
Definable (types-as-)closures
in concurrent combinatory algebra

Fritz Obermeyer

Department of Mathematics
Carnegie-Mellon University

2007:03:27

Outline

What is concurrent combinatory algebra
Motivation, Complexity-of-Definition (4)
Typed semantics from untyped syntax (4)
What myriad types there are (4)

In search of definable types
Types from section-retract pairs (5)
Concurrent simple types (5)
Sequential simple types (3)

Products and sums and numerals, Oh my (5)

Summary (1)

Appendix
Improved definition of Simple (3)
Correctness of semi (5)

Motivation: complexity-of-definition

What mathematical objects are definable?
→First, the constructive objects are definable,

say r.e. sets mod r.e. relations.

How simple is a given object?
→As simple as its shortest description. (Kolmogorov)

When is a description simple?
→Fewer and shorter symbols (parametrized)

How does complexity depend on language (parameters)?
Hmm... these are more than r.e. sets...

these are weighted grammars or weighted presentations.
Simpler grammars/signatures are simpler to parametrize.

Why untyped λ-calculus?

Church: One language for r.e. sets mod r.e. relations is...
λ-calculus mod an r.e. theory: β, β+η, etc.

Curry: λ-calculus has a complicated syntax, but
a few closed terms generate all others.

What basis is sufficient? Terms need to:

I do nothing at all: λf. f

I move terms around: λf, x, y. f(x y), λf, x, y. (f x)y

I project/ignore terms: λf, x. f

I copy terms: λf, x. f x x

I (join terms: λf, g. f | g ?)

That’s enough! Many other bases would work.

Why semantics, extensionality?

How simple is a given object?
→ should not depend on any one description, but also
→ should not depend on any one language

We want meaning, not syntax.
→Coarser theories/quotients are better.
→But “empty”/“undefined” should remain the same.

(1) Identify all “empty”/“undefined” terms (the theory H)

(2) Then identify as much as consistently possible (H∗)

From seqential λ-calculus, we get term fragment of D∞.
From concurrent λ-calculus, we get term+join fragment.

But H∗ is Π0
2-complete, not r.e.; what about “constructive”?

→Approximate H∗ by r.e. theory, e.g., ZFC.

Why concurrency (join)?

How are open/r.e. sets represented in λ-calc.?
→ enumerations :nat→a, intersection, union
→ semipredicates :a→{⊥, I}, intersection, no union

Disjunction is representable at meta-level (simulation)
but this does not work for oracles.

Add join as a primitive: a→semi becomes a lattice,

Scott came from opposite direction:
Some top. spaces yield models of λ-calculus
and in these models join is of course definable.

But D∞,Pω introduce extra junk, e.g. step functions.

So... Consider pure fragement of D∞:
= concurrent combinatory algebra, mod H∗

Combinatory algebra with join

Combinatory algebra: equational, S and K for abstraction

K x y = x S x y z = x z(y z)

Concurrent CA: partially ordered, also J for join

J x y w x J x y w y
x v z y v z

J x y v z

In either case, add > for error: > x = x, or > w x

Translation from λ-calculus with join

[[λx.M]] = K M x not free in M
[[λx.M N]] = S[[λx.M]][[λx.N]]

[[M | N]] = J[[M]][[N]]

The completed term model

Definition
A term x converges iff ∃n ∈ N. x >∼n = >.

Definition
(Scott’s information ordering)
H∗ ` x v y iff ∀M ∈ 〈S,K〉. M x conv =⇒ M y conv.

Consider the term model B mod H∗, with arbirary joins

S,K,J ∈ B
x ∈ B y ∈ B

(x y) ∈ B
X ⊆ B⊔

X ∈ B

Theorem
B is an algebraic lattice with join J = K | S K,
bottom ⊥ = Y K, and top > = Y J.

Semantically typed λ-calculus (sequential)

Types as idempotents: unityped −→ typed

a type ⇐⇒ a◦a = a
x:a ⇐⇒ a x = x

f :a→b ⇐⇒ b◦f = f = f◦a

Is this really typed, fully abstract? Not usefully.

