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Abstract

This is an expository note on the classical corner growth model with i.i.d. geometrically
distributed weights. A well-known theorem of K. Johansson states that suitably rescaled last-
passage times converge in distribution to the Tracy-Widom GUE distribution. We reprove this
result by adapting a steepest-descent analysis of J.Gravner, C.Tracy and H.Widom.

1 Introduction

The corner growth model describes a random region growing over time in the first quadrant of
the plane, and is closely related to totally asymmetric simple exclusion process (TASEP), queues
in series and last-passage percolation; we refer the reader to [26] for a detailed introduction. The
discrete-time version of the model made its early appearances in [5], [19] and [25], and can be
formulated as follows. Represent the first quadrant with N2. Each site pi, jq P N2 receives a
separate coin with tails probability q P p0, 1q. The region is initially empty and evolves according
to the following rule. Each pi, jq waits for pi ´ 1, jq (if i ą 1) and pi, j ´ 1q (if j ą 1) to be in
the region, then flips its coin at each time step onwards until heads comes up and immediately
joins the region. Thus, if W pi, jq is the amount of time pi, jq spends for the coin flips, then the
random variables tW pi, jq : i, j P Nu are independent and their joint distribution P satisfies

PpW pi, jq “ kq “ p1´ qqqk for i, j P N and k P Z` . (1.1)

Furthermore, writing Gpi, jq for the time when pi, jq joins the region, we have the recursion

Gpi, jq “ Gpi´ 1, jq _Gpi, j ´ 1q `W pi, jq for i, j P N, (1.2)

with boundary values defined as Gpi, 0q “ Gp0, jq “ 0 for i, j P N. This leads to the last-passage
formula

Gpm,nq “ max
πPΠm,n

ÿ

pi,jqPπ

W pi, jq for m,n P N (1.3)

where Πm,n is the set of all directed paths from p1, 1q to pm,nq (all sequences ppik, jkqqkPrls
in N2 such that pi1, j1q “ p1, 1q, pil, jlq “ pm,nq, pikqkPrls and pjkqkPrls are nondecreasing and
ik`1 ´ ik ` jk`1 ´ jk “ 1 for 1 ď k ă l). We will refer to tW pi, jq : i, j P Nu as weights
and tGpi, jq : i, j P Nu as the last-passage times. Typically, the statistical properties of the
last-passage times are the issue of interest.

While we will not consider it here, there is also a continuous-time version of the corner
growth model in which each pi, jq receives a separate Poisson clock with rate λ ą 0 instead of a
coin. When pi ´ 1, jq and pi, j ´ 1q (if they exist) are both in the region, pi, jq starts its clock
and joins the region when the clock rings. In other words, we replace (1.1) with

PpW pi, jq ě xq “ e´λx for i, j P N and x ě 0. (1.4)
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This version appeared in the influential work of H. Rost [22].
The KPZ (Kardar-Parisi-Zhang) universality class is a conjectural collection of statistical

models including various growth processes, interacting particle systems and directed polymers
in random media, see [6] and the references therein. It is expected that the fluctuations of
the interesting observables in the KPZ-models scale with exponent 1{3 and, after rescaling,
converge to a Tracy-Widom distribution in the limit. In a breakthrough work of K. Johansson
these supposed universal features were confirmed for the corner growth model; the relevant
theorem is [16, Theorem 1.2] stated below.

Theorem 1.1. Let r ą 0. Then

lim
nÑ8

PpGptnr u, nq ď nγr ` n
1{3σrsq “ FGUEpsq (1.5)

for any s P R, where

γr “
qp1` rq ` 2

?
qr

1´ q
, (1.6)

σr “
1

1´ q

´q

r

¯1{6

p
?
q `

?
rq2{3p1`

?
qrq2{3 (1.7)

and FGUE denotes the c.d.f. of the Tracy-Widom GUE distribution defined in Section 6.

If we assume (1.4) instead of (1.1) then (1.5) still holds with different explicit constants γr
and σr, [16, Theorem 1.6].

