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Abstract

This is an expository note on the classical corner growth model with i.i.d. geometrically
distributed weights. A well-known theorem of K. Johansson states that suitably rescaled last-
passage times converge in distribution to the Tracy-Widom GUE distribution. We reprove this
result by adapting a steepest-descent analysis of J.Gravner, C.Tracy and H.Widom.

1 Introduction

The corner growth model describes a random region growing over time in the first quadrant of
the plane, and is closely related to totally asymmetric simple exclusion process (TASEP), queues
in series and last-passage percolation; we refer the reader to [26] for a detailed introduction. The
discrete-time version of the model made its early appearances in [5], [19] and [25], and can be
formulated as follows. Represent the first quadrant with N?. Each site (i,5) € N? receives a
separate coin with tails probability ¢ € (0,1). The region is initially empty and evolves according
to the following rule. Each (4, j) waits for (i — 1,5) (if ¢ > 1) and (4,5 — 1) (if j > 1) to be in
the region, then flips its coin at each time step onwards until heads comes up and immediately
joins the region. Thus, if W (i, j) is the amount of time (7, j) spends for the coin flips, then the
random variables {W (i, j) : 4, j € N} are independent and their joint distribution P satisfies

PW(i,j)=k)=(1—q)¢" fori,jeN and keZ, . (1.1)

Furthermore, writing G(i, j) for the time when (4, j) joins the region, we have the recursion

G(i,j) = G(i = 1,4) v Gi,j — 1) + W(i.j) fori,jeN, (1.2)
with boundary values defined as G(4,0) = G(0,j) = 0 for ¢, j € N. This leads to the last-passage
formula

G(m,n) = max Z W(i,j) form,neN (1.3)
mellm,n (i,5)em

where II,, , is the set of all directed paths from (1,1) to (m,n) (all sequences ((ig,jr))re[r]
in N? such that (i1,71) = (1,1), (it,51) = (m,n), (ir)rey and (jr)re[) are nondecreasing and
ikt1 — Uk + Jrs1 —Jg = 1 for 1 < k < 1). We will refer to {W(i,j) : 4,5 € N} as weights
and {G(i,j) : 4,5 € N} as the last-passage times. Typically, the statistical properties of the
last-passage times are the issue of interest.

While we will not consider it here, there is also a continuous-time version of the corner
growth model in which each (7, j) receives a separate Poisson clock with rate A > 0 instead of a
coin. When (i — 1,5) and (i,5 — 1) (if they exist) are both in the region, (i,j) starts its clock
and joins the region when the clock rings. In other words, we replace with

P(W(i,j) = z) =e  fori,jeN and z > 0. (1.4)



This version appeared in the influential work of H. Rost [22].

The KPZ (Kardar-Parisi-Zhang) universality class is a conjectural collection of statistical
models including various growth processes, interacting particle systems and directed polymers
in random media, see [6] and the references therein. It is expected that the fluctuations of
the interesting observables in the KPZ-models scale with exponent 1/3 and, after rescaling,
converge to a Tracy-Widom distribution in the limit. In a breakthrough work of K. Johansson
these supposed universal features were confirmed for the corner growth model; the relevant
theorem is [16] Theorem 1.2] stated below.

Theorem 1.1. Let r > 0. Then

lingO P(G(|nr],n) < ny, +n'B0,s) = Four(s) (1.5)
for any s € R, where
g1+ r)+2,/qr
Yr = 1 5 (16)
—q
1 q\/e 2/3 2/3
=12 (3) WitV va) (1.7)

and Foug denotes the c.d.f. of the Tracy-Widom GUE distribution defined in Section [0

If we assume (|1.4) instead of then still holds with different explicit constants -,
and o, [16l, Theorem 1.6].

In [8], we considered a particular generalization of the corner growth model in which param-
eter ¢ is replaced with a;b; for each (7,7) € N? for some random sequences (@i)ien and (bj)jen
in (0,1) whose joint distribution satisfies certain ergodicity assumptions. (For fixed sequences,
this model appeared in [17] and [I8], see Section [6}) We obtained a variational formula for
the law of large numbers limit lim,, o, n~'G(| nr |,n), namely, the constant analogous to .
Corresponding large deviation properties were subsequently studied in [9], which suggested that
the limit fluctuations of G(| nr |, n) obey the Tracy-Widom GUE distribution only if 1 <7 < 79
for some critical values 0 < r; < rg9 < ooE| We have developed some arguments in the course of
an ongoing project to verify this prediction. To be used for future reference, the present note
records these arguments in the simpler setting of classical corner growth model.

In a series of papers J.Gravner, C.Tracy and H.Widom carried out a similar program for
a variant of the corner growth model known as oriented digital boiling [12], [13],[I4], which is
equivalent to a first-passage percolation model introduced in [24]. The recursion for {G(4,j) :
i,j € N} is now

G(i,j) =G —1,5) v (G(i,j — 1)+ W(i,j)) fori,jeN, (1.8)

instead of . The weights {W (i, ) : 4, j € N} are independent and each W (i, j) is Bernoulli-
distributed with parameter p; for some i.i.d. sequences (p;)jen. This note mainly builds on the
work in [I2], which deals with the basic case when (p;) en is a constant sequence.

The original proof of Theorem expresses the point distributions of last-passage times as
a Fredholm determinant of the Meixner kernel and uses properties of the Meixner polynomials
for asymptotic analysis [16], see also the exposition in [26, Chapter 5]. In this note, we present
another proof by adapting an approach from [12], which involves steepest-descent analysis of an
alternative Fredholm determinant represented in terms of contour integrals. As usual, one needs
to find suitable deformations of the contours to make analysis possible. The appealing side of
the approach taken is that one does not need explicit parametrization of the contours; rather,
some useful properties of the contours are observed from general considerations. This enables
us to use the same approach to study the inhomogeneous corner growth model described above.

"In fact, [9] only considered a generalization of the continous-time model but we expect similar large deviation
results in the discrete-time.



In a recent work of I.Corwin, Z.Liu and D.Wang [7] that came to our attention while this
note was under preparation, the limit fluctuations of the last-passage times were identified for
some generalized corner growth models in which parameter ¢ is perturbed for finitely many rows
and columns. Lemma 2.2 there establishes a concentration inequality for the last-passage times
and also derives elegantly in its proof the main asymptotic result (Theorem below) needed to
obtain Theorem The proof is based on analysis of the same contour integrals as in here but
the contours are deformed differently. However, we were able to utilize an idea from the proof
that led to significant departure from [I2] in the derivation of some bounds such as Theorem
[AIp. While an additional steepest-descent analysis is performed for the analogous bounds in
[I2] pp 20-23], we were able to get around this step by showing that the chosen contour lies
inside a certain circle, see Lemma, below.

Outline. In Section [2] we recall the definitions of the Tracy-Widom GUE distribution
as well as the Airy function and the Airy kernel. Section [3] gives a standard derivation of a
Fredholm determinant for the distribution of the last-passage times in the more general case of
site-dependent parameters. Some preliminaries for the steepest-descent analysis including the
choice of suitable contours are carried out in Section [4] Detailed justification of the properties
of these contours based on standard considerations from ODE theory is in the appendix. The
proofs of the main asymptotic lemmas are given in Section 6| Finally, Theorem [1.1]is proved in
Section [6l

Notation and conventions. Some standard notation that appears in this note are listed
below.

N the set of natural numbers {1,2,3,...}

7 the set of nonnegative integers {0,1,2,...}
Ry the set of nonnegative real numbers

H the set of z € C with &z > 0.

i the imaginary unit

[n] the set {1,...,n} forne N
avb the maximum of a,b € R
aAb  the minimum of a,b e R

#S the number of elements in the set S
z the complex conjugate of z € C
| z | the largest integer not exceeding x € R

D(z,r) the (open) disk of radius r centered at z € C

03,5 the Kronecker delta function
Let f and g be complex-valued functions defined on a set X. We write f = O(g) to assert
existence of a constant C' > 0 such that

|f(x)] < Clg(z)] forall x € X.

We refer to a particular choice of C as the implicit constant. We also define 0° as 1.
Acknowledgement. The author would like to thank Timo Seppéldinen and Patrik Ferrari
for helpful conversations during the preparation of this paper.