Range property: every range is a singleton or infinite.
=⇒ No booleans, =⇒ no numerals.

How many denotations of not : K,F 7→ F,K ?
Infinitely many.

Is there a solution to and x y = and y x ? No.

Semantically typed λ-calculus (concurrent)

Types as closures

a type ⇐⇒ a◦a = a w I

Is this really typed, fully abstract? Yes!

Range property fails, e.g. rng(Y(I | 〈>〉)) = {⊥,>}.
We will define bool, nat, ... from only S,K,J.

How many denotations of ‘not’ ?
Still infinitely many solutions,

but unique maximum denotation.

Is there a solution to and x y = and y x ? Yes.

Main difference: coproducts (dropped, lifted)

What types are definable?

x :a ⇐⇒ a x = x (inhabitation)
λx :a.M = (λx.M)◦a (typed abstraction)

a→b = λf.b◦f◦a (function = exponential)
∀y :a.M = λx, y :a.M(x y) (dependent, polymorphic)

a <: b ⇐⇒ b◦a◦b = a (subtyping)
a ∧ b = Sub a b (type intersection)

a×b = Prod a b (dropped products)
a + b = Sum a b (dropped lifted sums)

∃y :a.M = Exists λy :a.M (d’d l’d indexed sums)

Also atoms: type, any, nil, unit, bool, nat

The universal type of types

type := λa. I | a | a◦a | a◦a◦a | . . . = λa.Yλb. I | a◦b

Theorem
type is a closure, and a: type ⇐⇒ a is a closure.

Proof.
(closure) type w λa.a = I, and type(type a) = type a.

(=⇒) Suppose a : type, i.e., a = I | a | a◦a |
Then a w I, and a◦a = a.

(⇐=) If a w I then (I | a | a◦a | . . .) = (a | a◦a | . . .).
If also a = a◦a, the chain collapses to a.

Maximal and minimal types

Everything is fixed by the identity, so the largest type is

any := I = type I.
inhab(any) = B

Every type is inhabited by >, so the smallest type is

nil := > = type >.
inhab(nil) = {>}

nil is: terminal object, dropped initial object.
(B has no initial object)

Function types (exponentials)

Definition
For any terms a, b, define the conjugation operator

a→b := λf.b◦f◦a = λf, x. b(f(a x))

(associates to the right)

Now define a binary operation on types

Exp := type→ type→ type (λa, b. a→b).
= λa: type. type→ type λb. a→b
= λa: type, b: type. type (a→b)

We’ll use this form often:

some term := its type untyped definition.

Navigating a minefield.

Consider the section-retract pair

Rmn := λf, w1, . . . , wm, x, y1, . . . , yn. f x
Lmn := λg, x. g >∼m x >∼n

so that

Lmn◦Rmn = I
Rmn◦Lmn = λf, w, x, y. f >∼m x >∼n w I

Hence Rmn◦Lmn is a closure.

(often omit indices: L◦R = I)

Think of L as a minefield of errors
and R as a map through the minefield.

Avoiding errors.

The Church numeral 1 = λf, x.f x has simple type

(a→a)→a→a note variance of each a

Consider the action of (L→R)→R→L on 1:

(L→R)→R→L (λf, x.f x) f x
= L ((λf, x.f x) (R◦f◦L) (R x))
= L (R◦f◦L (R x))
= (L◦R)◦f◦(L◦R) x
= I◦f◦I x
= f x = 1 f x

Hence 1:(L→R)→R→L.
actually works for any section-retract pair

Failing to avoid errors.

What about non-Church numerals, e.g., λf, x.x f?

(L→R)→R→L (λf, x.x f) f x
= L ((λf, x.x f) (R◦f◦L) (R x))
= L (R x (R◦f◦L))
= L x
= x > 6= x f

oops: λf, x.x f ÷ (L→R)→R→L.

Can we force any incorrect term up to > = error?
Can we raise any partial term up to a fixedpoint?