In [8], we considered a particular generalization of the corner growth model in which param-
eter q is replaced with aibj for each pi, jq P N2 for some random sequences paiqiPN and pbjqjPN
in p0, 1q whose joint distribution satisfies certain ergodicity assumptions. (For fixed sequences,
this model appeared in [17] and [18], see Section 6.) We obtained a variational formula for
the law of large numbers limit limnÑ8 n

´1Gptnr u, nq, namely, the constant analogous to (1.6).
Corresponding large deviation properties were subsequently studied in [9], which suggested that
the limit fluctuations of Gptnr u, nq obey the Tracy-Widom GUE distribution only if r1 ă r ă r2

for some critical values 0 ď r1 ă r2 ď 8.1 We have developed some arguments in the course of
an ongoing project to verify this prediction. To be used for future reference, the present note
records these arguments in the simpler setting of classical corner growth model.

In a series of papers J.Gravner, C.Tracy and H.Widom carried out a similar program for
a variant of the corner growth model known as oriented digital boiling [12], [13],[14], which is
equivalent to a first-passage percolation model introduced in [24]. The recursion for tGpi, jq :
i, j P Nu is now

Gpi, jq “ Gpi´ 1, jq _ pGpi, j ´ 1q `W pi, jqq for i, j P N, (1.8)

instead of (1.2). The weights tW pi, jq : i, j P Nu are independent and each W pi, jq is Bernoulli-
distributed with parameter pj for some i.i.d. sequences ppjqjPN. This note mainly builds on the
work in [12], which deals with the basic case when ppjqjPN is a constant sequence.

The original proof of Theorem 1.1 expresses the point distributions of last-passage times as
a Fredholm determinant of the Meixner kernel and uses properties of the Meixner polynomials
for asymptotic analysis [16], see also the exposition in [26, Chapter 5]. In this note, we present
another proof by adapting an approach from [12], which involves steepest-descent analysis of an
alternative Fredholm determinant represented in terms of contour integrals. As usual, one needs
to find suitable deformations of the contours to make analysis possible. The appealing side of
the approach taken is that one does not need explicit parametrization of the contours; rather,
some useful properties of the contours are observed from general considerations. This enables
us to use the same approach to study the inhomogeneous corner growth model described above.

1In fact, [9] only considered a generalization of the continous-time model but we expect similar large deviation
results in the discrete-time.
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In a recent work of I.Corwin, Z.Liu and D.Wang [7] that came to our attention while this
note was under preparation, the limit fluctuations of the last-passage times were identified for
some generalized corner growth models in which parameter q is perturbed for finitely many rows
and columns. Lemma 2.2 there establishes a concentration inequality for the last-passage times
and also derives elegantly in its proof the main asymptotic result (Theorem 4.1 below) needed to
obtain Theorem 1.1. The proof is based on analysis of the same contour integrals as in here but
the contours are deformed differently. However, we were able to utilize an idea from the proof
that led to significant departure from [12] in the derivation of some bounds such as Theorem
4.1b. While an additional steepest-descent analysis is performed for the analogous bounds in
[12, pp 20-23], we were able to get around this step by showing that the chosen contour lies
inside a certain circle, see Lemma 4.2 below.

Outline. In Section 2, we recall the definitions of the Tracy-Widom GUE distribution
as well as the Airy function and the Airy kernel. Section 3 gives a standard derivation of a
Fredholm determinant for the distribution of the last-passage times in the more general case of
site-dependent parameters. Some preliminaries for the steepest-descent analysis including the
choice of suitable contours are carried out in Section 4. Detailed justification of the properties
of these contours based on standard considerations from ODE theory is in the appendix. The
proofs of the main asymptotic lemmas are given in Section 5. Finally, Theorem 1.1 is proved in
Section 6.

Notation and conventions. Some standard notation that appears in this note are listed
below.

N the set of natural numbers t1, 2, 3, . . . u
Z` the set of nonnegative integers t0, 1, 2, . . . u
R` the set of nonnegative real numbers
H the set of z P C with =z ą 0.
i the imaginary unit
rns the set t1, . . . , nu for n P N
a_ b the maximum of a, b P R
a^ b the minimum of a, b P R
#S the number of elements in the set S
z the complex conjugate of z P C

tx u the largest integer not exceeding x P R
Dpz, rq the (open) disk of radius r centered at z P C
δi,j the Kronecker delta function

Let f and g be complex-valued functions defined on a set X. We write f “ Opgq to assert
existence of a constant C ą 0 such that

|fpxq| ď C|gpxq| for all x P X.

