4.

!check (∀x :a. x :a).

Proof.

∀x :a. x :a ⇐⇒ ∀x :a. V a x = x

⇐⇒ (λx :a. V a x) = (λx :a. x)
⇐⇒ (λx. V a(V a x)) = (λx. V a x)
⇐⇒ V a(V a x) = V a x

Lemma 3.3.5. Subtyping is a bounded preorder, and a partial order on closures.
(a) nil <: a <: a <: any.
(b) If a <: b and b <: c then a <: c.
(c) For a, b :V, if a <: b and b <: a then a = b.

We will prove this later in 3.4 we know more properties of V and P.
A quirk of this system is that exponentials have unusual variance: they are covariant in both arguments

(as discussed later in 3.7).
Later in 3.10 we will consider a similar interpretation of types-as-tests.

35

Axioms and axiom schemata

The following axiom shemata are enforced for the atom V:

x :V

x◦x = x
(idem)

x :V

x ⊒ I
(incr)

x◦x = x x ⊒ I

x :V
(closures)

f x ⊑ x

V f x = x
(fixed)

Remark. Together the idem, incr, closures schemata imply that V fixes exactly the closures.

Question 3.3.6. Is the fixed schema necessary?

Now we assume V is a closure

!assume I ⊑ V = V◦V.

whose images are closures

!assume I ⊑ V a = (V a)◦(V a).

and hence V fixes itself.

!check V = V V.

Lemma 3.3.7. The a in V a is w.l.o.g. increasing.

!assume V a = V(I | a).

Proof. V(I | a) = U(I | I | a) = U(I | a) = V a

Theorem 3.3.8. (algebraic characterization)

!assume V a = I | a◦(V a).

Proof.

V a = λx. Yλy. x | a y

= λx. x | a(Yλy. x | a y)
= λx. x | a(V a x)
= I | a◦(V a)

Indeed V is the least solution to the above, by definition.
Note that

!assume V = 2◦V.

however the transpose fails

Theorem 3.3.9. V 6= V◦2

First a lemma

Lemma 3.3.10.

!assume V C = C | I.

36

Proof. Since C◦C = I, also

(C | I)◦(C | I) = λx. (C | I)(C x | x)
= λx. C◦C x | C x | x
= λx. x | C x | x
= λx. C x | x
= C | I

whence C | I is a closure. Hence V C = V(C | I) = C | I.

We can now prove the theorem:

Proof.

!check 2 C = I.
!check I : V.
!check C ! : V. i.e., C is not fixed by V

!check V 6= V◦2.

Derived properties

!check V ⊒ Y◦B.
!check V : V.

Note that ⊤ inhabits every closure

!check (∀a :V. ⊤ :a).

Lemma 3.3.11.

!assume (V a)→(V b) : V. exponential

Proof. for any a, b, f, by definition (V a)→(V b) f = (V b)◦f◦(V a). To show idempotence,

2 (V a)→(V b) f = (2. V b)◦f◦(2. V a) def of→
= (V b)◦f◦(V a) since (V a), (V b) :V
= (V a)→(V b) f def of→

Now to show closure,

(V b)◦f◦(V a) ⊒ I◦f◦I = f

whence (V a)→(V b) ⊒ I.

We can now represent J in terms of V:

!check J = K | F.
!check J = V C K.
!check J = V C F.

Note that

Lemma 3.3.12.

!assume V J = ⊤.

Proof. Suppose q :V J. Then q ⊤ = J q ⊤ = ⊤, so q is solvable. But q ⊥ = J q ⊥ = q, so q is undiver-
gable. Hence q is ⊤.

37

Miscellaneous closures

The Maximal type.

any := I.
!check any : V.
!check any = V ⊥.
!check V : any→V.
!check any = any→any. whence a reflexive object
!check (∀a :V. (a→any, any→a, a→a : V)).
!check (∀a :V, b :V. a→b :V).

Theorem 3.3.13. inhab(any) = “everything”.

Proof. any x = I x = x.

The Minimal type nil has no consistent inhabitants

nil := ⊤.
!check nil : V.
!check ⊥ ! : nil.

Theorem 3.3.14. inhab(nil) = {⊤}.

Proof.

!check (∀x :nil. x = nil x = ⊤ x = ⊤).

We use the following lemma often.

Lemma 3.3.15. x :V t ⇐⇒ t x ⊑ x.

Proof.
• (=⇒)

x = V t x

= x | t x | 2 t x | . . .
= x | t x

whence t x ⊑ x.
• (⇐=) since (I | t)x = x | t x = x,

V t x = V (I | t) x

= x | (I | t)x | 2(I | t)x | . . .
= x | x | t x | (I | t)(x | t x) | . . .
= x | x | (I | t)x | . . .
= x | x | x | . . .
= x

The type of symmetric binary functions.

Lemma 3.3.16.

!assume V C = C | I.

Proof. C◦C = I, so expanding, V C = I | C | C◦C◦(V C) = I | C | V C = I | C.

38

Closure for upper sets are also definable as

Above := J.
!assume Above : any→V. upper-sets are types

Proof. Idemopotence and closure are inherited from J:

J a x ⊒ x whence J a ⊒ I

J a(J a x) = J(J a a)x by associativity of J
= J a x by idempotence of J

Lemma 3.3.17.

!check V ∆ : V W.

Proof. Suppose ∆ x ⊑ x. Then

W(V ∆)x = V ∆ x x = x x ⊑ x ⊑ V ∆ x

3.4 Axioms for a power closure (P)

The space of closures has structure beyond that of the retracts in general: it is a complete meet-semilattice
with bottom nil = ⊤ and top any = I. We use symbols P x y for the meet operation (type intersection) and
x <: y for the partial ordering (subtyping). The subtype relation is defined generally as

∀x :V, y :V.
x <: y ⇐⇒ inhabs(x) ⊆ inhabs(y) containment of inhabitants

⇐⇒ (∀z. z = x z =⇒ z = y z)
⇐⇒ x :y→y

⇐⇒ y◦x = x = x◦y explicitly

Remark. Although idempotents are also a bounded poset with universal object (with top any = I, bottoms
K x for any x, and universe idem), no meet operation is definable for idempotents.

The type intersection operator can thus be defined as

!define P := (λx, y. V(x | y)).

so that more generally, x <: y ⇐⇒ V x :P y, i.e., x is a subtype of y.
Among types ordered by information content, P x y is the least upper bound of types ⊑ x, y, i.e., the

join J restricted to the lattice of types. However, the usual ordering <: on types is dual to the information
ordering, and thus we regard P as an intersection operator.

Axioms and axiom schemata

The following axiom shemata are enforced for the atom P:

P x x = V x
(idem)

P x y = P y x
(comm)

P x(P y z) = P(P x y)z
(assoc)

39

Algebraic properties

!assume P x x = V x. idempotence
!assume P x(P x y) = P x y. idempotence+associativity
!assume Y(P x) = V x. idempotence+fixedpoint
!assume P x y = P y x. commutativity
!assume P x(P y z) = P(P x y)z. associativity

Idempotence and commutativity are clear, but associativity is nontrivial.

Lemma 3.4.1.

!assume P x y = P x(V y) = P(V x)y = P(V x)(V y).

Proof.

P x y = V(x | y)
= V◦V(x | y)
⊒ V(V x | V y) since f(x | y) ⊒ f x | f y

⊒ V(x | y) since V ⊒ I

= P x y

Theorem 3.4.2. P defines a type intersection operator.

!assume P x y :V.
!assume P : V→V→V. type intersection operator
!check (∀a :V, b :V. P a b <: a).
!check (∀a :V, b :V. P a b <: b).
!check P any x = V x.
!check P nil x = nil.

Theorem 3.4.3. P defines a power-type operator.

!assume P x : V.
!assume P : V→V. powertype operator

Proof. (associativity)

P x(P y x) = V(x | (V(y | z)))
= V(V x | V(V y | V z))
= V(V x | V y | V z)
= V(V(V x | V y) | V z)
= V(V(x | y) | z
= P(P x y)z

We also assume the order axioms

!assume P x ⊒ V.
!assume P ⊥ x = P I x = V x.
!check P ⊤ x = ⊤.

40

Derived properties

We can now prove the subtyping lemma from 3.3.

Lemma 3.4.4. Subtyping is a bounded preorder, and a partial order on closures.
(a) nil <: a <: a <: any.
(b) If a <: b and b <: c then a <: c.
(c) For a, b :V, if a <: b and b <: a then a = b.

Proof. (a) Deferring to Johann,

!check nil <: a <: a <: any.

(b) Assume a <: b and b <: c. Then

V a = P a b since a <: b

= P a (V b)
= P a (P b c) since b <: c

= P(P a b)c
= P a c since a <: b

whence a <: c.
(c) Assume a, b :V, a <: b, and b <: a. Then

a = V a = P a b = V b = b

!check Y◦P = V.
!check P ⊥ = V.
!check P : I→I→V. intersections are types

Lemma 3.4.5.

!check P ⊒ J.
!check P ⊒ K◦V.

Proof.
• P = λx, y. V(x | y) ⊒ λx, y. x | y = J.
• P = λx, y. P x y ⊒ λx, y. V y = K◦V.

Theorems conjectured by Johann

Lemma 3.4.6.

!check ⊤ = Y P = V P = P J = P P.

Proof. P ⊒ J, and Y J = V J = ⊤.

Lemma 3.4.7.

!assume B ⊑ P.

41

Proof.

P x y = V (V x | V y)
⊒ V (x | y)
⊒ 2 (x | y)
= (x | y)◦(x | y)
⊒ x◦y
= B x y

3.5 Axioms for the least strict closure (div)

The type div of divergent computations is the minimal strict type, inhabited by only {⊥,⊤}.

!define div := V 〈⊤〉.
!check ⊥ : div.
!check I ! : div.

Theorem 3.5.1. inhab(div) = {⊥,⊤}

Proof. By definition of solvability inH∗.

Corollary 3.5.2. M converges iff M 6= ⊥ iff div M 6= ⊤.

The following axiom schemata are enforced for the atom div:

x 6⊑ ⊥

div x = ⊤

x ⊥ = ⊥

div ⊑ x

The latter holds since div is the largest strict function.

Remark. This is the first appearance of a disjunctive axiom, i.e., x ⊑ ⊥ or ⊤ ⊑ div x, and thus the first axiom
sensitive to language extension. Indeed this axiom fails in SKRJ (see 4.2).

Corollary 3.5.3. Every inhabitant of div is constant.

Thus we can assume

!assume div x ⊥ = div x y = div x z = div x ⊤.

Lemma 3.5.4.

!assume div = V K.

Proof. ⊥ is fixed by K, so let q :div be any convergent term, say solvable by q M = ⊤.
Then q ⊥ ⊒ K q ⊥ = q, so q can’t be crashed.

Lemma 3.5.5. The closures of the following combinators are strict, i.e., are supertypes of div.

!check (B,C,W,S,S′,Φ,Ψ :> div).

Proof. div has inhabitants ⊥,⊤, each of which is fixed by each of B,C,W,S,S′,Φ,Ψ.

42

3.6 A simple type constructor (Simple)

In this section we construct for each simple type τ an SKJ -definable closure [τ] whose fixedpoints (mod
H∗) are exactly the SKJ -terms typable by τ (for a suitable generalization of Curry-style typability from SK

to SKJ , mod H∗). The construction takes the form of (1) a translation from simple types to SK -definable
type codes, and (2) an SKJ -definable term Simple that binds each free variable in the simple type. For
example

[(a→a)→(a→b)→a→b] = Simpleλa, a′. Simpleλb, b′. (a′→a)→(a′→b)→a→b′

We conclude this section by showing that the same Simple type construction also works for simple re-
cursive types, and types involving type constants for arbitrary closures a :V.

As a corollary to definability of simple types, we would like an interpretation of typed λ-calculus (typed
SK) into untyped λ-calculus with join (SKJ). However, Simple-definable types are inhabited not only by
well-typed SK terms, but also SKJ -terms. We acheive the embedding theorem in 3.7 by “disambiguating”
the Simple-definable closures to contain only the original SK -termswewould expect. Thus we can interpret
a richly typed λ-calculus (SK) in the untyped SKJ .

Then in 4 we show how to narrow down the types to still allow fuzziness, but in a well-behaved way.
By forcing fuzziness to the top of Böhm trees, we can define monadic types whose inhabitants are joins
of random SK -terms. Thus we can interpret a typed λ-calculus (SK) with a monadic type of imprecise
probabilities in the untyped SKRJ .

Warning: In this section only, x ::τ denotes a syntactic typing relation.

Interpreting simple types as closures

We begin with language of untyped terms m, a language of simple types τ , and rules for judging a term
well-typed m ::τ , as in Figure 3.1. We treat infinitary joins as basic, and finitary joins as derived: nullary
⊥ :=

⊔

{}, and binary J := λx, y.
⊔

{x, y}. This way, our correctness proof extends unaltered to the join-
completion of SKJ , and its subalgebras, e.g. SKJO .

Example 3.6.1. The inhabitants of the type (a→a)→a→a of Church numerals are (up to equality) arbitrary
joins of the terms ⊥, ⊤, zero z = λ−, x.x, and successors s(n) = λf, x.f(n f x) of other inhabitants n. So for
example s(s(z)) | s(z | s(⊥)) | s(s(s(⊤))) : (a→a)→a→a is an inhabitant that cannot be further simplified.

We interpret types as functors bivariate in each atomic type. The functors are implemented as SKJ -
terms, where constants-as-closures appear as themselves, and exponentials are conjugation a→b = λf.b◦f◦a
covariant in b and contravariant in a (as in the Karoubi envelope; see [Bar84]). For example keeping track
of variance, we interpret [−]

[a] = Simpleλa, a′. a′

[a→a] = Simpleλa, a′. a→a′

[(a→a)→(a→a)] = Simpleλa, a′. (a′→a)→(a→a′)
[a→b] = Simpleλa, a′. Simpleλb, b′. a→b′

Closures (as type constants) are interpreted as themselves. Figure 3.1 formalizes this interpretation algo-
rithm.

The interpretation algorithm (begin)s by looking at variables, traversing through the context and noting
the (vari)ance of each variable, (skip)ping irrelevant variables, and ignoring the variance of type constants
for closures :V. Since the exponential reverses variance in the domain type, we build two type interpreta-
tions, one for covariant and one for contravariant uses, written as contravariant/covariant pairs.

Having interpreted the all the leaves on a type derivation tree, we next combine subtrees on each side
of (exp)onentials, preserving the variance of codomain types and reversing the variance of domain types.

43

term formation

S tm K tm ⊤ tm

m tm n tm

m n tm

∀m ∈M. m tm
⊔

M tm

type formation

a var

Γ, a,Γ′ ⊢ a tp

Γ ⊢ σ tp Γ ⊢ τ tp

Γ ⊢ σ→τ tp Γ ⊢ any tp

∀τ ∈ A. τ tp
⋂

A tp

typing

Γ ⊢ ρ tp Γ ⊢ σ tp Γ ⊢ τ tp

S :: (ρ→σ→τ)→(ρ→σ)→ρ→τ

Γ ⊢ σ tp Γ ⊢ τ tp

K ::σ→τ→σ

Γ ⊢ τ tp

⊤ ::τ

m ::σ→τ n :σ

m n ::τ

∀m ∈M. m ::τ
⊔

M ::τ

m tm

m ::any

∀τ ∈ A. m ::τ

m ::
⋂

A

subtyping

τ tp

nil <: τ

τ tp

τ <: any

σ <: σ′ τ <: τ ′

σ→τ <: σ′→τ ′

⋂

A tp τ ∈ A

τ <:
⋂

A

∀τ ∈ A. σ <: τ

σ <:
⋂

A

type interpretation

Γ ⊢ a tp

Γ;⊢ a ⊲ a/a
(begin)

Γ, a;∆ ⊢ a ⊲ a/a

Γ; a/a′,∆ ⊢ a ⊲ a/a′
(vari)

Γ, a;∆ ⊢ b ⊲ b/b′

Γ; a/a′,∆ ⊢ b ⊲ b/b′
(skip)

;∆ ⊢ any ⊲ I/I
(any)

;∆ ⊢ σ ⊲m/m′ ;∆ ⊢ τ ⊲ n/n′

;∆ ⊢ σ→τ ⊲m′→n/m→n′
(exp)

;∆ ⊢ σ ⊲m/m′

[σ]∆ = m′ (root)
[σ]∆,a/a′ = m

[σ]∆ = Simpleλa, a′.m
(bind)

Figure 3.1: Typing and type interpretation. Exponential subtyping is covariant in both domain and range.
Contexts do not commute.

When we reach the (root) of the typing derivation tree, we (bind) each contravariant/covariant pair of
type variables with a type constructor Simple, implemented as an SKJ term. Simple inputs a type code
f = λa, a′.t bivariate in a type variable, and produces a closure

Simple f = V (f s1 r1 | f s2 r2 | . . .)

by substituting for the contra- and co-variant occurrences of the variable various section-retract pairs s, r

44

satisfying r◦s = I and s◦r 6⊑ I. We can generate all the section-retract pairs from just two pairs

raise := (λx,−. x).
lower := (λx. x ⊤).
!check raise = K AND lower = 〈⊤〉.
!check lower◦raise = I 6⊒ raise◦lower.

pull := (λx, y. x | div y).
push := (λx. x ⊥).
!check pull = K | K div AND push = 〈⊥〉.
!check push◦pull = I 6⊒ pull◦push.

and using the facts that if s, r and s′, r′ are section-retract pairs, then so also are their composition s◦s′, r′◦r
and their conjugation r→s′, s→ r′. Joining over all compositions (via V(. . .) and f I I) and conjugations
(via sλa, a′. sλb, b′. f (a′→b) (a→b′)) gives the type interpreter for a single atomic type

!define Simple := (any→V) (
Yλs, f. f I I

| f raise lower

| f pull push

| sλa, a′. sλb, b′. f (a′→b) (a→b′)
).

It will also be convenient to write Simple f as an infinitary join over a set S of section-retract pairs, which is
by definition the smallest set such that

〈I, I〉 ∈ S 〈raise, lower〉 ∈ S 〈pull, push〉 ∈ S

〈a, a′〉 ∈ S 〈b, b′〉 ∈ S

〈a′→b, a→b′〉 ∈ S

We can then write

Simple = λf. V (
⊔

〈s,r〉∈S

f s r)

Now we can show that it doesn’t matter how we order the variables in the noncommutative context Γ of a
type derivation.

Lemma 3.6.2. (commutativity) (Simpleλa, a′. Simpleλb, b′. M) = (Simpleλb, b′. Simpleλa, a′. M).

Proof. By associativity and commutativity of join.

Lemma 3.6.3. (weakening) If b, b′ are not free in M, then (Simpleλa, a′. Simpleλb, b′. M) = (Simpleλa, a′. M).

Proof. Generalizing the property

!check V(V x | V y) = V(x | y).

to infinitary joins V
⊔

V = V
⊔

, we show

Simpleλa, a′. Simpleλb, b′. M = Simpleλa, a′. V M

= V (
⊔

〈a,a′〉∈S

V M)

= V (
⊔

〈a,a′〉∈S

M)

= Simpleλa, a′. M

45

We can also show that interpretation respects exponentials. First a

Lemma 3.6.4. (conjugation) (Simpleλa, a′. Simpleλb, b′. f a a′ → g b b′) ⊑ Simple f → Simple g.

Proof. Using infinitary versions of the following properties of conjugation

!check x→(y | z) = x→y | x→z.
!check (x | y)→z ⊒/ x→z | y→z.
!check V(a→b) ⊑/ V a → V b.

we show

Simpleλa, a′. Simpleλb, b′. f a a′ → g b b′

= V
⊔

〈a,a′〉∈S

V
⊔

〈b,b′〉∈S

f a a′ → g b b′

= V
⊔

〈a,a′〉∈S

⊔

〈b,b′〉∈S

f a a′ → g b b′

= V
⊔

〈a,a′〉∈S

(f a a′ →
⊔

〈b,b′〉∈S

g b b′)

⊑ V ((
⊔

〈a,a′〉∈S

f a a′) → (
⊔

〈b,b′〉∈S

g b b′))

⊑ (V
⊔

〈a,a′〉∈S

f a a′) → (V
⊔

〈b,b′〉∈S

g b b′)

= Simple f → Simple g

Question 3.6.5. Does the converse hold?

Now to express respect for exponentials, we need a notion of equality at a type.

Definition 3.6.6. Let x, y be arbitrary terms, and a :V be a closure. We say x = y mod a iff a x = a y, i.e. iff
x and y are identical when seen as terms of type a.

Corollary 3.6.7. ([−] respects exponentials) For σ, τ simple types with disjoint sets of variables variables,
[σ→τ] ⊑ [σ]→ [τ], and hence if x = y mod [σ→τ] then x = y mod [σ]→ [τ].

Consider the action of Simple on a few functions

Lemma 3.6.8.

!check (Simpleλa, a′. I) = I.
!check (Simpleλa, a′. ⊥) = I.
!check (Simpleλa, a′. ⊤) = ⊤.
!check (Simpleλa, a′. a) = ⊤.
!check (Simpleλa, a′. a′) = div. inhabited by {⊥,⊤}

Proof. Left as exercise for Johann.

Correctness of the simple type constructor

We need to show soundness q ::τ =⇒ q : [τ] and completeness q : [τ] =⇒ q ::τ . Soundness of our Simple

type interpretation is provable by an easy induction on derivations.

Theorem 3.6.9. (soundness) If q ::τ then q : [τ].

Proof. We consider the action of each generator of Simple on each term. So letting a/a′, b/b′, and c/c′ be
section/retract pairs so that a′◦a = b′◦b = c′◦c = I, we show that each term is fixed under the generators
of simple. By induction on typing derivations (ignoring for now intersection types),

46

Case: S :: (ρ→σ→τ)→(ρ→σ)→ρ→τ .

((a′→b′→c)→(a′→b)→a→c′) S

= (a′→b′→c)→(a′→b)→a→c′ λx, y, z. x z(y z)
= λx, y, z. c′. (a′→b′→c x) (a z) ((a′→b y) a z)
= λx, y, z. c′◦c. x (′a◦a z) (b′◦b. y. a′◦a z)
= λx, y, z. x z(y z)
= S

Case: K ::σ→τ→σ

(a→b→a′) K = (a→b→a′) λx, y. x

= λx, y. a′. a x

= λx, y. a◦a′ x

= λx, y. x

= K

Case: ⊤ ::τ by induction on the structure of the type τ :
Subcase: For τ = a a variable, consider the atomic retracts a′ ⊤

lower ⊤ = ⊤ ⊤ = ⊤
push ⊤ = λy.⊤ | div y = λy.⊤ = ⊤

Subcase: For τ = ρ→σ for types ρ, σ, consider the action of any retract b′ and any section a.

(a→b′) ⊤ = λx. b′ (⊤ (a x))
= λx. b′ ⊤
= λx. ⊤ by hypothesis on b′

= ⊤

Subcase: For τ = any I ⊤ = ⊤.

Case: m n ::τ , assuming m ::σ→τ and n ::σ. By hypothesis, m : [σ→τ] and n : [σ], so

m n ⊑ [τ] (m n) since [τ] is a closure
= (any→ [τ]) m n

⊑ ([σ]→ [τ]) m n since [σ] is a closure
⊑ [σ→τ] m n by respect for exponentials
= m n by hypothesis on m

Case:
⊔

M ::τ . Observe that each operation of Simple acts pointwise on joins (say by induction over type
structure), i.e.

⊔

and Simple commute. Hence,

[τ]
⊔

M =
⊔

m∈M

[τ] m by commutativity

=
⊔

m∈M

m by hypothesis

=
⊔

M

Case: m ::any. Since [any] = I, anything is fixed by [any].

Completeness is much more difficult, and makes crucial use of the Böhm Tree theorem of 3.1. In partic-
ular, Simple does not work in full D∞ models, where the BT theorem fails. The proof than any fixedpoint
q : [τ] is typable q ::τ considers by way of contradiction any q! ::τ not typable by τ , showing that [τ] raises q

to something strictly larger. The idea is to
(1) consider WLOG any badly-typed finite SK -definable BT q′ ⊒ q extending q, so also q′! ::τ .

47

(2) adapt the term q′ to the type τ by specializing the type (via moves a :> b→c) to the term, and putting
the term in β-long form down to the point of typing error.

(3) consider the BT node where the typing error occurs, a head normal form; the error is one of: too few
arguments, too many arguments, or an atomic type clash.

(4) show that various sequences of section→ retract operations raise each error to ⊤.
(5) bubble-up the error to the top of q′ BT and generalize the type (via moves b→c <: a) back to its original

form.
So let us consider a badly-typed finite sequential BT q′! ::τ . There are two problems we face in finding a
type error: ill-typed terms might look like terms of lower type, or they might look like terms of higher type.
To deal with higher-type-looking terms, we adapt their types by specializing moves a :> b→c. For example
when checking

λf, x.f (λy. x f) ? : a→a

we specialize a→a :> (b→c)→b→c :> ((d→e)→c)→(d→e)→c where we can annotate

λf : (d→e)→c, x :d→c. f (λy :d. x f :e) :c

and observe a problem typing f : (d→e)→c, x :d→c ⊢ x f :e. Specialization is built into the Simple type
constructor via conjugation

Simple f = V (. . . | Simpleλa, a′. Simpleλb, b′. f (a′→b) (a→b′))

Lemma 3.6.10. (specialization) Let σ, τ be pure simple types, i.e., free of type constants and intersection operations.
If σ <: τ then [σ] ⊑ [τ].

Proof. Suppose σ <: τ . Then there is a sequence of types σ0 <: σ1 <: · · · <: σn such that each σi <: σi+1 is the
result of an elementary specializing substutition ai <: bi→ci of type variables (pf: by induction on structure
of subtyping derivations). At each substitution, the conjugation operation in Simple shows that σi ⊒ σi+1.

To deal with lower-type looking terms, we next adapt the term by putting it in long β-η form ([Hin97])
with respect to the adapted type. For example when checking

λx, y.x ?: a→a→a→a

we lengthen the term by η-expanding and annotate to

λx :a, y :a, z :a. x z :a

to find a problem typing x :a, z :a ⊢ x z :a.
After specializing a term, there are three possibile kinds of typing problem: variable-arrow, arrow-

variable, and variable-variable type clashes. When we find such a typing problem we create an error by
raising the conflicting subterm to ⊤, using one of the following section→ retract operations. Below we
formally verify unary forms of each lemma, and informally prove the general n-ary forms.

Lemma 3.6.11. (one too few args) ⊤ = [a→a] λf,−.f.

Proof. (pull→push); (raise→ lower) raises λf,−.f as

!check (pull→push) (λf,−.f)
= (λf. (λ−, x.f | div x) ⊥)
= (λf, x.f | div x).

!check (raise→ lower) (λf, x.f | div x)
= (λf.⊤)
= ⊤.

48

Lemma 3.6.12. (too few args) ⊤ = [a→a] λf,−∼n.f.

Proof. (pull→push); n(raise→ lower) raises

λf,−∼n.f 7→ λf. (λ−∼n, x. f | div x) ⊥ via pull→push

= λf,−∼n−1, x. f | div x

7→ λf, x.(λ−∼n−1 .f) | div x via (n− 1)(raise→ lower)
7→ λf.(λ−∼n .f) | div ⊤ via raise→ lower

= λf.div ⊤
= ⊤

Lemma 3.6.13. (one too many args) ⊤ = [a→a] λf.f ⊥.

Proof. (raise→ lower); (pull→push) raises λf.f ⊥ as

!check (raise→ lower) (λf.f ⊥)
= (λf. (λ− .f) ⊥ ⊤)
= (λf.f ⊤).

!check (pull→push) (λf.f ⊤)
= (λf. (λx.f | div x) ⊤)
= (λf. f | div ⊤)
= ⊤.

Lemma 3.6.14. (too many args) ⊤ = [a→a] λf.f ⊥∼n.

Proof. n(raise→ lower); (pull→push) raises

λf.f ⊥∼n 7→ λf. (λ−∼n . f) ⊥∼n ⊤∼n via n(raise→ lower)
= λf. f ⊤∼n

7→ λf. (λx.f | div x) ⊤∼n via pull→push

= λf. (f | div ⊤) ⊤∼n−1

= ⊤ ⊤∼n−1

= ⊤

Lemma 3.6.15. (clashing) If a, b are distinct type variables then in the interpreted type,

⊤ = Simpleλa, a′. Simpleλb, b′. b′◦a

Proof. We can simply mismatch two section-retract pairs

!check (Simpleλa, a′. Simpleλb, b′. b′◦a)
⊒ lower◦pull

= 〈⊤〉◦(λx, y.div y | x)
= (λy.div y | ⊤)
= ⊤.

Now after finding a type error at a specialized type, we want to be able to “bubble up” the error to the
most general type.

Lemma 3.6.16. (close bubbling) ⊤ = [a→a] λf,−.f ⊤.

49

Proof. pull→push raises λf,−.f ⊤ as

!check (pull→push) (λf,−.f ⊤)
= (λf. (λ− . (λx.f | div x) ⊤) ⊥)
= (λf. (λx. f | div x) ⊤)
= (λf. f | div ⊤)
= ⊤.

Lemma 3.6.17. (bubbling) ⊤ = [a→a] λf,−∼n,−.f ⊥∼n ⊤.

Proof. n(raise→ lower); (pull→push) raises

λf,−∼n,−.f ⊥∼n ⊤ 7→ λf,−. f ⊤ via n(raise→ lower)
7→ ⊤ via pull→push

Example 3.6.18. We can show that ⊤ = [a→a] λf, x. f f by
• first specializing to a→a :> (b→c)→b→c;
• then finding an error with the too-few-args lemma, raising [(b→c)→b→c] λf, x.f f ⊒ λf, x.f ⊤;
• and finally bubbling the error up to the more general type, raising [a→a] λf, x.f ⊤ = ⊤.

Next we need to show that any kind of typing error can be detected with our tools for a→a. For more
complex types, we might have typing errors deep in a Böhm tree. We can use a→a arguments to detect any
single type error in a Böhm tree, since we just need top-down and bottom-up types to agree. But we also
need to be able to simultaneously raise errors in different branches of a Böhm Tree.

Example 3.6.19. Consider the type ((a→a)→(a→a)→b)→b of pairs of semibooleans, and the non-inhabitant
λf. f (λx,−. x) (λx. x ⊥), where the first component has too few arguments, and the second toomany. The
too-few-args lemma raises the first component, and the too-many-args raises the second comonent, but can
we raise both?

We gerneralize this with a sort of simultaneous raising lemma.

Lemma 3.6.20. (coherence): If Simple raises each of a set of errors in a Böhm tree, then it simultaneously raises them
all.

Proof. By compactness we need only argue about finite sets of errors. Suppose thus we are given a finite
number of arguments, each detecting a particular type error in a Böhm tree. It is sufficient to weave them
together into a single argument detecting all errors.

Note that each sequence of operations in the detection of the errors is one of: (too-few), (too-many),
(clashing), and (bubbling). These are composed of elementary operations raise→ lower, pull→push, and
their specializations a :> b→c.

In any of these cases, we can safely apply the specialized cases first, then the pull→push moves, then the
raise→ lower cases. Hence there is a sequence of moves containing all each of the given raising sequences as
a subsequence.

Finally we start back at step (1) and assemble the type checking lemmas.

Theorem 3.6.21. (completeness): If q : [τ] then q ::τ .

Proof. Suppose q extends a finite Böhm tree with typing errors, i.e. for various subterms the top-down and
bottom-up typings disagree, or some subterms cannot even be typed. Each of the typing errors is raised to
⊤ by one of the (too-few), (too-many) or (clashing) lemmas. The coherence lemma allows us to raise all the
errors simultaneously. The resulting raised q then has proper type.

Corollary 3.6.22. (Simple works) q ::τ iff q : [τ].

Proof. The soundness and completeness theorems each prove one direction.

50

Extending to recursive types, intersection types, and type constants

Using intersection types we can construct infinite (e.g. recursive) types by intersecting over infinite chains
of approximations. Then using the subtyping partial order, we can prove equations among recursive types.

Example 3.6.23. We can construct a type µ a. b→(a→b)→b of ambiguous numerals by intersecting all the
types

any

b→(any →b)→b

b→((b→(any →b)→b)→b)→b

. . .

This can be defined as a least fixed point, either outside or inside the type iterpretation

!check (
pre num := (Yλa. Simpleλb, b′. b→(a→b)→b′).
pre num = (Simpleλb, b′. V (λa. b→(a→b)→b′) any)

).

We can also extend our simple type interpretation by arbitrary closures without much work. Consider
extending the type language and interpretation by

extended types

m tm m :V

Γ ⊢ m tp

m tm m :V

| Γ ⊢ m ⊲m/m
(close)

Lemma 3.6.24. For ant a, b :V closures, a→b = P (a→any) (any→b).

Proof. Simple reduction.

Lemma 3.6.25. Let τ be a simple type with both type variables and type constants (closures) as leaves, and let
ρ be τ with all variables replaced by any and σ be τ with all constants replaced by any, so that [σ] = σ. Then
[τ] = P[ρ][σ] = P[ρ]σ.

Example 3.6.26. (semisets) Semisets of a :V are joins of terms λf :a→any. f x. We will discuss them more
at the end of 3.7

sset := V (Simpleλb, b′. (any→b)→b′). = [(any→b)→b]
Sset := V→V (λa. Simpleλb, b′. (a→b)→b′). = λa :V. [(a→b)→b]
!check Sset a = P sset ((V a→any) → any).

Proof. By distributivity of right-application over join: each term in the simple interpretation Sa,a′ . . . of τ
is a conjugation of terms in ρ and closures in σ. For arbitrary terms x and closures c,

V (x→c) = P (x→I) (I→c)
V (c→x) = P (c→I) (I→x)

51

3.7 Types as closures

In this section we define a variety of types and type constructors, whose inhabitants are exactly the partial
SK -terms we would expect –ambiguous SKJ inhabitants are eliminated. We construct these types from
Simple-definable types by raising ambiguous terms to ⊤, or “disambiguating”.

However, this eschewing of ambiguous terms comes at the cost of a clean categorical characterization
of our type constructors: our products and sums are not categorical products and sums. The situation
becomes clearer later when we add randomness in 4 and our present disambiguation tricks fail. Forced
to work with ambiguous terms, we will develop a monadic type system where type constructors satisfy
categorical properties, and simple types are likely definable (this is future work). For now we accept the
loss of nice categorical properties.

Atomic types for truth-values

We first construct four atomic types div, semi, unit, bool that will be used for various logics in 3.9.
We can now give a Simple definition of the type of divergent computations, introduced in section 3.8.

This two-point closure will be used as the space of truth values for probing logic.

!check div = V K = V 〈⊤〉 = V raise = V lower.
!check div = (Simpleλa, a′. a′).

Theorem 3.7.1. inhab(div) = {⊥,⊤}.

Proof. We already know that

!check ⊥ : div.

Any other q :div converges and hence is sent to ⊤ by sufficiently many arguments of ⊤. So q = ⊤.

Semibooleans, or Sierpinski space will be used as the space of truth values for testing logic.

!define semi := (Simpleλa, a′. a→a′).

!check (I,⊥ : I→I).
!check (I,⊥ : raise→ lower).
!check (I,⊥ : pull→push).
!check (I,⊥ : semi).

!check div <: semi.

Theorem 3.7.2. inhab(semi) = {⊥, I,⊤}.

Proof. By the Simple theorem, since these are exactly the inhabitants of the simple type a→a, they are the
fixedpoints of the type’s interpretation Simpleλa, a′. a→a′.

The canonical unit type will have inhabitants {I,⊤}, with I the unique consistent inhabitant. This space
will be used as the space of truth values for checking logic.

!define unit := P semi(Above I).

!check unit = P semi(K I).
!check I : unit.
!check unit ⊥ = I AND ⊥ ! : unit.
!check unit <: semi.

52

Theorem 3.7.3. inhab(unit) = {I,⊤}.

Proof. inhab(unit) ⊆ inhab(semi); individual containment was just checked.

Remark. We now know the entire semilattice of subtypes of semi:

{⊥, I,⊤}

��
�� ??

??
semi

��
��

�

??
??

?

{⊥,⊤}

??
??

{I,⊤}

��
��

: div

??
??

? unit

��
��

�

{⊤} nil

Finally we need boolean values for predicate logic. The boolean type is like a widened semi, inhabited by
{⊥,K,F,⊤}. Such a bool is not Simple-definable, but we can Simple-define a wider type boool inhabited by
{⊥,K,F,J,⊤}

boool := (Simple λa, a′. a→a→a′).

!check (⊥,K,F,J : I→I→I).
!check (⊥,K,F,J : raise→ raise→ lower).
!check (⊥,K,F,J : pull→pull→push).
!check (⊥,K,F,J : boool).

!check (∀x :boool. x I I : semi).

and then manually raise J to ⊤.

!define bool := P boool (λq. q ⊥ (q ⊤ ⊥)).

!check (⊥,K,F : (λq. q ⊥ (q ⊤ ⊥))).
!check (⊥,K,F : bool).
!check ⊤ = (λq. q ⊥ (q ⊤ ⊥)) J = bool J.