2 Tracy-Widom GUE distribution

The Airy function can be defined as the contour integral

1
Ai(s) = P e 3524y for seR, (2.1)
c

where contour C consists of the rays from coe ™ to 0 and from 0 to coel? for some 6 € (7/6,7/2).
This integral is absolutely and uniformly convergent on compact subsets of R. Up to a constant



factor, the Airy function is the unique solution of the ODE
d*u
ds?
known as the Airy equation, subject to the condition u(s) — 0 as s — +oo, [21, Chapter 9]. In

the sequel, we will use continuity of the Airy function and the following bound. Given T > 0,
there exists a constant C' > 0 such that

|Ai(s)| < Ce™®  for s = —T. (2.2)

These properties can be derived from (2.1)); we suggest [26, Chapter 4] for details.
One way to define the Airy kernel is by

=su seR,

o0
A(s,t) = fAi(s +z) Ai(t + z)dx  for s,t € R, (2.3)
0
where the absolute and the uniform convergence of the integral over compact subsets of R? are

ensured by (2.2]). Moreover, the Airy kernel is continuous and for each T' > 0 there is a constant
C > 0 such that

|A(s,t)| < Ce 7t for s, t = —T. (2.4)

For any a € R, we can view the Airy kernel as the kernel of the integral operator on L?((a, ))
that maps f to the function

5 J A D) f ()t

That this image is in L?((a,0)) comes from (2.4) and an application of the Cauchy-Schwarz
inequality.
The n x n Gaussian Unitary Ensemble (GUE) is the distribution of the random matrix

X = [X(,7)];,je[n) with the following properties.

(i) X(4,1) is distributed as the real normal distribution with mean 0 and variance 1 for i € [n].

(ii) X(i,7) is distributed as the complex normal distribution with mean 0 and variance 1 for

distinct 4, j € [n]

(i) The entries {X(4,) : 1 <1 < j < n} are independent.

(iv) X is Hermitian, that is, X (i,j) = X(4,4) for i,j € [n].
Being a Hermitian matrix, X has n real eigenvalues \; > ... = \,,. The Tracy-Widom GUE
distribution arises as the distributional limit of the rescaled largest eigenvalue

nS(\; — 2n1/?)

asn — +00. Its cumulative distribution function is given by the following Fredholm determinant
of the integral operator whose kernel is the Airy kernel

(=1’
I

0
Faur(s) =1+ Z J det[A(z;, 75)]; jepndey ... dxy  for s € R, (2.5)
=t [5,00)!
[I0]. The absolute convergence of the series above follows from (2.4)) and Hadamard’s inequality,
see Lemma [6.2] below. Another characterization of the Tracy-Widom distribution is

Faur(s) = exp (= [ (= 9Par)  forsem,

S

where ¢ is the unique solution of the Painlevé II equation

d2
d—sg:Zu3+3u for seR

subject to the condition u(s)/Ai(s) — 1 as s — oo, see [28].



3 Distribution of last-passage times

In this section, we consider a generalization of the corner growth model introduced in [I7] and
[18]. Let a = (an)ney and b = (b, )neny be sequences in the interval [0,1). Suppose that
{W(i,7) : i,j € N} are independent and

P(W(i,j) = k) = (1 — a;b;)afby fori,jeN and ke Z, . (3.1)

Recall our convention 0° = 1; thus, if a; = 0 or b; = 0, the right-hand equals 1 when k£ = 0.
For this model, there are exact formulas for the distribution of G(m,n) (still defined by (L.2))
for each m,n € N. For completeness, we include a derivation of these formulas based on the
discussion in [I7]; we refer the reader to [2], [4], [I8] for more detailed accounts.

One of the main tools utilized in the argument is the Robinson-Schensted-Knuth (RSK)
correspondence. To state it, some definitions are in order. A weak composition o = (a;)ien is a
sequence in Z, with finitely many nonzero terms. Define the length and the size of « as

l(a) = max{i e N: o; > 0} and la] = Zai,
i

respectively. A partition A = ()\;);en is a nonincreasing weak composition. Each ); is called a
part of X\. To each partition A, we associate a Young diagram

Y(\) = {(4,7) e N* 15 < \j and j < I(\)}.

A semi-standard Young tableau (SSYT) of shape X is a map P : Y/(\) — N such that P = P(i, j)
is nondecreasing in ¢ and (strictly) increasing in j. We write A = shape(P). Also, define the
type of P as the weak composition

type(P) = (#{(i,5) : P(i,7) = k})ken-

See Figure for a visualization of a Young diagram and an SSYT. A generalized permutation
s (of length | € N) is a finite sequence ¢ = ((ix, ji))kep] in N? that is nondecreasing with respect
to the lexicographic order (ix < igx41 and if i = igyq then ji < jrop for all 1 < k < 1). We
write L(c) for the maximal length of a nondecreasing subsequence of (ji)ref;- Let P denote the
set of all generalized permutations and 7 denote the set of all pairs of SSYTs (P, Q) such that
shape(P) = shape(Q).
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Figure 3.1: (a) The Young diagram Y'(\) for A = (4,2,2,1,0,...) viewed as the set
of unit squares with upper-right corners at (i,5) € Y(A). (b) An SSYT P of shape
A=(4,2,2,1,0,...). The value P(i, ) is written inside the corresponding unit square.
For example, P(1,2) = 4 and P(2,3) = 6. Note that the numbers are nondecreasing
along rows and increasing along columuns. Also, type(P) = (1,2,1,1,1,2,1,0,...).

Theorem 3.1 (RSK correspondence). There ezists a bijection RSK : P — T with the following
property: If ¢ = ((ix, jr))rep) € P and (P, Q) = RSK(s) then

type(P) = (#{k : jr = n})nen



type(Q) = (#{k : ix = n})nen
Furthermore, if A = (\;)ien = shape(P) = shape(Q) then A1 = L().
For a proof, see [I1], [27]. We will use the corollary below noted in [16]. For m,n € N, define

P = {((ik;s Jk))req) € P+ i € [m] and jy, € [n] for k € [I]}
Tmn ={(P,Q) €T :l(type(P)) < n and I(type(Q)) < m}.

Corollary 3.2. Let m,n € N. There exists a bijection fy,, : Z[f”]x["] — Tm,n such that if

A ez and (P.Q) = finn(A) then
(a) |\ =20, 305, A6, ), where A = shape(P) = shape(Q).
(b) type(P); = 25, A(i, j) for j € [n].
(c) type(Q)i = X7_y A(i,j) for i€ [m].
(d) A\t = maXren(m,n) i jyer A6 J), where Ay is the largest part of A in (a).

Proof. For each A € ZE:”JX["], define g, (A) as the unique ¢ = ((ig, ji))re] € Pm,n such that
each (i,7) € [m] x [n] is repeated exactly A(4, ) times in . Note that g, , is a bijection and
=", Z;'L=1 A(i, 7). Moreover, the lengths of the maximal nondecreasing subsequences of
(jr) ke are given by Z(i’j)eﬂ A(i, 7) for various 7 € II,, ,,. Hence, L(s) equals the last-passage
time maX eri(m,n) Z(i’j)eﬂ A(i, 7). Tt follows from Theorem that the map RSK restricts to a
bijection RSK,, , between P, ,, and T, . Now, the composition fy,, = RSKy, n ogm.n is a
bijection between Z&n]x["] and Ty, , with properties (a)-(d). O

We will also rely on the following generalization of the Cauchy-Binet identity [I8, Proposi-
tion 2.10].

Proposition 3.3. Let (X, u) be a measure space, n € N and f;,g; : X — C be measurable
functions for i € [n] such that fig; is integrable for any i, j € [n]. Then

der | p@osmtan)| = [ aet o s At ) ()

We next obtain a Fredholm determinant representation for the distribution of G(n,n) in the
case of injective (a;)iern) and (b;);ern) (terms do not repeat). A more general version of the
following proof can also be found in [4] and [I§].

Theorem 3.4. Let n € N. Suppose that (ai)ie[n] and (bj)je[n] are injective sequences. Define

[T (1 —aibk)(1 — axby)

agb?  refn]

Ko (z,y) = yELy . 3.2
@y = 2 T aib; 11 (o —a) [1 (e by [0 (32)
hieln] keln] keln]
k#i k#j
Then
o (-1
P(G(n,n) <k) =1+ ) 0 >, det[Kn(wi )], ey forkeZy. (3.3)
=1 T, =ktn

Proof. Let ® denote the map that sends A € ZE:L]X[”] to the common shape of the correspond-
ing SSYT pair under the bijection in Corollary and define A = ®([W(4,5)]; jern])). Then
P(G(n,n) < k) = P(A1 < k). Moreover, for any partition A, we have

PA=))= Y P(W(i,j) = A(,j) fori,je [n])
A:®(A)=A



_ A(w) A(4,5)
2 H 1 aZ b]

A:®(A)=X\1i,j€[n]

H (1 — a;b;) Z 1_[ Yjerny A7) 1—[ b Diern) AlE:4)

i,j€[n] A:D(A)=Ni€[n jen]
= [T a—aty) D] H pee®i N H aP @ (3.
i,j€[n] P:shape(P)= )\je [n] Q:shape(Q)=X\ i€[n]
I(type(P))< I(type(Q))<n

Note the inequality I(type(P)) > I(shape(P)) for any SSYT P; hence, (3.4 is zero unless
I(A) <n.
We now use the polynomial identity