We refer to a particular choice of C as the implicit constant. We also define 00 as 1.
Acknowledgement. The author would like to thank Timo Seppäläinen and Patrik Ferrari

for helpful conversations during the preparation of this paper.

2 Tracy-Widom GUE distribution

The Airy function can be defined as the contour integral

Aipsq “
1

2πi

ż

C

ez
3
{3´szdz for s P R, (2.1)

where contour C consists of the rays from 8e´iθ to 0 and from 0 to 8eiθ for some θ P pπ{6, π{2q.
This integral is absolutely and uniformly convergent on compact subsets of R. Up to a constant
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factor, the Airy function is the unique solution of the ODE

d2u

ds2
“ su s P R,

known as the Airy equation, subject to the condition upsq Ñ 0 as sÑ `8, [21, Chapter 9]. In
the sequel, we will use continuity of the Airy function and the following bound. Given T ą 0,
there exists a constant C ą 0 such that

|Aipsq| ď Ce´s for s ě ´T. (2.2)

These properties can be derived from (2.1); we suggest [26, Chapter 4] for details.
One way to define the Airy kernel is by

Aps, tq “

8
ż

0

Aips` xqAipt` xqdx for s, t P R, (2.3)

where the absolute and the uniform convergence of the integral over compact subsets of R2 are
ensured by (2.2). Moreover, the Airy kernel is continuous and for each T ą 0 there is a constant
C ą 0 such that

|Aps, tq| ď Ce´s´t for s, t ě ´T. (2.4)

For any a P R, we can view the Airy kernel as the kernel of the integral operator on L2ppa,8qq
that maps f to the function

s ÞÑ

ż 8

a

Aps, tqfptqdt.

That this image is in L2ppa,8qq comes from (2.4) and an application of the Cauchy-Schwarz
inequality.

The n ˆ n Gaussian Unitary Ensemble (GUE) is the distribution of the random matrix
X “ rXpi, jqsi,jPrns with the following properties.

(i) Xpi, iq is distributed as the real normal distribution with mean 0 and variance 1 for i P rns.

(ii) Xpi, jq is distributed as the complex normal distribution with mean 0 and variance 1 for
distinct i, j P rns

(iii) The entries tXpi, jq : 1 ď i ď j ď nu are independent.

(iv) X is Hermitian, that is, Xpi, jq “ Xpj, iq for i, j P rns.

Being a Hermitian matrix, X has n real eigenvalues λ1 ě . . . ě λn. The Tracy-Widom GUE
distribution arises as the distributional limit of the rescaled largest eigenvalue

n1{6pλ1 ´ 2n1{2q

as nÑ `8. Its cumulative distribution function is given by the following Fredholm determinant
of the integral operator whose kernel is the Airy kernel

FGUEpsq “ 1`
8
ÿ

l“1

p´1ql

l!

ż

rs,8ql

detrApxi, xjqsi,jPrlsdx1 . . . dxl for s P R, (2.5)

[10]. The absolute convergence of the series above follows from (2.4) and Hadamard’s inequality,
see Lemma 6.2 below. Another characterization of the Tracy-Widom distribution is

FGUEpsq “ exp

ˆ

´

ż 8

s

pt´ sqqptq2dt

˙

for s P R,

where q is the unique solution of the Painlevé II equation

d2u

ds2
“ 2u3 ` su for s P R

subject to the condition upsq{Aipsq Ñ 1 as sÑ8, see [28].
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3 Distribution of last-passage times

In this section, we consider a generalization of the corner growth model introduced in [17] and
[18]. Let a “ panqnPN and b “ pbnqnPN be sequences in the interval r0, 1q. Suppose that
tW pi, jq : i, j P Nu are independent and

PpW pi, jq “ kq “ p1´ aibjqa
k
i b
k
j for i, j P N and k P Z` . (3.1)

Recall our convention 00 “ 1; thus, if ai “ 0 or bj “ 0, the right-hand equals 1 when k “ 0.
For this model, there are exact formulas for the distribution of Gpm,nq (still defined by (1.2))
for each m,n P N. For completeness, we include a derivation of these formulas based on the
discussion in [17]; we refer the reader to [2], [4], [18] for more detailed accounts.