...sometimes...

The type of divergent computations

div :=
⊔

m ≥ 0. Lm0 =
⊔

m ≥ 0. m 〈>〉 = type 〈>〉

Theorem
inhab(div) = {⊥,>}.

Proof.
Since ⊥ > = ⊥, ⊥ :div.
Any other term q:div in question must converge

(recall q converges iff for some m, q >∼m ≡ >).
Then

q = div q
=

⊔
m ≥ 0. m 〈>〉 q

=
⊔

m ≥ 0. q >∼m = >

Moral: every candidate q stepped on a mine somewhere.

Protecting terms from divergence

We’ll also need to make terms temporarily inert

curry := λf, x, y. f〈x, y〉 = λf, x, y. f(λg.g x y)
uncurry := λg, 〈x, y〉. g x y = λg, p.p g

Then

uncurry◦curry = I
curry◦uncurry v| I (enough)

For example is q = λf, .f(f ⊥) : a→a?
How do we see the second f without diverging?

C→U q = λf. U (λ . C f (C f ⊥))
= λf. (U◦C) λ .f (C f ⊥)
= λf, . f (λx. f 〈⊥, x〉)

Closing this operation: type C→U q = λf, .f >.

Constructing simple concurrent types

Generalize to functors of mixed variance:
join over all sorts of section-retract pairs.

Simple := any→ type (
λf. f curry uncurry
|

⊔
m, n ≥ 0. f Rmn Lmn

).

alternate definition

For example

div = Simple λa, a′. a′

nat <: Simple λa, a′. (a′→a)→a→a′

Prod <: λa: type, b: type. Simple λc, c′. (a→b→c)→c′

This is amost enough, but there may be >’s in the body.

Checking the body for errors

We saw (Simple λa, a′. a→a′) λf, .f(f ⊥) = λf, .f >.
But is λf, .f > : a→a?

Try combining intro and elim forms: λx.x I = 〈I〉.
〈I〉 (λf, . f >) = λx. I > = >

What about numerals? Is λf, .f(. . . (f >) . . .) : nat?
Try intro and elim forms: λn.n succ zero = 〈succ, zero〉.

〈s, z〉 λf, .f(. . . (f >) . . .) = s(. . . (s >) . . .) = >

This is enough: descend into body with intro and elim forms.

Intermezzo: concurrent head normal form

Definition
A head normal form is a λ-term

λx1, . . . , xv. x M1 . . . Ma

where a, v ≥ 0, and M1, . . . , Ma are concurrent λ-terms.
Call x the head variable, and M1, . . . , Ma the body.

Definition
A concurrent Böhm tree is a h.n.f.

where the M′s are recursively joins of BT’s.

Proposition
Everything is a join of h.n.f.s (modulo observability H∗).

E.g. J = λx, y.x | y = (λx, y.x) | (λx, y.y), by η-conversion.

Intermezzo: interpolation by head normal forms

Proposition
Everything is a join of h.n.f.s (modulo observability H∗).

I Necessary for S,K,J-definable closures.

I Fails in Scott’s model: step functions.

I Trivially true in the completed term model B.

Corollary
If q converges then q extends a h.n.f.;

If q v| q′ then q w M v| q′ for a h.n.f. M.

...and now for the Main Example...

Can’t say no? maybe you need a...

semi := type ((Simple λa, a′. a→a′) | 〈I〉).

Theorem
inhab(semi) = {⊥, I,>}.

Proof.
⊥ : semi by β-reduction. Any other q : semi converges, say

q w q′ = λf, x1, . . . , xn. z M1 . . . Mm

Show that either q = > or

z = f, m = n (use minefields),
Mi v xi (descend, minefields, curry).

Finally raise q′ up to I with minefields. details

Enforcing sequentiality

Consider a bad definition of bool
boool := type ((Simple λa, a′. a→a→a′) | 〈K,F〉).

Theorem
inhab(boool) = {⊥,K,F,J,>}. (recall J = K | F)

Proof.
Similar to semi, but now q can extend two h.n.f.’s:

q w λx, y.x = K, q w λx, y.y = F

J extends both.