We will often employ join-eschewing terms like (λq. q ⊥ (q ⊤ ⊥). Because we regard join as ambiguity,
we call these disambiguating terms.

Theorem 3.7.4. inhab(bool) = {⊥,K,F,⊤}.

Proof. By the simple theorem, we may restrict attention to the inhabitants of a→a→a, namely ⊥, ⊤,
K = λx,−.x, F = λ−, y.y, and J = K | F. All of ⊥,⊤,K,F are fixed by the term
disambiguate := λq.q ⊥ (q ⊤ ⊥), and hence inhabit bool, but disambiguate J = ⊤. Hence⊥,⊤,K,F are the
only inhabitants.

Polymorphic type constructors

Various exponential types

Exp := (V→V→V) (λa, b. a→b). or written a→b

Endo := (V→V) (λa. a→a). endomorphisms
Bin op := (V→V) (λa. a→a→a). binary operations
From := (V→V) (λa. a→any).
To := (V→V) (λa. any→a).

53

!check Endo a = Exp a a.
!check Bin op a = Exp a (Exp a a).
!check From a = Exp a ⊥.
!check To a = Exp ⊥ a.
!check Exp a b = P (From a) (To b).

Recall that x = y mod a iff a x = a y.

Theorem 3.7.5. Let a, b :V. Then f :a→b iff both

(a) f is constant on a equivalence classes, and
(b) rng(f) ⊆ inhab(b).

Proof. If f :a→b, then f = b◦f◦a, so f = f◦a is constant on a equivalence classes, and

rng(f) = rng(b◦f) ⊆ rng(b) = inhab(b)

Conversely, if (a) and (b) hold,

f = f◦a by (a)
= b◦f◦a by (b)
= (a→b) f

= V(a→b) f since a, b :V

whence f :a→b.

A special type of endomorphisms are the idempotents

Idem := (V → V) (λa. P U. Endo a).
!check U = Idem ⊥.

For products, we want something like system F’s ∀c. (a→b→c)→c, but need to disambiguate to pre-
vent e.g. 〈K,F〉 | 〈F,K〉.

Prod := (V → V → V) (
λa, b. P (Simpleλc, c′. (a→b→c)→c′) (λq. (q K, q F))

).
!define prod := P (Simpleλc, c′. (any→any→c)→c′) (λq. (q K, q F)).
!check prod = Prod ⊥ ⊥.
!check Prod a b = P prod ((V a → V b → any) → any).
!check (x, y) : prod.
!check (∀a :V, b :V. (a x, b y) : Prod a b).

Products are actually dropped products, since 〈⊤,⊤〉 6= ⊤ = ⊤prod. (Note however that the least pair is
indeed (⊥,⊥)).

!check ((⊤,⊤),⊤ : prod).
!check prod ⊥ = (⊥,⊥).

Remark. We will often use this style a polymorphic type Prod by a simpler type prod = Prod ⊥ ⊥. This
denotational equivalent of type inference allows us, under the Curry-Howard correspondence, to insert
untyped proof sketches into larger well-typed contexts. See 3.14 for some simple examples, and 6.1 for
extended example of how this works.

54

The intro and elim forms are

Pair := (∀a :V, b :V. a → b → Prod a b) (λ−,−, x, y, f. f x y).
pair := (any → any → prod) (λx, y, f. f x y).
!check pair = Pair ⊥ ⊥.
!check Pair = (λa :V, b :V, x :a, y :b. (x, y)).
!check pair = (λx, y. (x, y)). verifying notation

Pi1 := (∀a :V. Prod a nil → a) (λ(x,−). x).
Pi2 := (∀b :V. Prod nil b → b) (λ(−, y). y).
π1 := (prod→any) 〈K〉.
π2 := (prod→any) 〈F〉.
!check π1 = Pi1 ⊥.
!check π2 = Pi2 ⊥.
!check (λp :prod. (π1 p, π2 p)) ⊑ prod. typing error prevents equality

Theorem 3.7.6. inhab(Prod a b) = {⊤} ∪ {(x, y) | x :a, y :b}.

Proof. Any h.n.f. below q :Prod a b must be (a x, b y) or ⊤. We construct the maximum such approxima-
tion: Its first component is q K. Its second component is q F. So disambiguate := λq. (q K, q F) ensures
sequentiality.

Remark. Tuples with nil elements needn’t be nil (but this can be checked):

!check (⊤,⊤) : prod.
!check (⊤,⊤) ⊑/ ⊤.

thus this is really a “dropped” product. The usual inhabitation relation does not hold:

!check Prod nil nil ⊑/ nil.

however, we will see in Section 3.10 that the theorem does hold for types as checkable closures.

For sums, we want something like System F’s ∀a, b. (a→c)→(b→c)→c, but need to disambiguate to
prevent e.g. inl K | inr F.

Sum := (V→V→V) (
λa, b. (Simpleλc, c′. (a→c) → (b→c) → c′)

| λq. q ⊥ (q ⊤ ⊥)
| q (q ⊥ ⊤) ⊥
| λf, g. q (K I) ⊥ (q f ⊤)

| q ⊥ (K I) (q ⊤ g)
).
!define sum := Sum ⊥ ⊥.

The intro forms are

Inl := (∀a :V. a → Sum a ⊥) (λ−, x, f,−. f x).
Inr := (∀b :V. b → Sum ⊥ b) (λ−, y,−, g. g y).
!define inl := (λx, f,−. f x).
!define inr := (λy,−, g. g y).
!check (inl, inr : any→sum).
!check inl = Inl ⊥.
!check inr = Inr ⊥.
!check (inl, inr)◦sum = sum.

Sums are actually dropped, lifted coproducts since inl ⊤ 6= ⊤ 6= inr ⊤ and inl ⊥ 6= ⊥ 6= inr ⊥modulo sum.

!check (⊤, inl ⊤, inr ⊤ : sum).
!check (⊥, inl ⊥, inr ⊥ : sum).

55

Theorem 3.7.7. inhab(Sum a b) = {⊤,⊥} ∪ {inl x | x :a} ∪ {inr y | y :b}.

Proof. Combine the proofs of bool and Prod.

For the successor type 1 + a we define an operation like System F’s ∀a. b→(a→b)→b, disambiguating
as with sums.

Maybe := (V → V) (
λa. (Simpleλb, b′. b → (a→b) → b′)
| (λn,−. n, λx,−, s. s x) descend, = 〈none, some〉
| λq. q ⊥ (q ⊤ ⊥)
| q (q ⊥ ⊤) ⊥

).
!define maybe := Maybe ⊥.

The intro forms are

!define none := maybe (λn,−. n).
Some := (∀a :V. Maybe a) (λa, x,−, s. s x).
!define some := maybe (λx,−, s. s x).
!check some = Some ⊥.
!check none : Maybe a.

Theorem 3.7.8. inhab(Maybe a) = {⊤,⊥, none} ∪ {some x | x :a}.

Proof. Similar to proof of Sum.

The Maybe together with its mapping functions form a functor.

map Maybe := (∀a :V, b :V. (a→b) → Maybe a → Maybe b) (
λ−,−, f. (none, some◦f)

).
map maybe := (any → maybe → maybe) (λf. (none, some◦f)).
!check map maybe = map Maybe ⊥ ⊥.

The naming of Maybe already hints at the Curry-Howard correspondence, whereby we interpret type
constructors as logical connectives. When defining types of logical statements, we will often use the addi-
tional terminology

And := Prod.
Or := Sum.
If := Exp.

Recursive types

We can define recursive types as fixedpoints of type constructors, e.g. the dual types num and Stream a of
algebraic numerals and streams. Numerals have introduction forms none and some

num := V (Yλa. Maybe a).
!check none : num. zero
!check (∀n :num. some n :num). successor

To avoid streams that typecheck for awhile but eventually err, we disambiguate with λq. qλ−, q′. q′λ−,−. ⊥,
pulling errors to the head.

Stream := (V → V) (λa. Yλb. Prod a b | λq. qλ−, q′. q′λ−,−. ⊥).
stream := V (Yλa. Prod any a | λq. qλ−, q′. q′λ−,−. ⊥).
!check stream = Stream ⊥.
!check ⊤ = stream (⊥,⊤) = stream (⊥,⊥,⊤) = stream (⊥,⊥,⊥,⊤).

56

Now duality Stream a <: num→a is expressed as

!check (∀a :V, s :Stream a, n :num. s n :a).

Intersection types

Intersection types are definable for closures (but not general idempotents). Recall that

!check P = (V → V → V) (λa, b. a | b).

Theorem 3.7.9. inhab(P a b) = inhab(a) ∩ inhab(b).

Proof. Let a, b :V be types.
• ⊆: If x :P a b then x = P a b x ⊒ a x ⊒ x and similarly x :b.
• ⊇: If x :a and x :b then (a | b)x = a x | b x = x | x = x, so P a b x = V(a | b)x = x.

Intersection are also defined over enumerably-many types, say in a Stream as defined below:

Pstream := (Stream V → V) (Yλa :Stream V→V, (h, t). P h(a t)).

Lower-powerdomains support singletons, unions, mapping, and restriction by a semipredicate; so we call
them semisets. We represent semisets as ambiguous terms of simple type (any→a)→a, e.g.

{} = ⊥
{0} = 〈0〉
{0, 1, 2} = 〈0〉 | 〈1〉 | 〈2〉
{0, 1, 2, . . . } = (Yλn. 〈n〉 | y(succ n))0

Sset := (V → P (Above 〈⊥〉)) (λa. Simpleλb, b′. (a→b)→b′).
!define sset := P (Above 〈⊥〉) (Simpleλa, a′. (any→a)→a′).
!check sset = Sset ⊥.
!check sset ⊥ = 〈⊥〉.
!check (⊤, 〈⊤〉 : sset).

map Sset := (∀a :V, b :V. (a→b) → Sset a → Sset b) (λ−,−, f, 〈x〉. 〈f x〉).
map sset := (any → sset → sset) (λf, 〈x〉. 〈f x〉).
!check map sset = map Sset ⊥.

Theorem 3.7.10. inhab(Sset) = {⊤} ∪ {
⊔

x∈M

〈x〉 | M ⊆ inhab(a)}.

Proof. By the Simple type theorem, where ⊥ is the only term raised by 〈⊥〉

Note that Sset,map Sset are the components of the functor of a monad2 for ambiguity, with components

(V→V) Sset action on objects
(∀a :V, b :V. (a→b) → Sset a → Sset b) map Sset action on arrows

(∀a :V. a → Sset a) (λ−, x. 〈x〉) unit
(∀a :V. 2 Sset a → Sset a) (λ−, 〈x〉. x) join

2See [Wad90] and [Mog91] for definition.

57

Dependent types

We have already been using quantified types in the notation

∀a :V.M := λa :V, x. M(x a)

Nowwe build concrete universal and existential type constructors, defined by the typing rules for indexed
products and sums

x :Π a f i :a

x i : f i
(Π)

(i, x) :Σ a f

i :a
(Σ.1)

(i, x) :Σ a f

x : f i
(Σ.2)

We represent the universally quantified type Π a f = ∀i :a. f i by

Π := (∀a :V. (a→V) → V) (λ−, f, x, i. f i(x i)).
!check (∀a :V, f :a→V. Π a f = (∀i :a. f i)). verifying notation
!check (∀a :V, f :a→V, x :Π a f, i :a. x i : f i). rule (Π)

and the existentially quantified type Σ a f = ∃x :a. f x by

Σ := (∀a :V. (a→V) → P prod) (λa, f, (i, x). (a i, f i x)).
!check (∀a :V, f :a→V. Σ a f = (∃i :a. f i)). verifying notation
!check (∀a :V, f :a→V, (i, x) :Σ a f.

i :a AND x : f i rules (Σ.1) and (Σ.2)
).

Because there is a type-of-types V, these dependent types encompass kinds of polymorphic types. For
example

!check Exp : (∀a :V. V → P (From a)).
!check Exp : V → (∀b :V. P (To b)).

Using dependent types, we can even define a type of definable functor

functor := (∃f :V→V. ∀a :V, b :V. (a → b) → f a → f b).

Which types, e.g., the semiset monad and the Maybe functor.

!check (Sset,map Sset) : functor.
!check (Maybe,map Maybe) : functor.

Symmetry types

An interesting feature of the types-as-closures paradigm is the definability of quotient types for objects in-
variant under a monoid action. For example the two-element group {I,C} = {λf, x, y.f x y, λf, x, y.f y x}
(acting as always by left-application), permutes the first two arguments of a function. This action induces
the type of symmetric binary functions

Sym bin fun := (V → V → P C) (λa, b. a→a→b).
sym bin fun := V C.
!check sym bin fun = Sym bin fun ⊥ ⊥.
!check sym bin fun <: (λf, x, y. f x y).
!check sym bin fun <: (λf, x, y. f y x).

58

!check (J,P, 2 K x : sym bin fun).
!check J = sym bin fun K = sym bin fun F.

As a special case, we will use commutative binary operations

Comm op := (V → V) (λa. P sym bin fun. Bin op a).
!check Comm op a = Sym bin fun a a.
!check sym bin fun = Comm op ⊥.

Now we can conveniently define some logical types

Pred := (V → V) (λa. a→bool). predicate
Bin rel := (V → V) (λa. a→a→bool). binary relations
Sym bin rel := (λa. P sym bin fun. Bin rel a). symmetric binary relation

An advantage of types-as-closures over types-as-projections is the definability of quotients by infinite
monoids. Consider for example functions of tails of sequences, which are invariant under shifts in either
direction:

Fun of tail := (V → V → V) (
λa :V, b :V.
λf :Stream a → b.
fwd := (λs :Stream a. (⊥, s)).
bwd := (λ(−, t) :Stream a. t).
f | f◦fwd | f◦bwd

).

An example of a function symmetric under an uncountable symmetry monoid (in fact group) is the
Join stream function on streams, invariant under the group of permutations of ω.

More generally, we can define the quotient of semisets

Mod := (∀a :V. Sset (a→a) → P (Sset a)) (
λ−,ms, xs. msλm. xsλx. 〈m x〉

).
mod := Mod ⊥.
!check mod 〈C〉 〈K〉 = 〈K〉 | 〈F〉.

If we further have an apartness assertion assert neq :a→a→unit for some algebra, we can construct true
quotients.

Quotient := (∀a :V. Sset (a→a) → P C (a→a→unit) → P (Sset a)) (
λa, sym, assert neq. λxs.
(xsλx. xsλx′. assert neq x x′).
symλs. xsλx. 〈s x〉

).

Open Questions

Question 3.7.11. Are intro-elim forms definable uniformly from a simple type code?

Question 3.7.12. Does SKJ have all singleton closures, i.e. is there for every SKJ -term m a closure unitm with
inhabitants only {m,⊤}? If so, is this uniformly definable from codes for m?

59

Definition 3.7.13. Let M be a term and define

unitM :=
⊔

{a :V | M :a}

to be the principle type of M.

Lemma 3.7.14. inhab(unitM) = {M,⊤}

Proof. Clearly M,⊤ :unitM. Moreover, M :J M, so J M :> unitM and every inhabitant of unitM extends M.
Let M′⊒/ M be such an inhabitant. Then by definition ofH∗, there is a term N with N M = ⊥ and N M′ = ⊤.
But M :V N so V N :> unitM. Hence M′ = unitM M′ ⊒ V N M′ = ⊤.

Question 3.7.15. For which M is unitM definable?

For example we already have principle types for I,⊤,⊥,K,F, namely unitI = unit, unit⊤ = nil,
unit Bot = div, P bool (J K) = unitK, and P bool (J F) = unitF.

Conjecture 3.7.16. unitM is not uniformly definable.

Later in 5.7 we show that principle types of SKJ terms are uniformly definable in SKJO .

3.8 Axioms for a few simple types

Atomic types

The type unit is inhabited by {I,⊤}.

!assume (I,⊤ : unit).
!assume unit x = (unit x)◦(unit x) = (unit x)(unit x).

Within the domain unit, application is the same as composition.

!assume (unit x)(unit y) = (unit x)◦(unit y).

The following axiom shemata are enforced for unit

x 6⊑ I

unit x = ⊤

x I ⊑ I

unit ⊑ x

The latter holds since unit is the largest function:I 7→ I.
The type semi is inhabited by {⊥, I,⊤}.

!assume (⊥, I,⊤ : semi).
!assume semi x = (semi x)◦(semi x) = (semi x)(semi x)

= (semi x)◦(unit x) = (semi x)(unit x).

As with unit, application is the same as composition.

!assume (semi x)(semi y) = (semi x)◦(semi y).

The following inference rules are enforced for semi

x 6⊑ ⊥

semi x ⊒ I

x 6⊑ I

semi x = ⊤

x ⊥ = ⊥ x I ⊑ I

semi ⊑ x

60

The boolean type bool is inhabited by {⊥,K,F,⊤}.

!assume (⊥,K,F,⊤ : bool).

We can thus check equations pointwise, e.g.,

!assume bool x = bool x K F

= bool x I I (bool x)
= bool x (bool x) (bool x)
= bool x K ⊥ | bool x ⊥ F.

Type constructors

We will also add the four most basic type constructors to the basis.

!using prod sum maybe sset.

The polymorphic versions relate to the simple versions via P.

!assume Prod a b = P prod ((a→b→any) → any).
!assume Sum a b = P sum ((a→any) → (b→any) → any).
!assume Maybe a = P maybe (any → (a→any) → any).
!assume Sset a = P sset ((a→any)→any).

Conversely, the simple versions are sketches of the polymorphic versions.

!assume prod = Prod ⊥ ⊥.
!assume sum = Sum ⊥ ⊥.
!assume maybe = Maybe ⊥.
!assume sset = Sset ⊥.

We also characterize typical inhabitants

!assume (x, y) : prod.
!assume (⊥, inl x, inr y : sum).
!assume (⊥, none, some x : maybe).

Semisets are inhabited by singletons 〈x〉 and nonempty finitary joins, which we achieve through binary
joins sset x | sset y.

!assume (〈x〉, sset x | sset y : sset).

3.9 Various-valued logics

In this section we develop logical calculi with four different truth values: boolean truth values for (two-
sided) decidability, semiboolean truth values for positive semidecidability (e.g. convergence testing), and
unit and divergent truth values for negative decidability (e.g. error checking). The four types turn out to
have pracitcal utility for “programming” in SKJ , but there is also motivation from descriptive complexity
theory.

In the theory H∗, raw equality and information ordering between SKJ terms is Π0
2-complete. But some

verification problems are naturally of lower complexity, e.g. converge testing (a result can be found), or

61

divergence testing (no errors can be found). The logical types div, unit, semi, bool provide restricted domains
over which questions of lower complexity class, respectively Π0

1,Π
0
1,∆

0
2,∆

0
1. For example determining

whether x = I is Π0
2-complete, but restricted to the type unit, the question x :unit ⊢ x :I is Π0

1-complete.
In stating and proving the following motivational theorems, use some material from later sections, e.g.

Ptest below and Join nat and test nat from 3.12.

Theorem 3.9.1. The following complexity characterizations hold for raw problems in SKJ .

Problem Complexity

(a) x = ⊥ Π0
1-complete

(b) x = I Π0
2-complete

(c) x = ⊤ Π0
2-complete

Proof.
Upper Bounds:

(a) x = ⊥ iff div x = ⊥ iff no β-η reduction shows div x = ⊤.
The remaining cases reduce to information ordering, which is Π0

2.

Hardness: Let φ :nat→bool be a total recursive predicate.
(a) ∀n. φ(n) iff (Join nat λn. φ n ⊥ I) = ⊥.
(b) By negating (a), ∃m. φ(m) can be posed as a problem x = I, where we further know x ∈ {⊥, I}.

Now consider an infinite η-expansion of

I = λx, y0. xλy1. y0λy2. y1λy3. y2λy4. . . .

Let ψ(m) be a Σ0
1 predicate where for each m,

um = I ⇐⇒ ψ(m) and um ∈ {⊥, I}. Then inserting um’s into the expansion of I,

∀m.ψ(m) ⇐⇒ I = λx, y0. xλy1. u0 y0λy2. u1 y1λy3. u2 y2λy4. . . .

(c) Consider a definition of ⊤ as

⊤ =
⊔

n

Kn

Note that any finite such join is not⊤. Letψ(m) be aΣ0
1 predicate where for eachm, um = I ⇐⇒ ψ(m)

and um ∈ {⊥, I}. Note that

∀m < 1 + n. ψ(m) ⇐⇒ I = u0◦u1◦. . .◦un

so let us define vn = u0◦u1◦. . .◦un, so that if ψ(m) fails, then vn = ⊥ for all n ≥ m. Now

∀m. ψ(m) ⇐⇒ ⊤ =
⊔

m

vn Kn

The situation is much nicer in typed or typed-and-tested contexts. Our semantics for contexts Γ ⊢ M = N

is the same as that for universal quantifers and hypothetical tests. Letting a :V and t : test, we localize via

(x :a ⊢ f x = g x) ⇐⇒ f◦a x = g◦a x

(x :: t ⊢ f x = g x) ⇐⇒ (t x)(f x) = (t x)(g x)
(x :a :: t ⊢ f x = g x) ⇐⇒ (t◦a x)(f◦a x) = (t◦a x)(f◦a x)

Theorem 3.9.2. The following complexity characterizations hold for local problems in SKJ .

62

Context ⊢ Problem Complexity

(a) x :div ⊢ x = ⊥ Π0
1-complete

(b) x :div ⊢ x = ⊤ Σ0
1-complete

(c) x :unit ⊢ x = I Π0
1-complete

(d) x :semi ⊢ x = I complete for differences between Σ0
1 sets

(e) x :semi ::unit ⊢ x = I Σ0
1-complete

(f) x :bool :: test bool ⊢ x = K ∆0
1-complete

(g) ⊢ s <:: t Π0
2-complete

Note that testing x :: t is equivalent to semi(t x) = I, corresponding to case (c).

Proof. We can WLOG restrict terms x :a for closures a, by raising incomplete x via x 7→ a x.
(a) The problem x = ⊥ does not depend on x :div, so apply the previous theorem.
(b) Suppose x :div, i.e., x ∈ {⊥,⊤}. Then div x = ⊤ iff x 6= ⊥.
(c) Suppose x :unit, i.e., x ∈ {⊥, I,⊤}. Then x = I iff div x = ⊥.
(d) Suppose x :semi, i.e., x ∈ {⊥, I,⊤}. Then x ⊑ I iff x ⊥ = ⊥, which is Π0

1-complete. Also, x ⊒ I iff
x ⊤ 6= ⊥, which is Σ0

1-complete. Conjoining these two problems gives problem complete for differ-
ences between Σ0

1 sets.
(e) Suppose x ::semi ::unit, i.e., x ∈ {⊥, I}. Then x = I iff div(x ⊥) 6= ⊥, which is Π0

1-complete.
(f) Suppose x :bool :: test bool, i.e., x ∈ {K,F}. Then x = K iff div(x ⊥ ⊤) = ⊥ iff div(x ⊤ ⊥) 6= ⊥. The

former is Π0
1-complete and the latter is Σ0

1-complete.
(g) First we can reduce the subtest problem to s <:: t iff ∀x ::s. x :: t. Now the inner testing problem is

equivalent to x :: t, which is Σ0
1-complete. Letting s = test nat,

Later in 5.6 we will extend these to hyperarithmetic analogs.

Boolean Logic

We begin with Boolean logic.

!check true = K = bool (λx,−. x).
!check false = F = bool (λ−, y. y).

pred := any→bool.
!check Pred = (V → V) (λa. a→bool).

we also have unit types inhabited by the truth values

unitK := P bool (Above K).
unitF := P bool (Above F).

The logical operations are all SKJ -definable.

not := (bool → bool) C.
!check not = (F,K)◦bool.
!check not◦not = bool.

Following Plotkin, we define parallel versions of and and or, initially using symmetry types

and := Comm op bool (λx, y. x y F).
or := Comm op bool (λx, y. x K y).
iff := Comm op bool (λx, y. x y. not y).

63

The parallel implication requires a little more work. For this we first define Dijkstras guarded commands

if := (bool → semi) (I,⊥).

which can be joined together, as in

implies := (bool → bool → bool) (
λx, y. if y K

| if (not x) K

| if (and x (not y)) F

).

and the converse

impliedby := C implies.

Note the relation to the sequential implication

!check implies ⊒ (λx :bool, y :bool. x y K).
!check implies 6⊑ (λx :bool, y :bool. x y K).

Using this technique we can redefine and and or via

!check or = Bin op bool (
λx, y. if x K

| if y K

| if (not x). if (not y) F

).
!check and = Bin op bool (

λx, y. if (not x) F

| if (not y) F

| if x. if y K

).

Weak Logics

Weaker than boolean logic is testing logic with truth values:semi.

test := any→semi.
Test := (V → V) (λa. a→semi).
!check test = Test ⊥.
!check (K I,K ⊥,K ⊤ : test). succeed/fail/err everywhere

Weaker still are probing logic with truth values:div

probe := any→div.
Probe := (V → V) (λa. a→div).
!check probe = Probe ⊥.
!check (K ⊥,K ⊤ : probe). the minimum and maximum probes

and checking logicwith truth values:unit

check := any→unit.
Check := (V → V) (λa. a→unit).
!check check = Check ⊥.
!check (K I,K ⊤ : check). the minimum and maximum checks

64

Note that checks can easily be made into closures:

!check W◦check : check→V.
Checked := (∀a. Check a → P a) (λ−, c, x. c x x).
!check Checked ⊥ ⊥ = I.
!check Checked a ⊥ = V a.
!check Checked ⊥ c x = check c x x.
!check Checked a c <: V a.
!check Check (Checked a c) <: Check a.
!check Check a c : Check (Checked a c).

The logics have meet and join operations, but no negation.

or semi := Comm op semi (λx, y. x). i.e., J
or unit := Comm op unit (λx, y. x).
or div := Comm op div (λx, y. x).

and semi := Comm op semi (λx, y. x y).
and unit := Comm op unit (λx, y. x y).
and div := Comm op div (λx, y. x y).

!check or semi ⊤ = ⊤.
!check or semi ⊥ = semi.
!check or semi I I = I.
!check and semi ⊤ = ⊤.
!check and semi ⊥ ⊥ = ⊥.
!check and semi ⊥ I = ⊥.
!check and semi I I = I.

Note that checking logic simply checks for errors, so

!check and unit = or unit.
!check and div = or div.

Checking logic is used in assertions and subtyping:

assert := (bool → unit) (I,⊤).
Pwhere := (∀a :V. (a→unit) → P a) (λ−,w, x. w x x).

Definition 3.9.3. We refer to bool−, semi−, unit− and div− valued functions as predicates, tests, checks, and
probes, respectively.

The motivation is that a term passes a check if no error is found (as in static typechecking); a term passes
a test if no error is found and in addition it performs some computation (as in a unit test); and a term passes
a probe if it doesn’t blow up when mucked with. We can weaken any test by forcing convergence

test2check := (test → check) (λt, x. I | t x).

and checks are naturally tests

!check check <: test.

For each weak predicate type we can define implication / subobjecthood as follows:

Definition 3.9.4. (weak implication)

65

• Let c, c′ :check be checks. Then c is a subcheck of c′ iff c ⊒ c′.
• Let p, p′ :probe be probes. Then p is a subprobe of p′ iff p ⊒ p′.
• Let t, t′ : test be tests. Then t is a subtest of t′ iff t = Ptest t t′ where

Ptest = Sym bin op test (λs, t, x. and test (s x) (t x)).

We use the notation x :: t ⇐⇒ test t x = I to say that x has passed test t, and the notation s <:: t to
say that s is a subtest of t.

Thus to intersect / conjoin checks and probes we need only join them. but to combine tests, we consider
errors are more important than failures.

!define Ptest := Comm op test (λp, q, x. and semi(p x)(q x)).
Pcheck := Comm op check (λp, q, x. and unit(p x)(q x)).
Pprobe := Comm op probe (λp, q, x. and div(p x)(q x)).

3.10 Tests for totality and correctness

Types as tests

Following the interpretation of types-as-closures of 3.3, we will pursue an alternate interpretation of types-
as-tests, with a similar convenient notation. Moreover, the two interpretations of types cohabit gracefully.

Definition 3.10.1. (types as tests)

(λx :: t.x) = (λx.semi(t x)x) tested abstraction
x :: t ⇐⇒ semi(t x) = I passing a test

∀x :: t. M = N ⇐⇒ (λx :: t.M) = (λx :: t.N) universal quantifiers
s <:: t ⇐⇒ test s = S(test t)(test s) sub-testing

(s :: t =⇒ M ∼ N) ⇐⇒ test t s M ∼ test t s N tests as hypotheses

where in the conclusion M ∼ N, the relation ∼ is one of =,⊑,⊒.

Lemma 3.10.2. The following are always true.

!check (∀x :: t. x :: t).
!check x :: t =⇒ x :: t.
!check x :: t =⇒ m = m.
!check ⊤ ::I =⇒ ⊥ = ⊤.

Proof. Letting i = test t x below,

∀x :: t. x :: t ⇐⇒ ∀x :: t. test t x) = I

⇐⇒ (λx :: t. test t x) = (λx :: t.I)
⇐⇒ (λx.test t x.test t x) = (λx.test t x I)
⇐⇒ (λx. i i) = (λx. i I)

(x :: t =⇒ x :: t) ⇐⇒ (x :: t =⇒ test t x = I)
⇐⇒ test t x (test t x) = test t x I

⇐⇒ i i = i I

In either case, we can we can check i pointwise over inhab(semi) = {⊥, I,⊤}:

⊥ ⊥ = ⊥ = ⊥ I

I I = I = I I

⊤ ⊤ = ⊤ = ⊤ I

The last two implications are trivial.

66

Lemma 3.10.3. Subtesting is a preorder.
(a) t <:: t.
(b) If r <:: s and s <:: t then r <:: t.

Proof. Assume WLOG r, s, t : test

(a) t <:: t iff t = S t t, which holds pointwise since I I = I, ⊥ ⊥ = ⊥, and ⊤ ⊤ = ⊤.
(b) Noting that application and composition are the same for semibooleans

!check (semi x)(semi y) = (semi x)◦(semi y).

we can again look at the pointwise situation.

r x = (r x)◦(s x) since r <:: s

= (r x)◦(s x)◦(t x) since s <:: t

= (r x)◦(t x) since r <:: t

whence r <:: t.

However, subtesting is not a partial order, even on test, since antisymmetry fails, e.g. ⊥ <:: ⊤ and
⊤ <:: ⊥. The problem is that tests can fail in two directions (⊥ and ⊤), but subtesting only ask whether, not
how tests fail.

Atomic tests and checks.
We define atomic tests for a few tyes

test any := Test any (K I). maximal test: everything passes
test nil := Test nil 〈〉. minimal test: nothing passes
test div := Test div 〈〉.
test unit := Test unit 〈I〉.
test semi := Test semi 〈I〉.
test bool := Test bool 〈I, I〉.
!check test any = K I.

Note that the subtypes of semi are their own tests:

!check test nil = nil.
!check test div = div.
!check test unit = unit.
!check test semi = semi.

Checks can now be defined in terms of tests.

check any := test2check test any.
check nil := test2check test nil.
check unit := test2check test unit.
check semi := test2check test semi.
check bool := test2check test bool.

The subtypes of unit are their own checks:

!check check nil = nil.
!check check unit = unit.

67

Compound Tests

In defining compound tests, we first extend to the categories of testable types and checkable types

testable := (∃a :V. test a).
checkable := (∃a :V. check a).
Testable := (P V → testable) (λt. ∃a : t. test a).
Checkable := (P V → checkable) (λt. ∃a : t. check a).
!check testable = Testable ⊥.
!check checkable = Checkable ⊥.

For example we can define

tb unit := 〈unit, test unit〉.
tb semi := 〈semi, test semi〉.
tb bool := 〈bool, test bool〉.

Remark. Testing exponentials requires enumerating the compact elements of the domain, which is not al-
ways easy (or possible). Hence these categories are not closed.

Now we can define constructors for testables

test prod := 〈2 K I〉◦prod.
tb Prod := (testable → testable → testable) (

λ〈a, ta〉, 〈b, tb〉. (
Prod a b,
λp. and semi (test prod p). and semi (ta (p K)) (tb (p F))

)
).
!check (∀aa : testable, bb : testable.

let (−, a) := aa.
let (−, b) := bb.
let (−, ab) := tb Prod aa bb.
∀x ::a, y ::b. (x, y) :: ab

).

tb Sum := (testable → testable → testable) (
λ〈a, ta〉, 〈b, tb〉. (

Sum a b,
λp. and semi (p (K I) (K I)) (p ta tb)

)
).
!check (∀aa : testable, bb : testable.

let (−, a) := aa.
let (−, b) := bb.
let (−, ab) := tb Sum aa bb.
(∀x ::a. inl x :: ab) AND (∀y ::b. inr y :: ab)

).

68

tb Maybe := (testable → testable) (
λ〈a, ta〉. (

Maybe a,
λp. and semi (p I (K I)) (p I ta)

)
).
!check (∀aa : testable.

let (−, a) := aa.
let (−,ma) := tb Maybe aa.
(∀x ::a. some x :: ma) AND (none :: ma)

).

and more weakly-typed versions for tests and checks only

test Prod := (test → test → Test prod) (
λs, t, (x, y). and semi (s x) (t y)

).
test Sum := (test → test → Test sum) (λs, t. (s, t)).
test Maybe := (test → Test maybe) (λt. (I, t)).

check Prod := (check → check → Check prod) (λs, t, (x, y). s x | t y).
check Sum := (check → check → Check sum) (λs, t. (s, t)).
check Maybe := (check → Check maybe) (λt. (I, t)).

Semisets pass a test if at least one element converges, and no diverge.

test sset := Test sset (λx. x (K I)).
test Sset := Ptest test sset (Test sset) (λt. 〈t〉).
!check test sset = test Sset (K I).

3.11 Axioms for a few simple tests

The test intersection operator

The test intersection operator is

Ptest = (test→ test→ test) (λt, t′, x. and semi (t x) (t′ x)).

The following axiom shemata will be enforced for the atom Ptest

check p ⊒ check q probe p ⊑ probe q

test p <:: test q

where the subtest relation <:: is defined as

p <:: q ⇐⇒ p = Ptest q p

We also assume the ACI axioms, as mentioned in 3.9

!assume Ptest p p = test p. idempotence
!assume Ptest p q = Ptest q p. commutativity
!assume Ptest p(Ptest q r) = Ptest(Ptest p q)r. associativity

69

3.12 Church numerals

The type of Church numerals

nat := V (
Yλa. V. (Simple λb, b′. (b′→b)→b→b′)

| 〈J, I,⊥〉
| 〈λn :a, f :a→a, x :a.f(n f x), λ−, x :a.x〉
| λq. q ⊥ (q ⊤ ⊥)
| q (q ⊥ ⊤) ⊥

).
check nat := Check nat 〈λx. I | x, I〉.
test nat := Test nat 〈λx. x, I〉.

with intro forms

zero := nat (λf, x.x).
succ := (nat → nat) (λn, f, x.f.n f x).

Theorem 3.12.1. inhab(nats) = {⊤} ∪ {succn z | n ∈ Nats, z ∈ {⊥, zero}}.

Proof. By the Simple types theorem, all inhabitants of the raw simple type can be written as

⊤ : (b→b)→b→b ⊥ : (b→b)→b→b zero : (b→b)→b→b

n : (b→b)→b→b

succ n : (b→b)→b→b

∀m ∈ M. m : (b→b)→b→b
⊔

M : (b→b)→b→b

Of these, we want to eliminate incompatible joins and successors of ⊤ via disambiguation. The first disam-
biguation term 〈J, I,⊥〉 eliminates successors of ⊤ by raising them to the head, as in

!check 〈J, I,⊥〉 (succ ⊤)
= succ ⊤ J I ⊥
= J (⊤ J I) ⊥
= J ⊤ ⊥
= ⊤.

and similarly for n succ ⊤. The third disambiguation term q. q ⊥ (q ⊤ ⊥) | q (q ⊥ ⊤) ⊥ prevents
incompatible joins at the the top of the Böhm tree, as in

!check (
zs := zero | succ ⊥.
zs ⊥ ⊤ = ⊤ AND

zs ⊤ ⊥ = ⊤ AND

(λq. q ⊥ (q ⊤ ⊥) | q (q ⊥ ⊤) ⊥) zs

= zs ⊥ (zs ⊤ ⊥) | zs (zs ⊥ ⊤) ⊥
= zs ⊥ ⊤ | zs ⊤ ⊥
= ⊤

).

Finally, the third disambiguation term 〈λn :nat, f :nat→nat, x :nat.f(n f x), λ−, x :nat.x〉 applies the second
disambiguator deeper in the Böhm tree, preventing successors of incompatible joins.

70

Dual to the type nat is the type of sequences.

Seq := (V → V) (λa. nat→a).
seq := Seq ⊥.

Som extra intro forms for nats are convenient.

one := nat (λf, x.f x).
two := nat (λf, x.f.f x).
!check ω = nat (λf, x.Y f).
!check succ zero = one.
!check succ one = two.
!check succ ω = ω.
!check Y succ = ω.