+
Z n X‘?YPQ(P det[X I n:l 7j€[n]7 (35)
P:shape(P)=M\ je[n] ! det[Xl j+n]i7je[ ]

l(type(P))<n

either side of which is the Schur polynomial indexed by A in n variables Xi,...,X,. For a
proof of (3.5), see [27, Chapter 7]. Since (a;);c[n) and (b;) ern) are injective, the Vandermonde
determinant

det[X; 7 e =[] (X = X))

1<i<j<n

is nonzero when evaluated by setting X; = a; for i € [n] or X; = b; for i € [n]. Hence, by (3.4)
and (3.5]), we obtain

P(A = \) = Z;  det[a)” ™) epny det[0) 7 e (3.6)

where the normalization constant is given by

H1<i<j<n(ai - aj)(bi - bj)

Zn = (3.7)
Hi,je[n](l - aibj)
The probability P(A; < k) can then be written as
1 o §
P <k) = = 3 detla™ "] jepuy deth T
™ Xia <k
I(A)<n
1 m; mas
T nz, Z det[a; 7 ]; jern) det[b; 7 ]i jen]- (3.8)
o n

M1,...,Mp€L4

m;<k+n—1

For the last equality, first change the summation index from A to the decreasing sequence
(mj)jemn) = (A\j —J +n)jepn) in Zy with my < k+n — 1. (Note that A is uniquely determined
from (my);e[n) because [(A) < n). Then remove the ordering of (1) je[,], which introduces the
factor 1/n! Finally, allow repeats in (1) je[,], which does not alter the sum because the added
terms are all zero.

It remains to turn (3.8)) into the desired form. For any ! € Z, by Proposition

1_ g1+t
mipm p— i J
Z det[a; " ]; jen) det[b;"]; jepn) = n! det l Z a;"by 1 = nldet ll—azbgl .
i.jeln] wi€tn]

mi,..., M €Ly m=0
(3.9)
Letting k — +o0 in (3.8]) and I — +oo in (3.9)) yield
< 1
Z,, = det myr =det [ ——— . 1
elZaZ]l eL_m%] (3.10)
m=0 i,je[n] i,5€[n]

7



Since Z,, # 0 by 1' the matrix C' = [(1 — aibj)*l]ije[n] is invertible, and

n det [C(i, ) = X psn a"0]]
(A< k) = Aet[CC s geln]

n 0
= det [(527] — Z C_l(Lp) Z G,;nb;n]
p= i,j€[n]
0 7

m=k+n
= det l ij

i,j€[n]

1
0
by hi(m)] )
m=k+n i,5€[n]

where h;(m) =37, C~'(i,p)ay’. Then, applying Proposition (3.3 twice, we obtain

n 1 0 "
P(A <k =1+ q!) > det l > bishu(m)]
a=1 itigeln]  Lm=kin rsela]

n (_1)q n 1 -
=1+ > > det[b7" ], sefq) det[hi, (m)]; seqq]
ili ’iq

| |
q=1 7 =1 ¢ mi,...,mqg=k+n
n n
—1)4 1
Sy CE N S et e detlhe, ()]
q=1 ¢ mi,...,mqg=k+n ¢ i1,..ig=1

—14 ) (—qll)q S det lZ hi(mr)b;"'*1
T,SE[q]

q=1 mi,...,mq=k+n i=1
o (—1)¢ Ny 1

=1+ Z p Z det Z Z a,"C™ (i, p)b;* . (3.11)
q=1 mi,..., mg=k+n i=1p=1

s,r€[q]

Finally, we compute the inverse of C. Note that C%*7, the 4, j-minor of C, has the same
structure (in terms of entries) as C; therefore, by (3.7)) and (3.10),

dee € = ] ;= [ @-a) ] (=)

k,e[n] k,le[n] k,e[n]
ki k<l k<l
1] k10 k%]
det C'
= S [T - ab)(1 - andy)
1 —aib; keln]

(=D T (@ —ar)™ T (b5 —be)™"
]

ke[n] ke[n
k#i k#j

Then, by Cramer’s rule,

H (]. — ajbk)(l — akbi)

1. . -det C? 1 ke[n]
C i, j) = (—1)7 = . 3.12
@) = D) e = T=ab, 1 (=) 11 (o —a)) (3.12)
ke[n] ke[n]
k#i k#j
Inserting ([3.12)) into ([3.11)) completes the proof. O

Note that the assumption of independent weights distributed as is crucial in the pre-
ceding proof to obtain , the representation of the distribution of the last-passage times in
terms of the Schur polynomials. The probability measure on the space of partitions is an
example of a Schur measure introduced in [20].



Another probability measure of interest derived from ([3.6) is the distribution of the random
set S = {A; —j 4+ n:je [n]}, which is given by

P(S = S) = iz, det[ ]zge[n] det[b ] i jeln] (3.13)
for any S = {mq,...,m,} < Z,. By a general fact from the theory of point processes, for any
distinct z1,...,24 € Z,

P({z1,.., 24} © S} = det[Kn (21,2, ] e (3.14)

In the language of the theory, S can be viewed as a determinantal point process on Z,; with
correlation kernel K,,. Since G(n,n) = A; = maxS —n + 1, a restatement of (3.3) is that

P(maxS <k +n—1) Z > P({z,...,m}c8) forkely,

T1,..., 21 =k+n

which is an application of the inclusion/exclusion principle. This furnishes a probabilistic in-
terpretation of . For a proof of @D and a detailed discussion of the notions in this
paragraph, we refer the reader to [3], [4], and [IS].

A useful conclusion from is that

det[ Ky (2, 74)]r se[q) = 0 for any 1,..., 24 € Zy . (3.15)

Moreover, this determinant equals 0 if ¢ > n. One can also make these observations more
directly using Proposition we have

det[ Ky (2r, T5)]r, se[q) = det Z afrC_l(j,i)b;?s

naeln] r.selq]

1 x
- (q!)2 Z Z det[ai:]svre[(ﬂ det[C (]sa Zr)]r s€(q] det[b ]r s€lq]

’Lly-“’iqe[n] j1>---7jqe[n]

(3.16)

1 det|a i, 18,7 det b; s
i 2, [| i e AU Dy (3.17)
I q.det[c(.]37ZT)]T,s€[lI]

i1,.09€[N] G1,..-,Gq€[N]

where the last equality requires ¢ < n; otherwise the determinants in (3.16) are zero. For each
choice of 41,...,44 and ji,...,jq, the summand is a probability by nd7 hence, the sum
is nonnegative.

For the purposes of asymptotics as well as to extend Theorem to the case of nonin-
jective parameters, it is useful to express as a contour integral. Let us write a and b
for the parameter sequences (a;)ien and (b;)jen, respectively. For m,n € N, z,y € Z, and
ze C~{a,...,an}, define

b (2) = =5 : 3.18
m,n,x(z) Hizl(z 7 ai) < ( )
and the contour integral
b, ()FPa , (w)
Kb (z,y 35 ff ™ ””1 = ZT;UW dz duw, (3.19)
le plzl=p

where maxi<;<m @; vV maxigj<n b; < p < 1 and the circles of integration are oriented counter-
clockwise.



Theorem 3.5. Let m,n € N. Then

P(G(m,n) <k)=1+ i (—1)! Z det[ K, b w(@i, )i jern for any ke Z, . (3.20)

Proof. If (a)ie[n) and (b;);c[n) are injective, for each u € D(0,1), the only singularities of the

Fa,b P Fb a
functions z — LI() nd w — %() inside D(0,1) are simples poles at ay,...,a, and
—zu

bi,..., by, respectively. Therefore, by Cauchy s residue formula and (3.2)),

Resal n n T Resb F}z)n
Kibw) = Y, iz B, Py
i,j€[n] A
Z QEHnpytn kl_[[n](l — aibg)(1 — axb;)
7.. 1—a;b; H (ak—a') H (bk—b)
Bt " keln) " keln] !
ki k#j

= Ky(z+n,y+n)

for x,y € Z, provided that (ai)ie[n] and (b;)e[n] are injective. Then, by Theorem

2 det[Ka (w4, 25)]ijepy for ke Zy . (3.21)

T1,...,T1EL4

P(G(n,n) < k) = Z

We claim that both sides of (3 are continuous in parameters (a;);e[] and (b;)ie[n]. Then
- ) holds even if (al)ze[n] or ( i)ic[n] has repeats. In particular, setting a; = 0 for m <i <n
and b; = 0 for n < j < m, we obtain the result. To prove the claim, note that P(G(n,n) < k)
is continuous because it can be written as the finite sum of probabilities