How to ensure sequentiality? Make q decide.

Corrected definition of bool

make up your mind := λq. q ⊥ (q > ⊥).
bool := type (boool | make up your mind).

Theorem
inhab(bool) = {⊥,K,F,>}.

Proof.
Since bool <: boool, we need only check inhabitants.
All but J are fixed by make up your mind:

(λq. q ⊥ (q > ⊥)) J
= J ⊥ (J > ⊥)
= ⊥ | > | ⊥
= >

Outline of constructing types

This technique generalizes to more complicated types.

bool := type (
(Simple λa, a′. a→a→a′)
| 〈K,F〉
| λq. q ⊥ (q > ⊥)

).

(1) enforce simple concurrent typing

(2) descend Böhm tree with intro and elim forms

(3) enforce sequentiality: one head variable only

Product types (actually dropped product)

Prod := type→ type→ type (
λa, b. (Simple λc, c′. (a→b→c)→c′)

| 〈λx, y.〈x, y〉〉
| λq. 〈q K, q F〉

).

Theorem
For a, b: type, inhab(Prod a b) = {>} ∪ {〈x, y〉 | x :a, y :b}

Proof.
Any h.n.f. below q:Prod a b must be 〈a x, b y〉 or >.
What is the maximal such?
First component is q K. Second component is q F.
So λq. 〈q K, q F〉 ensures sequentiality.

Sum types (actually dropped, lifted sum)

Sum := type→ type→ type (
λa, b. (Simple λc, c′. (a→c)→(b→c)→c′)

| 〈inl, inr〉
| λq, f, g. q (K I) ⊥ (q f >)

| q ⊥ (K I) (q > g)
).

where

inl = λx, f, .f x, inr = λy, , g.g x

Theorem
inhab(Sum a b) = {>,⊥} ∪ {inl x | x :a} ∪ {inr y | y :b}.

Proof.
Combine proofs of bool and Prod.

Self-recursing numerals: motivation

Church numerals have simple type (a→a)→a→a.
but predecessor has problems:

I on well-defined terms, it is linear-time.

I on partially-defined terms it diverges.

Gödel’s recursor has type nat→(nat→a→a)→a→a.
For self recursion, redefine nat = µ n. (n→a→a)→a→a:

zero := λ , x. x.
succ := λn, f, x. n f (f n x)

These nats are redundant; exponentially large normal forms:

2 = λf, x. f (λf, x.f(λf, x.x)x) (f(λf, x.x)x)

Self-recursing numerals: correctness

nat := type (
Y λa. (Simple λb, b′. (a→b′→b)→b→b′)

| 〈λn:a, , f :a→a, x :a. f n(n f x), λ , x :a. x〉
| 〈λ , n:a, f :a→a, x :a. f n(n f x), λ , x :a. x〉
| λq. q ⊥ (q > ⊥)

).

Note the two different ways of descending: left and right.

Theorem
inhab(nat) = {>} ∪ {succn z | n ∈ N, z ∈ {⊥, zero}}.

Proof.
As above, only we need to ensure consistency across BT.
At root, descend in either direction.
The a in (a→b′→b)→b→b′ descends below root.

Quotient types

What is an r.e. set (of x :a’s)?
→A sequence :nat→a? ...but order doesn’t matter
→A semipredicate :a→semi? ...but no mapping
→A semiset : (a→b)→b? ...works in concurrent CA.

Semiset := type→ type (λa. Simple λb, b′. (a→b)→b′). ΛPAUSE

Now we can define quotient types.
Let M:Semiset(a→a) generate a monoid action on a.
The quotient type of M-orbits is Mod M, where

Mod := (∀a:close. (Semiset a→a) → (Sub (Semiset a))) (
λa. λM.Mλm. λX.Xλx. 〈m x〉

).

Summary and Questions

I Concurrent CA is inadvertantly typed
(sequential CA is not).