We also have a two-sided test for zero

is zero := (nat → bool) 〈K false, true〉.
nonzero := not◦is zero.
!check is zero zero = true.
!check is zero(succ ⊥) = false.

and a one-sided test for infinity, recalling the definition of ω,

!check ω = Y succ.
!check ω : nat.
if finite := (nat → semi) 〈I, I〉.
!check if finite zero = I.
!check if finite x = if finite (succ x).
!check if finite ω = ⊥.

We can partially eliminate with Kleene’s predecessor function, assuming nonzero input

prec := (nat → nat) 〈
λ(n,−). (succ n, n), step
(zero,⊤), initial value
F extract rhs of result

〉.
!check prec zero = ⊤.
!check prec one = zero.
!check prec two = one.
!check prec ω = ω.
!check prec◦succ = nat.
!check succ◦prec = P nat (λn. if (is zero n) ⊤).
!check prec◦succ◦succ ⊥ = succ ⊥.

Remark. Note the difference between the predecessor function in Gödel’s T and in system F ([GTL89] end
of sec. 7.3.2).

Case analysis gives a more complete elimination form.

case nat := (nat → Maybe nat) (λn. is zero n none (some. prec n)).
!check case nat◦(succ n) = test nat n (some n).
!check 〈zero, succ〉◦case nat = nat.

71

Note that Church numerals are particularly poor representatives of counting, since the predecessor or case
analysis is so difficult to construct.

Gödel’s recursor can be seen as a non-homogeneous time-evolution operator, polymorphic with type
(nat→a→a)→nat→a→a,

Rec nat := (∀a :V. Endo. Seq. Endo a) (
λ− . Yλr, fs, n, x. case nat n x λn′. r fs◦succ n′ (fs 0 x)

).
rec nat := Rec nat ⊥.

The recursor is perhaps more natural on streams and coalgebraic numerals (see 3.13).

Remark. Girard considers Gödel’s system a step backward from the logical standpoint (see [GTL89] ch. 7),
since its terms “do not correspond to proofs in an extended logical system”. On the contrary, Gödel’s T is
a half-step forward, the remaining half being dependent types, where the recursor becomes the induction
scheme for second-order Peano arithmetic.

A dependent recursor for second-order dependently typed Peano arithmetic is

Ind nat := (
∀a :nat→V. a zero → (∀n :nat. a n → a◦succ n) → ∀n :nat. a n

) (
λ− . Yλi. λz, s, n. case nat n z λn′. i (s 0 z) s◦succ n′

).
ind nat := Ind nat ⊥.

Alternatively, without using the fixed-point combinator, and so typable in system-F,

!check Ind nat = (
∀a :nat→V. a zero → (∀n :nat. a n → a◦succ n) → ∀n :nat. a n

) (
λ− . λz, s, n. n (λ(z, s). (s zero z, s◦succ)) (z, s) K

).

We can now define arithmetic operations

add := P C (nat → nat → nat) (λm, n, f. (m f)◦(n f)).
!check add zero = nat. zero is an additive unit
!check add one = succ.
!check add two = succ◦succ.
!check add ω = (λn. check nat n ω).

mul := P C (nat → nat → nat) (λm, n, f. m(n f)).
!check mul one = nat. one is a multiplicative unit
!check mul zero = (λn. check nat n zero).
!check mul one = nat.
!check mul ω x = is zero x zero ω.

pow := (nat → nat → nat) (λm, n. n m).
!check pow zero = (λn. check nat zero).
!check pow one = (λn. if finite n one).

sub := (λn,m. m prec n).
!check (λn :nat. sub n (succ n)) = (λn. if finite n ⊤).

72

3.13 Coalgebraic numerals

The type of coalgebraic numerals is µ a. 1 + a, or simply

!check num = V (Y Maybe).
test num := Test num (Y test Maybe).

Theorem 3.13.1. num is an adequate numeral system.

Proof. By definition, we need only the following terms:

zero num := num none.
succ num := (num→num) some.
prec num := (num→num) (error, I).
!check num n = prec num◦succ num n.
!check succ num n = succ num◦prec num◦succ num n.

Equality is thus bool-decidable

eq num := (num → bool) (Yλe. ((K, λn. F), λm. (F, λn. e m n))).
if eq num := (num → bool) (Yλe. ((I, λn. ⊥), λm. (⊥, λn. e m n))).
!check if eq num = if◦eq num.

As mentioned in 3.7, numerals are indices of streams.

!check (∀a :V, s :Stream a, n :num. s n :a).
!check (∀a :V. (Stream a)◦num <: num→a).
!check (x, xs) zero num = x.
!check (x, xs) (succ num n) = xs n.

Indeed primitive recursion with numerals and streams is very simple: given an initial state x and a se-
quence of state transitions fs, construct the stream of evolving states Rec num x fs.

Rec num := (∀a :V. a → Stream (a→a) → Stream a) (
λ− . Yλr, x, (f, fs). (x, r (f x) fs)

).
rec num := Rec num ⊥.

We will use a similar encoding for recursion in Gödel’s T in 6.2.
Numerals are also useful as a uniform type for large finite sets.

num below := (nat → P num) 〈λs. (⊥, s), ⊤〉.
nat2num := (nat → num) 〈some, none〉.
!check num below 0 zero num = ⊤.
!check zero num : num below 1.
!check (∀n :: test nat. (num below n) (nat2num n) = ⊤).
!check (∀n :: test nat. nat2num n : num below(succ n)).

73

3.14 Dependent types for reduction proofs

Under the Curry-Howard correspondence, we can encode theorems as types, and construct proofs as total
inhabitants of the types. More precisely, we can encode a theorem as a closure,test pair (a, t) : ∃a :V.Test a,
and prove that the theorem is true by providing a proof p :a :: t, i.e. an SKJ term p :a for which t p = I. As
mentionted before, the join operation provides no new theorems under Curry-Howard, but it does provide
a mechanism for ambiguity in proofs, e.g., a convenient without-loss-of-generality construct. But the join
operation offers a much more powerful tool, a semantic equivalent of type-inference.

To illustrate how type-inference of proof sketches works, let us consider a simple example, say a theorem
that there is no greatest natural number

thm := ∀n :nat. ∃m :nat. assert greater m n. unit

We can test a proof candidate by checking whether

∀n :: test nat. let (−, u) := p n. u ::unit

An obvious proof would be to provide the successor function

pf := thm (λn :nat. (succ m, assert greater m n I))

but since assert greater is already built into thm, we can achieve the same result by simply sketching

pf′ := thm (λn. (succ n, ⊥))

where the bottom element ⊥ is a formalization of ellipses in human proofs.
For our main example of real theorems, we will prove properties of the system SKJ itself, working with

β-reduction, convergence, and later in 6.1 the Scott ordering. The two-category of β-reductions has objects
SKJ -terms, morphisms reductions between terms, and two-cells sets of reductions between terms. We need
to deal with two-categories since composition of reduction sequences is only associative up to equivalence.
Identifying all reductions between terms yields a true category, in fact a preorder. The skeleton of this
preorder is a poset, in fact the lattice SKJ .

Question 3.14.1. What is the higher homology of this higer-category? Eg, how do transformations between reduc-
tions look?

A type for SKJ terms

Our indices for reduction proofs will be terms in the language of untyped SKJ -terms with an explicit ⊤

x term y term

x y term
(ap)

S term
(S)

K term
(K)

J term
(J)

⊤ term
(⊤)

For these SKJ terms, we define a type, test, and check

pre term := V (Yλa. Sum (Prod a a). 2 Maybe bool).
check term := Check pre term (

Yλc. check Sum (check Prod c c). 2 check Maybe check bool

).
!define term := Checked pre term check term.
!check check term : Check term.

!define test term := Test term (
Yλt. test Sum (test Prod t t). 2 test Maybe test bool

).

74

where 2 Maybe bool has three values, for S,K,J,⊤. The atomic introduction forms are thus

S := term (inr none).
K := term (inr. some none).
J := term (inr. 2 some true).
⊤ := term (inr. 2 some false).
!check (S,K,J,⊤ :: test term).

For convenience, we define two compound introduction forms

ap := (term → term → term) (λx, y. inl (x, y)).
join := (term → term → term) (λx, y. ap(ap J x)y).
!check test term (ap x y) = and semi (test term x) (test term y).
!check test term (join x y) = and semi (test term x) (test term y).

One form of elimination is by evaluating a term.

eval term := (term → any) (
λx :: test term. 〈x〉.
Yλe. (λ(x, y). (e x)(e y), S,K,J,⊤)

).
!check eval term S = S.
!check eval term K = K.
!check eval term J = J.
!check eval term ⊤ = ⊤.
!check eval term (ap x y)

= and semi (test term x) (test term y) (eval term x) (eval term y).
!check eval term (join x y)

= and semi (test term x) (test term y) (eval term x | eval term y).

We can also discriminate total terms, with truth values either bool, semi, or unit

eq term := P C (term → term → bool) (
λx, y. and semi (test term x) (test term y) 〈x, y〉.
Yλe. (

λ(l, r). (λ(l′, r′). and(e l l′)(e r r′), F,F,F,F),
(λ− .F, K,F,F,F),
(λ− .F, F,K,F,F),
(λ− .F, F,F,K,F),
(λ− .F, F,F,F,K)

)
).
!check (S,K,J,⊤ :: test bool◦(W eq term)).
!check W if eq term (ap x y) = and semi (test term x) (test term y) true.
!check eq term x x = test term x true.

75

assert eq term := P C (term → term → unit) (
λx, y. (check term x | check term y) 〈x, y〉.
Yλe. (

λ(l, r). (λ(l′, r′). e l l′ | e r r′, ⊤,⊤,⊤,⊤),
(⊤, I,⊤,⊤,⊤),
(⊤,⊤, I,⊤,⊤),
(⊤,⊤,⊤, I,⊤),
(⊤,⊤,⊤,⊤, I)

)
).
!check (S,K,J,⊤ :: W assert eq term).
!check W assert eq term (ap x y) = and unit (check term x) (check term y).
!check assert eq term x x = check term x.
!check assert eq term x y = assert(eq term x y).

if eq term := P C (term → term → semi) (
λx, y. and semi (test term x) (test term y) 〈x, y〉.
Yλe. (

λ(l, r). (λ(l′, r′). and semi (e l l′) (e r r′), ⊥,⊥,⊥,⊥),
(⊥, I,⊥,⊥,⊥),
(⊥,⊥, I,⊥,⊥),
(⊥,⊥,⊥, I,⊥),
(⊥,⊥,⊥,⊥, I)

)
).
!check (S,K,J,⊤ :: W if eq term).
!check W if eq term (ap x y) = and semi (test term x) (test term y).
!check if eq term x x = test term x.
!check if eq term x y = if(eq term x y).

As with all our algebraic datatypes, these terms are their own basic elimination forms. However, we will
often need compound elimination forms for various shapes of terms, e.g., S x y z and K x y. For these we
define various partial elimination forms, each either asserting, or testing that the particular case holds. For
example, when handling the case of applications ap x y, we eliminate with one of

case ap := (term → (term→ term→any) → any) (I,⊤).
if case ap := (term → (term→ term→any) → any) (I,⊥).

If we are in the right case, we can get the terms x, y back.

!check (∀x : term :: test term, y : term :: test term.
x = (case ap (ap x y) λu,−. u) = (if case ap (ap x y) λu,−. u)

).
!check (∀x : term :: test term, y : term :: test term.

y = (case ap (ap x y) λ−, u. u) = (if case ap (ap x y) λ−, u. u)
).

But in the wrong case (here, an atom) the elim forms either err of diverge.

!check ⊤ = case ap S = case ap K = case ap J = case ap ⊤.
!check ⊥ = if case ap S = if case ap K = if case ap J = if case ap ⊤.

76

We also need elim forms for redexes S x y z, K x y, J x y, and ⊤ x.

caseS := (term → (term→ term→ term→any) → any) (
λsxyz. case ap sxyz λsxy, z.

case ap sxy λsx, y.
case ap sx λs, x.
assert eq term S s. 〈x, y, z〉

).
if caseS := (term → (term→ term→ term→any) → any) (

λsxyz. if case ap sxyz λsxy, z.
if case ap sxy λsx, y.
if case ap sx λs, x.
if eq term S s. 〈x, y, z〉

).
!check (∀x : term, y : term, z : term. Sxyz := ap(ap(ap S x)y)z.

x = (caseS Sxyz λu,−,−. u) = (if caseS Sxyz λu,−,−. u) AND

y = (caseS Sxyz λ−, u,−. u) = (if caseS Sxyz λ−, u,−. u) AND

z = (caseS Sxyz λ−,−, u. u) = (if caseS Sxyz λ−,−, u. u)
).

caseK := (term → (term→ term→any) → any) (
λkxy. case ap kxy λkx, y.

case ap kx λk, x.
assert eq term K k. 〈x, y〉

).
if caseK := (term → (term→ term→any) → any) (

λkxy. if case ap kxy λkx, y.
if case ap kx λk, x.
if eq term K k. 〈x, y〉

).
!check (∀x : term, y : term. Kxy := ap(ap K x)y.

x = (caseK Kxy λu,−. u) = (if caseK Kxy λu,−. u) AND

y = (caseK Kxy λ−, u. u) = (if caseK Kxy λ−, u. u)
).

caseJ := (term → (term→ term→any) → any) (
λjxy. case ap jxy λjx, y.

case ap jx λj, x.
assert eq term J j. 〈x, y〉

).
if caseJ := (term → (term→ term→any) → any) (

λjxy. if case ap jxy λjx, y.
if case ap jx λj, x.
if eq term J j. 〈x, y〉

).
!check (∀x : term, y : term. Jxy := ap(ap J x)y.

x = (caseJ Jxy λu,−. u) = (if caseJ Jxy λu,−. u) AND

y = (caseJ Jxy λ−, u. u) = (if caseJ Jxy λ−, u. u)
).

77

case⊤ := (term → (term→any) → any) (
λtx. case ap tx λt, x.

assert eq term ⊤ t. 〈x〉
).
if case⊤ := (term → (term→any) → any) (

λtx. if case ap tx λt, x.
if eq term ⊤ t. 〈x〉

).
!check (∀x : term. Tx := ap ⊤ x.

x = (case⊤ Tx λu. u) = (if case⊤ Tx λu. u)
).

Finally, we will often need to join over all total terms.

Join term := Sset term (Yλs. (〈S〉 | 〈K〉 | 〈J〉 | 〈⊤〉 | sλx. sλy. 〈ap x y〉)).
!check Join term test term = I.

A dependent type for reduction paths

Next we define a type for reduction paths, dependent on the start and end terms. Our reduction paths will
capture the following inference rules, notably omitting reflexivity

x ։ y y ։ z

x ։ z
(trans)

f ։ g x : term

f x ։ g x
(lhs)

f : term x ։ y

f x ։ f y
(rhs)

x term

⊤ x ։ ⊤
(⊤)

x, y, z : term

S x y z ։ x z(y z)
(S)

x, y : term

K x y ։ x
(K)

x, y : term

J x y ։ x
(J1)

x, y : term

J x y ։ y
(J2)

Now the type of reductions depends on the equality of some terms in the hypotheses above. Eg, transitivity
requires the y in x։ y and y։ z to agree. Recalling our notation of Or = Sum and And = Prod, we define a
type of pre-proofs, possibly containing errors

pre Red := (term → term → V) (
Yλr, u, v.
Or (∃x : term. And (r u x) (r x v)). transitivity
Or (case ap uλf, x. case ap vλf′, x′.

Or (r f f′) (r x x′)). left and right monotonicity
3 Maybe bool 5 atomic reductions

).
test pre Red := (∀u : term, v : term. Test. pre Red u v) (

λ−,−. Yλt.
test Sum (test Prod test term. test Prod t t).
test Sum (test Sum t t).
3 test Maybe test bool

).

78

Next we check the pre-proofs for errors, raising the entire proof to ⊤ if any errors are found.

check Red := (∀u : term, v : term. Check. pre Red u v) (
eq := assert eq term.
Yλc, u, v. (check term u | check term v) (

λ(x, r, r′). c u x r | c x v r′,
case ap uλf, x. case ap vλf′, x′. (eq x x′. c f f′ ,

eq f f′. c x x′),
case⊤ uλx. eq v ⊤,
caseS uλx, y, z. eq v (ap (ap x z) (ap y z)),
caseK uλx, y. eq v y,
caseJ uλx, y. (eq v x, eq v y)

)
).

!define Red := (∀x : term, y : term. Checked (pre Red x y). check Red x y).
!check check Red : (∀x : term, y : term. Check. Red x y).

Once check Red has eliminated possible errors, totality testing is much easier, and can in fact ignore its
parameters.

test Red := (∀x : term, y : term. Test. Red x y) test pre Red.

Reduction proofs have introduction forms for each inference rule above.

Trans := (∀x, y, z. Red x y → Red y z → Red x z) (
λ−, y,−, xy, yz. inl (y, xy, yz)

).
Lhsr := (∀f, f′, x. Red f f′ → Red (ap f x) (ap f′ x)) (

λ−,−,−. inr◦inl◦inl

).
Rhsr := (∀f, x, x′. Red x x′ → Red (ap f x) (ap f x′)) (

λ−,−,−. inr◦inl◦inr

).
⊤R := (∀x. Red (ap ⊤ x) ⊤) (λ− . 2 inr none).
SR := (∀x, y, z. Red (ap(ap(ap S x)y)z) (ap(ap x z)(ap y z))) (

λ−,−,−. 3 inr none

).
KR := (∀x, y. Red (ap(ap K x)y) x) (λ−,−. 4 inr none).
JR1 := (∀x, y. Red (join x y) x) (λ−,−. 5 inr true).
JR2 := (∀x, y. Red (join x y) y) (λ−,−. 5 inr false).

Now these introduction forms are dependent on the terms they deal with. The join operation allows us to
ignore these parameters in proof bodies, simply sketching the rules we use. Wrapping a proof sketch in the
theorem-as-closure it proves will raise the proof sketch up to a total well-indexed inhabitant. Thus we can
use the abbreviated introduction forms

transr := Trans ⊥ ⊥ ⊥.
lhsr := Lhsr ⊥ ⊥ ⊥.
rhsr := Rhsr ⊥ ⊥ ⊥.
⊤r := ⊤R ⊥.
Sr := SR ⊥ ⊥ ⊥.
Kr := KR ⊥ ⊥.
Jr1 := JR1 ⊥ ⊥.
Jr2 := JR2 ⊥ ⊥.

79

The case study in 6.1 gives many examples of how to use these proof sketches.
We can also search for reduction proofs by joining

Join Red := (∀x : term, y : term. Sset. Red x y) (
eq := if eq term.
Yλj, u, v. (Join term λx. j u xλr. j x vλr′. 〈transr r r′〉)

| (if case ap u λf, x.
if case ap v λf′, x′. eq x x′ (j f f′λr. 〈lhsr r〉)

| eq f f′ (j x x′λr. 〈rhsr r〉))
| (if case⊤ u λ− . eq v ⊤ 〈⊤r〉)
| (if caseS u λx, y, z. eq v (ap (ap x z) (ap y z)) 〈Sr〉)
| (if caseK u λx, y. eq v x 〈Kr〉)
| (if caseJ u λx, y. eq v x 〈Jr1〉

| eq v y 〈Jr2〉)
).
!check (∀x :: test term, y :: test term. Join Red x y (check Red x y) = I).

This allows us to semidecide reduction between any two terms:

if Red := (term → term → semi) (λx, y. Join Red x y (test pre Red x y)).

Dependent types for convergence

Convergence is much easier to prove than general reduction. InH∗, a term converges iff there is a reduction
sequence to ⊤, after feeding the term some number of arguments of ⊤. Thus we formalize this idea as the
two inference rules

x ։ ⊤

x Conv
(done)

x ⊤ Conv

x Conv
(next)

As with the type of reductions Red, we define the type of convergence proofs by first defining a type of
possibly-erroneous pre-proofs (conv), then defining a proof-checker (check Conv), and finally restricting the
pre-proofs to checked proofs (Conv).

conv := V (Yλa. Or a. Red ⊥ ⊤).
test conv := Test conv (Yλt. λx. test Sum t (test pre Red ⊥ ⊤)).

check Conv := (term → Check conv) (
Yλc, x. check term x. check Sum (c (ap x ⊤)) (check Red x ⊤)

).
Conv := (∀x : term. Checked conv. check Conv x).
!check check Conv x : Check (Conv x).

test Conv := (∀x : term. Test. Conv x) (λ− . test conv).

Convergence proofs have the total introduction forms

Next := (∀x. if (Conv. ap x ⊤). Conv x) (λ− . inr).
Done := (∀x. if (Red x ⊤). Conv x) (λ− . inl).

and partial proof sketches

next := Next ⊥.
done := Done ⊥.

80

For example each atom in the basis provably converges.

!check 3 next (done Sr) :: test Conv S.
!check 2 next (done Kr) :: test Conv K.
!check 2 next (done Jr1) :: test Conv S.
!check next (done ⊤r) :: test Conv ⊤.

We can also semidecide convergence of terms by joining over all total proofs

Join Conv := (∀x : term. Sset. Conv x) (
Yλj, x. (Join Red x ⊤ λr. 〈done r〉)

| (j (ap x ⊤) λc. 〈next c〉)
).
!check (∀x :: test term. Join Conv x check conv = I).

and testing whether any of them match a term in question

if conv term := (term → semi) (λx. Join Conv x test conv).
!check (S,K,J,⊤ :: if conv term).
!check (∀x, y. ap x y :: if conv term =⇒ x :: if conv term).

81

Chapter 4

Untyped λ-calculus for convex sets of probability
distributions (SKRJ)

In this chapter we examine a λ-calculus SKRJ with uncertainty, represented as convex sets of probability
distributions (CSPDs), or lower-sets of probability valuations. Our design goal for this language is a de-
finability of simple types theorem, in the manner of 3.6. At the time of the writing this thesis we have not
achieved this goal; however, the attempt has shed light on the simpler language SKJ , in two respects.

First, join has traditionally been interpreted as nondeterminism or concurrency ([DCHA00],[DCL02]);
however concurrency distributes over randomness, preventing definable types-as-closures. Our solution is
to instead let randomness distributes over join, naturally leading to convex sets of probability distributions.
In this semantics, join is seen to model ambiguity or indeterminacy rather than concurrency.

Second, just as the Simple type constructor in SKJ allows ambiguous inhabitants, any possible con-
structor definable in SKRJ would allow fuzzy inhabitants (where fuzzy means ambiguously random, as in
CSPDs). In SKJ we were able to filter these out with disambiguation tricks (in 3.7), but these tricks generally
fail in SKRJ . Forced to accommodate the fuzzy inhabitants of a possible Simple type constructor, we de-
velop a sampling monad for arbitrary simple types (similar to [PPT05]). Although the monadic types are
more difficult to hack with, they obey better categorical properties than our easier-to-work-with types from
3.7.

Our motivation for working with probabilistic languages comes from research in Bayesian networks
and their generalizations. Koller et al [KMP97] describe methods for learning parameters of stochastic pro-
grams. Pfenning et al [PPT05] implement a probabilistic language λO by extending OCaml with a monadic
probability type. Although this language does not admit a types-as-closures interpretation in SKRJ , their
probability monad can be interpreted unchanged to represent convex sets of probability distributions.

Semantics of probabilistic programs has a long history, beginning in the early 1980s. Kozen [Koz81]
describes a linear probabilistic semantics, but his stochastic programs cannot take random generators as
parameters. That is, pmfs can only be input via their parameters. Plotikin [Plo82] and Plotkin and Jones
[JP89] develop a probabilistic powerdomain as a domain-theoretic model of ambiguity. Jones analyses the
interaction of probability and non-determinism in her thesis [Jon89]. Heckmann [Hec94] develops the prob-
abilistic powerdomain in terms of Vickers’ information systems. Edalat [Eda95] develops domain theory
for stochastic processes. Jung [JT98] discusses problems relating the probabilistic powerdomain and func-
tion space operators. Desharnais and Jagadeesan [DGJP04] discuss metric structure on probabilistic spaces,
where equality is too fine for many practical purposes.

Convex sets of probability distributions (CSPDs), or credal sets, are widely studied in the literature on
imprecise probabilities, for example in the bi-annual International Symposium on Imprecise Probability:
Theory and Applications (ISIPTA). Doan et al [DVH98] provide geometric foundations for CSPDs. Cano
and Moral [CM99] survey belief propagation algorithms for CSPDs.

83

4.1 Axioms for randomness

!using R.

In this section we show that joins of mixtures generalize convex sets of probability valuations. Hence
SKRJ provides a nice denotational semantics for programming languages with monadic types of imprecise
probabilities. First let us introduce a syntax with infinitary joins and mixtures.

Definition 4.1.1. A join is a J-term (closure under J), defined by the language

x term

x join
(singleton)

x join y join

x | y join
(binary)

X sset
⊔

X join
(infinitary)

A mixture is an R-pmf (closure under R), defined by the language

x term

x mix
(singleton)

x mix y mix

x + y mix
(binary)

X pmf(mix)

E[X] mix
(infinitary)

A (JR-)slurry is a join-mixture (closed under J,R).

Notation 4.1.2. We write R x y = x + y for the random choice operation. Beware that + is commuta-
tive but not associative: we never write x + y + z. We let + have higher precedence than join, so that
x + y | z = (x + y) | z.

Our semantics for randomness will be defined in terms of traces.

Definition 4.1.3. A trace is a sequence1 〈M1, . . . ,Mn〉 of n terms, for some n ≥ 0. An SKJ -trace is a
sequence of terms from SKJ; and similarly for other fragments.

In SK and SKJ , convergence under traces provide complete information about any term.

Theorem 4.1.4. Let x, y be SK or SKJ terms. Then x ⊑ y iff for every trace t = 〈M1, . . . ,Mn〉,
t x conv =⇒ t y conv.

In a systemwith randomness, convergence is probabilistic so that a given term x will converge only with
some probabilty p. This motivates the extension ofH∗ from SK and SKJ to SKRJ :

Definition 4.1.5. In trace probability semantics H∗ of the language SKRJ , the order relation x ⊑ y between
terms x, y holds iff under every SKJ -trace t, y is at least as likely to converge as x, i.e., P(t x conv) ≤ P(t y conv).

Our main theorem of this section is that mixtures distribute over joins,

Theorem 4.1.6. (distributivity) (x | y) + z = x + z | y + z.

Proof. Consider trace probability semantics. At each trace t, we have convergence c(−) := P(t − conv)

c((x | y) + z) = (max(c(x), c(y)) + c(z))/2
= max((c(x) + c(z))/2, (c(y) + c(z))/2)
= c(x + z | y + z)

Naively slurries can be arbitrarily deep, as in w + (x | (y + z)), however, distributivity gives us a notion
of join normal form.

1Recall from 1.5 that 〈M1, . . . , Mn〉 = λf. f M1 . . . Mn, so that we can treat sequences as argument lists.

84

Corollary 4.1.7. (JR-normal form) Every slurry can be written as a join of mixtures.

In contrast to join-as-concurrency, our join-as-ambiguity does not distribute over mixtures (J does not
distribute over R). This means we have no R-normal form, and an operational semantics for random
sampling fails.

Distributivity gives us a clean notion of Böhm trees in SKRJ .

Definition 4.1.8. A JR-Böhm tree (JR-BT) is the SKRJ notion of Böhm tree, defined by limits in the language

x var

x BT
(var)

x, h var M slurry(BT)

λx. h M BT
(abs− app)

A finite BT consists of only finite slurries and finitely many applications of rule abs-app.

Theorem 4.1.9. Every SKRJ term is a join of mixtures of JR-BTs (underH∗).

Proof. By straight-forward extension of SKJ -theorem.

Finite approximation also carries over, using the following

Lemma 4.1.10. Let X be a probability distribution over SKRJ terms. Then the mixture E[X] is a directed join of
finite mixtures of SKRJ terms.

Proof. Note that X must have countable support, since SKRJ is countable. Let Xn be the approximation of X

where probabilities are rounded down to n-bit approximations, with the remaining mass given to ⊥. Then
E[X] =

⊔

n>0
Xn.

Finally, we give a semantics as convex sets of probability distributions, where join is interpreted as the
convex hull operation, and mixture is interpreted as the convex combination operation.

Definition 4.1.11. (CSPD semantics) Let the CSPD interpretation of a term x be the set

[x] := {(t, [0,P(t x conv)) | t a trace}

of trace,probability pairs such that (t, p) ∈ x iff P(t x conv) < p.

Theorem 4.1.12. Joins interpret as convex hulls

[x | y] = 〈[x], [y]〉 := {(t, [x]t ∩ [y]t)|t a trace}

and mixtures interpret as convex combinations

[x + y] =
[x] + [y]

2
:=

{(

t,
[x]t+ [y]t

2

)

| t a trace

}

Proof. By trace probability semantics, joins are maxima, and mixtures are averages.

Distributivity has a nice visual interpretation in this semantics, shown in Figure 4.1. We will use the
following lemma to characterize types-as-closures in 4.3.

Corollary 4.1.13. Let x =
⊔

α
E[Xα] be the JR-normal form of x, where each X is a head normal form. Then x can be

interpreted as the convex hull of points Xα in the simplex of probability distributions over
⋃

α
support(Xα).

Note that among types with a totality semipredicate, we can think of ⊥ as a non-value and instead
consider convex sets of subprobability distributions.

85

X Y|Z

X

Y

Z
X+Y

X+Z

X+(Y|Z)

X+Y|X+Z

Figure 4.1: Distributivity of convex-combination + over convex-hull |.

Axioms and axiom schemata

The following axiom shemata are enforced for the atom R:

x + x = x
(idem)

x + y = y + x
(comm)

(x + y)z = x z + y z
(distrib−R)

x ⊑ z y ⊑ z

x + y ⊑ z
(subconvex)

x ⊑ y x ⊑ z

x ⊑ y + z
(supconvex)

We begin with negative order axioms (the first since 2.1)

!assume K + F = R.
!assume (K,F 6⊑ R).
!assume (K,F 6⊒ R).
!assume ⊥ ⊑/ R ⊥ ⊑/ I ⊑/ R ⊤ ⊑/ ⊤.
!check R : Φ.
!check R : 〈K,F〉.

algebraic properties

!assume x + x = x. idempotence
!assume (x + y)z = x z + y z. distributivity of right-application
!assume B(x + y) = B x + B y. distributivity of right-composition

and shallow and deep commutativity.

!assume x + y = y + x.
!assume (∀x. (a + x) + (b + y) = (b + x) + (a + y)).
!assume (∀y. (a + x) + (b + y) = (b + x) + (a + y)).

Note that we manually abstract the x and y in the last two, as the cost of closing over four variables is very
high (see 2.2).

We can express countable additivity as

!assume Y(R x) = x.

86

Corollary 4.1.14. R is injective, with left-inverse Y.

!check Y◦R = I.

The basic combinators left-distribute over mixtures

!assume K(x + y) = K x + K y.
!assume F(x + y) = F x + F y.
!assume C(x + y) = C x + C y.
!assume B(x + y) = B x + B y.
!assume W(x + y) = W x + W y.
!assume S(x + y) = S x + S y.

Mixture distributes over join

!assume x + (y | z) = x + y | x + z.
!assume (x | y) + z = x + z | y + z.

but not conversely

!check J(x + y) 6= J x + J y.

Some caremust be takenwhen joiningR-pmfs, for example onemight hope to join two sketchesK +⊥ | ⊥+ F

to get K + F, however

!check K +⊥ | ⊥+ F = J +⊥ ⊑/ K + F.

4.2 A constructor for simple types of fuzzy terms

This section describes our attempt to define closures for simple types in SKRJ . At the time of writing of
this thesis, we have not succeeded in defining a Simple type constructor. Later sections in this chapter rely
on a Simple type constructor, and serve to motivate what can be done if Simple is indeed definable.

The main difficulty in extending our definition of Simple from 3.6 is that we cannot raise different
branches of Böhm trees with different section-retract pairs; i.e., the coherence lemma fails. This same diffi-
culty prevents us from disambiguating terms in 5.7.

Interpreting simple types as closures

We now state the simple types conjecture for SKRJ , following the simple types theorem from SKJ . The
languages of terms and types in 4.2 differ from the SKJ terms and types only in that we now have mixtures.

Conjecture 4.2.1. There is an SKRJ -definable term Simple and corresponding interpretation [−] of simple types,
following 3.6, such that for each term q and simple type τ as in Figure 4.2, q ::τ iff q : [τ].

Our current best attempt is similar to the Simple from SKJ . We first define two section-retract pairs

raise := (λx,−. x).
lower := (λx. x ⊤).
!check raise◦lower = I.
!check lower◦raise 6⊑ I.

join := (λf, x, y. f (x | y)).
copy := (λf, x. f x x).
!check join◦copy = I.
!check copy◦join 6⊑ I.

87

term formation

S tm K tm ⊤ tm

m tm n tm

m n tm

∀m ∈ M. m tm
⊔

M tm

∀m ∈ supp M. m tm

E[M] tm

type formation

a var

G, a,G′ ⊢ a tp

G ⊢ σ tp G ⊢ τ tp

G ⊢ σ→τ tp G ⊢ any tp

typing

G ⊢ ρ tp G ⊢ σ tp G ⊢ τ tp

S :: (ρ→σ→τ)→(ρ→σ)→ρ→τ

G ⊢ σ tp G ⊢ τ tp

K ::σ→τ→σ

G ⊢ τ tp

⊤ ::τ

m ::σ→τ n :σ

m n ::τ

∀m ∈ M. m ::τ
⊔

M ::τ

∀m ∈ supp M. m ::τ

E[M] ::τ

m tm

m ::any

Figure 4.2: Typing and type interpretation. E[M] denotes expectation or integration over a probability
distribution M with support M.

F

M denotes the join or convex hull generated by a set M of SKRJ

-terms-as-CSPDs.

and then recursively close under conjugation.

Simple := (any→V) (
Yλs, f. f I I

| f raise lower

| f join copy

| sλa, a′. sλb, b′. f (a′→b) (a→b′)
).

Note that we need section-retract pairs to distribute over CSPDs of head normal forms. Each of raise,
lower, join, copy and their conjugates do, however, this requirement prevents us from using pairs like

open := (λf, 〈x〉. f x).
pack := (λf, x. f〈x〉).

curry := (λf, x, y. f(x, y)).
uncurry := (λg, (x, y). g x y).

4.3 Monadic types as closures

In this section we define a monadic type Fuzzy for CSPDs, and define compatible basic types and type
constructors. Our main tool is the Simple type constructor defined in 3.6. However, unlike our treatment in
3.7, we will not be able to use disambiguation tricks to prevent, e.g. K | F :bool.

88

Monadic types

The Kleisli triple presentation of a monad ([Wad90], [Mog91]) is a functor Fuzzy,Map together with a pair
of natural transformations Exactly, Lift:

Fuzzy : V→V

Map : ∀a :V, b :V. (a → b) → Fuzzy a → Fuzzy b

Exactly : ∀a :V. a → Fuzzy a

Lift : ∀a :V, b :V. (a → Fuzzy b) → Fuzzy a → Fuzzy b

Specializing to SKRJ , Exactly is the identity, and Lift = Map basically sample points from CSPDs. The main
discovery of this section is that we can implement Lift for the standard Church-style booleans, naturals, etc.,
by using a continuation passing transform.

Our Fuzzy types will be the same as the previous SKJ types-as-closures in 3.7, only we will not disam-
biguate (so e.g. K | F :bool here). Lift is not definable uniformly over types; however we will attempt to
define it uniformly for type constructors (e.g. define Lifta+b in terms of Lifta and Liftb).

Test := (V→V) (λa. a→semi). a type of tests
Lift := (λa :V. P (Endo (a→any)) (Above λf,−. f ⊥)). a type of lifters
testable := (∃a :V. Test a).
fuzzy := (∃a :V. Prod (Test a) (Lift a)).

It will be helpful in constructing types to ensure that lift f ⊒ λ− . f ⊥, i.e., lifting is at least as informative
as blinding f 7→ λ− . f ⊥ (however blinding can safely be ignored in the lifting theorem below).

To reason about the behavior of lifted functions by their action on unambiguous things, we will sample
them at various points. The sampling process should distribute over CSPDs as follows: For this we need
Theorem Schema: (sampling) Let a be a “nice” testable type, and f :a→any be a strict co-strict function,

i.e., f ⊥ = ⊥ and f ⊤ = ⊤. Then lifted functions distribute over CSPDs, i.e., letting f′ := Lifta f and
x, y :a,

f′(x | y) = f′ x | f′ y

f′(x + y) = f′ x + f′ y

and lifting perserves the identity

∀x :a :: testa. lifta I x = x

Proof Schema: We will typically implement lifting functions by performing a continuation passing trans-
form, so that lifta f is a trace 〈M1, . . . ,Mn〉. Distributivity of lifta f then follows from distributivity of
right-application over joins and mixtures:

lifta f (x | y) = 〈M1, . . . ,Mn〉 (x | y)
= (x | y) M1 . . . Mn

= x M1 . . . Mn | y M1 . . . Mn by distributivity
= 〈M1, . . . ,Mn〉 x | 〈M1, . . . ,Mn〉 y

= lifta f x | lifta f y

and similarly for mixtures x + y. Preservation of identity will depend on the implementations.