P(W(i,j) = A(i,j) forij e [n]) = [] (1 —aiby)a )b (3.22)

i,j€[n]

over matrices A € ZE:L]X[TL] for which max eri(m,n) Z(M)Ew A(i,j) < k, and 1) is continuous.
Pick § > 0 small so that

max a; v 1rnja<xnb <p-—9, (3.23)

where p is as in (3.19). Then there exists C' > 0 (which depends on n and §) such that
K2 b(x y) < C’pﬂ”y for any x,y € Z,, which leads to the bound

l
L )
det[ nn(l'ul‘j)]i,je[l] = Z sgn H JCZ, a(i)) < l!Clp2Zi=1 a:l,

og€eS,; 1=1
which is summable over x1,...,2; = k. Hence, the inner sum in (3.21)) converges uniformly
on the set [0, p — §)?*. This and continuity of KZ‘B imply that the right-hand side of (3.21) is
also continuous on [0, p — §)?". Since p — & can be chosen arbitrarily close to 1, the claim is
proved. O

Since p < 1, using the identity (1 — zw)~! = Zloio z'w! and Fubini-Tonelli theorem, we can

rearrange (3.19)) as

1
,b _ a,b b,a
K:%n(mV y) - (27Ti)2 § §> : : Fm n, ac+l Fn m y+l( ) dz dw

jwi=p |2/=p "
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F b fdse (3.24)

m,n,z+l"n,m,y+1>

18

=0

where

1
) L — Fab Fab 3.25
m,n,xr 27Ti m,n,xr Z 27_(_1 45 mnw ( )

|z|=p =1
4 Steepest-descent analysis
Fix ¢ € (0,1) and set a; = \/q for i € [m] and b; = \/q for j € [n]. Then (3.18)) becomes

_ == Lt
Frne(2) = G- v (4.1)

for m,n e N, 2,y € Z, and z € C~{,/g}. In this special case, we will drop superscripts a and

b in (3.19) and (3.25) as well. Theorem [3.5 asserts that

P(G(m,n) <t)

Z det[ Ko n (i, 25)]i jen- (4.2)
Il,...,ZL’lGZ+

x; =t

for any m,n € N and ¢ > 0. To prove Theorem we will show that the right-hand side of
with m = |nr| and t = ny + n'/35s converges to that of . The main step here is
to establish that appropriately rescaled K, ,(x,y) converges to the Airy kernel and obeys a
uniform upper bound.

Let (nr)ken be a positive real sequence such that np — +o0. For k € N, set

=|m| and mg=|rn]. (4.3)

Also, for k € N and s € R, define

pi(s) = ey + 105 | (4.4)
Theorem 4.1. Let T > 0.
(a) For eachle€ N,

lim det[ Koy ng (01 (53), 1 (55) )i e nt® = det[A(si, )i jern

k—o0
uniformly in s1,...,s € [-T,T].
(b) There exist N € N and constants C,c > 0 such that
— —eSt sy
det[Km, i, (01(50), P ()i jeryy < C11Y2n, PP e Zima s
forallle N, k> N and s1,...,51 = —T.

We give a proof of Theorem [4.1] in Section [f] via steepest descent analysis of the integral in
. In order to find a suitable deformation of the contour, we now examine F,, ., p.(s) a8
k — +4oc0.

Let D denote the disk having the interval (,/g,1/,/q) as its diameter. We define the holo-
morphic function f on D by

f(z) = —rlog(z — \/q) + log(1 — \/qz) + (r + ) log z, (4.5)
where the logarithms are the principal branch. By (4.1)), (4.3) and (4.4), we have

Fre e on () (2) = exp (—my log(z — 1/q) + ny log(1 — 24/q) + (ms + pr(s))log 2) (4.6)

11



= exp (nkf(z) + 17,1/305 log z + O(1)(log(1 — 24/q) + log(z — 1/q) + log z))

for z € D. This leads us to choose the contour in (3.25)) based on the behavior of f.
Let w and v denote the real and the imaginary parts of f; hence,

u(z) = —rlog|z — \/q| +1og |1 — \/qz| + (r + 7) log |z (4.7)
v(z) = —rarg(z — /q) + arg(l — \/qz) + (r + ) arg z. (4.8)

Note that u and the derivative

£(2) NG +7“+’y_ r

- Vaz —1 z z—./q (4.9)
both extend continuously to C ~{0, \/g,1/,/q} via the formulas in and .
We can rewrite (4.9) as
/ . (Z B C)Q
where
(o VIV (4.11)
1+ /qr
Hence, f'(¢) = f”(¢) = 0 and, in view of ,
CCva-DC-vae ¢
Then we have the expansion
3
J() = FQ) + T (1= 2/0)° + O(z = ¢[*) (4.12)

around (.

We now discuss, somewhat informally, the nature of the steepest-descent and -ascent curves
of u (i.e. curves that are tangent to the vector fields —Vu and Vu, respectively) emanating
from ¢. A more rigorous version of the argument here is provided in the appendix.

It follows from that there are three steepest-descent curves Di, Dy, D3 and three
steepest-ascent curves Aj, As, Az of u which have ¢ as one of their endpoints; D; and A; come
in ¢ at angles i27/3 and 7 — i27/3 with positive real axis for i = 1,2,3. We next deduce some
global features of these curves depicted in Figure [f.I] By the Cauchy-Riemann equations, v
equals the constant v(¢) = 0 along these curves. Since Vu = f’ is real-valued on the real line
and, by , has a zero only at (, the unique steepest-descent and -ascent curves passing
through z are along the real line for any = € R~{0, /g, 1/,/q,}. We conclude that D; and Aj,
which contain points of the upper half-plane, cannot intersect the real line. D; and A; cannot
intersect each other and themselves either due to strict monotonicity of v along these curves.
In particular, D; and A; do not revisit a small neighborhood of ¢ as the level set v = 0 in the
upper half-plane nearby ( consists of segments of Dy and Aj.

If D; and A; are bounded then, along D; and A;, Vu is bounded away from 0 outside a
small neighborhood of { and u approaches —oo and +0, respectively. We note from that
u(z) — 400 as z — /g and u(z) - —0 as z — 0 or 1/,/q. Also, u(z) — + as |z| — +00;
therefore, D; is bounded, which implies that D; approaches either 0 or 1/,/g. The latter is not
possible because, otherwise, Ay is trapped in the interior of the closed curve made up of Dy
and the line segment [C,1/,/q], and must approach the exterior point ,/g. This contradiction
shows that D; ends at 0. Then Aj, being still cut off from /g, goes off to infinity. Due to
the symmetry of u, Dy and Ay are mirror images with respect to the real axis of D; and Aj,
respectively.

12



Figure 4.1: Steepest descent curves Dp, Dy, D3 and steepest ascent curves
Al,AQ,Ag for u at C

Let I' denote the contour consisting of D1 and D- oriented counterclockwise. Since I' encloses
the singularity /g of Fy;, n ., we can deform the contour in toI.

In the proof of Theorem we will need upper bounds on I,,, 1, p.(s) that improve expo-
nentially as s — +00. The following lemma will be useful to establish these bounds. See Figure
below for an illustration of the lemma.

Lemma 4.2. The circle |z| = ¢ encloses I' \ {(}.

Proof. For z € Dy, we have v(z) = v({) = 0. To prove the result, it suffices to show that the
function ¢ — v(Ce'*) is increasing on [0, 7). We have
d(v(¢ett it s i ity ~ i
M) _ Gufce) - tiet) = R(f(ce)ce)
(1 +7)CR(2(t)y(?))

= p - 4.13
o — 1/ AP — P 1

where z(t) = (el — 1)(¢e™™ — 1/,/g) and y(t) = (e* — 1)(¢e™™ — \/g). Note that Rz(t) >
0,Sz(t) < 0, and Ry(¢) > 0,y(t) > 0, which implies (4.13) is positive. O

5 Asymptotics of the correlation kernel

In this section, we give a proof of Theorem u The argument is based on representation ((3.19)
for the correlation kernel and requires precise information about the behavior of the integrals
Loy, iy (s) for large k € N. The following lemma shows that the Airy function arises as a
uniform limit in the asymptotics as k — o0 and establishes a uniform bound, which will be
sufficient for our purposes. The proof of the lemma comes from analysis of the integrands
Fony nwpi(s) @long the steepest-descent contour I' defined in Section @
Lemma 5.1. Let T > 0.
(a) s
o I
lim Me Ly nipr(s) _ Ai(s)
k—o0 Cka’nkst(S) (C)

uniformly in s € [T, T].

13



2L i

-2 =1 4] 1 2

Figure 4.2: A plot of the contour v(z) = 0 (light blue) and the circle |z| = ¢ (brown)
for g =1/4 and r = 1.

(b) There exist N € N and constants C,c > 0 such that

—1/3 —cs
|Imk,nk,pk(s)| < an / € |ka,nk,pk(s) (<)|
fork =N and s = —T.

