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Motivation: complexity-of-definition

What mathematical objects are definable?
→First, the constructive objects are definable,

say r.e. sets mod r.e. relations.

How simple is a given object?
→As simple as its shortest description. (Kolmogorov)

When is a description simple?
→Fewer and shorter symbols (parametrized)

How does complexity depend on language (parameters)?
Hmm... these are more than r.e. sets...

these are weighted grammars or weighted presentations.
Simpler grammars/signatures are simpler to parametrize.



Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is...
λ-calculus mod an r.e. theory: β, β+η, etc.

Curry: λ-calculus has a complicated syntax, but
a few closed terms generate all others.

What basis is sufficient? Terms need to:

I do nothing at all: λf. f

I move terms around: λf, x, y. f(x y), λf, x, y. (f x)y

I project/ignore terms: λf, x. f

I copy terms: λf, x. f x x

I (join terms: λf, g. f | g ?)

That’s enough! Many other bases would work.



Why semantics, extensionality?

How simple is a given object?
→ should not depend on any one description, but also
→ should not depend on any one language

We want meaning, not syntax.
→Coarser theories/quotients are better.
→But “empty”/“undefined” should remain the same.

(1) Identify all “empty”/“undefined” terms (the theory H)

(2) Then identify as much as consistently possible (H∗)

From seqential λ-calculus, we get term fragment of D∞.
From concurrent λ-calculus, we get term+join fragment.

But H∗ is Π0
2-complete, not r.e.; what about “constructive”?

→Approximate H∗ by r.e. theory, e.g., ZFC.



Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
→ enumerations :nat→a, intersection, union
→ semipredicates :a→{⊥, I}, intersection, no union

Disjunction is representable at meta-level (simulation)
but this does not work for oracles.

Add join as a primitive: a→semi becomes a lattice,

Scott came from opposite direction:
Some top. spaces yield models of λ-calculus
and in these models join is of course definable.

But D∞,Pω introduce extra junk, e.g. step functions.

So... Consider pure fragement of D∞:
= concurrent combinatory algebra, mod H∗



Combinatory algebra with join

Combinatory algebra: equational, S and K for abstraction

K x y = x S x y z = x z(y z)

Concurrent CA: partially ordered, also J for join

J x y w x J x y w y
x v z y v z

J x y v z

In either case, add > for error: > x = x, or > w x

Translation from λ-calculus with join

[[λx.M]] = K M x not free in M
[[λx.M N]] = S[[λx.M]][[λx.N]]

[[M | N]] = J[[M]][[N]]



The completed term model

Definition
A term x converges iff ∃n ∈ N. x >∼n = >.

Definition
(Scott’s information ordering)
H∗ ` x v y iff ∀M ∈ 〈S,K〉. M x conv =⇒ M y conv.

Consider the term model B mod H∗, with arbirary joins

S,K,J ∈ B
x ∈ B y ∈ B

(x y) ∈ B
X ⊆ B⊔

X ∈ B

Theorem
B is an algebraic lattice with join J = K | S K,
bottom ⊥ = Y K, and top > = Y J.



Semantically typed λ-calculus (sequential)

Types as idempotents: unityped −→ typed

a type ⇐⇒ a◦a = a
x:a ⇐⇒ a x = x

f :a→b ⇐⇒ b◦f = f = f◦a

Is this really typed, fully abstract? Not usefully.

Range property: every range is a singleton or infinite.
=⇒ No booleans, =⇒ no numerals.

How many denotations of not : K,F 7→ F,K ?
Infinitely many.

Is there a solution to and x y = and y x ? No.



Semantically typed λ-calculus (concurrent)

Types as closures

a type ⇐⇒ a◦a = a w I

Is this really typed, fully abstract? Yes!

Range property fails, e.g. rng(Y(I | 〈>〉)) = {⊥,>}.
We will define bool, nat, ... from only S,K,J.

How many denotations of ‘not’ ?
Still infinitely many solutions,

but unique maximum denotation.

Is there a solution to and x y = and y x ? Yes.

Main difference: coproducts (dropped, lifted)



What types are definable?

x :a ⇐⇒ a x = x (inhabitation)
λx :a.M = (λx.M)◦a (typed abstraction)

a→b = λf.b◦f◦a (function = exponential)
∀y :a.M = λx, y :a.M(x y) (dependent, polymorphic)

a <: b ⇐⇒ b◦a◦b = a (subtyping)
a ∧ b = Sub a b (type intersection)

a×b = Prod a b (dropped products)
a + b = Sum a b (dropped lifted sums)

∃y :a.M = Exists λy :a.M (d’d l’d indexed sums)

Also atoms: type, any, nil, unit, bool, nat



The universal type of types

type := λa. I | a | a◦a | a◦a◦a | . . . = λa.Yλb. I | a◦b

Theorem
type is a closure, and a: type ⇐⇒ a is a closure.