We would like to formally verify such theorems in Johann by eliminating universal quantifiers over fuzzy
types a and functions f. We can eliminate the quantifier over f using the test for a, but we cannot eliminate
the quantifier over fuzzy types a, since the closure fuzzy fails to ensure the important property

∀x :a. testa x = ⊤ =⇒ x = ⊤

89

Thus we uniformize all three equations for verification, parametrized by fuzzy type:

sampling thmJ := (fuzzy → prod) (
λ(a, testa, lifta), w, f, x, y.
f′ := lifta (λx. testa x. f x).
w (f′(x | y)) (f′ x | f′ y)

).
sampling thmR := (fuzzy → prod) (

λ(a, testa, lifta), w, f, x, y.
f′ := lifta (λx. testa x. f x).
w (f′(x + y)) (f′ x + f′ y)

).
sampling thmI := (fuzzy → prod) (

λ(a, testa, lifta), w, x :a :: testa.
(x, lifta I x)

).

To verify the theorems a specific type fuzzya, we show that the equations are symmetric under swapping

swap := (prod→prod) (λ(x, y). (y, x)).

as in

!check sampling thmJ fuzzya : swap.
!check sampling thmR fuzzya : swap.
!check sampling thmI fuzzya : swap.

Fuzzy atomic types

Let’s begin by define sampling functions for types nil, unit, bool, using their fuzzy forms.

nil := (Simple λa, a′. a′).
unit := (Simple λa, a′. a→a′ | 〈I〉).
bool := (Simple λa, a′. a→a→a′ | 〈K,F〉).

test nil := Test nil 〈〉.
test unit := Test unit 〈I〉.
test bool := Test bool 〈I, I〉.

lift nil := Lift nil (λf. 〈〉).
lift unit := Lift unit (λf. 〈f I〉).
lift bool := Lift bool (λf. 〈f K, f F〉).

fuzzy nil := fuzzy (nil, test nil, lift nil).
fuzzy unit := fuzzy (unit, test unit, lift unit).
fuzzy bool := fuzzy (bool, test bool, lift bool).

Theorem 4.3.1. (sampling nil, unit, and bool)

!check sampling thmJ fuzzy nil : swap.
!check sampling thmR fuzzy nil : swap.
!check sampling thmI fuzzy nil : swap.

!check sampling thmJ fuzzy unit : swap.
!check sampling thmR fuzzy unit : swap.
!check sampling thmI fuzzy unit : swap.

90

!check sampling thmJ fuzzy bool : swap.
!check sampling thmR fuzzy bool : swap.
!check sampling thmI fuzzy bool : swap.

Proof. Left as exercise for Johann.

Naturals are a bit trickier: we need to pay special attention to partial naturals like succ(succ ⊥). We
define a type and a test

nat := V (
Yλa. Simple λb, b′. (b′→b)→b→b′

| 〈λn :a, f :a→a, x :a. f(n f x), λ−, x :a. x〉
).
test nat := Test nat 〈K I, I〉.

with intro forms

zero := (λ−, x. x).
succ := (λn :nat, f, x. f(n f x) | n f(f x)).

Note that succ joins over two ways to increment. Now to lift

lift nat := Lift nat (Yλl. 〈λn, f. f ⊥ | l f◦succ n, λf. f zero〉).

Finally we package these together as a fuzzy type.

fuzzy nat := fuzzy (nat, test nat, lift nat).

Theorem 4.3.2. (sampling nat)

!check sampling thmJ fuzzy nat : swap.
!check sampling thmR fuzzy nat : swap.
!check sampling thmI fuzzy nat : swap.

Proof. Left as exercise for Johann.

Fuzzy covariant type constructors

We define products, sums, and successor types as in 3.7 and tests as in 3.10.

Prod := (V→V→V) (λa, b. Simple λc, c′. (a→b→c)→c′).
Sum := (V→V→V) (λa, b. Simple λc, c′. (a→c)→(b→c)→c′).
Maybe := (V→V) (λa. Simple λc, c′. c→(a→c)→c′).

test Prod := (∀(a,−) : testable, (b,−) : testable. Test. Prod a b) (
λ(−, ta), (−, tb), (x, y). and semi (ta x) (tb y)

).
test Sum := (∀(a,−) : testable, (b,−) : testable. Test. Sum a b) (

λ(−, ta), (−, tb). 〈λx. I | ta x, λy. I | tb y〉
).
test Maybe := (∀(a,−) : testable. Test. Maybe a) (

λ(−, ta). 〈I, λx. I | ta x〉
).

These have intro forms

π1 := (λ(x,−). x). inl := (λx, f,−. f x). none := (λf,−. f).
π2 := (λ(−, y). y). inr := (λx,−, g. g x). some := (λx,−, g. g x).

91

and lifters

lift Prod := (∀(a,−) : fuzzy, (b,−) : fuzzy. Lift. Prod a b) (
λ(−,−, la), (−,−, lb), f. 〈la λx. lb λy. f (x, y)〉

).
lift Sum := (∀(a,−) : fuzzy, (b,−) : fuzzy. Lift. Sum a b) (

λ(−,−, la), (−,−, lb), f. 〈la f◦inl, lb f◦inr〉
).
lift Maybe := (∀(a,−) : fuzzy. Lift. Maybe a) (

λ(−,−, la), f. 〈f none, la f◦some〉
).

We package all of this information together as fuzzy types.

fuzzy Prod := (fuzzy → fuzzy → fuzzy) (
λaa. (a, ta, la) := aa.
λbb. (b, tb, lb) := bb.
(Prod a b, test Prod (a, ta) (b, tb), lift Prod aa bb)

).
fuzzy Sum := (fuzzy → fuzzy → fuzzy) (

λaa. (a, ta, la) := aa.
λbb. (b, tb, lb) := bb.
(Sum a b, test Sum (a, ta) (b, tb), lift Sum aa bb)

).
fuzzy Maybe := (fuzzy → fuzzy) (

λaa. (a, ta, la) := aa.
(Maybe a, test Maybe (a, ta), lift Maybe aa)

).

We cannot verify general sampling theorems for algebraic these types, since the type constructors take
arguments whose fuzziness cannot be guaranteed with a closure, and thus cannot be eliminated.

Theorem 4.3.3. (sampling products, sums, and successors) If sampling works for a, b : fuzzy, then it also works for
fuzzy Prod a b, for fuzzy Sum a b, and for fuzzy Maybe a.

Proof. By distributivity of traces over joins and mixtures.

We can verify some particular cases:

!check sampling thmJ (fuzzy Prod fuzzy bool fuzzy bool) : swap.
!check sampling thmR (fuzzy Prod fuzzy bool fuzzy bool) : swap.
!check sampling thmI (fuzzy Prod fuzzy bool fuzzy bool) : swap.

!check sampling thmJ (fuzzy Sum fuzzy bool fuzzy bool) : swap.
!check sampling thmR (fuzzy Sum fuzzy bool fuzzy bool) : swap.
!check sampling thmI (fuzzy Sum fuzzy bool fuzzy bool) : swap.

!check sampling thmJ (fuzzy Maybe fuzzy bool) : swap.
!check sampling thmR (fuzzy Maybe fuzzy bool) : swap.
!check sampling thmI (fuzzy Maybe fuzzy bool) : swap.

The coalgebraic numeral type is the fixed points of the successor

num := Y Maybe.

92

test num := (Y λt. Test Maybe (num, t)).

lift num := Lift num (λf. 〈f zero, f◦succ〉).

fuzzy num := fuzzy (num, test num, lift num).

Theorem 4.3.4. (sampling num)

!check sampling thmJ fuzzy num : swap.
!check sampling thmR fuzzy num : swap.
!check sampling thmI fuzzy num : swap.

Proof. By induction, using the sampling theorem for Maybe above.

Coinductive stream types are fixed points of products

Stream := (V→V) (λa. Y (Prod a)).
stream := Stream ⊥.

test Stream := (∀(a,−) : testable. Test a) (
λ(a, ta). Y λt. Test Prod (a, ta) (Stream a, t)

).

lift Stream := (∀(a,−) : fuzzy. Lift. Stream a) (
λaa. (a, ta, la) := aa.
ts := test Stream (a, ta).
Yλls. lift Prod aa (Stream a, ts, ls)

).

fuzzy Stream := (fuzzy → fuzzy) (
λaa. (a, ta, la) := aa.
(Stream a, test Stream (a, ta), lift Stream (a, ta, la))

).

Dialogs, e.g. V (Yλa. Sum a. W Prod a), are similarly definable.

Theorem 4.3.5. (sampling streams) If sampling works for a : fuzzy, then it also works for fuzzy Stream a.

Proof. By coinduction, using the sampling theorem for Prod above.

We can verify some particular cases:

!check sampling thmJ (fuzzy Stream fuzzy bool) : swap.
!check sampling thmR (fuzzy Stream fuzzy bool) : swap.
!check sampling thmI (fuzzy Stream fuzzy bool) : swap.

!check sampling thmJ (fuzzy Stream fuzzy nat) : swap.
!check sampling thmR (fuzzy Stream fuzzy nat) : swap.
!check sampling thmI (fuzzy Stream fuzzy nat) : swap.

93

Fuzzy exponentials

We can define fuzzy exponenetials for general types that support case analysis for partial terms. That is,
let (a, testa, lifta) : fuzzy be a fuzzy type with inhabitants {⊥, x1, . . . , xn,⊤} such that for each i, xi :: testa xi.
Suppose there is an elim form casea implemented as a trace, and satisfying casea xi y1 . . . yn = yi for each
i = 1, . . . , n. Then we can implement fuzzy exponentials from a using the test

testa→b := Test (a→b) (
λf :a→b. testb (f x1) | . . . | testb (f xn)

).

and lifter

lifta→b := Lift (a→b) (
λf :a→b :: testa→b, x :a :: testa. casea x (f x1) . . . (f xn)

).

Examining some special cases, consider first the domain bool→unit, with functions discriminated by
response to well-checked arguments ⊥,K,F

T
|

K I
/ \

<I,_> <_,I>
\ /

_

where we ensure ⊤ always maps to ⊤ (and hence ignore 〈⊤,⊥〉 and 〈⊥,⊤〉).

b2u := P (bool→unit) (〈K,⊥〉 | 〈F,⊥〉). ensure toplessness
test b2u := Test b2u (〈K〉 | 〈F〉).

lift b2u := Lift b2u (
λ−, f, p. p ⊥ (f λ− . I)

| p K (f 〈I,⊥〉 | p F (f 〈I, I〉))
| p F (f 〈⊥, I〉 | p K (f 〈I, I〉))

).

fuzzy b2u := fuzzy (b2u, test b2u, lift b2u).

Theorem 4.3.6. (sampling b2u) Sampling works for b2u:

!check sampling thmJ fuzzy b2u : swap.
!check sampling thmR fuzzy b2u : swap.
!check sampling thmI fuzzy b2u : swap.

Proof. Left as exercise for Johann.

For less trivial codomain, we add branching, as in bool→bool

b2b := P (bool→bool) (〈K,⊥,⊥〉 | 〈F,⊥,⊥〉).
test b2b := Test b2b (〈K, I, I〉 | 〈F, I, I〉).

94

lift b2b := Lift b2b (
λf, p. p ⊥ (f λ− . I)

| p K (f 〈K,⊥〉 | p F (f 〈K,K〉) (f 〈K,F〉))
(f 〈F,⊥〉 | p F (f 〈K,K〉) (f 〈K,F〉))

| p F (f 〈⊥,K〉 | p K (f 〈K,K〉) (f 〈F,K〉))
(f 〈⊥,F〉 | p K (f 〈K,F〉) (f 〈F,F〉))

).

fuzzy b2b := fuzzy (b2b, test b2b, lift b2b).

Theorem 4.3.7. (sampling b2u)

!check sampling thmJ fuzzy b2u : swap.
!check sampling thmR fuzzy b2u : swap.
!check sampling thmI fuzzy b2u : swap.

Proof. Left as exercise for Johann.

Finally, we consider functions of infinite domains, say num→semi (witnessed by semi-streams). We can
no longer implement case analysis as traces, but we can recursively sample, as in lift Stream above.

n2s := P (num→semi) (Yλc, q. q none ⊥ | c q◦some).
test n2s := Test n2s (Yλc, q. q none | c q◦some).

lift n2s := Lift n2s (
Yλl.
λf, p. p ⊥ (λ− . I)

| p none (f (I,⊥) | l (λp′. f (I, p′)))
| l (λp′. f (⊥, p′)) p◦some

).

fuzzy n2s := fuzzy (n2s, test n2s, lift n2s).

Theorem 4.3.8. (sampling n2s)

!check sampling thmJ fuzzy n2s : swap.
!check sampling thmR fuzzy n2s : swap.
!check sampling thmI fuzzy n2s : swap.

Proof. Left as exercise for Johann.

Question 4.3.9. What data is needed to uniformly define exponentials? Is this data itself uniformly definable, under
exponentials?

95

Chapter 5

Untyped λ-calculus with logical reflection (SKJO)

This chapter deals with automated reasoning in illative combinatory logic, the programme of using com-
binatory algebras as languages for logics. Building on the algebra SKJ and Johann’s equational theorem
proving, we develop two tools to achieve a powerful verification system:

(1) a code comonad à la Brookes for efficient storage of quoted terms, and
(2) an oracle for encoding ∆1

1 statements about SKJO terms as booleans.

These two developments are independent, but in our implementation, the oracle relies on comonadic codes
to achieve a reasonable density of information storage.

Our first verification tool is an coding of terms in a flat domain, so that algorithms can work with
intensions of terms. Some coding of terms is needed if we are to reflect statements about the calculus into
the calculus itself, i.e. to embed an intensional semantics into our extensional model. The natural way to
define codes ([DP96], [WLPD98]) is with a modal type Code, functions Apply,Eval,Quote, and an operation
{−} to quote closed terms. This structure and its untyped version 〈code,A,E,Q, {−}〉 afford us notation
for quoted pattern-matching of untyped and typed terms

M 7→ {M} quoting closed terms
{M N} = A{M}{N} application

(let {x} := M. x) = E M evaluation
(let {x} := M. {x}) = code M typing

(let {x} := M. {{x}}) = Q M quoting quoted terms

M :a 7→ {M} :Code{a}
M :a→b,N :a ⊢ {M N} = Apply{a}{b}{M}{N}

(let {x :a} := M. x) = Eval{a} M

(let {x :a} := M. {x}) = Code{a} M

(let {x :a} := M. {{x}}) = Quote{a} M

Note that Quote{a} :Code{a}→Code{Code{a}} can be applied to arbitrary terms of type code, and {−} can
be applied to closed terms of arbitrary type, but variables of arbitrary type cannot be quoted. This restriction
allows quoting to be non-monotone, so that codes can provide a flat representation of an ordered domain.

The problem with a naively modal type of codes is code size: Johann remembers facts about extensional
terms only once per equivalence class, but intensional terms would require overhead for each inhabitant
of an equivalence class. For example, Johann knows that S K = K I, and so needs store only one of the
equations (K I)I = I and (S K)I = I. However the naively modal type of codes, the intensions are differ-
ent: {S K} 6= {K I}, so each equation E(A{S K}{I}) = E{I} and E(A{K I}{I}) = E{I} must be stored
separately.

Our solution is to define intensional codesmodulo extensionality, to achieve a space-efficient 1-1 coding of
terms, while still neutralizing the Scott order, so that, e.g., ⊥ ⊑ ⊤ but {⊥} and {⊤} are order-incomparable.
This solution is captured by the two reasoning principles

97

⊢ M = N

⊢ {M} = {N}
(extensional)

⊢ M 6= N

⊢ {M} 6⊑ {N}
(neutral)

The 1-1 coding of terms is only consistent only w.r.t. provable equality, but this turns out to be just as space
efficient as a true 1-1 coding would have been. Adding the extensionality equations to our modal type
system yields the richer structure of a computational comonad, as studied by Brookes and Geva [BG92]. The
extensional computational comonad provides a tower of isomorphisms between the code types, where all
but the first operation {−} are SKJ -code-definable.

eval eval eval
<----- <----- <-----

a Code{a} Code{Code{a}} ...
- - -> -----> ----->
{-} quote quote

Our second verification tool is an extension of SKJ with a Π1
1 semi-hard (hence ∆1

1 bool-hard) oracle O,
to achieve an elegant illative combinatory logic SKJO for hyperarithmetic functions. It is well-known that
the equational logic of hyperarithmetic functions is equivalent in logical strength to predicative set theory
([Fef05]). Moreover, Feferman, Weyl, Poincare and later Friedman have shown that “most” of mainstream
mathematics can be carefully formulated within predicative set theory ([Fef92]). Thus SKJO is sufficiently
strong to serve as a foundation for “most” of mathematics.

Our approach is to add an oracle answering a simple (but uncomputable) problem, but allow it to recur-
sively call itself as a subroutine. There is some freedom as to what sort of simple question the oracle solves
at each stage. An obvious choice would be to have the oracle solve the halting problem, reducing a Π0

1-
complete problem down to a ∆0

1 problem. However, since we are starting with the Π0
2-complete equational

theoryH∗ (recall from 3.9), it is more convenient to be able to reduce a Π0
2-complete problem down to a ∆0

2

problem. Specifically, we want to eliminate universal quantifiers over some countable domain, converting
them to semiboolean values, e.g.,

Onat{φ} =

{

I if ∀n ∈ N. φ(n) = I

⊥ otherwise

We can make the oracle even more convenient if we abstract out the domain as a parameter to O, i.e. as a
code for the totality test for that domain (so that, e.g., Onat = O{test nat}). Thus we choose to let O answer
the Π0

2-complete subtest problem
Given: an SKJ -code {s} for s : test, and an SKJO -code {t} for t : test

Semidecide: O{s}{t} = I ⇐⇒ s <:: t

where the subtest relation is defined as

s <:: t ⇐⇒ (∀x ::s. x :: t) ⇐⇒ ∀x. (s x = I =⇒ t x = I)

Recall from 3.9 that the testing problem x :: t ⇐⇒ semi(t x) = I is ∆0
2, so the subtest problem is Π0

2. We
will define O more precisely in 5.5.

5.1 Related work

Curry developed many systems of illative combinatory logic, but his strongest systems were plagued by
inconsistencies. See Curry’s volume [CHS72] for an overview of his approach. [BBD93] discusses an illative
combinatory logic for first-order predicate calculus; our present logic is stronger.

98

Harrison ([Har95]) surveys a wide variety of reflection principles in logic. Nuprl’s principle of proof
reflection is detailed in [ACHA90] and surveyed in [Con94]. Demers ([DM95]) surveys reflection principles
in logic, functional programming and metaprogramming.

Kieffer, Avigad and Friedman [KAF08] propose an extension ZFC with partial terms as a human-
motivated foundation for mathematics. They compute statistics as to the complexity of formulas on a
corpus of data. The language SKJO can be motivated as a foundation of math with simplified syntax, so
that such statistics are much easier to compute.

5.2 Axioms for an extensional code type (code,A,E,Q, {−})

In this section we axiomatize a comonadic type for codes modulo provable equality. We start with a defin-
able type for free codes in a language C defined by

C ::= C C binary application
| S | K | J | O | code and five atoms

Next we axiomatize a quotient type code <: code0, modulo Johann’s theory of equality. This quotient type
is then extensional in that provably equal terms have provably equal codes. But the type is also intensional
in that the order of terms is neutralized by quoting, so that we can discriminate codes with a predicate
equal code : code→code→bool, total up to Johann’s theory of equality. Thus we achieve a good balance
between intensionality (which is required to discriminate between codes), and extensionality (which is
desired for space efficiency).

It turns out that the quotient type code and introduction form for application A{−} together form a
functor from the category of unityped terms under composition to the category of codes under quoted
composition. Moreover the evaluation and quotation operators E,Q form a comonadic pair of natural
transformations between 1 and the (code,A{−}) functor. Finally, the quoting operation {−} on closed
terms provides a third natural transformation. This combined structure 〈code,A{−},E,Q, {−}〉, together
with a few equations, constitutes a computational comonad (as observed in a similar setting by Brookes and
Geva [BG92]). Weaker forms of quoting, with the same signature but missing some equations, are well-
studied in the programming languages literature (e.g., [DP96], [WLPD98]). However, those equations –the
computational comonad conditions– are exactly what makes extensional codes attractive for our purposes,
and seem only to hold in the presence of some extensionality principle.

Axioms for a quotient type of codes

We start with a closure,test pair for free codes

code0 := P (Yλa. Sset. Sum (Prod a a) (num below 5)).
test code0 := Test code0 (

Yλt. test Sset. test Sum (test Prod t t) test num

).
!check code0 = Sset (Sum (W Prod code0) (num below 5)).
!check code0 <: Sset (Sum (W Prod code0) num).

The type code will be a similar but undefinable type

!using code test code.
!assume code : V.
!assume code <: Sset (Sum (W Prod code) num).
!assume test code = Test code test code0.

which is a quotient of the code0 type

!assume code <: code0.
!assume test code <:: test code0.

99

For introduction forms, we need codes for combinators (application, S, K, and J), a code for the oracle O

(which will be axiomatized later in 5.5), and access to the code comonad itself (via code). Note that Johann’s
theory is Σ0

1 at any time, so the atom code has no extra logical power beyond the Turing-complete language
SKJ . However, to allow Johann’s theory to change over time, we must refrain from statically defining code

as an SKJ term; having access to code in the basis allows us to be agnostic about its SKJ -definition. Thus
we introduce atoms

atom code := (nat → code) (λn. 〈inr. nat2num n〉).
!using O.
!assume atom code 0 = {S}.
!assume atom code 1 = {K}.
!assume atom code 2 = {J}.
!assume atom code 3 = {O}.
!assume atom code 4 = {code}.
!check atom code 5 = ⊤.
!assume ({S}, {K}, {J}, {O}, {code} :: test code).

and applications

!define A := Bin op code (λx, y. 〈inl(x, y)〉).
!assume test code (A x y) = and semi (test code x) (test code y).
!assume A{x}{y} :: test code.
!check {x y} = A{x}{y}. just checking notation

(We will explain the semantics for quoted quantification ∀{x}. φ(x, {x}) shortly.)
We define evaluation and quoting operations E,Q by simultaneous recursion, using only the atoms

S,K,J,O, code and the quoting operation {−} on various closed terms.

let (eval code, quote code) := (
Yλ(e, q). (

(code → any) 〈(
λ(x, y). (e x)(e y),
S,K,J,O, code,
error

)〉,
(code → code) 〈(

λ(x, y). A (A {A} (q x)) (q y),
{{S}}, {{K}}, {{J}}, {{O}}, {{code}},
error

)〉
)

).

!define E := eval code.
!check E = (code → any) 〈(λ(x, y). (E x)(E y), S,K,J,O, code, error)〉.

!check E{S} = S.
!check E{K} = K.
!check E{J} = J.
!check E{O} = O.
!check E{code} = code.
!check E{x y} = (E{x})(E{y}).

100

!define Q := quote code.
!check Q = (code→code) 〈(

λ(x, y). A (A {A} (Q x)) (Q y),
{{S}}, {{K}}, {{J}}, {{O}}, {{code}},
error

)〉.

!check Q{S} = {{S}}.
!check Q{K} = {{K}}.
!check Q{J} = {{J}}.
!check Q{O} = {{O}}.
!check Q{code} = {{code}}.
!check Q{x y} = A (A {A} (Q{x})) (Q{y}).

Next we assume a very natural set of 15 equations that turn out to axiomatize 〈code,A{−},E,Q, {−}〉
being a computational monad. Because the definition of a comonad is clearer in a typed theory (i.e., in
a category with more than one object), we will delay the definition until we introduce an type-indexed
comonad 〈Code,Apply,Eval,Quote〉 in 5.3. For now, simply observe that the following equations are all
natural assumptions that are desirable for a type of extensional codes.

functoriality
!assume code : V.
!assume A{f} : code→code.
!assume A{I} = code.
!assume A{f} ; A{g} = A{f; g}.

naturality
!assume E : code→any.
!assume Q : code→code.
!assume A{f} ; E = E ; f.
!assume A{f} ; Q = Q ; A{A{f}}.

comonad conditions
!assume Q ; E = code.
!assume Q ; A{E} = code.
!assume Q ; Q = Q ; A{Q}.

computation conditions
!assume {x} : code.
!assume A{f}{x} = {f x}.
!assume E{x} = x.
!assume Q{x} = {{x}}.

Axioms and axiom schemata for extensionality

Ideally we would like a fully extensional 1-1 coding of terms, so that each H∗ equivalence class corre-
sponded to a unique code; that way there would be as few as possible codes taking up space in Johann’s
database. This ideal is captured by the reasoning principles

101

ideal coding

M = N

{M} = {N}
(1− 1)

M 6= N

code({M} | {N}) = ⊤
(flat)

c :: test code c′ :: test code E c = E c′

c = c′
(flat− test)

where the (1− 1) rule guarantees that codes cost as few obs as possible, and the (flat) rules guarantee that
every term c :code :: test code is the quotation {M} of some term M. However these rules are inconsistent.
An example of terms M,N for which M = N but {M} = {N} is inconsistent will be provided by Gödel’s
second incompleteness theorem (discussed in detail later in 5.4). To achieve consistent coding principles
that are still dense (nearly 1-1), we avoid self-referential terms by restricting the hypotheses in the ideal
reasoning principles to provable equality and inequality.

The following axiom schemata will be enforced for the quoting operation {−} and the atoms code,
test code, A, E. Note that since E is a left inverse for Q on codes, we do not need explicit axiom schemata
regarding Q.

quoting

M = E{M}
(E− {−})

{M} :code
({−} − code)

{M} :: test code
({−} − test)

code

x :: test code y :: test code

E(A x y) = (E x)(E y)
(E−A)

c :code :: test code c′ :code ::check code E c′ = E c

c ⊒ c′
(flat− =)

c :code :: test code c′ :code E c′ 6⊑ E c

code(c | c′) = ⊤
(flat− 6⊑)

The quoting axioms ({−}) simply ensure that quoted terms are codes and evaluate to the terms they quote
(so E is a left inverse for {−}). The (E−A) axiom maintains consistency between the code for a term and
the codes for its subterms, relating them by application A. The (flat) axioms ensure flatness of the code
type, up to provable equality.

The quoting axioms describe exactly what we need to interpret universal quantification over codes, as
in ∀{x}. x = E{x} above. We generally want to interpret a sentence ∀{x}.φ(x, {x}) depending on both x and
x’s code1 as a sentence ∀c.ψ(c) quantifying over codes c. The quoting axioms require x = E c, c :code, and
c :: test code, so it is enough to interpret

∀{x}. φ(x, {x}) ⇐⇒ ∀c :code :: test code. φ(E c, c)

This provides semantics for universal quantification codes above, and allows us to universally close equa-
tions with variables that appear in quotes.

1higher codes can be attained by quoting.

102

To ensure provable extensionality, we need to reflect each of Johann’s equational reasoning principles to
a corresponding principle for quoted terms. We begin by explicitly identifying codes of β-equivalent terms.

!assume {⊥ x} = {⊥}. i.e., ∀c :code :: test code. A{⊥}c = {⊥}
!assume {⊤ x} = {⊤}.
!assume {I x} = {x}.
!assume {K x y} = {x}.
!assume {F x y} = {y}.
!assume {W x y} = {x y y}.
!assume {B x y z} = {x(y z)}.
!assume {C x y z} = {x z y}.
!assume {S x y z} = {x z(y z)}.

We also assume the bounded semilattice axioms for join

!assume {J x x} = {x}.
!assume {J x y} = {J y x}.
!assume {J x(J y z)} = {J(J x y)z}.

and the defining properties of Y and V.

!assume {Y f} = {f(Y f)}.
!assume {V a} = {I | (V a)◦a}.

Finally we need to reflect the axiom schemata hard-coded into Johann. These reflected axiom schemata are
listed in Appendix B.

Characterization weakly extensional codes

What does does the code closure look like in this weaker theory of provable extensionality? By relaxing
extensionality to only provable equality, we gave up true flatness, so that the ideal (flat) rules fail. To see
the local effects of the relaxation, observe that for distinct M,N whose equality is unknown to Johann, the
following are all distinct inhabitants of code.

⊤

{M} | {N}

{M} {M | N} {N}

⊥

Lemma 5.2.1. If Johann can prove neither M = N nor M 6= N, then
(a) the codes {M}, {N}, {M | N}, and {M} | {N} are distinct total inhabitants of code, and
(b) they obey the order relations in the diagram above.

Proof. In acquiring information, Johann can only join equivalence classes of code. Consider the four possi-
bilities of acquiring information
(1) If M = N then {M} = {N} = {M | N} = {M} | {N}.
(2) If M⊑/ N then {M}, {N} = {M | N} and {M} | {N} = ⊤ are distinct.
(3) If M⊒/ N then {M} = {M | N}, {N} and {M} | {N} = ⊤ are distinct.
(4) If M 6= N are incomparable, then all four codes are distinct.

103

In all cases of complete knolwedge, {M | N} ⊑ {M} | {N}, so this relation also holds under incomplete
knowledge. However, since in case (4) all four codes are distinct, they must also be distinct in the par-
tial information case.

The minimal tested codes all arise as quotations of terms {M}; thus inhabitants like
{M} | {N} :code :: test code are pathological.

Definition 5.2.2. A term c :code :: test code is standard iff it arises as the quotation of some term M, and
nonstandard otherwise.

Lemma 5.2.3. c :code :: test code is nonstandard iff there is another c′ :code :: test code strictly below c.

Even within standard codes, unbounded β-expansion leads to noncompact codes below every compact
code, but evaluating to the same thing.

Example 5.2.4. An infinite I-expansion of any term

x = I x = I(I x) = I(I(I x)) = . . .

will evaluate to ⊥, but code can’t raise it to a tested semiset.

III = Y(A{I}).
!check III : code.
!check test code III = ⊥.
!check (∀c :: test code. III | c :: test code).

Nonstandard codes pose a potential problem to our interpretation of statements universally quantifying
quoted variables

∀{x}. φ{x} ⇐⇒ ∀c :code :: test code. φ(c)

For example the flatness statement

∀{x}, {y}. {x} | {y} :: test code =⇒ x = y

fails even though there are no provable witnesses of this failure. We can manually avoid such problems by
never mentioning nonstandard codes like code({x} | {y}). In addition to allowing term discrimination, the
flatness rules allow Johann to re-use the application indexing data structure to index also quoted terms. To
see how this works, first consider the ideal situation. Under the ideal (flat) rules above, we could define
{M} in terms of M, as the unique solution c to

E c = M c :code c :: test code

Then Johann could avoid explicitly indexing quoting, and instead search for a solution to the above equa-
tions. In weaker extensionality with only provable equality, there will be additional nonstandard solutions
c at any time. However only the standandard solution will be the only provable solution, so we can still use
the ideal indexing scheme.

Subalgebras of SKJO as subtypes of code

Later we will need to restrict some functions and quantifiers from SKJO codes to SKJ codes (e.g. the
oracle inputs two codes O{p}{q}, but we will require {p} to be SKJ -definable). To achieve a uniform
quoting mechanism {−} across multiple subalgebras, we will re-use the code closure, and vary only the test

semipredicate for definability. Abstractly, we implement a definability test parametric in the subset

104

B ⊆ {S,K,J,O, code} generating the subalgebra (so a term is B-definable iff it can be expressed using only
atoms from B).

test subcode := (Test num → Test code) (
λbasis.
Yλt. test Sset. test Sum (test Prod t t) (Ptest test num basis)

).

!check test subcode b <:: test code.
!check test code = test subcode ⊥.
!check test code = test subcode (I, I, I, I, I, ⊤).

Thus the whole algebra SKJO is given by the closure,test pair

skjo := code.
test skjo := test subcode (I, I, I, I,⊥, ⊤).

In fact at any time code is SKJ -definable, hence SKJO -definable, so we have

!assume test skjo = test code.

Now for SKJ codes, we test whether there is an O-free form.

skj := code.

!define test skj = test subcode (I, I, I,⊥,⊥, ⊤).
!assume test skj := test subcode (I, I, I,⊥, I, ⊤).
!assume ({S}, {K}, {J}, {code} :: test skj).
!assume test skj (A x y) = and semi (test skj x) (test skj y).

To express that O is not SKJ -definable, we assume that

!assume test skj {O} = ⊥.

5.3 Injective codes for reflection

In this section we extend the 〈code,A{−},E,Q, {−}〉 structure to a rich type-indexed modal type structure

〈Code{−}, Apply{−}{−}{−}, Eval{−}, Quote{−}, Code{−}{−}〉

combining the expressive power of codes and Simple-definable types. We show that the two structures are
[untyped and typed, resp.] computational monads in the sense of Brookes and Geva [BG92].

A computational comonad for typed codes

Definition 5.3.1. A (definable) functor on types-as-closures is a pair F = (F0, F1) of transformations of type

F0 : V→V

F1 : ∀a :V, b :V. (a→b) → F0 a → F0 b

perserving identity and composition

F1 a b 1a = 1b

F1 a b f ; F1 b c g = F1 a c (f; g)

105

Definition 5.3.2. A (definable) natural transformation between functors η :F→G is an operation

η : ∀a :V. F0 a → G0 a

satisfying

F1 a b f ; η b = η a ; G1 a b f

Comonads are dual to the more familiar structure of monads, in that arrows of η and µ are reversed

Definition 5.3.3. A (definable) comonad is a functor F0, F1 together with a pair of natural transformations
η :F→1, µ :F→F 2 satisfying

µ a ; η(F0 a) = 1F0 a left-identity
µ a ; F1(η a) = 1F0 a right-identity
µ a ; µ(F0 a) = µ a ; F1(µ a) associativity

(which are generalizations of the comonoid axioms – just squint).

Monads ([Wad90], [Mog91]) and comonads ([BG92], [Geh95]), with a little extra structure come up fre-
quently in functional programming, though true comonads appear only in the context of semantics.

Definition 5.3.4. A (definable) computational comonad is a comonad (F0, F0, η, µ, γ) with an additional natu-
ral transformation γ :1→F satisfying

γ a ; η a = 1a

γ a ; µ a = γ a ; γ (F0 a)

Brooks and Geva [BG92] use a comonad to capture intensional semantics in an extensional system.
There is also a history of comonadic type structure in staged compilation of functional languages (e.g.
[DP96], [WLPD98]) In these applications, the comonad captures an idea of neutralization of computations,
and is often called a code, eval, quote comonad.

Definition 5.3.5. The type-indexed code comonad

〈Code{−}, Apply{−}{−}{−}, Eval{−}, Quote{−}, Code{−}{−}〉

now has components

Code := (code → P code) (λa, x. A (A {V} a) x).
Apply := (∀{a :V}, {b :V}. Code{a→b} → Code{a} → Code{b}) (λ−,−. A).
Eval := (∀{a :V}. Code{a} → a) (λ− . E).
Quote := (∀{a :V}. Code{a} → Code{Code{a}}) (λ− . Q).

where Code{a} is the action of the functor on the object a, Apply{a}{b}{f} is the action of the functor on the
arrow f :a→b, Eval{−} and Quote{−} form the comonadic pair of natural transformations, and the typed
quoting operation Code{−}{−} constructs computations.

The components of the code comonad are not definable as functions, so some of the arrows in the
comonad conditions will not be realized by SKJO -terms (because of the undefinability of quoting {−}).
However the relations still hold at each objects a, b and arrows f, g. This contrasts the case of, e.g., the Sset

monad, where Sset a and the other structure is all SKJO -definable (see 3.7).
Having assumed in 5.2 the computational comonad conditions for the unityped, fully-definable comonad

(code,A{−},E,Q, {−}), we now verify the computational comonad conditions for the indexed version. 2

2Keep in mind the semantics of quantified variables:

∀{x}. φ(x, {x}) ⇐⇒ ∀c :code :: test code. φ(E c, c)

106

These equations were arrived at by straight-forward annotation of the 15 comonad axioms for the unityped
theory, which were in turn arrived at by reversing the arrows in Wadler’s very lucid exposition [Wad90] of
computational monads.

the type-indexed identity morphism
Id := (∀a :V. a→a) (λ− . I).
!check Id = V.

functoriality of (Code{−},Apply{−}{−}{−})
!check (∀{a :V}. Code{a} : V)
!check (∀{a :V}, {b :V}, {f :a→b}. Apply{a}{b}{f} : Code{a} → Code{b}).
!check (∀{a :V}. Apply{a}{a}{Id a} = Id(Code{a})).
!check (∀{a :V}, {b :V}, {c :V}, {f :a→b}, {g :b→c}.

Apply{a}{b}{f} ; Apply{b}{c}{g} = Apply{a}{c}{f; g}
).

naturality of Eval{−}{−} and Quote{−}{−}
!check (∀{a :V}. Eval{a} : Code{a} → a).
!check (∀{a :V}. Quote{a} : Code{a} → Code{Code{a}}).
!check (∀{a :V}, {b :V}, {f :a→b}. Apply{a}{b}{f} ; Eval{b} = Eval{a} ; f).
!check (∀{a :V}, {b :V}, {f :a→b}.