Proof of (a). Because T' is symmetric about the real axis and the upper half of T' makes an
angle of 27/3 with the positive real axis at (, if ¢ > 0 is sufficiently small, the points (' =
¢+ Ceo1el™/349) and {7 are on T for some ¢ € (—n/6,7/6). Split T into two parts T'; and I'y
with endpoints at ¢’ and ¢/, where I'; is the part passing through ¢. Note that we can change
the contour of integration I' by deforming I'y into I'}, the broken line segment with vertices at
¢,¢" and (' oriented from ¢’ to (', see Figure The proof is complete once we show that

1/3

. o1y, 1 f
lim ——2———  —— | F. . 0o(s)(2)dz = Al 5.1
k00 Ckaﬂlk,pk(S)(C) 27”1—‘/ kM5 PE ( )( ) ( ) ( )
1
F (2)
lim py/® | erepe(&°2 g0 g, (5.2)
k= ka Nk, Pk (8) (C)

2

both uniformly in s € [-T,T].
If ¢ is sufficiently small, we have for z on T}

ety (34(1(2) = 1(6) + s loe(a/0))

i i (3) (C)

(-
-exp ( pr(s) = ey —m*os) 10g(Z/C)>
(

- exp

O'
— exp Nk

(1 20 — noas(1 - z/o)
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Figure 5.1: Contours I'y (blue), I's (purple) and I" (red).

exp (o<|z ¢+ O sllz — ¢P) + Ol — <|4>).

This comes from (4.5), (4.6)), (4.12) and the expansion
log(2/¢) = —(1 = 2/¢) + O(l= = ).

Hence, changing the variables via z = {(1 — 0’177,;1/ ®u) and rearranging terms, we arrive at

1/3
Tk ! _ L[ et s—sur o Gl +slul )
m "o Jka,nk,m(s) (2)dz = i fe Tk du, (5.3)
s J J

where contour Cj, consists of the line segments from en,i/ 3e=1(m/3-9) 6 0 and from 0 to en,i/ Bei(n/3-9),
See Figure 5.2

Figure 5.2: Contours I'} (blue) and Cy, (red).

We now consider the difference of the right-hand sides of (with 0 = m/3 — ¢) and (5.3).
Let C denote a common implicit constant in the error terms in (5.3). Put a = cos(m — 3¢)/3
and b = cos(m/3 — ¢). Note that ¢ — 0 as € — 0; therefore, a and b can be made arbitrarily
close to —1/3 and 1/2, respectively. For u € Cy,

™ /35 (Ol 2 (Jul sl ul® +1ul*)) _ 1| _ calul®—sblul| Ot P (ul tlslul® +ul®)) _ 1| (5.4)
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: —1/3
< ealul® —sblul+Cny P2 (lul+] sl +ul*)

—1/3
<Oy, P (ful + [l ul® + Jul*) (5.5)
< elulP+Tolul+ O (jul+ Tl +|ul*)
<O P (Jul + Tluf® + [ul*) (5.6)
< Cee“ (1 + Tlu| + |ul?)
~exp((a + Ce)|ul* + (Tb+ CeT)|ul). (5.7)

Here, (5.4) follows because u has direction e*(7/3=%)  For (5.5, we use the inequality |e* — 1| <

|z|el*l for z € C. Finally, and are due to |s|] < T and |u| < en,i/g’. Note that the
right-hand side of does not depend on s and converges to 0 as k — o pointwise. Moreover,
the right-hand side of does not depend on k and is integrable provided that a + Ce < 0,
which is the case if € > 0 is small enough. Hence, follows from dominated convergence.
We now turn to . Since log |1 — z,/q| and log |z — ,/q| are bounded on I', we obtain

|ka>nk7Pk(5)(Z)‘
|ka,nk yPk (S) (C) ‘
for z € I' \ {0}. Introduce a small parameter § € (0,1). Since u is decreasing along I" away from

¢, we have supp, u(z) < u(¢). Also, log|z/(| is bounded on I' minus the disk |2| < 0. These
observations, assumption |s| < T and (5.8)) imply existence of constants C, ¢ > 0 such that

= exp (nk(u(z) —u(Q)) + (ni/gas +0(1))log |2/¢| + O(l)) (5.8)

‘ka,nk,pk (S) (Z)|
‘ka,nk,pk (s) (C)'

for z € 'y with |z| > 6. By boundedness of the first two terms in (4.7),
u(z) —u(C) = (v +r)log|z/¢| + O(1) (5.10)

for 0 < |z| < 4. Using this and |s| < T leads to

< Ceom, (5.9)

(u(z) — u(C)) + (0 os + O(1)) log |2/¢| = (w +r+0(n, 7)) log|2/¢| + 0(1))

The right-hand side is less than —c'n;, for some constant ¢’ > 0 for all large enough k provided
that ¢ is small enough. Hence, an equality of the form (5.9) also holds for |z| < n and k large
enough. It follows that

Fm n S z
i/ f B (9)(2) < Cnp/? length(Ty)e ™, (5.11)
R menk,Pk(S)(C
2

which implies the uniform convergence in (5.2]). O

Proof of (b). It suffices to show that there exist C,¢ > 0 and N € N such that

J6u3/378u+0(n;1/3(|u|+\s||u|2+|u|4))du < Ce ¢ (5.12)

C

kamk,])k(s)(z)

F

dz| < Oy Pemes (5.13)
Mk, Nk,Pk(S) (C

18

forall s> —-T and k > N.
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Figure 5.3: Contour obtained from deforming a part of C; (dashed) into line segment
l.

We first consider the case s > 0. Choose k large and deform the part of the contour Cj in
(5.3) that contains 0 and has endpoints at e (7/3=9) into the line segment I from e~ 1(7/3-¢) to
e(7/3=%) as in Figure Recall a and b from the proof of (a). For w = b + iy € [, we have

R (w?/3 = sw + Ol (jwl + sl + [wl*)) = b/3 = by? = bs + O, (1 + 9))
<1/3—bs+Cn, P(1+s) <1—bs/2 (5.14)

for some constant C' > 0 and sufficiently large k. Similarly, for w € Cy, with |w| = 1 and € > 0
sufficiently small, we get

R (w?/3 = sw -+ Ol (] + slwl?® + [wl*))) = aluwl* ~ sblu] + O(e(1 + sfw] + [w]*))
< (a+Ce)|lw]® + Ce— (b— Ce)s (5.15)

for some constant C' > 0. Bounds (5.14) and (5.15)) imply (5.12) for s = 0.

Recall 6 > 0 introduced after (5.8) and that sup,.r, u(z) < u(¢). Also, it follows from
Lemma that sup,.r, log|z/¢| < 0. Then, by (5.8)), there exist constants C, ¢ > 0 such that

|ka,nk,pk(s) (Z)|
|ka,nk,pk(s) (C)‘

for z € T'y with |z| = 6. Moreover, choosing k large, § small and using (5.8) and (5.10)), we
obtain

3¢

< Cemem—en (5.16)

‘ka,nk,pk(s) (Z)|

P (o) (O < Cexp (m«((v + 7+ 0@ ")) log |2/¢) + O(1)) + n s log |z/g|)

/34

< Cle™em—eny (5.17)

for z € 'y with 0 < |z| < §, for some constants C,c¢ > 0. Then (5.13) for s > 0 follows from

(5.16) and (5.17).
Let C and c refer to the constants in (5.12) and (5.13) for s > 0. Suppose now that
s € [-T,0). Then the integrand in (5.12)) is bounded by

exp(alul® + Thlu| + Cre(1 + T|u| + [ul*)) (5.18)
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for some constant Cy > 0. If € is small enough, (5.18]) is integrable over Cy. It follows from this
and (5.11)) that (5.12)) and ((5.13]) still hold after replacing C by a larger constant if necessary. [

Proof of Theorem [{.1 We will first obtain (b). By Lemmal[5.I[(b), there exist constants C,c > 0
such that

—1/3 _—e(s+n Y31
|Imk7nk;pk(s)+l| = ‘Imk7nk7pk(5+77;1/317;1l)‘ < an / € (4, " l)|ka,nk,pk(s)+l(CT)| (5'19)

1/3

for s > —T for sufficiently large k. Observe the identities vy, = ~,/r, 01/, = o,/r'/? and

¢ = 1/¢, from (1.6)), (1.7)) and (4.11). Hence, we have
ng = |np/rl, mu =[]
pk(s = [U;ﬂyr + n;gl/gal/rsj

for k € N and s € R, where 7, = r1,. Then, another application of Lemma (b) with r and
sequence (1), )ken yields

Z1/3 _y —1/3 —1
|I’ﬂk7mk7pk(t)+l| = )Ink,mk,pk(t+n;1/3a;1l) < Olnk / € (¢, " l)|Fnk,mk,pk(t)+l(Cl/r)| (520)

for t = —T, for sufficiently large k£ and some constants C’, ¢’ > 0. In fact, because s,t > —T, we
can assume that ¢/ = ¢ at the expense of having larger constants C,C’. Also, it can be verified

from (4.1) that
ka,nk,pk(s)+l(<T)Fnk,mk,pk(t)+l(C1/7") = ka(s)—pk(t)' (521)