Proof.
(closure) type w λa.a = I, and type(type a) = type a.

( =⇒ ) Suppose a : type, i.e., a = I | a | a◦a | . . . .
Then a w I, and a◦a = a.

( ⇐= ) If a w I then (I | a | a◦a | . . . ) = (a | a◦a | . . . ).
If also a = a◦a, the chain collapses to a.



Maximal and minimal types

Everything is fixed by the identity, so the largest type is

any := I = type I.
inhab(any) = B

Every type is inhabited by >, so the smallest type is

nil := > = type >.
inhab(nil) = {>}

nil is: terminal object, dropped initial object.
(B has no initial object)



Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

a→b := λf.b◦f◦a = λf, x. b(f(a x))

(associates to the right)

Now define a binary operation on types

Exp := type→ type→ type (λa, b. a→b).
= λa: type. type→ type λb. a→b
= λa: type, b: type. type (a→b)

We’ll use this form often:

some term := its type untyped definition.



Navigating a minefield.

Consider the section-retract pair

Rmn := λf, w1, . . . , wm, x, y1, . . . , yn. f x
Lmn := λg, x. g >∼m x >∼n

so that

Lmn◦Rmn = I
Rmn◦Lmn = λf, w, x, y. f >∼m x >∼n w I

Hence Rmn◦Lmn is a closure.

(often omit indices: L◦R = I)

Think of L as a minefield of errors
and R as a map through the minefield.



Avoiding errors.

The Church numeral 1 = λf, x.f x has simple type

(a→a)→a→a note variance of each a

Consider the action of (L→R)→R→L on 1:

(L→R)→R→L (λf, x.f x) f x
= L ( (λf, x.f x) (R◦f◦L) (R x) )
= L (R◦f◦L (R x))
= (L◦R)◦f◦(L◦R) x
= I◦f◦I x
= f x = 1 f x

Hence 1:(L→R)→R→L.
actually works for any section-retract pair



Failing to avoid errors.

What about non-Church numerals, e.g., λf, x.x f?

(L→R)→R→L (λf, x.x f) f x
= L ( (λf, x.x f) (R◦f◦L) (R x) )
= L (R x (R◦f◦L))
= L x
= x > 6= x f

oops: λf, x.x f ÷ (L→R)→R→L.

Can we force any incorrect term up to > = error?
Can we raise any partial term up to a fixedpoint?

...sometimes...



The type of divergent computations

div :=
⊔

m ≥ 0. Lm0 =
⊔

m ≥ 0. m 〈>〉 = type 〈>〉

Theorem
inhab(div) = {⊥,>}.

Proof.
Since ⊥ > = ⊥, ⊥ :div.
Any other term q:div in question must converge

(recall q converges iff for some m, q >∼m ≡ >).
Then

q = div q
=

⊔
m ≥ 0. m 〈>〉 q

=
⊔

m ≥ 0. q >∼m = >

Moral: every candidate q stepped on a mine somewhere.



Protecting terms from divergence

We’ll also need to make terms temporarily inert

curry := λf, x, y. f〈x, y〉 = λf, x, y. f(λg.g x y)
uncurry := λg, 〈x, y〉. g x y = λg, p.p g

Then

uncurry◦curry = I
curry◦uncurry v| I (enough)

For example is q = λf, .f(f ⊥) : a→a?
How do we see the second f without diverging?

C→U q = λf. U (λ . C f (C f ⊥))
= λf. (U◦C) λ .f (C f ⊥)
= λf, . f (λx. f 〈⊥, x〉)

Closing this operation: type C→U q = λf, .f >.



Constructing simple concurrent types

Generalize to functors of mixed variance:
join over all sorts of section-retract pairs.

Simple := any→ type (
λf. f curry uncurry
|

⊔
m, n ≥ 0. f Rmn Lmn

).

alternate definition

For example

div = Simple λa, a′. a′

nat <: Simple λa, a′. (a′→a)→a→a′

Prod <: λa: type, b: type. Simple λc, c′. (a→b→c)→c′

This is amost enough, but there may be >’s in the body.



Checking the body for errors

We saw (Simple λa, a′. a→a′) λf, .f(f ⊥) = λf, .f >.
But is λf, .f > : a→a?

Try combining intro and elim forms: λx.x I = 〈I〉.
〈I〉 (λf, . f >) = λx. I > = >

What about numerals? Is λf, .f(. . . (f >) . . . ) : nat?
Try intro and elim forms: λn.n succ zero = 〈succ, zero〉.