Apply{a}{b}{f} ; Quote{b}
= Quote{a} ; Apply{Code{a}}{Code{b}}{Apply{a}{b}{f}}

).

comonad conditions
!check (∀{a :V}. Quote{a} ; Eval{Code{a}} = Code{a}).
!check (∀{a :V}. Quote{a} ; Apply{a}{Code{a}}{Eval{a}} = Code{a}).
!check (∀{a :V}.

Quote{a} ; Quote{Code{a}} = Quote{a} ; Apply{a}{Code{a}}{Quote{a}}
).

computation conditions
!check (∀{a :V}, {x :a}. Code{a}{x} : Code{a}).
!check (∀{a :V}, {b :V}, {f :a→b}, {x :a}.

Apply{a}{b}{f}(Code{a}{x}) = Code{b}{f x}
).
!check (∀{a :V}, {x :a}. Eval{a}(Code{a}{x}) = x).
!check (∀{a :V}, {x :a}. Quote{a}(Code{a}{x}) = Code{Code{a}}{Code{a}{x}}).

107

Finally, as with every polymorphic type, we also define tests, checks, and joins for Code

test Code := (∀{a :V}. Test a → Test(Code{a})) (
λ−, t, {x} :: test code. t x

).
!check test code = test Code {any} I.

check Code := (∀{a :V}. Check a → Check(Code{a})) (
λ−, t, {x} ::check code. t x

).
!check check code = check Code {any} I.

Join code := Sset code (
Yλj. (jλx. jλy. 〈A x y〉) | 〈{S}〉 | 〈{K}〉 | 〈{J}〉 | 〈{O}〉 | 〈{code}〉

).
Join Code := (∀{a :V}. Sset. Code{a}) (λa. Join code λx. 〈A a x〉).
!check Join code = Join Code {I}.

Join skj := Sset skj (Join code λc :: test skj. 〈c〉).

Domain-specific quoting functions

As mentioned earlier, the quoting arrow a→Code{a} is missing from general comonads, but is present in
computational comonads for some restricted subsets of a, e.g. as {−} for closed terms of type a. The arrow
is also present for code types quote code = Q and flat domains e.g. numeral systems, though only the total
inhabitants are correctly quoted. We provide quoting functions for polynomial datatypes in general. Each
quoter will have type

Quoter := (code → V) (∀{a :V}. a → Code{a}).

For example the atomic types

quote semi := Quoter{semi} 〈{I}〉.
!check test semi = test code◦quote semi;
!check quote semi I = {I}.

quote bool := Quoter{bool} 〈{K}, {F}〉.
!check test bool = test code◦quote bool;
!check quote bool K = {K}.
!check quote bool F = {F}.

108

and basic type constructors

quote Maybe := (∀{a :V}. Quoter{a} → Quoter{Maybe a}) (
λ−, q. ({none}, inr◦qb)

).
quote Sum := (
∀{a :V}, {b :V}. Quoter{a} → Quoter{b} → Quoter{Sum a b}

) (
λ−,−, qa, qb. 〈inl◦qa, inr◦qb〉

).
quote Prod := (
∀{a :V}, {b :V}. Quoter{a} → Quoter{b} → Quoter{Prod a b}

) (
λ−,−, qa, qb, (x, y). {x} := qa x. {y} := qa y. {(x, y)}

).

We also provide quoters specifically for numerals, naturals and SKJ -terms.

quote num := Quoter{num} (Y quote Maybe).
!check test num = test code◦quote num;
!check quote num none = {none}.
!check (∀{n :: test num}. quote num(some n) = {some n}).

quote nat := Quoter{nat} (A{succ}, {zero}).
!check test nat = test code◦quote nat;
!check quote nat 0 = {0}.
!check (∀{n :: test nat}. quote nat(succ n) = {succ n}).

quote term := Quoter{term} (Yλq. (
λ(x, y). A (A {ap} (q x)) (q y), {S}, {K}, {J}

).
!check test term = test code◦quote term;
!check quote term S = {S}.
!check quote term K = {K}.
!check quote term J = {J}.
!check quote term ⊤ = {⊤}.
!check (∀{x :: test term}, {y :: test term}. quote term(ap x y) = {ap x y}).

Since codes can be thought of as equivalence classes of terms, we can define a lifting function from term

to skj

term to code := (term → code) (
Yλt2c. (λ(x, y). A(t2c x)(t2c Y), {S}, {K}, {J}, {⊤})

).

and an inverse from code→Sset term. Since code is not statically SKJ -definable, we must postulate its
definition as a term.

!using code as term

!assume code as term : term

!assume code as term :: test term.
code to term := (skj → Sset term) (

Yλc2t. 〈
λ(x, y). c2tλx. ct2λy. 〈ap x y〉,
S,K,J, ⊥, code as term, error

〉
).

109

Now we can relate the quoting operation on terms to the quoting operations on codes

!check (λ〈x〉. 〈quote term t〉)◦code to term ⊑ code to term◦Q.

Fixed-point theorems

In this sectionwe formulate some basic results from classical recursion theory in terms of the code comonad.
See [Rog67], [Odi92], for classical presentations,3 [Bar84] section 6.5 for presentation in untyped λ-calculus,
and [CS88] for presentation in a typed λ-calculus.

Kleene’s first fixed-point theorem (the recursion theorem), plus uniqueness

Theorem 5.3.6. (Kleene, Böhm, van der May)
(a) ∀f.∃x. x = f(x); and uniformly,
(b) ∃Y.∀f. Y f = f(Y f); moreover
(c) the Y in part (b) is unique moduloH∗

Proof. (a) follows from (b).
(b) Letting Y = λf.(λx.f(x x))(λx.f(x x)), the equation follows from β equivalence.
(c) Proof in [Bar84], Lemma 6.5.3.

Kleene’s second fixed point theorem, for quoted fixedpoints of SKJO terms

Theorem 5.3.7. (Kleene)
(a) ∀f.∃{x}. x = f{x}; and uniformly,
(b) ∃Y′.∀{f}. Y′{f} = f{Y′{f}}.

Proof. (a) follows from (b).
(b) We simply annotate with quotes the proof from the first fixed point theorem. Recall the syntactic

sugar for quoting

λ{x}, {y}. {x y} = A

λ{x}. {{x}} = Q

λ{x}. x = E

Consider the following (purely mechanical) annotation steps

Y = λf. (λx. f. x x) (λx. f. x x)
 λ{f}. (λx. f. x x) (λx. f. x x) Y′ inputs a code
 λ{f}. (λx. f{x x}) (λx. f{x x}) f inputs a code
 λ{f}. (λ{x}. f{x x}) (λ{x}. f{x x}) x is quoted
 λ{f}. (λ{x}. f{x x}) {λ{x}. f{x x}} {x} is a code
 λ{f}. (λ{x}. f{x{x}}) {λ{x}. f{x{x}}} x inputs a code
=: Y′

Now checking

!define Y′ := (λ{f}. (λ{x}. f{x{x}}) {λ{x}. f{x{x}}}).
!check Y′{f}

= (λ{x}. f{x{x}}) {λ{x}. f{x{x}}}
= f{(λ{x}. f{x{x}}) {λ{x}. f{x{x}}} }
= f{Y′{f}}.

as required.

3Warning: our notation {M} for quoting terms is opposite to Kleene’s notation {φ} for evaluating codes for partial recursive
functions.

110

Question 5.3.8. Does uniqueness still hold for Y′?

Following [DP96], we can also take amodal logic perspective. Letting�a = Code{a} denote the comonadic
type constructor for a moment, we see that the Code comonad’s terms have types corresponding to the (S4)
axioms of modal logic (see 5.4). To these we can further add a typed fixedpoint Fix corresponding to the
irreflexivity axiom or Löb’s theorem,4 to achieve the typings

Code{a}{x} : �a necessitation
Apply a b : �(a→b)→�a→�b distribution

Eval a : �a→a reflexivity
Quote a : �a→��a transivity

Fix a : �(�a→a)→�a irreflexivity = Löb’s theorem

Fix is defined in terms of Y′ by quoting the result of Y′.

Fix := (∀{a :V}. Code{Code{a}→a} → Code{a}) (λ−, {f}. {Y′{f}}).
!check (∀{a :V}, {f :a}. Fix{a}{f} : Code{a}.
!check (∀{a :V}. Fix{a}{f} = {f{Fix{a}{f}}}.

Later in 5.4, Fix will be the main tool in proving Löb’s theorem.

Provable equality

Our extensional code type identifies provably equivalent terms, and thus allows introspection into Johann’s
current theory. For example, we can define semipredicates for provable equality and information ordering,
employing the (E− =) rule

if pr equal := P C (code → code → semi) (
Yλe. 〈(

λx, y. 〈(λx′, y′. and semi (e x x′) (e y y′), ⊥)〉,
λn. 〈(⊥, eq num n)〉

)〉
).
!check if pr equal x y ⊑ and semi (test code x) (test code y).
!check ({S}, {K}, {J}, {O}, {code}, {x} :: W if pr equal).

if pr less := (code → code → semi) (λ{x}, {y}. if pr equal {x | y} {y}).
!check if pr less x y ⊑ and semi (test code x) (test code y).
!check ({S}, {K}, {J}, {O}, {code}, {x} :: W if pr less).
!check (〈{⊥}, {x}〉, 〈{x}, {x}〉, 〈{x}, {x | y}〉, 〈{x}, {⊤}〉 :: 〈if pr less〉).

Negation is a little trickier, but we can define it in terms of code, employing the rule (E− 6⊑)

if pr nequal := P C (code → code → semi) (
λ{x}, {y}. if pr equal {⊤} { code({x} | {y}) }

).
!check if pr nequal x y ⊑ and semi (test code x) (test code y).

if pr nless := (code → code → semi) (
λ{x}, {y}. if pr equal {⊤} { code({x | y} | {y}) }

).
!check if pr nless x y ⊑ and semi (test code x) (test code y).
!check I = if pr nless {⊤} {⊥}.

4Note that these axioms are inconsistent for modal logic, as reflexivity and irreflexivity together imply �a for any a.

111

Combining (positive,negative) pairs of tests, we can define boolean-valued introspective predicates for
equality and Scott ordering.

pr equal := P C (code → code → bool) (
λx, y. if pr equal x y true | if pr nequal x y false

).
!check pr equal x y ⊑ and semi (test code x) (test code y).
!check if pr equal x y = if (pr equal x y).
!check if pr nequal x y = if◦not (pr equal x y).

pr less := (code → code → bool) (
λx, y. if pr less x y true | if pr nless x y false

).
!check pr less x y ⊑ and semi (test code x) (test code y).
!check if pr less x y = if (pr less x y).
!check if pr nless x y = if◦not (pr less x y).

At any time the value of such a predicate will be provably true if Johann has proved the result, provably
false if Johann has disproved the result, and undecidable otherwise. In particular, pr equal x y will never be
proved to be bottom (for total x, y); that way Johann leaves room for future assumptions/axioms.

We will see stronger predicates later in 5.6, including a generalized provability logic.

5.4 Provability and reflection

Previously in 5.3 we saw how to decide provable equality between quoted SKJO terms. At the term {true}
this gives us a decision procedure for provability of general boolean statements.

pr := (Code{bool} → bool) (λ{x :: test bool}. pr equal {true} {x}).
!check pr ⊑ pr equal{true}.
!check (∀{φ :: test bool}. pr{φ} :: test bool).

Th provability predicate pr{−} is defined by the bi-directional reasoning principle

pr{φ} = true

{φ} = {true}
(pr − def)

Soundness of pr{−} (as Johann’s theory) can be expressed by the two reasoning principles
pr{φ} = true

φ = true

and
φ = false

pr{φ} = false
. While the former holds by definition

!check pr{true} = true.

the latter pr{false} = false cannot be proven or even !assumed. In fact this is Gödel’s second incompleteness
theorem.

The provability predicate pr{−} models the provability logic GL (see [Ver08], [JJ98]). GL is the modal
logic satisfying Löb’s theorem (as above), the distribution rule

!check (∀{φ :bool :: test bool}, {ψ :bool :: test bool}. true =
implies (pr{implies φ ψ}).
implies (pr{φ}).
pr{ψ}

).

112

and the inference rule
φ = true

pr{φ} = true
(but not its converse). This rule follows from the definition of pr and

the extensionality principle for code
⊢ φ = ψ

⊢ {φ} = {ψ}
.

Transitivity is a theorem of GL; hence GL extends K4.

!check (∀{φ :bool :: test bool}. true = implies (pr{φ}) (pr{pr{φ}})).

Having reflected Johann’s hard-coded reasoning principles in B, we can also assume the converse of tran-
sitivity

!check (∀{φ :bool :: test bool}. pr{φ} = pr{pr{φ}}).

and justly refer to pr{−} as Johann’s theory.
Using the provability predicate pr{−}, we can relativize some classical incompleteness theorems from

PA to code (see [Smo77] and [BBJ07] for statements of the theorems in these forms).
We begin with the diagonalization lemma, which in our context is a special case of Kleene’s second fixed

point theorem (from 5.3). Let ⊢ φ denote pr{φ} = true, and consider predicates of quoted booleans

pred qbool := V (Code{bool} → bool).
test pred qbool := Test pred qbool (

λφ. and semi (φ{true}) (φ{false})
).

Theorem 5.4.1. (Diagonalization lemma)
(a) For every total predicate φ{−} on codes of sentences, there is a total sentence ψ satisfying ⊢ ψ ↔ φ{ψ} (i.e.,

pr{iff ψ (φ{ψ})} = true).
(b) The ψ in part (a) is uniformly definable.

Proof. (a) follows from (b).
(b) We apply Y′ from Kleene’s second fixed-point theorem

ψ := Y′{φ} =⇒ Y′{φ} = φ{Y′{φ}}

And since Johann knows this, we get the stronger pr{−} version

!check (
∀{φ :pred qbool :: test pred qbool}. let {ψ} := {Y′{φ}}.
ψ = φ{ψ} AND pr{iff ψ (φ{ψ})} = true

).

An easy consequence of the diagonalization lemma is Gödel’s first incompleteness theorem for Johann’s
theory.

Theorem 5.4.2. (Gödel’s first incompleteness theorem) There is a sentence φ such that neither ⊢ φ nor ⊢ not φ.

In terms of decision,

decides := (Code{bool} → semi) (if◦pr | if◦pr◦(A{not})).
!check decides ⊑ test Code {bool} test bool.
!check decides <:: test Code {bool} test bool.

The theorem states that Johann does not decide everything

decides 6⊒ test Code {bool} test bool.
decides ! ::> test Code {bool} test bool.

(but Johann cannot prove these exactly; this is Gödel’s second incompleteness theorem).

113

Proof. Applying the diagonalization lemma, let φ := Y′{not◦pr} so that φ = not◦pr{φ}. Then assuming
either ⊢ φ or ⊢ not φ leads to contradiction

⊢ φ ⇐⇒ ⊢ pr{φ} by strong transitivity
⇐⇒ ⊢ not φ by definition

Formally checking,

!check (φ := Y′{not◦pr}. pr{φ} = pr{pr{φ}} = pr{not φ}).

and assuming consistency, we can prove the contradiction

inconsistent := pr{false}.
consistent := not◦pr{false}.
!check (φ := Y′{not◦pr}. pr{φ} = inconsistent = pr{not φ}).

Note that it is inconsistent for Johann to !assume consistent = true. Also, the witness φ cannot be stat-
ically SKJO -definable; since every SKJO -definable sentence can eventually be decided (by !assuming
additional equations, e.g. the sentence itself). Thus φ must be theory- or time-dependent, by mentioning
code.

Gödel’s second incompleteness theorem observes that the final !check above gives us a simpler form for
the witness φ.

Theorem 5.4.3. (Gödel’s second incompleteness theorem) If Johann’s theory is consistent, then it cannot prove its
own consistency (and also the trivial converse): consistent = not◦pr{consistent}

I.e., consistent = not◦pr{false} is the fixed point of not◦pr{−}.

Proof. Continuing from above,

!check (φ := Y′{not◦pr}.
inconsistent = pr{φ} AND by above
consistent = not◦pr{φ} by negation

= not◦pr{not◦pr{φ}} by definition of φ
= not◦pr{consistent} by above

).

To state Löb’s theorem, we briefly use modal logic notation, with � denoting pr{−}.

Theorem 5.4.4. (Löb’s theorem) For any sentence φ, if ⊢ pr{φ} =⇒ φ then ⊢ φ; or in modal notation�(�φ→φ)→�φ.
Relying on the trivial converse allows a simpler assumption

!check (∀{φ :bool :: test bool}. pr{implies (pr{φ}) φ} = pr{φ}).

I.e., �φ is the fixed point of �(− −→ φ).

Proof. Applying the diagonalization lemma, let ψ = Y′{implies (pr{ψ}) φ}, so that ψ = imples (pr{ψ}) φ.

1. ⊢ ψ ↔ (�ψ→φ) diagonalization lemma
2. ⊢ ψ→�ψ→φ 1
3. ⊢ �(ψ→�ψ→φ) 2: informal transitivity
4. ⊢ �ψ→�(�ψ→φ) 3: distributivity
5. ⊢ �ψ→��ψ→�φ 4: distributivity
6. ⊢ �ψ→��ψ formal transitivity
7. ⊢ �ψ→�φ 5,6
8. ⊢ (�φ→φ)→�ψ→φ 7
9. ⊢ (�φ→φ)→ψ 8,1
10. ⊢ �(�φ→φ)→�ψ 9: distributivity
11. ⊢ �(�φ→φ)→�φ 7,10

114

Gödel’s second theorem and Löb’s theorems are instances of a more general fixed-point principle for
pr{−}-guarded predicates.

Theorem 5.4.5. (de Jongh, Sambin 1975) Let a :Code{bool}→bool be a predicate expression such that in a{φ}, φ
only occurs inside pr{−} (i.e. is “guarded” by pr{−}). Then there is a b :Code{bool}→bool with

∀{ψ :bool :: test bool}. pr{ iff (b{ψ}) (a{b{ψ}}{ψ}) }.

Proof. See [BBJ07].

Note that we can achieve the general fixed-point theorem already with Y′, so that Sambin’s and de
Jongh’s result guarantees definability in the guarded case.

5.5 Axioms for a hyperarithmetic oracle (O)

In this section we implicitly define an oracle O that answers hyperarithmetic questions with boolean val-
ues. The purpose of adding such an oracle to Johann’s language is to gain expressiveness. The language
SKJ can express computable functions, and equations in SKJ essentially express totality of computable
functions. By allowing access to a hyperarithmetic oracle, we can express essentially arbitrary statements
in predicative set theory ([Fef05]). With a language complete for implicit definability, the task of verifying
more complex problems is limited to the question of what inference rules to add.

The study of computability w.r.t. oracles has a long history (e.g. Rogers’ comprehensive [Rog67]) but
is often confused by the definition of oracles as sets with two-sided membership decidability (the excep-
tion being enumeration degrees). This approach leads to various hierarchy theorems, which obfuscate the
purpose of adding an oracle: to find a system closed under stronger notions of computability.

For example, it is classical theorem that the boolean implicit-definability operation has not fixedpoint

Theorem 5.5.1. The operation jump : (Pred skj → Pred skj) defined

jump o = (Pred skj → Pred skj) (
λ{p : (Pred skj → Pred skj) → pred} :: test skj.
po := p o. let p use the oracle
(Join skj λx. check bool(po x)). check p for errors
[∀{x} : test skj. po {x}] quantify over codes

)

has no total well-tested fixedpoint.

Proof. Consider the term

p := (Y′λ{q}, o, {x}. implies (eq skj{x}{q}). not(o {q})).

Then jump o {p} = not(o {p}).

However, our order-conscious approach embraces a variety of truth values bool, semi, unit, div. We show
in this section that, formulating the same problem with semiboolean truth values, the implicit-definability
operation does have a fixedpoint, a language closed under implicit semidefinability. This language is SKJO

.
In posing the implicit definability problem, we used a flat domain of codes. The definition of O works

with any old flat type of codes, e.g. Gödel numerals. But sinceO respects equivalence of codesmodulo their
evaluation, it would waste space for codes to be perfectly intensional. This observation is the motivation
for our extensional flat codes.

115

Implicit definition of the hyperarithmetic oracle

Statements in brackets [φ] are taken at meta-mathematical value, with bool truth values: true = K, false =
F. Later in section 5.6, we will show how to compile a fragment of this informal logic to SKJO terms.

We define an oracle O as the least fixed point of the meta-equation

O = (skj → code → semi) (
λ{s : test} :: test skj. contravariant, so SKJ -definable
λ{t : test} :: test skjo. covariant, so allow self-reference

if [∃x ::s. t x ⊒ ⊤] ⊤
| if [∀x ::s. t x ⊒ I] I

)

where O appears implicitly on the right hand side in evaluating the SKJO -code t : test, and the meta-level
statements [∃x ::s. t x ⊒ ⊤] and [∀x ::s. t x ⊒ I] are interpreted as a booleans. Note since the first argument
s : test is O-free, the right hand side is increasing in O, so by the Tarski-Knaster fixed-point theorem, O

is well-defined. Moreover, since O operates on codes, it is a join of SKJ -terms. Hence the Böhm-tree
approximation theorem from 5 carries over, and with it the correctness proofs of Simple and all closures
from SKJ .

What is the logical strength of O? At each step, O transforms a Π0
2-complete problem s <:: t to a ∆0

2

problem O{s}{t} = I (see 3.9), but since O may occur in t, this step can be iterated arbitrarily often.

Definition 5.5.2. A predicate φ :nat→bool is bool-hard (or just hard) for a problem class X ⊆ N iff X can
be bool-decided by φ, i.e. φ n = (if n ∈ X then K else F). A semipredicate ψ :nat→semi semi-hard for a
problem class X if every X can be semi-decided by ψ, i.e. ψ n = (if n ∈ X then I else ⊥).

Theorem 5.5.3. O is Π1
1-semi-complete.

Proof. (upper-bound) Let φ(−) be the Π0
2 predicate for satisfaction of the above fixed-point equation. Then

O is the unique solution to the Π1
1 predicate defining the least solution of φ(−), w.r.t. the Π0

2 ordering
problem o ⊑ o′

φ(o) AND ∀o′. φ(o′) =⇒ o ⊑ o′

(hardness) It is enough to semidecide the well-foundedness of recursive (SKJ -definable) countably-
branching trees:

if wfdd tree := (skj → semi) (
λ{φ :Test(Test num)}. [given an SKJ -code φ,
∀s :Test num. for each semipredicate s,
∀n :: test num. n ::s =⇒ if s is total
s ::φ then s ::φ

]
).

In particular, it suffices to show that the meta-statement [. . .] can be interpreted as an SKJO term. Thus,
working with SKJ -codes,

if wfdd tree := (skj → semi) (
Y′λ{t}. {

λ{φ : (num→semi)→semi} :: test skj.
or semi (φ ⊥).
O {test num} {t {(I, φ◦succ)}}

}
).

116

Question 5.5.4. How hard is equality in SKJO ?

Lemma 5.5.5. SKJO equality is ∆1
2.

Proof. By simply expanding the definitions of⊑ andO, we can put each relation x ⊑ y between SKJO terms
in the form

∀1z.
(

∃2o. φx(o, z)
)

=⇒
(

∃2o. φy(o, z)
)

where the second-order existentials quantifiers range over Böhm trees o approximating the oracle O, and
the φ are arithmetic relations encoding statements ”o satisfies the fixed point eqation for O, and particular
〈S,K,J, o〉-term converges”. Putting this statement in Kleene normal form yields a ∆1

2 formula.

Axioms and axiom schemata

We start with some typing and testing axioms

!using O.
!assume O : skj → code → semi.
!assume O : (∀p :Code{test}. Code{Ptest p} → semi).
!assume O p q = and semi (test skj p) (test code q) (O p q).

and some properties

!assume O p p = test skj p. regardless of whether E p : test
!assume O{p}{q} = O{p}{Ptest p q}.

Following 5.3, we consider as special cases the most commonly used flat domains: num, nat, term.

Example 5.5.6. Subtests of coalgebraic numerals.

Onum := O {test num}.
!assume Onum {test num} = I.
!assume (

div at := (λm, n. if◦not (equal num m n)). converges except at m

∀{n :nat}. Onum {div at n} = ⊥
).

Example 5.5.7. Subtests of Church numerals.

Onat := O {test nat}.
!assume Onat {test nat} = I.

Example 5.5.8. Subtests of SKJ terms.

Oterm := O {test term}.
!assume Oterm {test term} = I.

Example 5.5.9. Subtests of codes.

Ocode := O {test code}.
!assume Ocode {test code} = I.

Example 5.5.10. Subtests of indexed Codes.

OCode := (λ{a :V}, {t :Test a}. O {test Code{a}t}).
!assume (∀{a :V}, {t :Test a}. OCode {test code{a}t} = I).

117

Example 5.5.11. Subtests of SKJ -codes.

Oskj := O {test skj}.
!assume Oskj {test skj} = I.
!check Oskj ::> Ocode.

To prove properties of general tests, we need more general reasoning principles. Thus the following
axiom schemata will be enforced for the atom O:5

pass/fail/error

{p} :: test skj p <:: q

O{p}{q} = I
(O− I)

{p} :: test skj x ::p q x = ⊥

O{p}{q} : div
(O−⊥)

{p} :: test skj x ::p q x 6⊑ I

O{p}{q} = ⊤
(O−⊤)

variance

{p} :: test skj p <:: p′

O{p} ::> O{p′}
(O− ::>)

q <:: q′

C O{q} <:: C O{q′}
(C O− <::)

p ⊑ p′

C O{p} ⊒ C O{p′}
(O− ⊒)

q ⊑ q′

C O{q} ⊑ C O{q′}
(O− ⊑)

The pass/fail/error rules reflect Johann’s knowledge of subtesting p <:: q to the oracle, as a quoted truth
values: O{p}{q} = I for subtests, either⊥ or⊤ (i.e. some value:div) for failed subtests. and⊤ for subtesting
errors. The variance rules (O− ::>) and (O− <::) rules state thatO is contravariant and covariant in its first
and second arguments, both with respect to the subtest ordering <:: and the information ordering ⊑.

Are these axioms and schemata enough for successful verification? How much do we need to assume
to “reasonably” approximate O? It turns out that we can axiomatize ∆1

1-much of O using only induction
(via the above schemata) andH∗.

Theorem 5.5.12. (hardness) The partial axiomatization above, together with the locally Π0
2-completeH∗ is ∆1

1-bool-
hard.

Proof. By classic theorem of Kleene ([Kle55]), the ∆1
1 predicates are exactly the hyperaritmetic functions

from a countable domain to booleans. The hyperarithmetic functions are exactly those functions definable
by induction over recursively well-orderings. If we can locally decideH∗, then each stage of the oracle O’s
definition can be decided by the O-axiom schemata. By induction over computable well-orderings, this
allows us to compute arbitrary hyperarithmetic functions.

Knowing this strength result of our O axioms allows us to focus scientific effort (finding new axioms)
onH∗.

In fact this is all ofO that is meaningfully observable, in the sense of refutation in the limit. The following
adapt the work of Kelly and Schulte [KS95] to our setting of equational theories of SKJO .

Definition 5.5.13. Let a hypothesis be a set of equational theories (of say SKJO). A singleton hypothesis is
called emprically complete. A hypothesis is refutable in the limit iff, as a set of sets of equations, it is Π0

2.

5 These schemata leverage the schemata for − :div in 3.8, and the schemata for Ptest and the subtest relation <:: in 3.11.

118

A problem is reducible to a hypothesis iff it is uniformly reducible to the theories in the hypothesis; thus
we can speak of the logical strength of an hypothesis as if it were a single partial theory.

Theorem 5.5.14. (limit of observability) No refutable-in-the-limit hypothesis with Π1
1-hard conclusions can be em-

pirically complete.

As a corollary of the completeness of axiomatization, we also have

Corollary 5.5.15. There is a refutable-in-the-limit hypothesis that has ∆1
1-hard predictions.

Question 5.5.16. Is SKJO the full Böhm-tree model of SKJ in predicative set theory? (I.e, the model of Böhm trees
whose nodes are arbitrary joins of head normal forms)

5.6 The logic of SKJ terms

In this section we develop first-order logic fo SKJ -terms with basic relations for equality and Scott’s in-
formation ordering. This builds on the boolean and semiboolean propositional logics we developed in 3.9.
Now in SKJO , with a ∆1

1-bool-hard oracle in the language, we can even evaluate the truth-value of all such
sentences that are meaningful.6

6Meaningful in the generalized Popperian sense of [KS95]: predicted by hypotheses that are refutable in the limit.

119

Recall from 3.10 that each type of conditional truth value unit, unit ⊢ semi, semi, semi ⊢ bool corresponds
to a complete complexity class, respectively Π0

1, Σ
0
1, ∆

0
2, ∆

0
1. By adding the Π1

1-complete oracle O in the way
we did, with truth-values of semi, the complexity theorem extends precisely to a hyperarithmetic analog.

Theorem 5.6.1. The following complexity characterizations hold for local problems in SKJO .7

Context ⊢ Problem Complexity

(a) x :div ⊢ x = ⊥ Σ1
1-complete

(b) x :div ⊢ x = ⊤ Π1
1-complete

(c) x :unit ⊢ x = I Π1
1-complete

(d) x :semi ⊢ x = I complete for differences between Π1
1 problems

(e) x :semi ::unit ⊢ x = I Π1
1-complete

(f) x :bool :: test bool ⊢ x = K ∆1
1-hard and Π1

1

Note that in contrast to the case of SKJ where s <:: t was Π0
2-complete while x :: t was only ∆0

2, in SKJO

the oracle reduces exactly these problems, so that s <:: t ⇐⇒ O{s}{t} ::I, as in case (c).

Proof. Webeginwith cases (a) and (c), since they are closest to the definition ofO. The functions λx.x | I :div→unit

and λx.x ⊥ :unit→div provide translations between (a) and (c), so we show hardness for (c) and prove the
upper bound for (a)

(c) We showed in 5.5 that O is hard for Π1
1 questions, using truth values {⊥, I}.

(a) Note that the definition of O is Π1
1, so convergence of SKJO terms can be at most Π1

1.
Now all other cases variously reduce to case (c).

(b) This is just the negation of part (a).
(d) Suppose x :semi. Then x = I iff unit x = I and div x = ⊤. Conjoining these is a differenc of Π1

1-
complete problems.

(e) Suppose x :semi ::unit. Then x ∈ {⊥, I}. The function λx.I | x ⊤ :semi→unit reduces this to part (b).
We already showed hardness in 5.5.

(f) For hardness, suppose φ is a ∆1
1 statement. Then it and its negation can both be posed as Π1

1 problems
to O, say as if phi, if not phi :semi ::unit. Now define [φ] = if phi K | if not phi F. Then [φ] :: test bool

since φ either true or false, but not both..
For , observe that for x :bool :: test bool, we know x ∈ {K,F}. Then x = K iff

div(x ⊥ ⊤) = ⊥.

Basic relations

We can tests for basic equality and ordering between SKJ terms using the proof theory ofH∗ demonstrated
in 6.1. First we define the semi-valued testing versions

lift term := (Test term → Test skj) (λt, x :: test code. code to term x t).

if conv := (skj → semi) (lift term if conv term).
if div := (skj → semi) (

lift term λx. {x} := quote term x. O {test Conv x} {⊥}
).

7Recall from 3.9 our notation for contexts corresponding to binding of universally quantified variables:

(x :a ⊢ f x = g x) ⇐⇒ f◦a x = g◦a x

(x :: t ⊢ f x = g x) ⇐⇒ (t x)(f x) = (t x)(g x)
(x :a :: t ⊢ f x = g x) ⇐⇒ (t◦a x)(f◦a x) = (t◦a x)(f◦a x)

120

if less := (skj → skj → semi) (
conv at := (skj → skj → semi) (λ{z}, {f}. if conv {f z}).
λ{x}, {y}. O {conv at{x}} {conv at{y}}

).
if equal := P C (skj → skj → semi) (

λ{x}, {y}. and semi (if less{x}{y}) (if less{y}{x})
).
if nless := (skj → skj → semi) (

λ{x}, {y}.
Join skj λ{f}. and semi (if conv {f x}) (if div {f y})

).

Next we package (positive,negative) pairs together as boolean valued predicates.

conv := (skj → bool) (
λx. if conv x true | if div x false

).
less := (skj → skj → bool) (

λx, y. if less x y true | if nless x y false

).
equal := P C (skj → skj → bool) (

λx, y. if equal x y true | if nless x y false | if nless y x false

).

These relate to the semidecidable versions as expected.

!check if conv x = if (conv x).
!check if div x = if◦not (conv x).
!check if less x y = if (less x y).
!check if nless x y = if◦not (less x y).
!check if equal x y = if (equal x y).
!check equal x y = and (less x y) (less y x).

Finally, we give an alternative definition of provable equality, exploiting the fact that code is at any time
SKJ -definable, hence quoted terms are SKJ -definable, hence quoted terms are separable by a boolean
predicate. That is, two terms are provably equal iff their codes are provably equal.

!check pr equal = P C (code → code → bool) (λ{x}, {y}. equal{{x}}{{y}}).

Quantification

In 3.9 we defined logical connectives and, or for booleans and and semi, or semi for semibooleans. In SKJ we
can even eliminate semiboolean existential quantifiers over flat domains with a semiset of total terms. For
example from num :V and Join num :Sset num we can define8

if exists num := Test (Test num) (λφ. Join num λn. φ n).
!check if exists num = semi◦Join num.

Now in SKJO , the oracleO allows us to eliminate also semiboolean universal quantifiers over flat domains
with totality tests. For example, given num :V and a code {test num} :Code{Test num} for the totality test

8Recall Test a = a→semi, and Pred a = a→bool.

121

we can eliminate quantifiers of quoted tests with

if forall num := Test◦Code{Test num} (λ{φ}. O{test num}{λn. φ n}).
!check if forall num ⊒ O{test semi}.

To iterate these universal quantifiers requires a little extra structure, however, since an outer bound variable
must be quoted to appear in an inner quantified predicate, e.g.

if forall num{λn. if forall{λm. φ m n}} error: n cannot be quoted!

We can work around this in our typical flat domains, by using a quoter quotea :a→Code{a}, as e.g.

if forall num{λn. let{n} := quote num n. if forall{λm. φ m n}} well-defined

But it would be more convenient to wrap the quoter into the quantifier, so that we could simply bind
quoted terms. This motivates an improved definition

if forall num′ := Test◦Code{ Test◦Code{num} } (
λ{φ}. O{test num}{λn. φ◦quote num n}

).

which we can iterate using the easier notation

if forall num{λ{n}. if forall{λ{m}. φ m n}}

Now given any flat domain a with a semiset Joina :Sset a of total terms, a totality test testa :Test a, and
a quoter quotea :Quoter a, we can package up an (existential,universal) pair of semiboolean quantifiers to
eliminate boolean quantifiers. We will do this uniformly, defining a polymorphic type

Quantifier := (Code{V} → V) (λa. Pred◦Code{Pred◦Code a}).

and functions to build semiboolean quantifiers and package them into boolean pairs

Exists := (
∀{a :V}. Sset a → Code{Test{a}} → Code{Quoter{a}} → Quantifier{a}

) (
λ−, j, {t}, {q}. j if◦φ◦q true | O{t}{if◦not◦φ◦q} false

).
Forall := (
∀{a :V}. Sset a → Code{Test{a}} → Code{Quoter{a}} → Quantifier{a}

) (
λ−, j, {t}, {q}. O{t}{if◦φ◦q} true | j if◦not◦φ◦q false

).

exists := Exists ⊥.
forall := Forall ⊥.

For example we can define quantifiers over our standard flat domains.

Example 5.6.2. Quantifying over numerals.

exists num := Exists {num} Join num {test num} {quote num}.
forall num := Forall {num} Join num {test num} {quote num}.
!check (∀{φ :Pred num}. not◦forall num {φ} = exists num {not◦φ}).
!check (∀{φ :Pred num}. not◦exists num {φ} = forall num {not◦φ}).

122

We can use this to state a structure decomposition theorem for total inhabitants

!check true = forall num {λ{n}.
or (eq num none n). exists num {λ{n′}. eq num n. some n′}

}.

Example 5.6.3. Quantifying over SKJ terms.

forall term := Forall {term} Join term {test term} {quote term}.
exists term := Exists {term} Join term {test term} {quote term}.
!check (∀{φ :Pred term}. not◦forall term {φ} = exists term {not◦φ}).
!check (∀{φ :Pred term}. not◦exists term {φ} = forall term {not◦φ}).

Example 5.6.4. Quantifying over SKJ codes.

exists skj := Exists {skj} Join skj {test skj} {Q}.
forall skj := Forall {skj} Join skj {test skj} {Q}.
!check (∀{φ :Pred skj}. not◦forall skj {φ} = exists skj {not◦φ}).
!check (∀{φ :Pred skj}. not◦exists skj {φ} = forall skj {not◦φ}).