Combining (5.19)), (5.20) and (5.21)), we obtain

—c(s - —coin V3 s)—
\[mk,nk,pk(s)HInk,mk,pk(tw\ < Ce (“)le 2/3 g—co lcfk() Pr(t) (5.22)

for all integer | > 0. In view of (3.19]), summing over [ yields

C’rlil/g - S)— —C(Ss
| K i (Pr(8), pre(2))] < ﬁ’lk VB epk(9)=pr(t) gmelstt), (5.23)
— e C9r My
The first factor on the right-hand side is bounded; thus,
| K ni (01 (8), i (1)) < Coge ™30 ¢pr(e)=pil) (5.24)

for s,t = —T, sufficiently large k € N and some constant C' > 0. Now, using (/5.24)), properties
of the determinant and Hadamard’s inequality gives

det [Kom, n, (pk(si),pk(sj))]i7je[l] = det I:ka(sj)_pk(si)Kmk7nk (pk(si)’pk(sj))]”e[l] (5.25)
. . 1/2 7
< Cln;l/?) He—csi (Z e—2cs_7~>
i=1 j=1
. . 1/2
_ (ecTC)ln;l/S He—csi (Z e—2c(sj+T)>
i=1 =1

l
< (GCTC)ZZI/27]k_l/3 1_[ efcsi’
i=1

which is (b) after redefining the constant C.
Each entry of the matrix on the right-hand side of (5.25)) is bounded uniformly in s1,...,s; €
[—T,T] by (5.24). Therefore, to prove (a), it suffices to show that

Jim o SO e (pr(3), P () = Ao, 1) (5:26)
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uniformly in s,¢ € [-T,T]. Let L > 0 and € > 0. By Lemma 5.1, there exist N € N such that

1/3[
Orlk m,ng,p(s)+1 : -1/3 1 €
—Ai(s+mn, Co )| < = (5.27)
Crka,nk,pk(s)H(Cr) k L
1/3
Urnk/ Ty i (8) 41 — Ai(t + 77_1/30711) < £ (5.28)
Cu/rFnge i@ +1(Cyr) S L

for s,t e [-T,T],0< 1< LaTn;/s and k > N. Using Lemma , boundedness of the Airy
function on [T, L + T and (5.21), we can combine (5.27) and (5.28) via triangle inequality to
obtain

1/3 (s 1 —1/3 4. —13 _ . —13 _
U’r‘”k/ ka(t) P )Imk,nk,pk(s)+llnk,mk,pk(t)Jrl — 0, 177k / AI(S + M / Oy 1l) Al(t + M / Oy 1l)
Ce
Y (5.29)
M

for some constant C' > 0. By uniform continuity of the Airy function on [T, L + T], we also
have

| Ai(s 4+, P ) Ailt +my, Pot) — Ai(s + 2) At + 2)| < % (5.30)
whenever s,t € [-T,7], 0 < [ < Lami/g, x € [77,;1/30;1(1 — 1),17,;1/30;”] and k = N, by
choosing N larger if necessary. It follows from ((5.29) and (5.30) that

—1/3 _—1

m, ol
1/3 - . . Ce

Urﬂk/ ka(t) pk(S)Imkﬂlk7pk(5)+ljnkymk7pk(t)+l — Ai(s + x) Ai(t + x)dz| < —7
~1/3 _—1 Lnk
M o (1-1)
for some constant C' > 0. We now sum over 0 < [ < Lami/ % and obtain
L

O'rnli/Bka(t)_pk(s) 2 Imk,nk,pk(s)-&-llnk,mk,pk(t)-&-l - IAI(S + :L‘) Al(t + LL‘)d{E < Ce
0

0<i<Lo,n;/?

(5.31)
for some constant C' > 0. Moreover, choosing L large enough, we have
+00
J Ai(s + z) Ai(t + z)dx| < € (5.32)
L
Finally, summing 1} over [ > Lorni/ 3 gives
Urn;/Ska(t)—Pk(s) 2 Imk,nk,pk(s)+l‘[nk,mk,pk(t)+l < Ce—cls+t+2L) - o (5.33)

l>L0‘T’I7,t/3

for s,t € [-T,T], k = N and some constants C, ¢ > 0 provided that L is sufficiently large. Then,

we conclude (5.26]) from (5.31)), (5.32)) and (5.33]). O

6 Proof of Theorem I.1]

In this section, we combine Theorem [4.1| with standard estimates on the Airy kernel to establish

S o (=)
kgrfoo 0 Z det [Kom, ny (qi,qj)]i’je[l] = Z T det[A(zi, 75)]; jepndes - . . day
=1 : qi,.- @1 EN =1 : [5,00)!
qi=>pr(s) >

(6.1)
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for any s € R. Note that (6.1)) implies Theorem on account of (2.5) and (4.2)).
We first derive a uniform bound in £ for the inner sum on the left hand-side of (6.1)).

Lemma 6.1. Let T > 0. There exist N € N and constants C,c > 0 such that
Do det [Kony oy (405 49)]; jepy < CUl2p—c Xl i

q1,--, @ €N
qi=pk(si)

forleN, k=N and s1,...,81 = —T.
Proof. Noting that

g = pi(s:) + g — pr(si) = prlsi + (i — pi(si))me Po),

we obtain from Theorem that there exists NV € N and C, ¢ > 0 such that

det (Ko, ni (6i-45)]ijern < C'1/%n " exp (—cZ(sz pk<sz—>>n,;”‘°’o—1)>

whenever k=N, s1,....,8 = =T and ¢; > pr(s;) for i € [I]. Summing over ¢; = pi(s;) for
€ [1] yields
l el
Z det [Kp, n, (4, 95)]; jell] < CN'Pemcdizi . 1 7
, —1/3 4
q1,---, QIEN (1 _ ey, o )
qi=pk(si)
Since 77,;1/3 <C'(1- e_cnlzl/‘g"fl) for some constant C’ > 0, the result follows. O

A similar inequality holds for the Airy kernel.
Lemma 6.2. Let T > 0. There exists a constant C > 0 such that

J det [A(z,25)]; jem @1 day < Cle™ Zim1si
11,...,mlER
T;=8;
forleN and s1,...,8 = —T.
Proof. Tt follows from ({2.3]) that A is symmetric and
a0
Z V; A(QL‘Z, xj)vj = Z f V; Al(l‘Z + t) AI(Z‘] + t)Ujdt

ijell] ije[] Vo

f Z v; Ai(z; +t) Ai(x; + t)v;de
i,7€[l]

- foo (Z Ai(x; + t)vi> dt >0

0 \i=1

for any vy,...,v; € R. That is, [A(2;, 7;)]; jer) is @ nonnegative-definite matrix. Therefore, by
(2.4) and Hadamard’s inequality, there exists a constant C' > 0 such that

l
det[A($i7x] i,5€[l] = HA J?l,xl Cle_ Zé=1 i
=1

whenever x; > —T for i € [I]. Integrating over x; > s; for i € [I], where s; = —T, completes the
proof. O

20



Proof of Theorem[1.1] Introduce € > 0 and S > s. By Lemma [6.1

0 DO g1/2 ,—cs(l—1) -1
1 _es 0 Ve C

2 il O et Koy (00)]; ey < Ce™ 5 ) (-1

=" I :

q1,---, Q1 EN =1
qi=pk(s)
max q; =py (S)

for k = N for some constants C,c > 0 and N € N. The right-hand side is finite by the root test
and can be made less than € choosing S sufficiently large. For such S, we similarly obtain from
Lemma [6.2] that

o 1
2 7 J det[A(ﬂ;‘i, xj)]me[l]da:l Lo.odxy < e
=1

T1,..., L1 28
max ;=S

Hence, it suffices to prove the following truncated version of (6.1]).

o ()
lim Z det [Kpm,, n, (€5 Qj)]i,je[l]

e B g e
Pk (5)<qi<pr(S)
o (1)
= Z I det[A(z;, xj)]i,je[l]dxl .oodxg. (6.2)
= sy

By Lemma and finiteness of 2?0:1 ll/zcle_“l/l!, we can conclude l) from dominated
convergence if we show that

kh—{%o Z det [KWZkyTbk (Qia qj)]i,je[l] = f det [A(xi, xj)]i,je[l] dry .. .dx;. (6.3)
q1,---,q1EN (s8]
pr(s)<qi<pr(S) )

for each I € N.
Fix [ € N. For k € N, consider the partition of the interval [s,c0) into intervals of length

0_177,;1/3 with endpoints at

t(g, k) = s + (¢ — pr(s))o ' ?

for ¢ = pi(s). Observe that pg(t(q,k)) = ¢q. Also, for pr(s) < q1,-..,q < pr(S), we have
s < t(gi, k) < s+ (pr(9) —pk(s))a_lngl/?’ < S +1 for each i € [I]. Therefore, by Theorem ,
there exists N € N such that

1 —1/3 1 —1/3
et IR (a1 47)]; g — 0™ det [A(H(ai, k), gz, KD, e | < eom” (6.4)
whenever k£ > N and pi(s) < ¢; < pr(S) for i € [I]. By uniform continuity of det[A(z;, z;)]; je[
on [s,S + 1]!, choosing N larger if necessary, we obtain

det [Kmk,’nk (qi7 qj)]i,je[l] - J;z det[A(ﬁi, fj)]i,je[l] dml e dxl < 2€U_lnk—l/3’ (65)

q1, 591,k

where Ry, . 4.k denotes the product of the intervals [¢(g;, k), t(g; +1, k)] for i € [I]. The pairwise
intersections of {Ry, .. .k : Pr(s) < ¢ < pr(S)} are Lebesgue null-sets and their union is

[t(px(5), k), t(pi(S), k)]' = [s, t(pk(S), k)]". (6.6)
Hence, by the triangle inequality and (6.5)),

.....