〈s, z〉 λf, .f(. . . (f >) . . . ) = s(. . . (s >) . . . ) = >

This is enough: descend into body with intro and elim forms.



Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

λx1, . . . , xv. x M1 . . . Ma

where a, v ≥ 0, and M1, . . . , Ma are concurrent λ-terms.
Call x the head variable, and M1, . . . , Ma the body.

Definition
A concurrent Böhm tree is a h.n.f.

where the M′s are recursively joins of BT’s.

Proposition
Everything is a join of h.n.f.s (modulo observability H∗).

E.g. J = λx, y.x | y = (λx, y.x) | (λx, y.y), by η-conversion.



Intermezzo: interpolation by head normal forms

Proposition
Everything is a join of h.n.f.s (modulo observability H∗).

I Necessary for S,K,J-definable closures.

I Fails in Scott’s model: step functions.

I Trivially true in the completed term model B.

Corollary
If q converges then q extends a h.n.f.;

If q v| q′ then q w M v| q′ for a h.n.f. M.

...and now for the Main Example...



Can’t say no? maybe you need a...

semi := type ((Simple λa, a′. a→a′) | 〈I〉).

Theorem
inhab(semi) = {⊥, I,>}.

Proof.
⊥ : semi by β-reduction. Any other q : semi converges, say

q w q′ = λf, x1, . . . , xn. z M1 . . . Mm

Show that either q = > or

z = f, m = n (use minefields),
Mi v xi (descend, minefields, curry).

Finally raise q′ up to I with minefields. details



Enforcing sequentiality

Consider a bad definition of bool
boool := type ((Simple λa, a′. a→a→a′) | 〈K,F〉).

Theorem
inhab(boool) = {⊥,K,F,J,>}. (recall J = K | F)

Proof.
Similar to semi, but now q can extend two h.n.f.’s:

q w λx, y.x = K, q w λx, y.y = F

J extends both.

How to ensure sequentiality? Make q decide.



Corrected definition of bool

make up your mind := λq. q ⊥ (q > ⊥).
bool := type (boool | make up your mind).

Theorem
inhab(bool) = {⊥,K,F,>}.

Proof.
Since bool <: boool, we need only check inhabitants.
All but J are fixed by make up your mind:

(λq. q ⊥ (q > ⊥)) J
= J ⊥ (J > ⊥)
= ⊥ | > | ⊥
= >



Outline of constructing types

This technique generalizes to more complicated types.

bool := type (
(Simple λa, a′. a→a→a′)
| 〈K,F〉
| λq. q ⊥ (q > ⊥)

).

(1) enforce simple concurrent typing

(2) descend Böhm tree with intro and elim forms

(3) enforce sequentiality: one head variable only



Product types (actually dropped product)

Prod := type→ type→ type (
λa, b. (Simple λc, c′. (a→b→c)→c′)

| 〈λx, y.〈x, y〉〉
| λq. 〈q K, q F〉

).

Theorem
For a, b: type, inhab(Prod a b) = {>} ∪ {〈x, y〉 | x :a, y :b}

Proof.
Any h.n.f. below q:Prod a b must be 〈a x, b y〉 or >.
What is the maximal such?
First component is q K. Second component is q F.
So λq. 〈q K, q F〉 ensures sequentiality.



Sum types (actually dropped, lifted sum)

Sum := type→ type→ type (
λa, b. (Simple λc, c′. (a→c)→(b→c)→c′)

| 〈inl, inr〉
| λq, f, g. q (K I) ⊥ (q f >)

| q ⊥ (K I) (q > g)
).

where

inl = λx, f, .f x, inr = λy, , g.g x

Theorem
inhab(Sum a b) = {>,⊥} ∪ {inl x | x :a} ∪ {inr y | y :b}.

Proof.
Combine proofs of bool and Prod.



Self-recursing numerals: motivation

Church numerals have simple type (a→a)→a→a.
but predecessor has problems:

I on well-defined terms, it is linear-time.

I on partially-defined terms it diverges.

Gödel’s recursor has type nat→(nat→a→a)→a→a.
For self recursion, redefine nat = µ n. (n→a→a)→a→a:

zero := λ , x. x.
succ := λn, f, x. n f (f n x)

These nats are redundant; exponentially large normal forms:

2 = λf, x. f (λf, x.f(λf, x.x)x) (f(λf, x.x)x)



Self-recursing numerals: correctness

nat := type (
Y λa. (Simple λb, b′. (a→b′→b)→b→b′)

| 〈λn:a, , f :a→a, x :a. f n(n f x), λ , x :a. x〉
| 〈λ , n:a, f :a→a, x :a. f n(n f x), λ , x :a. x〉
| λq. q ⊥ (q > ⊥)

).