As an example application, we can check that SKJ has binary meets, using three levels of binding

!check true =
forall skj {λ{x}.

forall skj {λ{y}.
below xy := (skj → bool) (λz. and (less z x) (less z y)).
exists skj {λ{z}.

and (below xy x).
forall skj {λ{z′}. impiles (below xy z′) (less z′ z) }

} } }.

and check the equivalence of the skj and term quantifiers

!check forall term{φ◦term to code◦E} = forall skj{φ◦E}.

Example 5.6.5. Quantifying over SKJO codes.

exists code := Exists {code} Join code {test code} {Q}.
forall code := Forall {code} Join code {test code} {Q}.
!check (∀{φ :Pred code}. not◦forall code {φ} = exists code {not◦φ}).
!check (∀{φ :Pred code}. not◦exists code {φ} = forall code {not◦φ}).

Example 5.6.6. Quantifying over indexed Codes.

exists Code := (∀{a :V}. Quantifier{Code{a}}) (
λ{a :V}. Exists {Code{a}} (Join Code{a}) {test code} {Quote{a}}

).
forall Code := (∀{a :V}. Quantifier{Code{a}}) (

λ{a :V}. Forall {Code{a}} (Join Code{a}) {test code} {Quote{a}}
).
!check (∀{a :V}, {φ :Pred.Code{a}}.

not (forall Code{a}{φ}) = exists Code{a}{not◦φ}
).
!check (∀{a :V}, {φ :Pred.Code{a}}.

not (exists Code{a}{φ}) = forall Code{a}{not◦φ}
).

In 6.2 we present an extended example using quantifiers over a variety of flat domains.

123

5.7 Types using reflection

Our main tools in SKJ were types-as-closures (in 3.7) and tests (in 3.10). In SKJO we have already studied
a variety of newly definable tests (in 5.6). In this section we define new types-as-closures that we could not
define in SKJ .

Principle types

Recall from 3.7 that

Definition 5.7.1. The principle type unitM of a term M is the closure with two inhabitants {M,⊤}.

Theorem 5.7.2. All principle types of SKJ -terms are definable in SKJO . Moreover, principle types are uniformly
definable by a type constructor Unit :code SKJ→V with inhab(Unit{x}) = {x,⊤}.

Proof. Let x be an SKJ -term. Since a x ⊑ x is uniformly semidecidable in SKJO , we can join over
{a | a x ⊑ x}.

Unit := (skj → V) (λ{x} :: test skj. Join skj λ{a}. if less{a x}{x} a).
!check (
∀{x} :: test skj. x :Unit{x} AND

∀{y} :: test skj. Unit{x}y = x OR Unit{x}y = ⊤
).

For example,

!check unit = Unit{I}.
!check nil = Unit{⊤}.
!check div = Unit{⊥}.

Question 5.7.3. Which principle types of SKJO -terms are SKJO -definable?

Quotient types

Recall from 3.7 that we can define quotient types modulo Σ0
1 equational theories. Now with O in our

langauge, we can extend this to Π1
1 theories. E.g. we can define a quotient of SKJ terms modulo the Π0

2

theoryH∗.

skj Hstar := P code (λx. Join skj λy. if equal x y y).
!check {skj Hstar} ! :: test skj.

However this is not as useful as our SKJO -codes modulo Johann’s equality, since Johann also has a theory
of how O behaves.

124

Chapter 6

Examples and Applications

6.1 Proving properties of reduction in SKJ

This section is a case study illustrating the use of join in proving theorems, under the Curry-Howard in-
terpretation of theorems as closure,test pairs. The main tool being illustrated is the use of proof sketching,
a form of type-inference whereby a theorem-as-closure can raise a proof sketch without indices to a total
proof with indices.

To see how type inference works, consider a simple theorem ”K K S J J։ K J J”, which follows
from the proof sketch “follows from transitivity: apply the K rule to the LHS, then the K rule again” A
more thorough proof would mention the intermediate terms

1. K K S ։ K by K rule
2. K K S J ։ K J by left-monotonicity: 1
3. K K S J J ։ K J J by left-monotonicity: 2
4. K J J ։ J by K rule
5. K K S J J ։ J by transitivity: 3 then 4

Let us abbreviate terms using quotation marks for a moment, so that“K K S”= ap(ap K K)S. Formally,
we want to prove a theorem

thm := Red “K K S J J” “J”.

with a proof sketch

pf := transr (lhsr (lhsr Kr)) Kr.

Now the join operation allows the theorem-as-closure to raise the proof to

thm pf = Transr “K K S J J” “J”
(Lhsr “K K S J” “K J” “J”

(Lhs “K K S” “K” “J”
Kr “K” “S”))

(Kr “J” “J”)

(we will not use this quotation mark notation again).

Reduction theorems for derived terms

From the reduction axioms for S,K,J,⊤ in 3.14, we can derive reduction theorems for other defined com-
binators, e.g., I,B,C,W,Y.

125

The identity I = S K K reduces via I x։ x.

I := ap (ap S K) K.
IR := (
∀x. Red (ap I x) x

) (λ− .
transr Sr. S K K x ։ K x(K x)
Kr ։ x

).
Ir := IR ⊥.

Right projection F = K I reduces via F x y։ y.

F := ap K I.
FR1 := (
∀x. Red (ap F x) I

) (λ− .
Kr K I x ։ I

).
Fe1 := FR1 ⊥.
FR := (
∀x, y. Red (ap(ap F x)y) y

) (λ−,−.
transr (lhsr Fe1). K I x y ։ I y

Ir ։ y

).
Fr := FR ⊥ ⊥.

Composition B = S(K S)K reduces via B x y z։ x(y z).

B := ap (ap S (ap K S)) K.
compose := (term→ term→ term) (λf, g. ap (ap B f) g).

BR := (
∀x, y, z. Red (ap(ap(ap B x)y)z) (ap x(ap y z))

) (λ−,−,−.
transr (2 lhsr.

transr Sr. B x ։ K S x(K x)
lhsr Kr ։ S(K x)

).
transr Sr. B x y z ։ K x z(y z)
lhsr Kr ։ x(y z)

).
Br := BR ⊥ ⊥ ⊥.

Transposition C = S(B B S)(K K) reduces via C x y z։ x z y.

C := ap (ap S (ap (ap B B) S)) (ap K K).
transpose := ap C.

126

CR := (
∀x, y, z. Red (ap(ap(ap C)x)y)z) (ap(ap x z)y)

) (
λ−,−,−.
transr (lhsr.

transr (lhsr.
transr Sr. C x ։ B B S x(K K x)
transr (lhsr Br). ։ B(S x)(K K x)
rhsr Kr ։ B(S x)K

).
Br C x y ։ S x(K y)

).
transr Sr. C x y z ։ x z(K y z)
rhsr Kr ։ x z y

)
Cr := CR ⊥ ⊥ ⊥.

The diagonal W = C S I reduces via W x y։ x y y.

W := ap (ap C S) I.
WR := (
∀x, y. Red (ap(ap W x)y) (ap(ap x y)y)

) (
λ−,−.
transr (lhsr Cr). W x y ։ S x I y

transr Sr. ։ x y(I y)
rhsr Ir ։ x y y

).
Wr := WR ⊥ ⊥.

Turing’s fixed-point combinator Y = B(S I)(W I)(B(S I)(W I)) satisfies the fixed-point equation
Y f ։ f(Y f). (note that this is more often denoted Θ).

Y := W ap (ap(ap B(ap S I))(ap W I)).
rec := ap Y.

YR := (
∀f. Red (ap Y f) (ap f(ap Y f))

) (λ− .
transr (lhsr.

transr Br. Y ։ S I(W I(B(S I)(W I)))
rhsr. ։ S I(I(B(S I)(W I))(B(S I)(W I)))
transr (lhsr Wr). ։ S I(B(S I)(W I)(B(S I)(W I)))
Ir

).
transr Sr. Y f ։ I f(Y f)
lhsr Ir ։ f(Y f)

).
Yr := YR ⊥.

A bottom element ⊥ = Y K is constant ⊥ x։ ⊥.

Bot := rec K.
Botr := (∀x. Red (ap Bot x) Bot) (λ− . transr (lhsr Yr) Kr).
botr := Botr Bot.

127

Althought we added a top element to the basis in 3.14, a top element ⊤ = Y J with the same reduction
rule ⊤ x։ x is now definable.

⊤′ := rec J.
Top′r := (∀x. Red (ap ⊤′ x) ⊤′) (λ− . transr (lhsr Yr) Jr1).
top′r := Topr ⊥.
Tope := (∀x. Red (ap ⊤′ x) x) (λ− . transr (lhsr Yr) Jr2).
tope := Tope ⊥.

The probe div = Y(J F(C C ⊤)) can reduce in either of the two ways: div x։ div x ⊤ or div x։ x.

div := rec (join F. 2 (ap C) ⊤).
probe := ap div.

Div1 := (
∀x. Red (probe x) x

) (λ− .
transr (lhsr.

transr Yr. div ։ J F(C C ⊤)div

lhsr Jr1. ։ F div

).
Fr div x ։ x

).
div1 := Div1 ⊥.

Div2 := (
∀x. Red (probe x) (ap(probe x)⊤)

) (λ− .
transr (lhsr.

transr Yr. div ։ J F(C C ⊤)div

transr (lhsr Jr2). ։ C C ⊤ div

cr ։ C div Top

).
Cr div x ։ div x Top

).
div2 := Div2 ⊥.

Convergence proofs

Convergence proofs (see 3.14) generally take the form of feeding some term some number of ⊤’s as argu-
ments, and then showing the result reduces to ⊤.

feed := (∀x : term, n :nat. Red (n(c ap ⊤)x) ⊤ → Conv x) (
λ−, n. n next; done

).
feed := feed ⊥.

For example

topc := Conv ⊤ (feed 1. tr). t t ։ t

kc := Conv K (feed 2. kr). k t t ։ t

jc := Conv J (feed 2. j1). j t t ։ t

ic := Conv I (feed 1. ir). i t ։ t

128

w t t ։ t t t ։ t t ։ t

wc := Conv W (feed 2. transr wr. transr (lhs tr). tr).

b t t t ։ t(t t) ։ t

bc := Conv B (feed 3. transr br. tr).

c t t t ։ t t t ։ t t ։ t

cc := Conv C (feed 3. transr cr. transr (lhs tr). tr).

s t t t ։ t t(t t) ։ t(t t) ։ t

sc := Conv S (feed 3. transr sr. transr (lhs tr). tr).

We can also prove the handy lemmas: reduction respects converence

respc := (
∀x : term, y : term. Red x y → Conv y → Conv x

) (
yλr. λx, y, xy. (

transr xy; done, x ։ y!
r (ap x ⊤) (ap y ⊤) (lhs xy); next x t ։ y t!

)
).
respc := respc ⊥ ⊥.

and pushing (x 7→ x ⊤) preserves convergence

Another := (
∀x : term. Conv x → Conv (ap x ⊤)

) (
yλa. λx. (

transr tr; done,
a (ap x ⊤); next

)
).
another := Another ⊥.

Proofs for information ordering

Scott’s information order is defined by the principle

∀c :context. Conv(c x) =⇒ Conv(c y)

x ⊑ y
(H∗)

To encode proofs of information ordering, we thus need a notion of context.

context := V (
Yλc. Or (Prod c c). Maybe term

).
apc := (context→context→context) (λc1, c2. inl (c1, c2)).
idc := context (inr none).
termc := (term→context) (2 inr).

129

composec := (context→context→context) (
λc. Yλcomp. (λ(c1, c2). apc (comp c1) (comp c2), c, termc)

).

at := (context→ term→ term) (
λx. Yλe. (λ(c1, c2). ap (e c1) (e c2), x, I)

).

The type of information ordering proof is thus

Ord := (term→ term→V) (
λx, y. ∀c. (Conv. at c y) → (Conv. at c x)

).

Resp := (
∀x, y. If (Red x y). Ord x y

) (λ−,−, xy.
λ−, cyc.
respc (rhs xy) cyc c x ։ c y!

).
resp := Resp ⊥ ⊥.

Finally we can show that terms and information ordering proofs between them form amonadic category
(i.e. whose skeleton is a poset).

Refl := (
∀x. Ord x x

) (λ− .
λ−, xc.
xc

).
refl := Refl ⊥.

Trans := (
∀x, y, z. If (Ord x y). If (Ord y z). Ord x z

) (λ−,−,−, xy, yz.
λc, zc.
xy c. yz c. zc

).
trans := Trans ⊥ ⊥ ⊥.

We leave to the reader the proofs of motonicity.

Rhs : (∀f, x, y. If (Ord x y). Ord (ap f x) (ap f y))
Lhs : (∀f, g, x. If (Ord f g). Ord (ap f x) (ap g x))

6.2 Type inference and termination in Gödel’s T

Our main theorem in this section will be a proof of termination in Gödel’s T (more precisely, weak termi-
nation at base type, which is still enough to prove consistency of peano arithmetic). Although we have
not implemented this level of reasoning in SKJO , the example demonstrates the potential for expressing
complicated logical statements in SKJO , even beyond first-order logic.

130

Our development of the language of Gödel’s T also illustrates the power of join as a type inference
mechanism. Here terms will be Church-style combinators annotated with types at each term and subterm.
The type-as-closure term has a baked-in type inference algorithm, so that partially-annotated terms are
automatically raised to the most-annotated possible terms, given the partial information. This is done by
propagating type information among occurrences of each type, using the join operation.

Primitive recursion over natural numbers

We will prove the termination of well-typed terms using primitive recursion over natural numbers.

zero : num

succ : num → num

rec : ∀a :V. num → (num → a → a) → a → a

Recall that most of this has been defined already.1

!check num = V (Yλa. Maybe a).
zero := num none.
succ := (num → num) some.
rec := (∀a :V. num → (a → num → a) → a → a) (

Yλρ. λn, f, x. n x λn′. ρ n′ (f◦succ) (f zero x)
).
!check succ = Some num.

Now we can, for example, add

add := (num → num → num) (λm, n. rec nat ty n (K succ) m).
!check add zero zero = zero.
!check (∀m :: test num, n :: test num. add(succ m)n = add m(succ n)).

Now to represent proofs of totality, we need simple types over num

pre ty := V (Yλa. Maybe. Prod a a).
check ty := Check ty (Yλτ. check Maybe. check Prod τ τ).
!define ty := Checked pre ty check ty.
!check check ty : Check ty.

!define test ty := Test ty (Yλτ. test Maybe. test Prod τ τ).

with introduction forms

num ty := ty none.
exp ty := (ty → ty → ty) (λσ, τ. some(σ, τ)).
!check num ty :: test ty.
!check (∀σ :: test ty, τ :: test ty. exp ty σ τ :: test ty).

and checked elimination forms

case num := (ty → unit) (I,⊤).
case exp := (ty → W Prod ty) (⊤, I).
!check case num num ty = I.
!check case exp num ty = error.
!check (∀σ :: test ty, τ :: test ty.

case exp (exp ty σ τ) = (σ, τ) AND

case num (exp ty σ τ) = error

).

1 The definitions in this section conflict with those in earlier sections. This conflict could be averted using a module system or
some namespace management, which we have not implemented. Thus this section serves as an example of what could be described in
the system SKJO , but what has never been parsed by Johann.

131

We can evaluate these type codes to types-as-closures with

ty eval := (ty → V) (Yλe. (num, λσ, τ. e σ → e τ)).
!check eval ty num ty = num.
!check (
∀σ :: test ty, τ ::num ty.
eval ty (exp ty σ τ) = eval ty σ → eval ty τ

).

We can also discriminate between total types, with truth values bool, semi, and unit.

eq ty := P C (ty → ty → bool) (
Yλe. ((true, K false), λa, b.(false, λa′, b′. and (e a a′) (e b b′)))

).
!check W eq ty num ty = K.
!check eq ty τ τ = test ty τ K.
!check (∀σ :: test ty, τ :: test ty. eq ty num ty (exp ty σ τ) = F).
!check (∀σ :: test ty, τ :: test ty. eq ty (exp ty σ τ) (exp ty σ τ) = K).
!check (
∀σ :: test ty, σ′ :: test ty, τ :: test ty, τ ′ :: test ty.
eq ty (exp ty σ τ) (exp ty σ′ τ ′) = and (eq ty σ σ′) (eq ty τ τ ′)

).

if eq ty := P C (ty → ty → semi) (
Yλe. ((I,⊥), λa, b. (⊥, λa′, b′. and semi(e a a′)(e b b′)))

).
!check if eq ty σ τ = if (eq ty σ τ).
!check if eq ty τ τ = test ty τ.

assert eq ty := P C (ty → ty → unit) (λσ, τ. check ty (σ | τ)).
!check assert eq ty σ τ = assert (eq ty σ τ).
!check assert eq ty τ τ = check ty τ.

Below we will often have to assert the equality of three or four terms at once. Thus it is convenient to use
the shorthand

!check check ty (σ | τ) = assert eq ty σ τ.
!check check ty (ρ | σ | τ) = assert eq ty ρ σ | assert eq ty σ τ.

The equality assertion also gives us an alternate representation for case num.

!check case num = assert eq ty num ty.

Finally we will need to join over types in proof search, so we define

Join ty := Sset ty (Yλj. 〈num ty〉 | jλσ. jλτ. 〈exp ty σ τ〉).
!check Join ty test ty = I.

Well-behaved terms are well-typed combinators

M :σ→τ N :σ

M N :τ
(ap)

S : (ρ→σ→τ)→(ρ→σ)→ρ→τ K :σ→τ→σ zero :num

succ :num→num rec :num→(num→τ→τ)→τ→τ

132

which are coded as Church-style (type,term) pairs that typecheck. In contrast to the cut-free case of reduc-
tion proofs in 3.14, typability allows cut via the (ap) rule; thus we need to annotate the types of subterms.
We begin with terms with possibly-incorrect typing annotations

pre term := V (Yλa.
Prod ty. type annotation
Sum (Prod a a). application
3 Maybe bool five atoms

).
test pre term := Test pre term (Yλτ.

test Prod test ty.
test Sum (test Prod τ τ).
3 test Maybe test bool

).
check pre term := Check pre term (Yλc.

check Prod check ty.
check Sum (check Prod c c).
3 check Maybe check Bool

).

133

Wedefine the type of well-typechecked terms as a closure under the simple back-and-forth type-inference
algorithm

!define term := P (Checked pre term check term) (
ce := case exp. e := exp ty. n := num ty.

Yλa, (τ, u). 〈u〉 (
Case: ap(f :σ→τ)(x :σ) : τ

λ(st,−) :a, (σ,−) :a. ce st λσ′, τ ′.
σ := σ | σ′. τ := τ | τ ′.
(τ , inl ((e σ τ, ⊥), (σ, ⊥)),

Case: S : (ρ→σ→τ)→(ρ→σ)→ρ→τ
ce τ λrst, rs rt. ce rst λρ, st. ce st λσ, τ.
ce rs rt λrs, rt. ce rs λρ′, σ′. ce rt λρ′′, τ ′.
ρ := ρ | ρ′ | ρ′′. σ := σ | σ′. τ := τ | τ ′.
(e (e ρ. e σ τ). e (e ρ σ). e ρ τ, ⊥),

Case: K :ρ→σ→ρ
ce τ λρ, sr. ce sr λσ, ρ′.
ρ := ρ | ρ′. sr := sr | e σ ρ.
(e ρ sr, ⊥),

Case: zero :num

τ := τ | n.
(τ , ⊥),

Case: succ :num→num

ce τ λn′, n′′.
τ := n | n′ | n′′.
(τ , ⊥),

Case: rec :num→(num→σ→σ)→σ→σ
ce τ λn′, nss ss. ce nss ss λnss, ss.
ce nss λn′′, ss′. ce ss′ λσ, σ′. ce ss λσ′′, σ′′′.
n := n | n′ | n′′. σ := σ | σ′ | σ′′ | σ′′′. ss := e σ σ.
(e n. e (e n ss) ss, ⊥)

)
).

In each case, we propagate type information by
(1) splitting type annotations using ce = case exp,
(2) join together all types that should be the same, and
(3) building a better-typed term with the joined annotations.
The ap case also reconstruct better-typed subterms, so that typing information can pass across subterms.
This form of type inference allows type sketching in proofs below.

134

Theorem 6.2.1. (type inference) The closures term raises partially-annotated terms as follows
Inferring ap(f :σ→τ)(x :σ) : τ

!check (∀σ : ty ::check ty, τ : ty ::check ty.
e := exp ty

term (⊥, ap ⊥) =
(⊥, ap(e ⊥ ⊥,⊥)(⊥,⊥)) AND

term (⊥, ap(e σ ⊥,⊥)(⊥,⊥)) =
term (⊥, ap(e ⊥ ⊥,⊥)(σ,⊥)) =

(⊥, ap(e σ ⊥,⊥)(σ,⊥)) AND

term (τ, ap(e ⊥ ⊥,⊥)(⊥,⊥)) =
term (⊥, ap(e ⊥ τ,⊥)(⊥,⊥)) =
term (⊥, ap(e ⊥ ⊥,⊥)(τ,⊥)) =

(τ, ap(e ⊥ τ,⊥)(⊥,⊥))
).

Inferring S : (ρ→σ→τ)→(ρ→σ)→ρ→τ

!check (∀ρ : ty ::check ty, σ : ty ::check ty, τ : ty ::check ty.
e := exp ty. ss := inr none.

term (⊥, ss) =
(e (e ⊥. e ⊥ ⊥). e (e ⊥ ⊥). e ⊥ ⊥, ss) AND

term (e (e ρ. e ⊥ ⊥). e (e ⊥ ⊥). e ⊥ ⊥, ss) =
term (e (e ⊥. e ⊥ ⊥). e (e ρ ⊥). e ⊥ ⊥, ss) =
term (e (e ⊥. e ⊥ ⊥). e (e ⊥ ⊥). e ρ ⊥, ss) =

(e (e ρ. e ⊥ ⊥). e (e ρ ⊥). e ρ ⊥, ss) AND

term (e (e ⊥. e σ ⊥). e (e ⊥ ⊥). e ⊥ ⊥, ss) =
term (e (e ⊥. e ⊥ ⊥). e (e ⊥ σ). e ⊥ ⊥, ss) =

(e (e ⊥. e σ ⊥). e (e ⊥ σ). e ⊥ ⊥, ss) AND

term (e (e ⊥. e ⊥ τ). e (e ⊥ ⊥). e ⊥ ⊥, ss) =
term (e (e ⊥. e ⊥ ⊥). e (e ⊥ ⊥). e ⊥ τ, ss) =

(e (e ⊥. e ⊥ τ). e (e ⊥ ⊥). e ⊥ τ, ss) AND

).

Inferring K :ρ→σ→ρ

!check (∀σ : ty ::check ty, τ : ty ::check ty.
e := exp ty. kk := inr none.

term (⊥, kk) =
(e ⊥. e ⊥ ⊥, kk) AND

term (e σ. e ⊥ ⊥, kk) =
term (e ⊥. e ⊥ σ, kk) =

(e σ. e ⊥ σ, kk) AND

).

135

Inferring zero :num and succ :num→num

!check (zz := 2 inr none. term (⊥, zz) = (num ty, zz)).
!check (ss := 3 inr true. term (⊥, ss) = (W exp ty num ty, ss)).

Inferring rec :num→(num→σ→σ)→σ→σ

!check (∀τ : ty ::check ty.
e := exp ty. n := num ty. rr := 3 inr false.

term (⊥, rr) =
(e n. e (e n. e ⊥ ⊥). e ⊥ ⊥, rr) AND

term (e n. e (e n. e τ ⊥). e ⊥ ⊥, rr) =
term (e n. e (e n. e ⊥ τ). e ⊥ ⊥, rr) =
term (e n. e (e n. e ⊥ ⊥). e τ ⊥, rr) =
term (e n. e (e n. e ⊥ ⊥). e ⊥ τ, rr) =

(e n. e (e n. e τ τ). e τ τ, rr)
).

Proof. Left as exercise for Johann.

Now we can define types of typechecked terms of both general and specific types

check term := Check term check pre term.
!define test term := Test term test pre term.
!check check term = test2check test term.

!define Term := (ty → P term) (λτ. Above (τ,⊥)).
!check term = Term ⊥.
!check Term τ <: term.

!define test Term := (∀τ : ty. Test. Term ty) test pre term.
!check test term = test Term ⊥.
!check test Term τ <:: test term.

with intro forms parametric parametric in types.

ap := (term → term → term) (λf, x. (⊥, inl(f, x))).
S := (ty → ty → ty → term) (

λρ, σ, τ. (e := exp ty. e (e ρ. e σ τ). e (e ρ σ). e ρ τ, inr none)
).
K := (ty → ty → term) (λσ, τ. (exp ty ρ. exp ty σ ρ, 2 inr none)).
zero := term (nat ty, 3 inr none).
succ := term (W exp ty nat ty, 4 inr true).
rec := (ty → term) (

λτ. (e := exp ty. e num ty. e (e num ty. e τ τ). e τ τ, 4 inr false)
).

136

!check (
∀σ :: test ty, τ :: test ty.
∀f :: test Term(exp ty σ τ), x :: test Term σ.
ap f x :: test term

).
!check (∀ρ :: test ty, σ :: test ty, τ :: test ty. S ρ σ τ :: test term).
!check (∀σ :: test ty, τ :: test ty. K σ τ :: test term).
!check zero :: test term.
!check succ :: test term.
!check (∀τ :: test ty. rec τ :: test term).

We also define compound intro forms for convenience

B := λap(ap S(ap K S))K.
compose := (λf, g. ap(ap B f)g).
recurse := (λn, f, x. ap(ap(ap(rec ⊥)n)f)x).

where the type of rec in recurse is inferred from f’s or x’s type.

Lemma 6.2.2. inhab(term) = {⊤}∪“well-typed partial terms”.

Proof. By typechecking, all type errors are raised to ⊤.

We can also evaluate terms to their proper types

eval := (term→any) (
Yλe, (τ, x). eval ty τ. x (λy, z. (e y)(e z), S,K, zero, succ, rec)

).
Eval := (∀τ : ty. Term τ → any) (λ− . eval).
!check eval = Eval ⊥.

Lemma 6.2.3. (reduction) Evaluation respects application and the reduction rules

S x y z = x z(y z)
K x y = x

rec zero f x = x

rec (succ n) f x = rec n (f◦succ) (f zero x)

137

Formally checking,

!check (
∀σ :: test ty, τ :: test ty.
∀f :: test Term(exp ty σ τ), x :: test Term σ.
eval(ap f x) = (eval f)(eval x)

).
!check (
∀ρ :: test ty, σ :: test ty, τ :: test ty.
∀x :: test Term(exp ty ρ. exp ty σ τ).
∀y :: test Term(exp ty ρ σ), z :: test Term ρ.
eval(ap(ap(ap(S ρ σ τ)x)y)z) =
eval(ap(ap x z)(ap y z))

).
!check (
∀σ :: test ty, τ :: test ty.
∀x :: test Term σ, y :: test Term τ.
eval(K σ τ x y) =
eval x

).
!check (n := num ty. e := exp ty.
∀τ :: test ty.
∀f :: test Term(e n. e τ τ), x :: test Term σ.
eval(rec τ zero f x) =
eval x

).
!check (n := num ty. e := exp ty.
∀τ :: test ty.
∀n :: test Term n, f :: test Term(e n. e τ τ), x :: test Term σ.
eval(ap(ap(ap(rec τ)(ap succ n))f)x) =
eval(ap(ap(ap(rec τ)n) (compose f succ)) (ap (ap f zero) x))

).

Proving termination

The main theorem of this system is termination (weak normalization): any well-typed total term of type
numτ evaluates to a total numeral, expressed as the equivalence of testing code before and after evaluation.

Theorem 6.2.4. (termination)

!check (∀n :: test Term num ty. eval n :: test num).

or simply

!check test Term num ty <:: test num◦(Eval num ty).

Proof. By a hereditary termination argument/Tait’s method/logical relations...

Definition 6.2.5. (hereditary termination) We say a well-typed term m :τ is reducible in case
• τ = num and m evaluates to a total numeral (i.e. eval m ∈ nums), or
• τ = ρ→σ and for every reducible term x :ρ, also m x :σ is reducible.

Lemma 6.2.6. Every well-typed term is reducible.

138

Proof. By induction on term structure:
Case: ap: u v :τ , where u, v are reducible. By inversion, u :σ→τ and v :σ for some σ, whence u, v are re-

ducible by hypothesis. Hence u v is reducible.

Case: S: Let x :ρ→σ→τ, y :ρ→σ, z :ρ be reducible. Then x z and y z are reducible, so x z(y z) = S x y z is
reducible. Hence S x y, hence S x, hence S is reducible.

Case: K: Let x :σ, y :τ be reducible. Then K x y = x, hence K x, hence K is reducible.

Case: zero,succ: trivial.

Case: rec: Suppose n :num, fs :num→τ→τ, x :τ are reducible. By hypothesis n reduces to a number n′. We
show by strong induction on n′ that rec n fs x is reducible, whence rec n fs, whence rec n, whence
rec is reducible.
Subcase: n′ = zero: rec zero f x = x which is reducible by hypothesis.

Subcase: n′ = succ n′′: rec(succ n′′)f x = rec n′′(f◦succ)(f zero x). By outer hypothesis and assump-
tion, fs◦succ and fs zero x are reducible; hence by inner hypothesis also rec n′′(f◦succ)(f zero x)
is reducible.

Expressing termination in SKJO

The logical relations proof relies on induction over types, terms, and numerals, so we begin with the three
induction lemmas. Letting φ be an arbitrary predicate, the induction schemata are

φ zero φ n =⇒ φ(succ n)

∀n. φ n
(ind− num)

φ num ty φ σ =⇒ φ τ =⇒ φ(σ→τ)

∀σ. φ σ
(ind− ty)

∀ρ, σ, τ. φ (S ρ σ τ) ∀σ, τ. φ(K σ τ)
φ(zero) φ(succ) ∀τ. φ(rec τ) ∀σ, τ, f :σ→τ, x :σ. φ f =⇒ φ x =⇒ φ(ap f x)

∀τ, x :τ. φ x
(ind− term)

where the universally quantified results simply assert that φ is true for all total numerals, types, and terms,
respectively. All three lemmas rely on the Simple type theorem. We need totality testers and universal
quantifiers over terms and types

total pred num := (λ{φ :num → bool}. O{test num}{test bool◦φ}).
total pred ty := (λ{φ : ty → bool}. O{test ty}{test bool◦φ}).
total pred term := (λ{φ : term → bool}. O{test term}{test bool◦φ}).

forall ty := Forall {ty} (O {test ty}) join ty.
forall term := Forall {term} (O {test term}) join term.
forall Term := (∀{τ : ty}. Quantifier{Term τ}) (

λ{τ}. Forall {Term τ} (O {test Term τ}) (join Term τ)
).

Lemma 6.2.7. (induction over numerals)

!check (
∀{φ :num → bool} :: total pred num.
impiles (φ zero).
implies (forall num {λ{n}. φ(succ n)}).
forall num {λ{n}. φ n}

).

139

Lemma 6.2.8. (induction over types)

!check (
∀{φ : ty → bool} :: total pred ty.
implies (φ num ty).
implies (forall ty{λ{σ}. forall ty{λ{τ}. φ. exp ty σ τ}}).
forall ty{λ{τ}. τ}

).

Lemma 6.2.9. (induction over terms)

!check (
∀{φ : term → bool} :: total pred term.
implies (

forall ty{λ{σ}.
forall ty{λ{τ}.
forall Term{exp ty ρ σ}{λ{f}.
forall Term{σ}{λ{x}.

implies (φ f). implies (φ x). φ (ap f x)
} } } }

).
implies (

forall ty{λ{ρ}. forall ty{λ{σ}. forall ty{λ{τ}. φ(S ρ σ τ) }}}
).
implies (forall ty{λ{σ}. forall ty{λ{τ}. φ(K σ τ) }}).
implies (φ(zero)).
implies (φ(succ)).
implies (forall ty{λ{τ}. φ(rec τ) }).
forall term{λ{τ}. φ(τ) }

).

Next we need to formalize convergence and reducibility. At base type, the reducibility is just conver-
gence (modulo β-η) However, since reducibility at exponential types has high complexity, we need to move
to SKJO to define it.

Definition 6.2.10. The reducibility predicate is

!define Red := (∀τ : ty. Term τ → bool) (
Y′{λ{Red}. (

Case: num is just convergence under evaluation
λn :Term num. let{n} := quote term n. conv {eval n},

Case: σ → τ is hereditary convergence
λσ : ty. let {σ} := quote ty σ.
λτ : ty. let {τ} := quote ty τ.
λf :Term(Exp σ τ).
forall Term{σ}{λ{x}. implies (Red σ x) (Red τ. ap f x)}

) }
).
!check (∀τ :: test ty, x :: test Term τ. Red τ x :: test bool).

!define red := (term → bool) (λx. let (τ,−) := x. Red τ x).
!check (∀x :: test term. red x :: test bool).

140

!check test bool◦(Red num ty) = test num◦eval.

Our goal now is to show true = forall term{red}, or equivalently, if◦red = test term.

Expressing the termination proof in SKJO

The induction proof that each typeable term is reducible relies on reducibility being preserved under β-η
equality, which follows from an induction on types.

Definition 6.2.11. The invariance predicate of reducibility at various types is

eval eq := (term → term → bool) (
e := quote term;A{eval}. λx, y. equal(e x)(e y)

).

Inv := (Code{ty} → bool) (
λ{τ :: test ty}.
forall Term{τ}{λ{x}. forall Term{τ}{λ{y}.

implies (eval eq x y).
iff (red x) (red y)

} }
).
!check test bool◦Inv = test Code {ty} test ty.

Lemma 6.2.12. (invariance of reducibility under β-η equality)

!check true = forall ty {Inv}.
!check if◦Inv = test Code {ty} test ty.

Proof. By induction on type structure.
Case: Numerals.

!check true =
forall Term{num ty}{λx.
forall Term{num ty}{λy.

implies (eval x = eval y). iff (red x) (red y)
} }.

!check true = Inv{num ty}.

Case: Exponentials. Equality of functions

!check true =
forall ty {λ{σ}.
forall ty {λ{τ}.

st := exp ty σ τ.
forall Term{st}{λ{f}.
forall Term{st}{λ{f′}.

and (
implies (eval eq f f′).
forall Term{σ}{λ{x}.

fx := ap f x. fx′ := ap f′ x.
and (eval eq fx fx′).
iff (red fx) (red fx′) }

).
iff (red f) (red f′)

} } } }.
!check true = forall ty{λ{σ}. forall ty{λ{τ}. Inv{exp ty σ τ}}}.

141

Finally, we combine using the induction schema

!check true = forall ty {Inv}.
!check if◦Inv = test Code {ty} test ty.

Finally we verify the induction proof of hereditary termination

Theorem 6.2.13. (hereditary termination)

!check true = forall term {red}.
!check if◦red = test term.

Proof. By induction on term structure.
Case: ap: u v :τ , where u :σ→τ and v :σ are reducible. Hence u v is reducible.

!check true =
forall ty{λ{σ}. forall ty{λ{τ}.
forall Term{exp ty σ τ}{λ{u}. implies (red u).
forall Term{σ}{λ{v}. implies (red v).

red(ap u v) }}}}.

Case: S: Let x :a→b→c, y :a→b, z :a be reducible. Then x z and y z are reducible, and hence x z(y z) is
reducible, hence S x y hence S x hence S is reducible.

!check true = (
e := exp ty.
forall ty{λ{ρ}. forall ty{λ{σ}. forall ty{λ{τ}. S := S ρ σ τ.

and (forall Term{e ρ. e σ τ}{λ{x}. implies (red x). Sx := S x.
and (forall Term{e ρ σ}{λ{y}. implies (red y). Sxy := Sx y.

and (forall Term{ρ}{λ{z}. implies (red z). Sxyz := Sxy z.
and (

xz := ap x z. and (red xz).
yz := ap y z. and (red yz).
xz yz := ap xz yx. and (red xz yz).
eval eq xz yz Sxyz

). red Sxyz

}). red Sxy

}). red Sx

}). red S

}}}
).

Case: K: Let x :ρ, y :σ be reducible. Then K x y = x is reducible, hence K x, hence K is reducible.

!check true =
forall ty{λ{σ}. forall ty{λ{τ}. K := K σ τ.

and (forall term{λ{x}. implies (red x).
and (forall term{λ{y}. implies (red y).

and (eval eq Kxy x).
red Kxy

}). red Kx

}). red K

}}.

Hence I is reducible.

142

Case: zero: trivial.

!check true = red zero.

Case: succ:

!check true =
forall Term{num ty}{λ{n}. implies (red n). red(succ n)}.

Case: rec: We show by induction on n :num that rec n is reducible for each n.

!check true = (
forall ty{λ{τ}.

recτ := rec τ.
foralln := forall Red num ty.
forallf := forall Red(exp ty num ty(exp ty τ τ)).
forallx := forall Red τ.

Case: zero
and (

rz := ap recτ zero.
and (forallf {λ{f}. rfz := rz f.

and (forallx {λ{x}. rzfx := ap rzf x.
and (eval eq rzfx x) (red rzfx)
}). red rzf

}). red rz

).