Z det [Kmk,nk (Qia Qj)]i,je[k] -
q1,---,q1€EN
pr(s)<qi<pr(S)

J[ t( (S) k)]l det[A(l’z, w])]l,]e[l]dxl e dxl (67)
S$,U\Pk s
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< 2e0 ", (p(S) — pr(s))' < 26(5 — s + 1), (6.8)
The set in (6.6)) differs from [s, S]’ by a set of measure

[t(pr(S), k) = S| < ol PU(S + 1)1, (6.9)

where the inequality follows from |t(pg(S),k) — S| < 0_117;1/ ? and the mean value theorem.

Because can be made arbitrarily small and the Airy kernel is bounded on [s,S + 1], we
have

det[A(zi, x;5)]i jeppdey - - - day — J det[A(zq, 75)]; jepder - - - dwy| <€, (6.10)

J‘[svt(Pk(S)vk)]l [S,S]l

for k = N by choosing N large enough. Now (6.3)) follows from combining (6.7)) and (6.10). O

A Steepest-descent curves of harmonic functions

In this section, we provide a more rigorous justification for Figure than indicated in the main
text. Our argument relies on some well-known facts from the theory of ODEs, which we briefly
recall here. Let d € N, U be an open subset of Rd, zoeU and F: U — R be a continuously
differentiable function. A solution of the initial value problem

2(t) = Fa(t) w(to) = o (A1)

is a (necessarily twice continuously) differentiable function ¢ : I — U, where I is an open
interval containing tg, such that ¢'(t) = F((t)) for all t € I and ¢(tg) = zp. There exists
a unique solution ® : J — U of that is maximal in the sense that any other solution
w: I —Uof is a restriction of ® to I. Let o and 8 denote the left and the right endpoints
of J, respectively, and K be a compact subset of U. Then, either « = —0 or ®(t) ¢ K for
some t € (a,tp]. Similarly, either § = +00 or ®(¢t) ¢ K for some t € [tg,3). The proof of
these assertions can be found in standard texts on differential equations; see, for example, [T,
Chapter 2], [I5, Section 7.2].

Let u: U — R be a twice continuously differentiable function and ¢ : I — U be a continu-
ously differentiable curve parametrized by arclength, that is, |¢'(¢)| = 1 for all t € I. We call ¢,
respectively, a stationary, steepest-descent and steepest-ascent curve of wu if

d

2 (@) = 0, =[Vu(p(t))] and [Vu(e(t))], (A.2)

respectively, for all ¢t € I. Since the directional derivative Vu -7 along any direction 7 is bounded
by |Vul|, along a steepest-descent curve, u decreases most rapidly and along a steepest-ascent
curve, u increases most rapidly. Note also that ¢ is a steepest-descent curve of u if and only if
the reversed curve t — p(—t) is a steepest-ascent curve of w.

We specialize the setting to the case of d = 2 from now on and identify R? with C in the
usual manner (z,y) < x + iy. The dot product of z,w € C is defined as z - w = R(2w). Let
V be a nonempty open subset of U such that the gradient Vu # 0 on V. Then the stationary,
steepest-descent and steepest-ascent curves of u that lie in V' satisfy the ODEs

_ s Vuz(h)

, i Vule(®) Vu(=(t))
“O=TGueor 2T T o)

A EOI

Vu

respectively. Since |V7 is continuously differentiable on V', if we choose an initial value z(tg) =
u

zo € V in any of these ODEs, the resulting initial value problem admits a unique maximal

solution @ : J — V.
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We now focus attention to the steepest-descent curves of harmonic functions; these functions
are locally the real and imaginary parts of holomorphic functions. To fix some notation, let f
denote a nonconstant, holomorphic function on U, and put u = Rf and v = Sf. The Cauchy-
Riemann equations assert that d,u = dyv and 0yu = —d,v, which imply

Vu(z) = (eu(z), =02v(2)) = f'(2)  Vo(z) = (02v(2), Ozu(2)) = if'(2). (A.3)

Lemma A.1. ¢ is a steepest-descent or -ascent curve of u if and only if v is a stationary curve

of v.
Proof. Using the chain rule and (A.3), we compute

() + (o) = (Tueo)#0)” + (olen) - ¢ ©)°

= (R (")’ 1) + (3 (F' (e (1))
= /" (p())? = [Vulp(t)) .

Then the conclusion readily follows from definition (A.2). O

Let zp € U and n denote the smallest positive integer such that the derivative f (")(zo) # 0.
We now show that, in a neighborhood of zg, the level set v = v(z) consists of n distinct
steepest descent curves of u passing through zy. Hence, by Lemma there are exactly n of
these curves.

Proposition A.2. Let & denote the direction of an nth root of f(™(zy). For each k € [n], there
exist an open interval I, containing 0, an open set Uy, < C containing zg and a continuously
differentiable injective curve py, : I, — Uy, such that

(a) ©r(0) = zo.
(b) Sf(z) =S f(20) and 2 € Uyep,) Uk if and only if = = @i(t) for some k € [n] and t € Ij.
n-1 4" (pr(t))

(c) ¢)(t) = (—=1)Fsgn(t) TFlonNl # 0 fort e I, ~ {0} and ¢}, (0) = Eexp(irk/n).

(d) For k,l € [n] and k # 1, the images of vi and p; do not intersect except at zg.

Hence, the steepest-descent curves of u from zj are given by the following n parametrizations.
For odd k, t — ¢ (t) for t = 0,t € I and for odd k+n, t — @i (—t) for t = 0, —t € Ij,. Likewise,
the steepest-ascent curves of u from zo are given by t — ¢ (t),t > 0,t € I} for even k and
t— @r(—t),t = 0,—t € I} for even k+n. For an illustration of the preceding lemma, see Figure

[A Tl below.

Proof of Proposition[A.3. By the assumption on f, there exist € > 0 and a holomorphic function
h on D(zg,€) with nonzero derivative such that f(z) = f(z0) + h(z)™ [23 Theorem 10.32].
Because f(™)(zy) = n!h/ ()" and h is determined only up to multiplication by an nth root of
unity, we may assume that h'(zo) has direction £. Since h is nonconstant and holomorphic, by
choosing € > 0 small enough, we also have h(z) # 0 unless z = z.

The level set Sf(z) = Sf(20) in D(zg, €) is the same as the level set S(h(z)™) = 0. The last
equation holds if and only if A(z) = 0 or h(z) has direction wy, = exp(irk/n) for some k € [2n],
which is equivalent to

S(h(2)@x) = 0 (A4)

for some k € [n]. The left-hand side of is a continuously differentiable function of two
real variables with gradient iwgh’(z), which is nonzero at zy. Hence, for each k € [n], it follows
from the implicit function theorem that there exist an open interval I} containing 0, an open
set Ux < D(zg,€) containing zg and a continuously differentiable injective curve ¢y : I — Uy
such that ¢ (0) = 20, |¢}| = 1 and z € Uy, satisfies if and only if z = @i (t) for some t € Ij.
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(a) For £ = 1, we have ¢1(t) = it and @2(t) = —t. (b) For £ = ¢\™/3, we have o1 (t) = t, a(t) = €™/t

The steepest-descent curves are given by ¢1(¢) and and p3(t) = €2™/3t. The steepest-descent curves are

p1(—t) for t = 0. The steepest-ascent curves are given by ¢1(t), p2(—t) and ¢3(t) for ¢ > 0. The

given by @a(t) and @o(—t) for ¢t = 0. steepest-ascent curves are given by ¢1(—t), p2(t)
and @3(—t) for ¢ = 0.

Figure A.1: The steepest-descent (blue) and -ascent (red) curves at zg = 0 for the
functions z? and —2z3, respectively.