One of the main tools utilized in the argument is the Robinson-Schensted-Knuth (RSK)
correspondence. To state it, some definitions are in order. A weak composition α “ pαiqiPN is a
sequence in Z` with finitely many nonzero terms. Define the length and the size of α as

lpαq “ maxti P N : αi ą 0u and |α| “
ÿ

i

αi,

respectively. A partition λ “ pλiqiPN is a nonincreasing weak composition. Each λi is called a
part of λ. To each partition λ, we associate a Young diagram

Y pλq “ tpi, jq P N2 : i ď λj and j ď lpλqu.

A semi-standard Young tableau (SSYT) of shape λ is a map P : Y pλq Ñ N such that P “ P pi, jq
is nondecreasing in i and (strictly) increasing in j. We write λ “ shapepP q. Also, define the
type of P as the weak composition

typepP q “ p#tpi, jq : P pi, jq “ kuqkPN.

See Figure 3.1 for a visualization of a Young diagram and an SSYT. A generalized permutation
ς (of length l P N) is a finite sequence ς “ ppik, jkqqkPrls in N2 that is nondecreasing with respect
to the lexicographic order (ik ď ik`1 and if ik “ ik`1 then jk ď jk`1 for all 1 ď k ă l). We
write Lpςq for the maximal length of a nondecreasing subsequence of pjkqkPrls. Let P denote the
set of all generalized permutations and T denote the set of all pairs of SSYTs pP,Qq such that
shapepP q “ shapepQq.

(a)

1 2 2 3

4 5

6 6

7

(b)

Figure 3.1: (a) The Young diagram Y pλq for λ “ p4, 2, 2, 1, 0, . . . q viewed as the set
of unit squares with upper-right corners at pi, jq P Y pλq. (b) An SSYT P of shape
λ “ p4, 2, 2, 1, 0, . . . q. The value P pi, jq is written inside the corresponding unit square.
For example, P p1, 2q “ 4 and P p2, 3q “ 6. Note that the numbers are nondecreasing
along rows and increasing along columns. Also, typepP q “ p1, 2, 1, 1, 1, 2, 1, 0, . . . q.

Theorem 3.1 (RSK correspondence). There exists a bijection RSK : P Ñ T with the following
property: If ς “ ppik, jkqqkPrls P P and pP,Qq “ RSKpςq then

typepP q “ p#tk : jk “ nuqnPN
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typepQq “ p#tk : ik “ nuqnPN

Furthermore, if λ “ pλiqiPN “ shapepP q “ shapepQq then λ1 “ Lpςq.

For a proof, see [11], [27]. We will use the corollary below noted in [16]. For m,n P N, define

Pm,n “ tppik, jkqqkPrls P P : ik P rms and jk P rns for k P rlsu

T m,n “ tpP,Qq P T : lptypepP qq ď n and lptypepQqq ď mu.

Corollary 3.2. Let m,n P N. There exists a bijection fm,n : Zrmsˆrns` Ñ T m,n such that if

A P Zrmsˆrns` and pP,Qq “ fm,npAq then

(a) |λ| “
řm
i“1

řn
j“1Api, jq, where λ “ shapepP q “ shapepQq.

(b) typepP qj “
řm
i“1Api, jq for j P rns.

(c) typepQqi “
řn
j“1Api, jq for i P rms.

(d) λ1 “ maxπPΠpm,nq
ř

pi,jqPπ Api, jq, where λ1 is the largest part of λ in (a).

Proof. For each A P Zrmsˆrns` , define gm,npAq as the unique ς “ ppik, jkqqkPrls P Pm,n such that
each pi, jq P rms ˆ rns is repeated exactly Api, jq times in ς. Note that gm,n is a bijection and
l “

řm
i“1

řn
j“1Api, jq. Moreover, the lengths of the maximal nondecreasing subsequences of

pjkqkPrls are given by
ř

pi,jqPπ Api, jq for various π P Πm,n. Hence, Lpςq equals the last-passage

time maxπPΠpm,nq
ř

pi,jqPπ Api, jq. It follows from Theorem 3.1 that the map RSK restricts to a
bijection RSKm,n between Pm,n and T m,n. Now, the composition fm,n “ RSKm,n ˝gm,n is a

bijection between Zrmsˆrns` and T m,n with properties (a)-(d).

We will also rely on the following generalization of the Cauchy-Binet identity [18, Proposi-
tion 2.10].