Note the two different ways of descending: left and right.

Theorem
inhab(nat) = {>} ∪ {succn z | n ∈ N, z ∈ {⊥, zero}}.

Proof.
As above, only we need to ensure consistency across BT.
At root, descend in either direction.
The a in (a→b′→b)→b→b′ descends below root.



Quotient types

What is an r.e. set (of x :a’s)?
→A sequence :nat→a? ...but order doesn’t matter
→A semipredicate :a→semi? ...but no mapping
→A semiset : (a→b)→b? ...works in concurrent CA.

Semiset := type→ type (λa. Simple λb, b′. (a→b)→b′). ΛPAUSE

Now we can define quotient types.
Let M:Semiset(a→a) generate a monoid action on a.
The quotient type of M-orbits is Mod M, where

Mod := (∀a:close. (Semiset a→a) → (Sub (Semiset a))) (
λa. λM.Mλm. λX.Xλx. 〈m x〉

).



Summary and Questions

I Concurrent CA is inadvertantly typed
(sequential CA is not).

I S,K,J-definable types required head normal forms:
Pω fails, D∞ fails, completed term model works.

I Very rich type structure.

Questions.

I Exactly which types are definable?

I Are sequential simple types uniformly definable?



Definition of raising and lowering operators

Define raising and lowering operators

raise := (λx, .x) = K.
lower := (λx.x >) = 〈>〉.

so that

lower◦raise = I,
raise◦lower = λx, . x > w I

Similarly at function type,

I→ raise = λf, x, .f x
I→ lower = λf, x. f x >

so that

(I→ lower)◦(I→ raise) = I,
(I→ raise)◦(I→ lower) = λf, x, . f x > w I



Constructing simple concurrent types

Now these operators generate our previous Lmn, Rmn:

Rmn = (m raise)◦(n I→ raise)
Lmn = (n I→ lower)◦(m lower)

Hence we have a simple definition of semi

Simple := any→ type (
λf. curry→uncurry
| f I I
| f raise lower
| f I→ raise I→ lower

).



Applications to typechecking

Now the boolean type becomes

bool := type (curry→curry→uncurry
| raise→ raise→ lower
| (I→ raise)→(I→ raise)→(I→ lower)
| 〈K,F〉
| (λq. q ⊥ (q > ⊥))

).

We can now reduce typechecking x :bool to five checks,
which may succeed even under β-η conversion!

back



Correctness of semi: overview

semi := type ((Simple λa, a′. a→a′) | 〈I〉).

Theorem
inhab(semi) = {⊥, I,>}.

Proof.
⊥ : semi by β-reduction. Any other q : semi converges, say

q w q′ = λf, x1, . . . , xn. z M1 . . . Mm

Show that either q = > or

z = f (head is in the right place),
m = n (right number of limbs), and
Mi v xi (each limb is healthy).

Finally raise a healthy q′ = λf, x.f M up to I.



Correctness of semi: head is in the right place

We know q:semi and

q w q′ = λf, x1, . . . , xn. z M1 . . . Mm

If z 6= f then z = xi for some i.

Cover all the x′js with a minefield (n,0):

R→L q′ f= q (n K f) >∼n

= (λx. xi M) >∼n

= > M = >

So q = >.
otherwise...



Correctness of semi: right number of limbs

We know q:semi and

q w q′ = λf, x1, . . . , xn. f M1 . . . Mm

Make q′ navigate a big minefield, say (n + m, n + m)

R→L q′ f x = q′ (λu, v, w. f v) T∼m+n x T∼m+n

= (λx, u, v, w. f v) M >∼m+n x >∼m+n

How far off can q′ be?

| x, u |= 2n + m
?
= n + 2m =| M >∼m+n |

If n 6= m then semi q′ = >.
otherwise...



Correctness of semi: each limb is healthy

We know q:semi and

q w q′ = λf, x1, . . . , xn. f M1 . . . Mn

If Mi v| xi then Mi w N v| xi for some h.n.f N.
Somewhere down the BT of q’ is either a >,

or an offending head variable z.
If z /∈ {f, x}, descend with 〈I〉 until it is.
If z = xi, make q navigate a minefield; then descend.
If z = f, make f inert with curry; then descend.

Eventually we hit a >.
otherwise...



Correctness of semi: raising partial terms up to I

We know q′ is healthy, but not at full strength

λf, x.f x w q′ w λf, x. f ⊥∼n

Raise and lower n times to ignore faulty args

n K→〈>〉 q′ f
= q′ (n K f) >∼n

= (λx. n K f M) >∼n

= (λx. f) >∼n

= f

So finally q w semi q′ = I. back
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