Case: successor
and (foralln {λ{n}. n′ := ap succ n. and (red n′).

rn := ap recτ n.
rN := ap recτ n′.
and (forallf {λ{f}. f′ := ap(ap B succ)f. and (red f′).

rnF := ap rn f′.
rNf := ap rN f.
and (forallx {λ{x}. x′ := ap(ap f zero)x. and (red x′).

rnFX := ap rnF x′.
rNfx = ap rNf x.
and (eval eq rnFX rNfx).
implies (red rnFX) (red rNfx)

}). implies (red rnF) (red rNf)
}). implies (red rn) (red rN)
}).

Finally, conclude
red recτ

}).

143

Chapter 7

Implementation of the Johann system

This chapter details some aspects of the Johann system. Most of the syntactic algorithms have already
been described in 2 or elsewhere. Now we will focus on Johann’s database in 7.2 and the AI algorithms
behind randomized proofs search in 7.3, automated conjecturing in 7.4, and numerical basis optimization
in 7.5. These three AI algorithms all make use of statistical calculations on the Johann’s database, essentially
approximations to Kolmogorov complexity.

7.1 Background and related work

Forward-Chaining with Equations

Perhaps the first use of forward-chaining in equational theories was the algorithm of Todd and Coxeter
[TC36] (more recently [CDHW73]) for enumerating the cosets of a finitely presented finite group. Given a
finitely presented group, say

〈r, s | rr = 1, rsrs−1 = 1, s4 = 1〉

the Todd-Coxeter algorithm starts with a database of relations of the form x.y = z:

{ r.r = 1, rsr.s−1 = 1, s3.s = 1, r.r−1 = 1, r−1.r = 1, s.s−1 = 1, s−1.s = 1 }

This database is then EXTENDed by inference rules for each pair (g, g′) of generators or inverses (e.g. a
pair (r−1, s−1)):

x . g = xg

xg . g′ = xgg′
(Extend− g, g′)

It is also necessary to backward-subsume equations following from the rules

y = y′

xy = xy′
(Reduce− ν)

x = x′

xy = x′y
(Reduce− µ)

Here it is assumed that substitution and string pattern-matching is automatic. If the presented group is fi-
nite, and the database is extended “sufficiently uniformly” (e.g., by breadth-first search), then the database
will saturate to have 2|P ||G| equations, where |G| is the order of the group and |P | is the number of gener-
ators.

The Todd-Coxeter algorithm is more natural in the setting of semigroups, and has many generalizations
to equational theories of other algebraic structures, e.g., nonassociative- and many-sorted algebras, and
even categories ([CW91],[BLW03]). For our interests, we will generalize to nonassociative algebras with

145

a join operation (thus single-sorted semilattices). Although the join operation x | y, and thus the ordering
relation x ⊑ y and its negation x 6⊑ y, is definable (x ⊑ y ⇐⇒ x | y = y), it is much more practical to intro-
duce extra logical inference rules relating the ordering to the equational fragment, as in the term ordering
rules below.

A major limitation of the Todd-Coxeter algorithm is the restriction to finite groups (or other struc-
tures). An often-used alternative to Todd-Coxeter is Knuth-Bendix completion based on reduction strate-
gies ([KB70],[BN99]). Our application is concerned with algebraic structures which are not only infinite but
also uncomputable in a sense that thwarts also the Knuth-Bendix algorithm, thus we use a probabilistic
version of the Todd-Coxeter algorithm as a workaround.

Kolmogorov-Solomonoff-Chaitin Complexity

In the early 1960’s, Ray Solomonoff (in [Sol64]), Andrey Kolmogorov (in [Kol65]), and Gregory Chaitin (in
[Cha66]) all independently defined a notion of complexity of binary strings and streams that was based on
the size of computer program generating them. In their definition, one assigns a length to each computer
program in some model of computation, and defines the complexity K(x) of a binary string x as the length of
the smallest program generating it. The resulting field of Algorithmic Complexity is surveyed in V’Yugin’s
paper [Yug99] and detailed in Li and Vitayni’s comprehensive reference [LV97].

The main theorems about algorithmic complexity come from the three inventors different perspectives.

Theorem 7.1.1. (Kolmogorov) K(x) is independent of machine model, up to additive and multiplicative constants.

Proof. By Church’s Thesis, there is a universal virtual machine and a translator between any two machines.
The additive factor accounts for the size of the virtual machine, and the multiplicative factor accounts for
the translation blow-up.

Theorem 7.1.2. (Chaitin) K(x) is computable from below, but not from above.

Proof. From below, simply enumerate programs, and add to result when a program converges. From above,
we could solve the halting problem by computing Kolmogorov complexity of all binary strings to a given
precision.

Chaitin used this result to define a real number whose value was provably uncomputable.

Theorem 7.1.3. (Solomonoff, [Sol78]) among all computable Bayesian priors for predicting future values of a binary
stream, exp(−K(x)) is Pareto optimal w.r.t., say, a zero-one loss loss function.

Proof. Follows from machine independence.

Our interest is mostly in Solomonoff’s result, as it motivates our proof search and complexity definition.
Solomonoff’s original interest was in optimally estimating and predicting values in a binary stream. He
defined a pseudo-algorithm to do this prediction by running all programs at once, a process now known
as Solomonoff Induction. This idea has been generalized to agent systems by Hutter [Hut05], who extends
Solomonoff’s theorem in many directions.

One of the problems in applying standard Kolmogorov complexity to our problems is the non-differentiability
caused by minimizing over programs. The solution lies in Solomonoff’s original application, where the
probability of a string was not a minimum of anything, but rather a sum over all program probabilities,
where program probabilities are roughly exp(−program length). This is exactly what motivates our defini-
tion of complexity in 7.3.

Simulated Annealing and The Metropolis-Hastings Algorithm

Consider the Monte Carlo problem of sampling a complicated data structure with complicated constraints
from a probability distribution. A naive attempt might try to randomly generate such data structures until
one satisfying the constraint is found, however for complicated constraints this is often infeasible due to
the low probability of satisfaction.

146

One class of algorithms to solve this problem are Markov-Chain Monte Carlo (MCMC) algorithms
([JS96]). MCMC algorithms have been studied since 1950’s, when they were used to compute solutions
to integral equations for nuclear devices. The general MCMC approach is to start with an example such
feasible data structure, and randomly perturb it over time, effectively randomly walking around a state
graph of feasible structures. As one walks farther and farther, the distribution over states asymptotically
approaches a steady state distribution.

The relationship between the “microscopic” perturbation likelihoods and the “macroscopic” steady
state distribution is called detailed balance ([JS96]), and can be considered the “correctness” statement of
such an algorithm. Subject to correctness, it is also important to define the microscopic perturbations and
likelihoods so that the mixing rate is high; that is, so that the initial distribution quickly diffuses and con-
verges to the steady state distribution.

The MCMC algorithm closest to that employed in the Johann system is the Metropolis-Hastings algo-
rithm ([CG95]). This algorithm is characterized by a pair of probability distributions governing perturba-
tion: one to randomly choose a candidate perturbation, and one to decide whether to reject the candidate
or proceed. The advantage afforded by the second step is that constraints that are difficult to predict ahead
of time may be easy to check given a candidate (think P vs. NP).

Johann uses an MCMC algorithm to randomly generate a database of theorems in combinatory algebra,
where the database is constrained to be saturated, and the database should be relevant to a specified goal, on
average. (This will be explained in more detail below.) The point of divergence from the pure Metropolis-
Hastings algorithm is that the database is expanded by a randomly chosen term, but the rejection step is
allowed to remove any existing term, not just the latest-added.

The MCMC method can be applied to a maximization problem by treating the objective function as a
likelihood distribution and randomly sampling from the distribution. The resulting sample will thus likely
have a large value of the objective function. More generally, given an objective function f :X→ [0, 1] on the
space of structures X, we can define a temperature-parameterized family fβ(−) of likelihood distributions
(where β = 1/τ is the inverse temperature). The higher the temperature, the more f is smoothed-out, and
the easier it is to randomly walk around the space. The lower the temperature, the sharper f is, and the
more likely a random sample x will have a high value of f(x). To achieve a large value of f, one strategy is to
walk around from the starting position at high temperature (to mix), and slowly decrease the temperature
until a large value of f is found (to maximize). This strategy is called simulated annealing, in analogy to the
process of slowly cooling metals to achieve a solid which maximizes grain size.

7.2 Saturating a database

In this section we overview Johann’s database and the deterministic forward-chaining algorithms that ex-
haustively search for equational proofs within the database. The remaining sections in this chapter will
discuss the artificial intelligence algorithms behind shaping this database: how randomly add and remove
terms from the database, how to conjecture or find missing equations, and how to fine-tuning the proba-
bilistic basis.

Formally, Johann’s database consists of the following data:
• a finite set of obs (equivalence classes of terms), called the support;
• a small set of labelled obs, for atoms (e.g., S,K,J);1

• a set of application equations app = lhs rhs, for app, lhs, rhs in the support;
• a set of ordered pairs x ⊑ y known to be true, for x, y in the support;
• and a similar set for the negated relation x 6⊑ y.

We would like databases to satisfy a set of inference rules, e.g., simple constraints like
x = y

f x = f y
for main-

taining well-definedness of the application function, and more complicated rules like
x ⊑ z y ⊑ z

J x y ⊑ z
for

1This set of constants is independent of the probabilistic basis; these constants let Johann know which inference rules to enforce,
whereas the terms in the basis determine what obs to add to the database.

147

the join operation J of 3.1. A variety of such inference rules will be developed throughout this thesis, as we
axiomatize various extensions of untyped λ-calculus.

Each rule concludes with an equation or an order relation between an application of obs. Because there
are only finitely many obs, there can be only finitely many rule-firings until all possible inference rules
have been enforced. When all applicable inference rules have been fired in a database, we say the database
is saturated. Everywhere outside of this section, we will assume that the database is saturated. In the
remainder of this section we briefly describe how Johann saturates the database w.r.t. a given set of rules.

Each time a new ob (equivalence class) is added to the support, rules for equality and order relations
must all be enforced until saturation. Since combining equivalence classes may decrease the number of
order rules need to be enforced (a smaller support means fewer pairs to check), it saves time to enforce first
those rules most likely to induce new equations, only checking positive order rules once the database is
saturated w.r.t. equations, and only checking negative rules once the database is saturated w.r.t. positive
order. The inference rules roughly stratify into

(0) merger of equivalence classes, subject to database constraints like functionality application,
(1) equational rules (β conversion, etc.),
(2) positive order x ⊑ y, and
(3) negative order x 6⊑ y,

where lower conclusions seldom fire higher rules. Some exceptions are the antisymmetry rule when (2)
induces a merger (0), and the div typing rules in 3.5 where apartness (3) can lead to mergers (0) or new
equations (1).

Saturation of (0) is a generalization of the Todd-Coxeter algorithm of groups, where we relax associa-
tivity and do not require inverses. This involves merging of equivalence classes, which in turn requires
merging of the order relations. The main rule being enforced is functionality of application, so that each
lhs, rhs pair defines at most one application.

Saturation of (1) generalizes enforcement of group relations in the Todd-Coxeter algorithm, where in
our setting, equations hold between nonassociative terms. The relevant inference rules are all hard-coded
and hand-optimized in C++.

Saturation of (2) and (3) is similar, and simply involves keeping track of newly added hypotheses and
checking for applicable rules. Together the positive and negative tables define a partially-known table with
truth values true, false, unknown. Whenever it is proved that both x ⊑ y and x 6⊑ y (i.e. inconsistency), then
Johann aborts and we begin debugging to look for a bad assumption.

Empirically, saturating equations (1) is the most expensive, negative order (3) is the second most expen-
sive, and positive order (2) is very cheap (since not much is known). Let O,E, P,N be the numbers of Obs
(equivalence classes) in the support, application Equation triples, Positive order relations, and Negative
order relations, respectively. We have observed that after annealing a large database (as described in 7.3),
the following density relations hold independently of database size:

E/O2 ≈ 0.05− 0.3
P/O2 ≈ 0.05
N/O2 ≈ 0.85− 0.95

where the variation in density is generally across theories or fragments. 2 Thus all three relations require
space quadratic in the size of the support. The worst-case time-complexity for saturation is cubic in the
support size, and takes about one second per new equivalence class at O ≈ 4800 equivalence classes on
a 2.8GHz Intel Core Duo. Mcallester in [McA99] discusses complexity analysis techniques for forward-
chaining algorithms in logic programming.

In annealing a database, obs are randomly added to and removed from the database support w.r.t.
sampling distributions that take quadratic time to compute. What makes randomization possible here,
despite the high cost of calculating sampling distributions, is the unusually large amount of work done
between random choices, in saturating the database, i.e., cubic versus quadratic.

2For example in SKJ , E/O2 ≈ 0.05 − 0.1, whereas in SK , E/O2 ≈ 0.2 − 0.3.

148

Implementation details

Our cache-conscious implementation uses lookup tables for the main data structures, with some auxiliary
data structures to optimize for reading. The equation table is stored as an O × O array, partitioned into
8x8 blocks of 32-bit words, to reduce cache misses when traversing through both rows and columns. We
also speed up traversal through this ∼ 5% sparse table by keeping tables of bits recording whether there is
an entry for a given lhs, rhs pair. We keep two such “sketches”, one oriented in each of row- and column-
major, so that an entire cache line can be fetched at once (for, say, 512 table entries).

The negative and positive tables are similarly stored as pairs of bit arrays, one oriented in each of row-
and column- major. Because there are far more table reads (hypothesis checks) than writes (rule-firings), it
is cheaper to maintain consistency between two read-optimized tables, than keep a single write-optimized
table. Storing order as bit-arrays also permits vectorized hypothesis checking, where an entire machine
word (say 32 hypotheses) can be checked at once. We found that in our unvectorized version, negative
order was the most expensive rule to enforce, and that after vectorization, it took only a small portion of
the total time.

Finally, we need to be able to traverse through, for a given (app, lhs) pair, all rhs values that satisfy
lhs rhs = app; and similarly for given (app, rhs) pairs. We implement these two data structures as sets of
splay trees ([ST85]), each with one tree node per proved equation a = l r. We actually define a single node
per equation, that participates in both trees but keeps only one copy of the lhs, rhs, app keys. By storing
these nodes in an array, we can also easily traverse through all lhs, rhs, app triples. In practice, splay trees
performed much better than an alternative ad hoc tree ordering we tried, possibly due to their probabilistic
caching properties.

7.3 Annealing a database of interest

This section describes Johann’s algorithm for randomly annealing a database, when motivated to simplify
a corpus of terms. The main theorem is a detailed balance theorem, relating the microscopic operations of
adding and removing obs to the macroscopic fitness of the database. We have also looked at more precise
motives to accumulate evidence for automated conjecturing, but these turned out to too computationally
expensive for pracitical purposes. In defining the motive we do implement, we make some linearization
approximations to achieve an easily computable sum-product representation.

At the core of Johann is a database of facts about combinators. The database represents knowledge in
three main data structures: a support (a time-varying set of say 1K–12K obs or equivalence classes), a appli-
cation table (a multiplication table for the function-value application operation), and true/false/unknown-
valued order table for the partial order relation⊑. The application table and partial order table both require
space quadratic in the number of obs.

Johann acquires knowledge by randomly adding and removing obs from the support, saturating the
database at each step. To specify what knowledge to accumulate we specify a motive, in the form of a pair
of probability distributions e(l, r), c(a), from which random lhs-rhs pairs are drawn to extend the support,
and from which random obs are drawn for removal, to contract the support. This pair of distributions is
chosen so that the steady-state distribution over databases favors interesting databases (depending on our
notion of interesting).

Expanding and Contracting the Database

A database’s support consists of a few (∼ 10) basic atoms (e.g., S,K,J), a small number (∼ 200− 2000)
of terms used in axiomatizing our theory, and a variable set of other terms (∼ 1000− 10000). Following
Lakatos’ terminology of the hard core of a scientific theory [Lak76], we call the fixed axiomatization portion
of the database the core; all possible databases in a given theory extend the minimal core.

We consider two kinds of mutations to the database: expansion, by adding to the support random ap-
plications of existing terms, and contraction, by removing from the support randomly selected terms. Ex-
pansions and contractions are balanced to keep the database support within some size window. Because of

149

the equational theorem proving in forward-chaining, “expansions” may sometimes decrease the size of the
support, by creating proofs that existing pairs of terms are equal, and should be merged.

Suppose we have a notion R(db) of relevance of databases, and a corresponding notion of relevance of
an ob w.r.t. a database:

R(db+x)
R(x;db) = -------

R(db)

To specify mutation likelihoods w.r.t. relevance, we need a pair of distributions from which to sample, say
e(l, r) to expand and 1/c(x) to contract (we use the inverse so that c and e both increase with relevance):

e(l,r) = "simple estimate of R(l r;db)"
c(x) = "remainder of R(x;db) not accounted for in Sum lr=x. e(l,r)"

The statement of correctness for random backward-chaining is now a detailed balance statement for the
expansion and contraction mutations:

Definition 7.3.1. (Detailed Balance) An expansion-contraction pair e(l, r), c(x) shows detailed balance iff state-
transitions are proportional to relevance, i.e., for every db (extending the core) and term x ∈ db (outside the
core),

R(db)
------- = c(x) Sum lr=x in db. e(l,r)
R(db-x)

Note that the restriction to databases extending the core is not a problem, as we can simply restrict and
renormalize the steady-state distribution π. Our proofs for various e, c pairs will have the form
Proof Template: (Correctness) Let x ∈ db be a term outside the core, and db′ := db− x. Then

c(x) Sum l r=x in db. e(l,r) = ...algebra... = R(x)

In constructing specific e, c pairs, we need to rewrite the macroscopic relevance ratio in two different mi-
croscopic forms:
• for expansion, where l, r ∈ db but lr is not; and
• for contraction, where x ∈ db.

We prove correctness for a generic class of e, c-pairs as follows.

Theorem 7.3.2. (Generic Detailed Balance) Suppose an expansion-contraction pair e(l, r), c(x) satisfies
(1) e(l, r) is positive for every l, r ∈ db;
(2) e(l, r) is independent of whether lr is in the database; and
(3) c(x) is defined by

R(x;db)
c(x) = --

Sum l,r in db. if lr=x and l!=x!=r then e(l,r)

Then e(l, r), c(l, r) shows detailed balance.

Proof. It is sufficient to show that

Sum l,r. if lr=x e(l,r) #evaluated in db
const = --

Sum l,r. if lr=x and l!=x!=r then e(l,r) #evaluated in db+x

for some constant independent of the database. Here two sums and two values e(l, r) are different, since
they are evaluated in different databases, the numerator in the original db, and the denominator in the
extended db + x.

Since this is a statement about steady-state databases, wemay assume that no new theorems were found
in expanding by x (besides those explicitly mentioning x. Under this assumption, the two sums indeed have
the same domain.

Finally condition (2) guarantees that the two evaluations of e(l, r) are within a constant factor.

150

Subject to correctness (i.e., that together e, c account for all of R) the more accurate e(l, r) is, the higher the
mixing rate will be, and the faster proofs will be found; that is: it’s better to know how to look for a proof
with e(l, r), than to only know one when you see it with c(x). But accuracy must not come at the expense of
computability: e(l, r) must be easy to sample from; e.g., it would be nice if e factored into

e(l,r) = e_L(l) e_R(r) (1-e_rej(l,r))

where the rejection probability erej is usually not too close to one. We now examine a few versions of
expansion-contraction pairs, exercising the freedom of the e− c tradeoff.

Subject to correctness (i.e., that together e, c account for all of R) the more accurate e(l, r) is, the higher
the mixing rate will be, and the faster proofs will be found; that is: it’s better to know how to look for a
proof with e(l, r), than to know one when you see it with c(x). But accuracy must not come at the expense
of computability: e(l, r) must be easy to sample from; e.g., it would be nice if e factored into

e(l,r) = e_L(l) e_R(r) (1-e_rej(l,r))

where the rejection probability erej is usually not too close to one. We now examine a few versions of
expansion-contraction pairs, exercising the freedom of the e− c tradeoff.

Annealing to simplify a corpus of terms

The motive we will examine for annealing a database is the motive to simplify a term, or more generally to
simplify a corpus of terms. Let C denote a corpus, say a weighted set, or a probability mass function (pmf)
over some set of terms. First we need a notion of complexity of obs in the database.

Definition 7.3.3. The syntactic probability P (M) of an intensional term M database is defined by the proba-
bilistic inference rules

x ∈ basis

x term
(Pbasis(x))

x term y term

x y term
(Papp)

so that, e.g., P(S K K) = P2
app Pbasis(S) Pbasis(K)2. The semantic Solomonoff probability P (x) of an ob in the

database is the sum over syntactic terms M in its equivalence class

P (x) =
∑

M = x

P (M)

The sum-product form of Solomonoff probability allows us to efficiently compute it as the fixed-point of a
contraction equation

P (x) = Pbasis(x) + Papp

∑

l r = x

P (l)P (r)

Now given a corpus C, we define the steady-state distribution π(db;C) of the database to be propor-
tional to relevance:

Definition 7.3.4. The relevance of a database for simplifying a corpus is a real number

R(db;C) =
∏

c∈C

P (c; db)C(c)

where P (c; db) is the Solomonoff probability of the ob c as evaluated in a database db (c is assumed to be in
the database), and C(c) is the weight given by the corpus C to the ob c.

151

At steady-state we want the database to be relevant, so consider the transition probabilities of adding
/ removing a term x. We factor these probability ratio from a macroscopic function of the database to a
mesoscopic product of sums of combinatory expressions M and expressions M[x] with specifiec occurrences
of x, and finally into microscopic effects of sigle terms R(x).

R(db + x;C)

R(db;C)
=
∏

c∈C

P (c; db + x)C(c)

P (c; db)C(c)

=
∏

c∈C

(

∑

M=c∈db + x P (M)
∑

M=c∈db P (M)

)C(c)

summing over expressions evaluating to c

=
∏

c∈C











1 +
∑

M=c∈db + x
x∈M

P (M)











C(c)

≈ 1 +
∑

c∈C

C(c)
∑

M=c∈db + x
x∈M

P (M) homogeneous corpus approximation

= 1 +
∑

M∈db + x
x∈M

P (M)C(M)

≈ 1 +
∑

M∈db + x

occ(x,M)P (M)C(M) extensional/intensional approximation

= 1 +
∑

M[x]∈db + x

P (M[x])C(M)

= 1 + P (x)
∑

M[x]∈db + x

P (M[])C(M) factoring P (M[x]) = P (x)P (M[])

=: 1 + P (x)R(x) in terms of relevance

We make two linearization assumptions here. The first assumes most terms in the corpus are of the same
size, and tends to devalue the effect of large terms. The second approximation allows us to multiple-count
terms M containing x by counting the occurrences of x in M. This latter is discussed by Pearl in [Pea88]
as an approximation of intensional semantics of sum-product expressions as extensional semantics. This
approximation allows us to compute R(x) using a sum-product algorithm for evidence propagation (also
discussed by Pearl).

The reverse sum-product computation of R(x) is dual to the forward sum-product propagation of P(x)
in computing term probability. We thus calculate relevance as the fixed-point of a propagation equation

R(x) = C(x) +
∑

w

C(w x)
P (w)PappP (x)

P (w x)
+
∑

y

C(x y)
P (x)PappP (y)

P (x y)

= C(x) + P (x)Papp

∑

z

P (z)

[

C(z x)

P (z x)
+
C(x z)

P (x z)

]

Now we can factor the transition probability as

1 + P (x)R(x) = P (x)

(

R(x) +
1

P (x)

)

and define an expansion,contraction pair of distributions

152

Theorem 7.3.5. (detailed balance) The expansion,contraction pair

e(l, r) = P (l)P (r) c(x) = R(x) +
1

P (x)

shows detailed balance for corpus simplification (up to the above approximations).

In practice, Johann ignores the 1/P (x) term in contraction, and contracts w.r.t. relevance alone. This
is important, since some obs in the database may have been added for reasons other than random selec-
tion. For example, very complex obs are added during the process of checking theorems; these may have
near zero probability, and hence would almost never be removed with the 1/P (x) term included. Another
perspective is that we are factoring database relevance as

1 + P (x)R(x) =

(

1

R(x)
+ P (x)

)

R(x)

so that Johann randomly adds terms w.r.t. P (x) and randomly removes terms w.r.t. R(x), and assume that
the user randomly adds terms w.r.t. the distribution 1

R(x) .

7.4 Automated Conjecturing

In this section we develop theory whereby Johann can query a user for important but difficult problems
that seem to be plausible. We call this procedure automated conjecturing because Johann will guess what’s
true based on evidence, before a proof or disproof is known. Our theory starts by restricting the type of
conjectures/assumptions that may be made to positive order relations x ⊑ y. We then suggest a method
to numerically quantify the evidence supporting conjectures, so that Johann can pose ranked conjectures
to the user. Finally we demonstrate some theoretical limitations on what exactly can be conjectured in this
way.

Sensible Assumptions

We attempt with Johann’s theory to approach the Π0
2-complete theory H∗, but this cannot be done with

finite or even r.e. axioms or axiom schemata. Thus as we prove properties of more complicated programs,
we must continually make new assumptions. What assumptions should we make? Can we statistically
quantify this?

Let us start with the most basic statements x ⊑ y. At any time, some of these will be unproven, and
some of those will be unprovable even in principle. It is consistent to assume such an unprovable statement
either way, but we will restrict to positive assumptions x ⊑ y, and let negative statements u 6⊑ v follow from
the single axiom ⊤ 6⊑ ⊥ from 2.1. Among positive assumptions, we restrict even further:

Definition 7.4.1. a statement x ⊑ y is sensible iff y converges whenever x does,

∀f. f x 6⊑ ⊥ =⇒ f y 6⊑ ⊥

and write in that case x ⊑ y sensible.

Remark. Sensibility is derived from Hyland’s and Wadsworth’sH∗ axiom

∀C[]. C[x] conv =⇒ C[y] conv

x ⊑ y
(H∗)

where C[] ranges over contexts, and conv is an r.e. predicate (see [Bar84]). In our simpler combinatory
setting, variable binding may be ignored, so C[] may be restricted to combinators (even traces). Also, for
symmetry, we use both left and right monotony axioms.

153

Here sensibility is Π0
2; the outer-most quantifier is universal. Thus we can accumulate evidence in favor

of x ⊑ y by enumerating contexts f in which it is known that fx conv =⇒ fy conv. Indeed this suggests a
way to approachH∗ from η:

Theorem 7.4.2. by making only simple, sensible assumptions, we arrive after ω steps atH∗.

Proof. Consider a chain T (−) of such theories, with limit T (ω)

η = T (0) ⊆ T (1) ⊆ . . . ⊆ T (i) ⊆ . . . ⊆ T (ω)
?
= H∗

Since T (0) is sensible, and each step T (i + 1)− T (i) is sensible, each T (i) is sensible, and hence their limit
T (ω) is sensible. Since H∗ is the unique ⊑-complete sensible theory, it suffices to show that T (i) is ⊑-
complete; thus consider any statement x ⊑ y. If η ⊢ x ⊑ y then we are done. If x 6⊑ y then x ⊑ y is non-sense,
and will not be assumed. Otherwise, let n >| x | + | y | be a bound on the syntactic complexity of xy. Then
after assuming the simplest exp(n)sensible statements, we must have assumed x ⊑ y.

The proof requires all assumptions to be sensible, but sensibility is undecidable in general. Thus it
would be more satisfying to prove a statement of probable approximate correctness (PAC, [Val84]), where
correct means complete and consistent:

Conjecture 7.4.3. For any δ, ǫ ∈ (0, 1), we can enumerate sufficiently much evidence to randomly generate a simple
apparently sensible theory T such that

(i) averaging over T : P(T sensible) > 1− δ

(ii) for each T , averaging over x, y: P(T answers x
?
⊑ y) > 1− ǫ

However, even if provable, it likely cannot be proved constructively: given an amount of evidence E, we
may be able to make random assumptions until 1− ǫ of all queries are known to be provable. Furthermore,
it is likely to be uncomputable how much evidence E(ǫ, δ) is necessary to achieve given bounds ǫ, δ:

Conjecture 7.4.4. The evidence function

E′(m, n) = ceil(− log(1 − E(exp(−m), exp(−n))))

is not recursively bounded.

Propagating evidence

We now describe Johann’s algorithm for generating conjectures. Despite the severe limitations on the pos-
sibility of generating true conjectures, we have had considerable practical success generating useful conjec-
tures, some of which were proven true by other means, and some of which were false but led to insight as
to what axioms could improve Johann’s reasoning ability.

We generate conjectures by propagating evidence for questions x
?
⊑ y, and then collecting the best few

conjectures, typically 102 out of 107 total. Evidence acclumulates through four probabilistic inference rules
for plausibility, the inverses of the monotonicity and transitivity rules of for order.

f term f x ⊑ f y plaus

x ⊑ y plaus
(µ)

f x ⊑ g x plaus x term

f ⊑ g plaus
(ν)

x ⊑ y true y term y ⊑ z plaus

x ⊑ z plaus
(τ)

x ⊑ y plaus y term y ⊑ z true

x ⊑ z plaus
(τ ′)

154

Now given a database of facts u ⊑ v and u 6⊑ v, a complexity pmf P(x) on terms, and rule weights
Pµ + Pν + 2 Pτ = 1, we iteratively propagate evidence P(u ⊑ v) to find a fixedpoint of the contraction equa-
tion

P(u ⊑ v) = if u ⊑ v then 1 else

if u 6⊑ v then 0 else

(Pµ

∑

f P(f) P(f u ⊑ x v)
+ Pν

∑

x P(u x ⊑ v x) P(x)
+ Pτ

∑

y if u ⊑ y then P(y) P(y ⊑ v) else 0

+ Pτ

∑

y P(u ⊑ y) P(y) if y ⊑ v then 1 else 0)

Note that normalization ensures P(u ⊑ v) ∈ [0, 1].
Each propagation iteration takes time cubic in database size, since we need to examine each unproved

questions u
?
⊑ v (roughly 0.05 · O2 ∼ 5 · 106 for O = 104 obs), and for each question, sum over all f ’s, x’s,

and y’s above. Because the τ rule is significantly slower than either of the µ, ν rules, we often leave it out
by setting Pτ = 0.

7.5 Fitting a basis to a corpus of expressions

Johann enumerates a finite chunk of an infinite structure, by randomly adding simple terms to the database.
Building this chunk has quadratic space complexity and cubic time complexity in the number of obs or
equivalence classes. Thus it is very important that Johann has a “correct” notion of simplicity or complexity
—that the weighted combinatory basis reflects our interest in the infinite structure.

This section describes a basis fitting algorithm that Johann uses to statistically fit the probabilistic basis
to a corpus of “interesting” terms, e.g., the expressions appearing in this thesis. We basically fit a bag-
of-words-modulo-equality model to maximize the likelihood of the corpus, or minimize KL-divergence
between the corpus and the model. This local weight optimization procedure is similar to the standard
bag-of-words model, but can use Johann’s equational database to balance multiple possible parses of a
given expression. We also describe a basis extension procedure that search the database for possible obs to
add to the basis.

Local optimization

We begin with the standard bag-of-words model over an algebraic signature. Let

L = {app@Papp, S@PS, K@PK, . . . }

be a probabilistic basis (a probabilistic context-free grammar [JLM92]) generating a probabilistic language

L∗ = {S@PS, K@PK, S S @ Papp PS PS, S K @ Papp PS PK, . . . }

and let C be a corpus of expressions, a probability distribution over the support of L∗. Note that not all
such languages have finite entropy; the infinite entropy-languages are meaningless, and not accessible by
gradient descent methods ([ABNK+87], [AN93]). The Kullback-Leibler divergence from C to L∗ is

H(C|L∗) =
∑

x

C(x) log
C(x)

L∗(x)

We now solve the local optimization problem

Given: a corpus C and initial basis S

Vary: weights Papp,PS,PK, . . . of the basis S

To Minimize: H(C | L∗)
Subject To: S being a probability distribution,

i.e. 0 ≤ Pi ≤ 1 and
∑

i Pi = 1.

155

inaccessible
region

finite
entropy
region

parametrizes
probability distribution

simplex

en
tr

op
y

−(−)

S

J

K

1/2

Figure 7.1: The parameter space of a weighted basis.

Next under an equational theory ∼, we perform the same optimization, with C and L∗ probability dis-
tributions over equivalence classes of expressions modulo ∼. Thus the sum in H(C | L∗) now ranges over
equivalence classes.

In practice we use a conjugate gradient optimization solver, that iteratively selects a conjugate gradient
descent direction, and then line-searches in the chosen subspace. Each gradient computation and each
objective function evaluation further requires iteration, as both complexity and relevance are defined as
fixedpoints of propagation equations. When solution approaches a boundary, i.e., some atom is given
extremely low weight, that atom is removed from the basis, and optimization continues with the reduced
basis (as done in active set methods). We have also experimented with using the natural information metric
to compute the conjugate direction ([Ama98]), but had problems with non-convergence and NaNs near
boundaries.

Extending the basis

Thus far, we have shown how to locally optimize a basis with given support. This naturally leads to a naive
algorithm to extend the support with additional atoms:

For each ob in database support:
add ob to basis; locally optimize;
if cost decreased then keep ob else remove

However this naive algorithm has two problems:
(1) it is too slow to iterate through all ∼ 10k obs; and more importantly
(2) the optimal result would be complete overfitting, i.e., defining Basis = Corpus, Papp = 0, and never

generating new ideas or parses of existing obs.
Our solutions are (1) to locally estimate how important an ob would be if added to the basis, and (2) to man-
ually split the large terms in the corpus into polynomials in Papp and their subterms below some complexity
threshold.

156

To estimate the improvement any one ob x would have in extending the basis, we compute the partial
derivative of cost w.r.t. basis weight of an ob x

R(x) =
∂H(C|(δx + (1− δ)L)∗)

∂δ

∣

∣

∣

∣

δ=0

It turns out that we have already computed this quantity under the name of “relevance” of an ob x to
a corpus C. Thus to extend the basis, we can search among the best few (e.g. |L| or log(O)) extension
candidates, then locally optimize, as in the naive case.

To deal with overfitting, we split the corpus (a weighted set of obs) into an ob polynomial in Papp, so
that each ob has complexity below some threshhold. For example we might split up

S S S S S + S S S 7→ Papp + S S S S + S + S S S S

7→ 2 Papp + 2(S S S) + S

Because this splitting puts Papp into the objective function, a global extremum cannot completely fit the
corpus, as it must give Papp some positive value.

157

Appendix A

Syntactic algorithms

A.1 Term syntax

We first present a relatively large language of terms, and then show how to compile terms down to a small
combinatory fragment.

Algebraic Terms

x var

x term I term K term B term C term W term S term J term code term

quote term eval term

M term N term

M N term

M term N term

M | N term

M term N term

M◦N term

M term N term

M→N term

M1 term . . . Mn term

〈M1, . . . ,Mn〉 term
(n ≥ 0)

M term

{M} term

φ stmt

{φ} term

Patterns and Binding

x var

x patt′
p1 patt . . . pn patt

〈p1, . . . , pn〉 patt′
p patt

{p} patt′
p patt′

p patt

p patt′ M term

p :M patt

p patt′ M term

p ::M patt

p patt′ M term N term

p :M ::N patt

p patt M term N term

p := M.N term

p patt M term

λp.M term

p patt M term

∀p.M term

p patt M term

∃p.M term

159

A.2 Compiling to combinators

(large step; R is similar to J; quoting is handled separately)

Algebraic

M 7→ M′ N 7→ N

M | N 7→ J M′ N′ (J)
〈〉 7→ I

M 7→ M′

〈M〉 7→ C I M′

M 7→ M′ 〈N1, . . . ,Nn〉 7→ N′

〈M,N1, . . . ,Nn〉 7→ C M′ N′ (n ≥ 1)

Abstraction

x apart M

λx.M 7→ K x
(K)

λx.x 7→ I
(I)

x apart M

λx.M x 7→ M
(η)

x apart M λx.N 7→ N′

λx.M N 7→ B M N′ (B)

λx.M 7→ M′

λx.M x 7→ W M′ (W)
x apart N λx.M 7→ M′

λx.M N 7→ C M′ N
(C)

λx.M 7→ M′ λx.N 7→ N′

λx.M N 7→ S M′ N′ (S)

λx.M 7→ M′ λx.N 7→ N

λx.M | N 7→ J M′ N′ (J)
λx.M 7→ M′ V a 7→ a′

λx :a.M 7→ B M′ a′
λx.M 7→ M′ test t 7→ t′

λx :: t.M 7→ S t′ M′

λx.M 7→ M′ V a 7→ a′ test t 7→ t′

λx :a :: t.M 7→ B (S t′ M′) a′
λp1, . . . , pn.M 7→ M′

λ〈p1, . . . , pn〉.M 7→ C I M′

Definitions

x apart M

x := D.N 7→ M

x apart M x := D.N 7→ N′

x := D.M N 7→ M N′

x apart N x := D.M 7→ M′

x := D.M N 7→ M′ N

λx.M 7→ M′

x := D.M x 7→ W M′ D

λx.M 7→ M′ λx.N 7→ N

x := D.M N 7→ S M′ N′ D

x1 := D1xn := Dn.M 7→ M′

〈x1, . . . , xn〉 := 〈D1, . . . ,Dn〉.M 7→ M′

λx1, . . . , xn.M 7→ M′

〈x1, . . . , xn〉 := D.M 7→ D M′

Quantifiers / Polymorphism

V λx, y.V M(y x) 7→ M′

∀x.M 7→ M′

V λx :N, y.V M(y x) 7→ M′

∀x :N.M 7→ M′

λ〈x, y〉 :pair.〈x,V M y〉 7→ M′

∃x.M 7→ M′

λ〈x, y〉 :pair.〈V N x,V M y〉 7→ M′

∃x :N.M 7→ M′

160

Quoting ismore delicate, as it involves the code comonad. We need to define two types of compiling: one
inside quotes, and one outside. Within a quoted environment, we can quote variables. Also, all compilation
is done at the outer-most environment, so that, e.g., the abstraction algorithm works with I,K,B,C,W,S
instead of the more complicated quoted versions I,K,B,C,W,S.