Proposition 3.3. Let pX,µq be a measure space, n P N and fi, gi : X Ñ C be measurable
functions for i P rns such that figj is integrable for any i, j P rns. Then

det

„
ż

X

fipxqgjpxqµpdxq



i,jPrns

“
1

n!

ż

Xn

detrfipxjqsi,jPrns detrgipxjqsi,jPrnsµpdx1q . . . µpdxnq.

We next obtain a Fredholm determinant representation for the distribution of Gpn, nq in the
case of injective paiqiPrns and pbjqjPrns (terms do not repeat). A more general version of the
following proof can also be found in [4] and [18].

Theorem 3.4. Let n P N. Suppose that paiqiPrns and pbjqjPrns are injective sequences. Define

Knpx, yq “
ÿ

i,jPrns

axi b
y
j

1´ aibj

ś

kPrns

p1´ aibkqp1´ akbjq

ś

kPrns
k‰i

pak ´ aiq
ś

kPrns
k‰j

pbk ´ bjq
for x, y P Z` . (3.2)

Then

PpGpn, nq ď kq “ 1`
n
ÿ

l“1

p´1ql

l!

ÿ

x1,...,xlěk`n

det rKnpxi, xjqsi,jPrls for k P Z` . (3.3)

Proof. Let Φ denote the map that sends A P Zrnsˆrns` to the common shape of the correspond-
ing SSYT pair under the bijection in Corollary 3.2, and define Λ “ ΦprW pi, jqsi,jPrnsq. Then
PpGpn, nq ď kq “ PpΛ1 ď kq. Moreover, for any partition λ, we have

PpΛ “ λq “
ÿ

A:ΦpAq“λ

PpW pi, jq “ Api, jq for i, j P rnsq
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“
ÿ

A:ΦpAq“λ

ź

i,jPrns

p1´ aibjqa
Api,jq
i b

Api,jq
j

“
ź

i,jPrns

p1´ aibjq
ÿ

A:ΦpAq“λ

ź

iPrns

a
ř

jPrns Api,jq

i

ź

jPrns

b
ř

iPrns Api,jq

j

“
ź

i,jPrns

p1´ aibjq
ÿ

P :shapepP q“λ
lptypepP qqďn

ź

jPrns

b
typepP qj
j

ÿ

Q:shapepQq“λ
lptypepQqqďn

ź

iPrns

a
typepQqi
i (3.4)

Note the inequality lptypepP qq ě lpshapepP qq for any SSYT P ; hence, (3.4) is zero unless
lpλq ď n.

We now use the polynomial identity

ÿ

P :shapepP q“λ
lptypepP qqďn

ź

jPrns

X
typepP qj
j “

detrX
λj´j`n
i si,jPrns

detrX´j`ni si,jPrns
, (3.5)

either side of which is the Schur polynomial indexed by λ in n variables X1, . . . , Xn. For a
proof of (3.5), see [27, Chapter 7]. Since paiqiPrns and pbjqjPrns are injective, the Vandermonde
determinant

detrX´j`ni si,jPrns “
ź

1ďiăjďn

pXi ´Xjq

is nonzero when evaluated by setting Xi “ ai for i P rns or Xi “ bi for i P rns. Hence, by (3.4)
and (3.5), we obtain

PpΛ “ λq “ Z´1
n detra

λj´j`n
i si,jPrns detrb

λj´j`n
i si,jPrns, (3.6)

where the normalization constant is given by

Zn “

ś

1ďiăjďnpai ´ ajqpbi ´ bjq
ś

i,jPrnsp1´ aibjq
. (3.7)

The probability PpΛ1 ď kq can then be written as

PpΛ1 ď kq “
1

Zn

ÿ

λ:λ1ďk
lpλqďn

detra
λj´j`n
i si,jPrns detrb

λj´j`n
i si,jPrns

“
1

n!Zn

ÿ

m1,...,mnPZ`
mjďk`n´1

detra
mj

i si,jPrns detrb
mj

i si,jPrns. (3.8)

For the last equality, first change the summation index from λ to the decreasing sequence
pmjqjPrns “ pλj ´ j ` nqjPrns in Z` with m1 ď k ` n´ 1. (Note that λ is uniquely determined
from pmjqjPrns because lpλq ď n). Then remove the ordering of pmjqjPrns, which introduces the
factor 1{n! Finally, allow repeats in pmjqjPrns, which does not alter the sum because the added
terms are all zero.