Setting z = ¢ (t) in and differentiating with respect to ¢ via the chain rule, we obtain
that ¢} (¢) is orthogonal to iwih/(¢(t)). Since h’ is nonzero and continuous, replacing ¢ with
t — @(—t) if necessary, we can make ¢ (t) have the same direction as wih'(px(t)) for t € Ij.
In particular, ¢} (0) = wiE.

Since wrh(¢x(t)) is real-valued, we have

& (@Ehlen() = TR@EEA(ox(1) = T (s (D)Gh(1) = W (s > 0. (A5)

from the chain rule. Also, we can write
F () = [(=1) nwx™ " hen ()" | @rh/ (0x (1)),

where the factor inside the brackets is real and has sign (—1)¥sgn(¢)"~! by (A.5). It follows
that

o W@ Pa®)
Pr(t) = @i ~ TV O TEC o

for t € I, . {0}.

We have proved (a), (b) and (c¢). For (d), suppose that the images of ¢ and ¢; intersect
at z € U for some k # [. Then, by , h(z) is orthogonal to both iwy and iw;. This implies
h(z) = 0 and, hence, z = 2. O

Let f,u,v and ¢ be as defined by (4.5)), (4.7), (4.8) and (4.11]), respectively. We recall that
u is harmonic on U = C~{0, /g, 1/,/q} and has nonzero gradient on U ~\ {¢}. Also, f = u + iv

is holomorphic on V, which is C minus the intervals (—co,,/g] and [1/,/q,+0). We apply
Proposition with f in a small disk centered at (. Then n = 3 and, since f”(¢) = —203/(3,
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we can take & = €™/3. Hence, the level set v = v(¢) = 0 in a small neighborhood of ¢ consists
of the images of the curves ¢y : Iy — D((, €) as described in the lemma. In particular, we have
©1(0) = 1, ¢5(0) = €/* and }(0) = €27/,

We now study the global behavior of the steepest-descent and ascent-curves of u from (. For
each k € {1,2,3}, put I = (t,t]), and let ®; and @, denote the maximal steepest descent
and ascent curves in U ~\ {¢} that extend ¢y restricted to (0,¢;) and (¢;,0), respectively.
Since ¢ (0) = ¢, the interval of existence for ®; and @, are of the form (0,7}") and (7} ,0),
respectively, for some T} € [}, +00) and T}, € (—o0,t; ].

Lemma A.3. T7" =1/,/g—(, Ty = /q—¢ and O(t) =+t

Proof. Because f is real-valued on V R, ®(t) = ( +1t defined for 0 < ¢ < 1/,/g—( is a steepest
descent curve of u. Moreover, ® is maximal since ®(t) approaches the boundary of U \ {¢} as
tl0andt 1 1/,/g—¢. Since ' = 1 but Jp,H(0) > 0 and Jp5(0) > 0, for ¢ > 0 sufficiently small,
®(t) is not contained in the images @2 ((t; ,0)) and ¢3((0,t3)). Hence, ® intersects the image of
1 restricted to (0,t]), the only remaining steepest descent curve. This implies, by uniqueness
of the maximal solution, that ® = ®;. Assertions about 7; and ®; are proved similarly. [

Lemma A .4.
(a) TyF = +o0, the image ®5 ((0,+00)) is in H and lim;_, o, |®F (¢)] = +00.
(b) T =T; < +oo, the image ®3((0,T)) is in H and lim;_7 ®F (t) = 0.

(c) Ty = —T and ®, (t) = ®3(—t) for allt € (-T,0).

(d) Ty = —o0 and 5 (t) = ®F (—t) for all t € (—0,0).

Proof. To simplify notation, let us write ® for ®3. We first show that ®(¢) € H for t € (0, 7).
Since S¢4(0) > 0, there exists to € (0,¢4) such that ®(t) = p3(t) € H for t € (0,¢9]. As u
is continuous at ¢ and is decreasing along ®, we can choose € > 0 such that u(®(t)) < u(z)
whenever ¢t > ¢y and z € D((,¢). To get a contradiction, suppose that ®(¢;) = z; € R for
some t1 € (t9,T). Then z; # ¢ and Vu = ? has direction +1 or —1 in an interval around
x1. It follows that ®, the unique maximal steepest descent curve passing through x, satisfies
D(t) = x1 —sgn(f'(x1))(t — 1) for ¢t € (0,7T), which contradicts ®(tg) € H. Hence, we conclude
that ®((0,7)) < H.

We note from that u(z)/log|z| — 1+~ as |z| — +o0, which implies that ®((0,T")) <
D(0, R) for some R > 0. Since Vu = f” has a zero only at ¢ and has no singularities other than
the poles at {0,,/q,1/,/q}, there exists ¢ > 0 such that |[Vu(z)| > ¢ for z € D(0,R) \ D(C,€)
and, hence,

d
pn (u(®(t))) = —|Vu(®(t))| < —¢  for t e [to,T). (A.6)

We next show that 7' < oo and ®(t) converges to either 0 or 1/\/q as t — T. Let § > 0
and K denote the set obtained by removing disks D(x,d) for z € {0,,/q,(,1/\/q} from the

closed disk D(0,R). Since K is compact, if ®((tp,7)) < K then T = +oo. However, then
forces u(®(t)) — —oo, which is not possible as u is bounded on K. Hence, there exists
Ty € [to,T) such that ®(Ty) ¢ K. If 6 > 0 is sufficiently small, ®(T3) ¢ D(¢,0) as ®([to,T))
does not intersect D((,¢€), and ®(T1) ¢ D(,/q,0) since u(z) — +00 as z — ,/q. Also because
®((0,7)) = D(0,R), we conclude that ®(71) € D(0,0) or ®(T1) € D(1/,/q,6). Let us first
consider the case ®(T7) € D(0,6). It follows from that zf'(z) = r + v+ O(6) for all
z € D(0,6). This implies existence of n > 0 such that R(zf'(2)) = n|zf'(z)| for all z € D(0,0).
Hence, if ®(t) € D(0,4), we have

() Vu(d(t)) R (D(t

d _ . __ )
ar PO = "B M@ T e

|)) < -7 (A.7)
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Then, by the (converse of the) mean value theorem, there is no ¢t € (71,7) such that ®(¢) €
D(0,6) and |®(t)] > |®(T1)|. Hence, ®(t) € D(0,6) for t € (T1,T) and, by (A7), T < o and
®(t) - 0ast — T. A similar argument shows that, in the case ®(71) € D(1/,/g,0), we have
T < oo and limy_,7 ®(t) = 1/,/q.

We now argue that, in fact, ®(¢) cannot converge to 1/,/q as t — T'. Let us write ¥ for the
steepest ascent curve ®F and 7’ for T,". As in the argument for ®, one can observe that ¥
does not intersect the real line, and there exist ¢, € (0,7") and € > 0 such that U(t) ¢ D((,€’)
for t € [t,T"). For a contradiction, suppose that lim; .7 ®(t) = 1/,/q and let O denote the
interior of the Jordan curve that consists of the interval [¢,1/,/q] and the image of ®. Since
R4 (0) > R4 (0), the image of ¥ contains points in O. Then, because ¥ does not intersect the
boundary of O, the image of ¥ lies in O. Since O is bounded, it follows that 7’ = +o0. Using
that U([ty, +90)) = O\ D(¢, €'), we note the inequality

d /
5 ¥ (@) = [Vu(¥ ()] = ¢

for t € [t(,, +0) (A.8)
for some constant ¢’ > 0 as in (A.6). This implies that u(¥(¢)) — +00 as t — 400, which is not
possible as u is bounded from above on O. This completes the proof of (b).

To prove (a), it remains to show that 7" = 400 and |¥(t)] — +00 as t — +o0. Since ¥ is
parametrized with arclength,

=ty = | Gs)as > — (1) — W(t)) (A.9)

Lt V' (s)ds

/
0

for t € [ty,T"). Let O’ denote the interior of the Jordan curve that consists of the interval
[0,¢] and the image of ®. Arguing by contradiction, suppose that ¥((0,7")) < D(0,R’) for
some R’ > 0. Since ¥ does not intersect the boundary of O', we conclude that U([t}, 1)) <
(D(0, R")~O")N\D(¢,¢€). Then, T" = +00 and an inequality of the form is in place, which
leads to u(¥(t)) — +00, which is not possible. Hence, [¥(t)| — +o0 and, by (A.9), 7" = +o0.
For (c), we observe that the curve ¢ — ®(—t) defined on (—T,0) is a steepest-ascent curve of

N/ X
u because v is symmetric with respect to the real axis. We also have (<I>(—t)> — €47/3 Hence,

by Proposition O(—t) = @o(—t) for t > 0 sufficiently small and (c¢) follows. The proof of
(d) is similar. O

Recall from Section [2f that the contour I' consists of the curves @3 and @, . It follows from
Lemma [A-4] that I" encloses /g and has finite length.
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