I S,K,J-definable types required head normal forms:
Pω fails, D∞ fails, completed term model works.

I Very rich type structure.

Questions.

I Exactly which types are definable?

I Are sequential simple types uniformly definable?

Definition of raising and lowering operators

Define raising and lowering operators

raise := (λx, .x) = K.
lower := (λx.x >) = 〈>〉.

so that

lower◦raise = I,
raise◦lower = λx, . x > w I

Similarly at function type,

I→ raise = λf, x, .f x
I→ lower = λf, x. f x >

so that

(I→ lower)◦(I→ raise) = I,
(I→ raise)◦(I→ lower) = λf, x, . f x > w I

Constructing simple concurrent types

Now these operators generate our previous Lmn, Rmn:

Rmn = (m raise)◦(n I→ raise)
Lmn = (n I→ lower)◦(m lower)

Hence we have a simple definition of semi

Simple := any→ type (
λf. curry→uncurry
| f I I
| f raise lower
| f I→ raise I→ lower

).

Applications to typechecking

Now the boolean type becomes

bool := type (curry→curry→uncurry
| raise→ raise→ lower
| (I→ raise)→(I→ raise)→(I→ lower)
| 〈K,F〉
| (λq. q ⊥ (q > ⊥))

).

We can now reduce typechecking x :bool to five checks,
which may succeed even under β-η conversion!

back

Correctness of semi: overview

semi := type ((Simple λa, a′. a→a′) | 〈I〉).

Theorem
inhab(semi) = {⊥, I,>}.

Proof.
⊥ : semi by β-reduction. Any other q : semi converges, say

q w q′ = λf, x1, . . . , xn. z M1 . . . Mm

Show that either q = > or

z = f (head is in the right place),
m = n (right number of limbs), and
Mi v xi (each limb is healthy).

Finally raise a healthy q′ = λf, x.f M up to I.

Correctness of semi: head is in the right place

We know q:semi and

q w q′ = λf, x1, . . . , xn. z M1 . . . Mm

If z 6= f then z = xi for some i.

Cover all the x′js with a minefield (n,0):

R→L q′ f= q (n K f) >∼n

= (λx. xi M) >∼n

= > M = >

So q = >.
otherwise...

Correctness of semi: right number of limbs

We know q:semi and

q w q′ = λf, x1, . . . , xn. f M1 . . . Mm

Make q′ navigate a big minefield, say (n + m, n + m)

R→L q′ f x = q′ (λu, v, w. f v) T∼m+n x T∼m+n

= (λx, u, v, w. f v) M >∼m+n x >∼m+n

How far off can q′ be?

| x, u |= 2n + m
?
= n + 2m =| M >∼m+n |

If n 6= m then semi q′ = >.
otherwise...

Correctness of semi: each limb is healthy

We know q:semi and

q w q′ = λf, x1, . . . , xn. f M1 . . . Mn

If Mi v| xi then Mi w N v| xi for some h.n.f N.
Somewhere down the BT of q’ is either a >,

or an offending head variable z.
If z /∈ {f, x}, descend with 〈I〉 until it is.
If z = xi, make q navigate a minefield; then descend.
If z = f, make f inert with curry; then descend.

Eventually we hit a >.
otherwise...

Correctness of semi: raising partial terms up to I

We know q′ is healthy, but not at full strength

λf, x.f x w q′ w λf, x. f ⊥∼n

Raise and lower n times to ignore faulty args

n K→〈>〉 q′ f
= q′ (n K f) >∼n

= (λx. n K f M) >∼n

= (λx. f) >∼n

= f

So finally q w semi q′ = I. back

	What is concurrent combinatory algebra
	Motivation, Complexity-of-Definition (4)
	Typed semantics from untyped syntax (4)
	What myriad types there are (4)

	In search of definable types
	Types from section-retract pairs (5)
	Concurrent simple types (5)
	Sequential simple types (3)

	Products and sums and numerals, Oh my (5)
	Summary (1)
	Appendix
	Improved definition of Simple (3)
	Correctness of semi (5)