Quoting

{M} 7→ M′ {N} 7→ N′

{M N} 7→ A M′ N′

{M} 7→ M′

{{M}} 7→ quote M′

Code Comonad

λ{x}.{x} 7→ code λ{x :a}.{x} 7→ Code{a} λ{x}.x 7→ E λ{x :a}.{x} 7→ Eval{a}

λ{x}.{{x}} 7→ Q λ{x :a}.{{x}} 7→ Quote{a}

{x} apart M x not apart M λx.M 7→ M′

λ{x}.M 7→ B M′ E

x apart M

λ{x}.M = K M
({K})

λ{x}.M 7→ K M′ λ{x}.N 7→ B N′ code

λ{x}.M N 7→ B(B M′ N′)code
({B})

λ{x}.M 7→ B M′ code λ{x}.N 7→ K N′

λ{x}.M N 7→ B(C M′ N′)code
({C})

λ{x}.M 7→ B M′ code λ{x}.N 7→ B N′ code

λ{x}.M N 7→ B(S M′ N′)code
({S})

{M} 7→ M′ λ{x}.M′ 7→ M′′

λ{x}.M 7→ M′′ ({code})

λ{x}. M 7→ λc :code. [x := E c, {x} := c, {{x}} := Q c] M

Note that the {K} rule prevents us from testing with test code; we need to abstract partial terms as well.

A.3 Decompiling

One of the advancements of this is a successful decompiling algorithm from combinators SKJ to λ-let-
terms. Although this is theoretically banal, it has major practical significance in allowing people to read
combinators (and foiling the obfuscatory attempts of languages like unlambda, and Iota).

The main idea is to simplify (with Johann’s database), translate left-linear terms to λ abstraction, trans-
late left-copying terms (W,S) to let-expressions, decompile vectors λf.f M1 . . .Mn ← [〈M1, . . . ,Mn〉, and
η-reduce whenever possible.

161

Abstraction

I ← [λx.x

M N ← [M′

I M N ← [M′ K ← [λx, y.x

M ← [M′

K M ← [λ⊥.M′

M O ← [M′

K M N O ← [M′

B ← [λx, y, z.x(y z)

M(y z) ← [M′

B M ← [λy, z.M′

M(N z) ← [M′

B M N ← [λz.M′

L(M N) ← [M′

B L M N ← [M′

C ← [λx, y, z.x z y

M z y ← [M′

C M ← [λy, z.M′

M z N ← [M′

C M N ← [λz.M′

L N M ← [M′

C L M N ← [M′

W ← [λx, y.x y y

M y y ← [M′

W M ← [λy.M′ S ← [λx, y, z.x z(y z)

M z(y z) ← [M′

S M ← [λy, z.M′

M z(N z) ← [M′

S M N ← [λz.M′

Definitions

M x N ← [M′

W M D N ← [x := D.M′

M x(N x)O ← [M′

S M N D O ← [x := D.M′

M x ← [M′ N x ← [N′ L ← [L′

J M N L ← [(x := D. M′ | N′) L

Join (Rand is identical)

J ← [λx, y.x | y

M ← [M′

J M ← [λx.M′ | x

M x ← [M′ x apart M′ N x ← [N′ x apart N′ J M′ N′ L ← [L′

J M N D L ← [L′

M x ← [M′ x apart M′ N x ← [N′ J M′ (N D) L ← [L′

J M N D L ← [L′

M x ← [M′ N x ← [N′ x apart N′ J (M D) N′ L ← [L′

J M N D L ← [L′

Vectors and Tuples

M ← [M′

C I M ← [〈M′〉

M ← [M1 N ← [C 〈N2, . . . ,Nn〉

C M N ← [〈M,N1, . . . ,Nn〉
(n ≥ 2)

M ← [M′ N ← [〈N1,N2〉

〈M, 〈N1,N2〉〉 ←[(M,N1,N2)

N ← [〈N1,N2〉

(M1, . . . ,Mn,N) ← [(M1, . . . ,Mn,N1,N2)
(n ≥ 2)

Codes

M ← [{M′} N ← [{N′}

A M N ← [{M N}

M ← [{M′}

E M ← [M′

M ← [{M′}

Q M ← [{{M′}}

162

A.4 Reduction Strategies

We consider both affine/linear reduction ։ and bounded reduction . Since affine reduction is size-
reducing (and hence terminates), we count only nonlinear steps towards the bound in arbitrary reduction.

Affine

⊥ x ։ ⊥ T x ։ T I x ։ x J T ։ T J ⊥ ։ I V V ։ V

V(V x) ։ V x U U ։ U U(U x) ։ U x K x y ։ x F x y ։ y

J x T ։ T J x ⊥ ։ x J x x ։ x R x x ։ x B x y z ։ x(y z)

C x y z ։ x z y

Nonaffine

Y x x(Y x) V f I | f◦(V f) U f f◦(U f) | f W x y x y y

W W W ⊥

y z ։ u

S x y z x z u

x z ։ u y z ։ v

J x y z J u v

x z ։ u y z ։ v

R x y z R u v

R x(J y z) J(R x y)(R x z)

A.5 Statements

Statements are based on equations and Scott’s information ordering. In SKJ and extensions we can also
reason about types-as-closures (3.3) and types-as-tests (3.10).

Statement Formation

= rel 6= rel ⊑ rel 6⊑ rel ⊒ rel 6⊒ rel ⊑/ rel ⊒/ rel : rel ! : rel

<: rel !<: rel :> rel ! :> rel :: rel ! :: rel <:: rel !<:: rel ::> rel

! ::> rel

M term ∼ rel N term

M ∼ N stmt

x patt p stmt

∀x. p stmt

x patt M term p stmt

x := M. p stmt

p stmt

NOT p stmt

p stmt q stmt

p AND q stmt

p stmt q stmt

p =⇒ q stmt

In SKJ and extensions, we can eliminate universal quantifiers, universal quantifiers, and implications
where the hypothesis is a testable assertion x :: t or M = I.

Let ∼ denote one of the basic relations =, ⊑, or ⊒.

163

Derived Relations

M⊑/ N 7→ M ⊑ N AND M 6⊒ N M :N 7→ V M N = M M <: N 7→ V M :P N

M ::N 7→ test N M = I M <:: N 7→ M = Ptest N M

Universal Quantification

p 7→ M ∼ N

∀x.p 7→ (λx.M) ∼ (λx.N)

p 7→ M ∼ N

∀x :a.p 7→ (λx :a.M) ∼ (λx :a.N)

p 7→ M ∼ N

∀x :: t.p 7→ (λx :: t.M) ∼ (λx :: t.N)

Hypotheses

q 7→ M = I p 7→ N ∼ N′

q =⇒ p 7→ semi M N ∼ semi M N′

We also use the notation x :a ⊢ p and x :: t ⊢ p to denote x being bound as a term inhabiting a type or passing
a test; these have the same semantics as universal quantification.

x :a :: t ⊢ M ∼ N 7→ (λx :a :: t.M)x ∼ (λx :a :: t.N)

164

Appendix B

Reflected axiom schemata

In this section we reflect the hard-coded axiom schemata from cpp/axiom enforcement.C to achieve
the strong transitivity principle “if ⊢ φ then ⊢ pr{φ}” (used in 5.4). Note that axiom schemata without
hypotheses such asK x y = x are deducible from equations; these schemata were hard-coded for efficiency
rather than logical strength. Since we have already in 5.2 !assumed equations implying these principles, we
only !assume schemata with hypotheses here.

First we define some derived provability semipredicates, extending those from 5.3.

if pr of type := (code→code→semi) (λ{x}, {a}. if pr equal{x}{V a x}).
if pr subtype := (code→code→semi) (λ{a}, {b}. if pr equal{V a}{P a b}).
if pr passes := (code→code→semi) (λ{x}, {t}. if pr equal{I}{test t x}).
if pr subtest := (code→code→semi) (

λ{s}, {t}. if pr equal{test s}{Ptest s t}
).
!check (

if pr of type x y,
if pr subtype x y,
if pr passes x y,
if pr subtest x y ⊑ test code x | test code y

).

In the language of semibooleans and tests, we can express reasoning principles using and semi to conjoin
hypotheses and⊑ to indicate implication between checked statements:semi (i.e. semiboolean values φ ⊑ I).
Similarly, reversible rules use equality for biimplication.

Order scheamata from 2.1.

!assume (∀{f}, {x}, {y}. if pr less{x}{y} ⊑ if pr less{f x}{f y}).
!assume (∀{f}, {g}, {x}. if pr less{f}{g} ⊑ if pr less{f x}{g x}).

Fixed-point schemata from 2.2

!assume (∀{y}. if pr equal{y}{S I y} ⊑ if pr equal{Y}{y}).
!assume (∀{f}, {x}. if pr less{f x}{x} ⊑ if pr less{Y f}{x}).

Join schemata from 3.1.

!assume (∀{f}, {x}, {y}. if pr less{x}{y} ⊑ if pr less{f x}{f y}).
!assume (∀{f}, {g}, {x}. if pr less{f}{g} ⊑ if pr less{f x}{g x}).

Universal retract schemata from 3.2.

!assume (∀{x}. if pr equal{x}{U x} = if pr equal{x}{x◦x}).
!assume (∀{x}, {f}. if pr less{f x}{x} ⊑ if pr equal{U f x}{x}).

165

Universal closure schemata from 3.3.

!assume (∀{x}.
if pr of type{x}{V} = and semi (if pr equal{x}{x◦x}) (if pr less{I}{x})

).
!assume (∀{x}, {f}. if pr less{f x}{x} ⊑ if pr equal{V f x}{x}).

Schemata for the types div, unit, semi from 3.8.

!assume (∀{x}.
if pr nless{x}{⊥} ⊑ if pr equal{div x}{T} AND

if pr equal{x ⊥}{⊥} ⊑ if pr less{div}{x}
).

!assume (∀{x}.
if pr nless{x}{I} ⊑ if pr equal{unit x}{T} AND

if pr equal{x I}{I} ⊑ if pr less{unit}{x}
).

!assume (∀{x}.
if pr nless{x}{⊥} ⊑ if pr less{I}{semi x} AND

if pr nless{x}{I} ⊑ if pr equal{T}{semi x} AND

and semi (if pr equal{x ⊥}{⊥})
(if pr equal{x I}{I}) ⊑ if pr less{semi}{x}

).

A test intersection schema from 3.11.

!assume (∀{p}, {q}.
and semi (if pr less{check q}{check p})

(if pr less{ div p }{ div q }) ⊑ if pr subtest{p}{q}
).

Code schemata from 5.2.

!assume (∀{x}, {y}.
and semi (if pr passes{x}{test code})

(if pr passes{y}{test code}) ⊑ if pr equal{E(A x y)}{E x(E y)}
).

!assume (∀{c}, {c′}. (
and semi (if pr of type{c}{code}).
and semi (if pr passes{c}{test code}).
and semi (if pr of type{c′}{code}).
and semi (if pr passes{c′}{check code}).

(if pr equal{E c}{E c′})) ⊑ if pr less{c′}{c}
).

!assume (∀{c}, {c′}. (
and semi (if pr of type{c}{code}).
and semi (if pr passes{c}{test code}).
and semi (if pr of type{c′}{code}).

(if pr nless{E c′}{E c})) ⊑ if pr equal{code(c | c′)}{T}.
)

166

Schemata for the oracle O from 5.5.

!assume (∀{p}, {q}.
and semi (if pr passes{{p}}{test skj})

(if pr subtest{p}{q}) ⊑ if pr equal{O{p}{q}}{I}
).

!assume (∀{p}, {p′}.
and semi (if pr passes{{p}}{test skj})

(if pr subtest{p}{p′}) ⊑ if pr subtest{O{p′}}{O{p}}
).

!assume (∀{q}, {q′}.
if pr subtest{q}{q′} ⊑ if pr subtest{C O{q}}{C O{q′}}

).

!assume (∀{p}, {q], {q′}.
and semi (if pr passes{p}{test skj})

(if pr less{q}{q′}) ⊑ if pr less{O{p}{q}}{O{p}{q′}}
).

!assume (∀{p}, {q}, {x}. (
and semi (if pr tested{{p}}{test skj}).
and semi (if pr passes{x}{p}).

(if pr equal{q x}{T})) ⊑ if pr equal{O{p}{q}}{T}
).

!assume (∀{p}, {q}, {x}. (
and semi (if pr tested{{p}}{test skj}).
and semi (if pr passes{x}{p}).

(if pr equal{q x}{⊥})) ⊑ if pr of type{O{p}{q}}{div}
).

167

Index

(JR-)slurry, 84
⊥, 12, 17
B, 126, 137
Bot, 127
C, 126, 127
F, 126
I, 126
J, 75
K, 75, 136, 137
S, 75, 136, 137
⊤, 75
⊤′, 128
W, 127
Y, 127
div, 128
rec, 136, 137
succ, 136, 137
zero, 136, 137
SKJ -trace, 84

A, 100
Above, 39
add, 72, 131
And, 56
and, 63
and div, 65
and semi, 65
and unit, 65
Another, 129
another, 129
any, 38
ap, 75, 136, 137
apc, 129, 130
Apply, 106
assert, 65
assert eq term, 76
assert eq ty, 132
at, 130
atom code, 100

B, 12
B′, 12

bc, 129
BR, 126
Br, 126
b2b, 94, 95
b2u, 94
Bin op, 53, 54
Bin rel, 59
bool, 53, 90
bool-hard, 116
boool, 53
Bot, 12
Botr, 127
botr, 127

C, 12
cc, 129
CR, 127
Cr, 127
case ap, 76
case exp, 131
caseJ, 77, 78
caseK, 77, 78
case nat, 71
case num, 131
caseS, 77, 78
case⊤, 78
Check, 64
check, 64
check any, 67
check bool, 67
check Conv, 80
check Maybe, 69
check nat, 70
check nil, 67
check pre term, 133
check Prod, 69
check Red, 79
check semi, 67
check Sum, 69
check term, 74, 136
check ty, 131

169

check unit, 67
Checkable, 68
checkable, 68
Checked, 65
checks, 65
closure, 34
Code, 106
code, 99
code comonad, 106
code0, 99
code to term, 109
Comm op, 59
comonad, 106
compact point, 31
compose, 126, 137
composec, 130
computational comonad, 106
consistent, 114
context, 129, 130
Conv, 80
conv, 80, 121
CSPD interpretation, 85

decides, 113
∆, 13
detailed balance, 150
div, 42
Div1, 128
div1, 128
Div2, 128
div2, 128
Done, 80
done, 80

E, 100, 101
emprically complete, 118
Endo, 53, 54
eq num, 73
eq term, 75, 76
eq ty, 132
equal, 121
error, 13
Eval, 106, 137
eval, 137
eval eq, 141
eval term, 75
Exists , 122
exists , 122
exists Code, 123
exists code, 123
exists num, 122
exists skj, 123

exists term, 123
Exp, 53, 54
exp, 12
exp ty, 131

F, 12
FR1, 126
Fe1, 126
FR, 126
Fr, 126
fail, 13
false, 12
feed, 128
finite, 31, 85
Fix, 111
Forall , 122
forall , 122
forall Code, 123
forall code, 123
forall num, 122
forall skj, 123
forall Term, 139
forall term, 123, 139
forall ty, 139
From, 53, 54
functor, 105
functor, 58
fuzzy, 89
fuzzy b2b, 95
fuzzy b2u, 94
fuzzy bool, 90
fuzzy Maybe, 92
fuzzy n2s, 95
fuzzy nat, 91
fuzzy nil, 90
fuzzy num, 93
fuzzy Prod, 92
fuzzy Stream, 93
fuzzy Sum, 92
fuzzy unit, 90

hard, 116
head normal form, 31
head variable, 31
hypothesis, 118

I, 12
ic, 128, 129
IR, 126
Ir, 126
Id, 107
idc, 129, 130
Idem, 54

170

If, 56
if, 64
if case ap, 76
if caseJ, 77, 78
if caseK, 77, 78
if caseS, 77, 78
if case⊤, 78
if conv, 120, 121
if conv term, 81
if div, 120, 121
if eq num, 73
if eq term, 76
if eq ty, 132
if equal, 121
if exists num, 121
if finite, 71
if forall num, 122
if forall num′, 122
if less, 121
if nless, 121
if pr equal, 111
if pr less, 111
if pr nequal, 111
if pr nless, 111
if pr of type, 165
if pr passes, 165
if pr subtest, 165
if pr subtype, 165
if Red, 80
iff, 63
impliedby, 64
implies, 64
inconsistent, 114
Ind nat, 72
ind nat, 72
Inl, 55
inl, 13, 55
Inr, 55
inr, 13, 55
Inv, 141
invariance, 141
is zero, 71

J, 29
J-Böhm tree, 31
jc, 128, 129
JR1, 79
Jr1, 79
JR2, 79
Jr2, 79
Jay, 12
join, 31, 84

join, 75
Join Conv, 81
Join Red, 80
Join term, 78
Join ty, 132
JR-Böhm tree, 85

K, 12
kc, 128, 129
KR, 79
Kr, 79

less, 121
Lhsr, 79
lhsr, 79
Lift, 89
lift b2b, 95
lift b2u, 94
lift bool, 90
lift Maybe, 92
lift n2s, 95
lift nat, 91
lift nil, 90
lift num, 93
lift Prod, 92
lift Stream, 93
lift Sum, 92
lift term, 120, 121
lift unit, 90
lower, 45

M- solvable, 32
map Maybe, 56
map maybe, 56
map Sset, 57
map sset, 57
Maybe, 56, 91
maybe, 56, 61
mixture, 84
Mod, 59
mod, 59
mul, 72

n2s, 95
nat, 70, 91
nat2num, 73
natural transformation, 106
Next, 80
next, 80
nil, 38, 90
none, 13, 56
nonstandard, 104
nonzero, 71

171

not, 63
num, 56, 92, 93
num below, 73
num ty, 131

O, 100, 117
OCode, 117
Ocode, 117
Onat, 117
Onum, 117
Oskj, 118
Oterm, 117
Ω, 13
ω, 12
one, 71
Or, 56
or, 63
or div, 65
or semi, 65
or unit, 65
Ord, 130

P, 39
Pcheck, 66
Pprobe, 66
Ptest, 66
Pwhere, 65
Pair, 55
pair, 55
Φ, 12
Π, 58
Pi1, 55
π1, 55, 91
Pi2, 55
π2, 55, 91
pow, 72
pr, 112
pr equal, 112
pr less, 112
pre Red, 78
pre term, 74, 133
pre ty, 131
prec, 71
prec num, 73
Pred, 59
pred, 63
pred qbool, 113
predicates, 65
principle type, 60
probability, 151
Probe, 64
probe, 64, 128

probes, 65
Prod, 54, 91
prod, 54, 61
Ψ, 12
pull, 45
push, 45

Q, 101
Quantifier, 122
Quote, 106
quote bool, 108
quote Maybe, 109
quote nat, 109
quote num, 109
quote Prod, 109
quote semi, 108
quote Sum, 109
quote term, 109
Quoter, 108
Quotient, 59

R, 84
raise, 45
rec, 127, 131
Rec nat, 72
rec nat, 72
Rec num, 73
rec num, 73
recurse, 137
Red, 79, 140, 141
red, 140, 141
reducibility, 140
reducible, 138
Refl, 130
refl, 130
refutable in the limit, 118
relevance, 151
Resp, 130
resp, 130
respc, 129
retract, 32
Rhsr, 79
rhsr, 79

S, 12
S′, 12
sc, 129
SR, 79
Sr, 79
sampling thmI, 90
sampling thmJ, 90
sampling thmR, 90
semi, 52

172

semi-hard, 116
sensible, 153
Seq, 71
seq, 71
Σ, 58
Simple, 45
skj, 105
skj Hstar, 124
skjo, 105
Solomonoff probability, 151
solvable, 32
Some, 56
some, 13, 56
Sset, 57
sset, 57, 61
standard, 104
Stream, 56, 93
stream, 56, 93
sub, 72
subcheck, 66
subprobe, 66
subtest, 66
succ, 12, 70, 91, 131
succ num, 73
success, 13
Sum, 55, 91
sum, 55, 61
swap, 90
Sym bin fun, 58, 59
sym bin fun, 58, 59
Sym bin rel, 59

⊤, 12, 17
⊤R, 79
⊤r, 79
tb bool, 68
tb Maybe, 69
tb Prod, 68, 69
tb semi, 68
tb Sum, 68, 69
tb unit, 68
Term, 136
term, 74, 134
termc, 129, 130
term to code, 109
Test, 64, 89
test, 64
test any, 67
test b2b, 94, 95
test b2u, 94
test bool, 67, 90
test code, 99

test code0, 99
test Conv, 80
test conv, 80
test div, 67
test Maybe, 69, 91
test n2s, 95
test nat, 70, 91
test nil, 67, 90
test num, 73, 93
test pre Red, 78
test pre term, 133
test pred qbool, 113
test Prod, 69, 91
test prod, 68, 69
test Red, 79
test semi, 67
test skjo, 105
test Sset, 69
test sset, 69
test Stream, 93
test subcode, 105
test Sum, 69, 91
test Term, 136
test term, 74, 136
test ty, 131
test unit, 67, 90
test2check, 65
Testable, 68
testable, 68, 89
tests, 65
Θ, 12
To, 53, 54
Top, 12
topc, 128, 129
Tope, 128
tope, 128
Top′r, 128
top′r, 128
total pred num, 139
total pred term, 139
total pred ty, 139
trace, 84
trace probability, 84
Trans, 79, 130
trans, 130
transr, 79
transpose, 126, 127
true, 12
two, 71
ty, 131
ty eval, 132

173

U, 32
Unit, 124
unit, 52, 90
unitF, 63
unitK, 63

V, 34

W, 12
wc, 129
WR, 127
Wr, 127

Y, 12
Y′, 110
YR, 127
Yr, 127

zero, 12, 70, 91, 131
zero num, 73

174

Bibliography

[ABNK+87] S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, and C. R. Rao,Differential geom-
etry in statistical inference, Lecture Notes - Monograph Series, vol. 10, Institute of Mathematical
Statistics, 1987.

[ACHA90] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William E. Aitken, The semantics
of reflected proof, In Proc. of Fifth Symp. on Logic in Comp. Sci, IEEE Computer Society Press,
1990, pp. 95–197.

[Ama98] S.-I. Amari, Natural gradient works efficiently in learning, Neural Computation 10 (1998), 251–
276.

[AN93] S.-I. Amari and Hiroshi Nagaoka, Methods of information geometry, Translations of Mathemati-
cal Monographs, vol. 191, American Mathematical Society, 1993.

[Bar84] Hendrik Pieter Barendregt, The lambda calculus – its syntax and semantics, Studies in Logic and
the Foundations of Mathematics, vol. 103, North-Holland Publishing Company, Amsterdam,
1984.

[Bar93] Henk Barendregt, Constructive proofs of the range property in lambda calculus, Theor. Comput. Sci.
121 (1993), no. 1-2, 59–69.

[Bar08] , Towards the range property for the lambda theory h, Theor. Comput. Sci. 398 (2008), no. 1-3,
12–15.

[BBD93] Henk Barendregt, Martin Bunder, andWill Dekkers, Systems of illative combaintory logic complete
for first-order propositional and predicate calculus, Journal of Symbolic Logic 58 (1993), no. 3, 769–
788.

[BBJ07] George S. Boolos, John P. Burgess, and Richard C. Jeffrey, Computability and logic, 5 ed., Cam-
bridge University Press, September 2007.

[BG92] Stephen Brookes and Shai Geva, Computational comonads and intensional semantics, Applications
of Categories in Computer Science: Proceedings LMS Symp., Durham, UK, 20–30 July 1991
(M. P. Fourman, P. T. Johnstone, and A. M. Pitts, eds.), vol. 177, Cambridge University Press,
Cambridge, 1992, pp. 1–44.

[BLW03] M. R. Bush, M. Leeming, and R. F. C.Walters, Computing left Kan extensions, Journal of Symbolic
Computation 35 (2003), 107–126.

[BN99] F. Baader and T. Nipkow, Term rewriting and all that, Cambridge University Press, 1999.

[BS01] F. Baader and W. Snyder, Unification theory, Handbook of Automated Reasoning (A. Robinson
and A. Voronkov, eds.), vol. I, Elsevier Science, 2001, pp. 445–532.

[Car86] Luca Cardelli,A polymorphic lambda calculus with Type:Type, Tech. Report 10, Digital Equipment
Corporation Systems Research Center, Palo Alto, California, 1986.

[CDHW73] John J. Cannon, Lucien A. Dimino, George Havas, and Jane M. Watson, Implementation and
analysis of the Todd-Coxeter algorithm, Mathematics of Computation 27 (1973), no. 123, 463–490.

[CDJK99] H. Comon, M. Dincbas, J.-P. Jouannaud, and C. Kirchner, A methodological view of constraint
solving, Constraints 4 (1999), no. 4, 337–361.

175

[CG95] Siddhartha Chib and Edward Greenberg, Understanding the metropolis-hastings algorithm,
American Statistician 49 (1995), no. 4, 327–335.

[Cha66] Gregory J. Chaitin, On the length of programs for computing finite binary sequences, Journal of the
ACM 13 (1966), 547–569.

[CHS72] H.B. Curry, J.R. Hindley, and J.P. Seldin, Combinatory logic, vol. II, North-Holland Publishing
Company, Amsterdam, 1972.

[CM99] A. Cano and S. Moral, A review of propagation algorithms for imprecise probabilities, Proc. of 1st
International Symposium on Imprecise Probabilities and their Applications, 1999.

[Con94] Robert L. Constable, Using reflection to explain and enhance type theory, Proof and Computation,
volume 139 of NATO Advanced Study Institute, International Summer School held in Mark-
toberdorf, Germany, July 20-August 1, NATO Series F, Springer, 1994, pp. 65–100.

[CS88] Robert L. Constable and Scott Fraser Smith, Computational foundations of basic recursive function
theory, Theoretical Computer Science, 1988, pp. 360–371.

[CW91] S. Carmody and R. F. C. Walters, Computing quotients of actions on a free category, Category
Theory, Proceedings of the International Conference Held in Como, Italy (A. Carboni, M. C.
Pedicchio, and G. Rosolini, eds.), Springer, July 1991.

[DCHA00] M. Dezani-Ciancaglini, F. Honsell, and F. Alessi, A complete characterization of complete
intersection-type theories, ACM TOCL 4 (2000), 224–236.

[DCL02] M. Dezani-Ciancaglini and S. Lusin, Intersection types and lambda theories, Tech. Report
cs.LO/0211011, The Computing Research Repository, November 2002.

[DGJP04] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden,Metrics for labelled markov processes,
Theor. Comput. Sci. 318 (2004), no. 3, 323–354.

[DM95] F.-N. Demers and J. Malenfant, Reflection in logic, functional and object-oriented programming: a
short comparative study, Proc. of the IJCAI’95 Workshop on Reflection and Metalevel Architec-
tures and their Applications in AI, 1995, pp. 29–38.

[DP96] Rowan Davies and Frank Pfenning, A modal analysis of staged computation, Journal of the ACM,
ACM Press, 1996, pp. 258–270.

[DVH98] Anhai Doan, Van Vu, and Peter Haddawy, Geometric foundations for interval-based probabilities,
Annals of Mathematics and Artificial Intelligence 24 (1998), no. 24, 582–593.

[Eda95] Abbas Edalat, Domain theory in stochastic processes, lics 00 (1995), 244.

[Fef92] Solomon Feferman, Why a little bit goes a long way: Logical foundations of scientifically applicable
mathematics, PSA II (1992), 442–455.

[Fef05] , Predicativity, The Oxford Handbook of Philosophy of Mathematics and Logic
(S. Shapiro, ed.), Oxford University Press, 2005, pp. 590–624.

[Geh95] Wolfgang Gehrke, Problems in rewriting applied to categorical concepts by the example of a compu-
tational comonad, Proceedings of the Sixth International Conference on Rewriting Techniques
and Applications (Kaiserslautern, Germany) (Jieh Hsiang, ed.), Springer-Verlag LNCS 914,
1995, pp. 210–224.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont, Proofs and types, Cambridge University Press,
New York, NY, USA, 1989.

[Har95] John Harrison, Metatheory and reflection in theorem proving: A survey and critique, Technical Re-
port CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995.

[Hec94] Reinhold Heckmann, Probabilistic power domains, information systems, and locales, Lecture notes
in computer science, Springer, 1994.

[Hin67] Roger Hindley, Axioms for strong reduction in combinatory logic, Journal of Symbolic Logic 32
(1967), no. 2, 224–236.

176

[Hin97] , Basic simple type theory, Cambridge Tracts in theoretical Computer Science, Cambridge
University Press, 1997.

[Hut05] Markus Hutter,Universal artificial intelligence, Texts in Theoretical Computer Science, Springer-
Verlag Berlin Heidelberg, 2005.

[JJ98] Giorgi Japaridze and Dick De Jongh, The logic of provability, Handbook of proof theory
(Samuel R. Buss, ed.), Elsevier, Amsterdam, 1998.

[JLM92] F. Jelinek, J. Lafferty, and R. Mercer, Basic methods of probabilistic context-free grammars, Speech
Recognition and Understanding: Recent Advances, Trends, and Applications (P. Laface and
R. De Mori, eds.), Series F: Computer and Systems Sciences, vol. 75, Springer Verlag, 1992.

[Jon89] Claire Jones, Probabilistic non-determinism, Ph.D. thesis, University of Edinburgh, Edinburgh,
Scotland, UK, 1989.

[JP89] C. Jones and G. Plotkin, A probabilistic powerdomain of evaluations, Proceedings of the Fourth
Annual Symposium on Logic in computer science (Piscataway, NJ, USA), IEEE Press, 1989,
pp. 186–195.

[JS96] M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: an approach to approximate
counting and integration, Approximation Algorithms for NP-Hard Problems (D. S. Hochbaum,
ed.), PWS Publishing Company, 1996.

[JT98] A. Jung and R. Tix, The troublesome probabilistic powerdomain, Third Workshop on Computa-
tion and Approximation, Electronic Notes in Theoretical Computer Science, vol. 13, Elsevier
Science Publishers, 1998.

[KAF08] Steven Kieffer, Jeremy Avigad, and Harvey Friedman, A language for mathematical language
management, CoRR abs/0805.1386 (2008).

[KB70] D. E. Knuth and P. B. Bendix, Simple word problems in universal algebra, Proc. Conf. Computa-
tional Problems in Abstract Algebra ’67, Pergmon Press, 1970, pp. 263–297.

[Kle55] Stephen C. Kleene,Hierarchies of number-theoretic predicates, Bulletin of the A.M.S. (1955), no. 61,
193–213.

[KMP97] D. Koller, D. McAllester, and A. Pfeffer, Effective Bayesian inference for stochastic programs, Pro-
ceedings of the 14th National Conference on Artificial Intelligence (AAAI), 1997, pp. 740–747.

[Kol65] Andrey N. Kolmogorov, Three approaches to the quantitative definition of information., Problems
in Information Transmission 1 (1965), 1–7.

[Koz81] Dexter Kozen, Semantics of probabilistic programs, Journal of Computer System Sciences 22
(1981), 328–350.

[KS95] Kevin Kelly and Oliver Schulte, The computable testability of theories with uncomputable predic-
tions, Erkenntnis 43 (1995), 29–66.

[Lak76] Imre Lakatos, Proofs and refutations: The logic of mathematical discovery, Cambridge University
Press, Cambridge, 1976, Edited by John Worrall and Elie Zahar.

[LV97] Ming Li and Paul Vitanyi, An introduction to kolmogorov complexity and its applications, Texts in
Computer Science), Springer, February 1997.

[McA99] David A. McAllester, On the complexity analysis of static analyses, Static Analysis Symposium,
1999, pp. 312–329.

[Mog91] Eugenio Moggi, Notions of computation and monads, Information and Computation 93 (1991),
no. 1, 55–92.

[Odi92] P. Odifreddi, Classical recursion theory: The theory of functions and sets of natural numbers, new ed
ed., North Holland, February 1992.

[Pea88] Judea Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

177

[Plo82] Gordon Plotkin, Probabilistic powerdomains, Proceedings CAAP, 1982.

[PPT05] Sunwoo Park, Frank Pfenning, and Sebastian Thrun, A probabilistic language based upon sam-
pling functions, POPL’05 (2005).

[Rog67] Hartley Rogers, Theory of recursive functions and effective computability, McGraw-Hill, 1967.

[Sco76] Dana Scott, Data types as lattices, SIAM Journal of Computing 5 (1976), no. 3, 522–587.

[Sha97] Stewart Shapiro, Philosophy of mathematics: structure and ontology, Oxford university Press,
1997.

[Slo] N. J. A. Sloan, The on-line encyclopedia of integer sequences,
urlhttp://www.research.att.com/˜njas/sequences/index.html.

[Smo77] Craig Smorynski, The incompleteness theorems, Handbook of mathematical logic (Jon Barwise,
ed.), Amsterdam, North-Holland, 1977, pp. 821–865.

[Sol64] Ray Solomonoff, A formal theory of inductive inference: Parts 1 and 2, Information and Control 7
(1964), 1–22 and 224–254.

[Sol78] , Complexity-based induction systems: Comparisons and convergence theorems, IEEE Trans-
actions on Information Theory IT-24 (1978), 422–432.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan, Self-adjusting binary search trees, J. ACM 32
(1985), no. 3, 652–686.

[TC36] J. A. Todd and H. S. M. Coxeter, A practical method for enumerating cosets of a finite abstract group,
Proc. of the Edinburgh Math. Soc. 5 (1936), 26–34.

[Tro02] John Tromp, Kolmogorov complexity in combinatory logic, see Tromp’s web page, March 2002.

[Val84] L. G. Valiant, A theory of the learnable, Commun. ACM 27 (1984), no. 11, 1134–1142.

[Ver08] Rineke (L.C.) Verbrugge, Provability logic, The Stanford Encyclopedia of Philosophy (Ed-
ward N. Zalta, ed.), Stanford University, Fall 2008.

[Wad90] Philip Wadler, Comprehending monads, Mathematical Structures in Computer Science, 1990,
pp. 61–78.

[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies,Modal types as staging specifica-
tions for run-time code generation, ACM Computing Surveys 30 (1998).

[Yug99] V. V. V’ Yugin, Algorithmic complexity and stochastic properties of finite binary sequences, The Com-
puter Journal 42 (1999), no. 4, 294–317.

178

	Contents
	Overview
	Motivation and Philosophy
	Summary
	Future directions
	Format
	Notation

	Equational deduction in untyped -calculus (SK)
	Axioms for Scott's information order relation (and)
	Axioms for basic combinators
	Theorems proved by -conversion
	Axioms for divergent terms (approaching H)

	Untyped -calculus with ambiguity-as-join (SKJ)
	Axioms for join-as-ambiguity (J)
	Axioms for a universal retract (U)
	Axioms for a universal closure (V)
	Axioms for a power closure (P)
	Axioms for the least strict closure (div)
	A simple type constructor (Simple)
	Types as closures
	Axioms for a few simple types
	Various-valued logics
	Tests for totality and correctness
	Axioms for a few simple tests
	Church numerals
	Coalgebraic numerals
	Dependent types for reduction proofs

	Untyped -calculus for convex sets of probability distributions (SKRJ)
	Axioms for randomness
	A constructor for simple types of fuzzy terms
	Monadic types as closures

	Untyped -calculus with logical reflection (SKJO)
	Related work
	Axioms for an extensional code type (code,A,E,Q,{-})
	Injective codes for reflection
	Provability and reflection
	Axioms for a hyperarithmetic oracle (O)
	The logic of SKJ terms
	Types using reflection

	Examples and Applications
	Proving properties of reduction in SKJ
	Type inference and termination in Gödel's T

	Implementation of the Johann system
	Background and related work
	Saturating a database
	Annealing a database of interest
	Automated Conjecturing
	Fitting a basis to a corpus of expressions

	Syntactic algorithms
	Term syntax
	Compiling to combinators
	Decompiling
	Reduction Strategies
	Statements

	Reflected axiom schemata
	Index
	Bibliography