It remains to turn (3.8) into the desired form. For any l P Z`, by Proposition 3.3,

ÿ

m1,...,mnPZ`
miďl

detra
mj

i si,jPrns detrb
mj

i si,jPrns “ n! det

«

l
ÿ

m“0

ami b
m
j

ff

i,jPrns

“ n! det

«

1´ al`1
i bl`1

j

1´ aibj

ff

i,jPrns

.

(3.9)

Letting k Ñ `8 in (3.8) and lÑ `8 in (3.9) yield

Zn “ det

«

8
ÿ

m“0

ami b
m
j

ff

i,jPrns

“ det

„

1

1´ aibj



i,jPrns

. (3.10)
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Since Zn ‰ 0 by (3.7), the matrix C “
“

p1´ aibjq
´1

‰

i,jPrns
is invertible, and

PpΛ1 ď kq “
det

“

Cpi, jq ´
ř8

m“k`n a
m
i b

m
j

‰

i,jPrns

detrCpi, jqsi,jPrns

“ det

«

δi,j ´
n
ÿ

p“1

C´1pi, pq
8
ÿ

m“k`n

amp b
m
j

ff

i,jPrns

“ det

«

δi,j ´
8
ÿ

m“k`n

bmj hipmq

ff

i,jPrns

,

where hipmq “
řn
p“1 C

´1pi, pqamp . Then, applying Proposition 3.3 twice, we obtain

PpΛ1 ď kq “ 1`
n
ÿ

q“1

p´1qq

q!

ÿ

i1,...,iqPrns

det

«

8
ÿ

m“k`n

bmishir pmq

ff

r,sPrqs

“ 1`
n
ÿ

q“1

p´1qq

q!

n
ÿ

i1,...,iq“1

1

q!

ÿ

m1,...,mqěk`n

detrbmr
is
sr,sPrqs detrhispmrqsr,sPrqs

“ 1`
n
ÿ

q“1

p´1qq

q!

ÿ

m1,...,mqěk`n

1

q!

n
ÿ

i1,...,iq“1

detrbmr
is
ss,rPrqs detrhispmrqsr,sPrqs

“ 1`
n
ÿ

q“1

p´1qq

q!

ÿ

m1,...,mqěk`n

det

«

n
ÿ

i“1

hipmrqb
ms
i

ff

r,sPrqs

“ 1`
n
ÿ

q“1

p´1qq

q!

ÿ

m1,...,mqěk`n

det

«

n
ÿ

i“1

n
ÿ

p“1

amr
p C´1pi, pqbms

i

ff

s,rPrqs

. (3.11)

Finally, we compute the inverse of C. Note that Ci,j , the i, j-minor of C, has the same
structure (in terms of entries) as C; therefore, by (3.7) and (3.10),

detCi,j “
ź

k,lPrns
k‰i
l‰j

1

1´ akbl

ź

k,lPrns
kăl
k,l‰i

pak ´ alq
ź

k,lPrns
kăl
k,l‰j

pbk ´ blq

“
detC

1´ aibj

ź

kPrns

p1´ aibkqp1´ akbjq

¨ p´1qi`j
ź

kPrns
k‰i

pai ´ akq
´1

ź

kPrns
k‰j

pbj ´ bkq
´1

Then, by Cramer’s rule,

C´1pi, jq “ p´1qi`j
detCj,i

detC
“

1

1´ ajbi

ś

kPrns

p1´ ajbkqp1´ akbiq

ś

kPrns
k‰i

pbk ´ biq
ś

kPrns
k‰j

pak ´ ajq
. (3.12)

Inserting (3.12) into (3.11) completes the proof.

Note that the assumption of independent weights distributed as (3.1) is crucial in the pre-
ceding proof to obtain (3.4), the representation of the distribution of the last-passage times in
terms of the Schur polynomials. The probability measure (3.6) on the space of partitions is an
example of a Schur measure introduced in [20].
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Another probability measure of interest derived from (3.6) is the distribution of the random
set S “ tΛj ´ j ` n : j P rnsu, which is given by

PpS “ Sq “
1

n!Zn
detra

mj

i si,jPrns detrb
mj

i si,jPrns (3.13)

for any S “ tm1, . . . ,mnu Ă Z`. By a general fact from the theory of point processes, for any
distinct x1, . . . , xq P Z`,

Pptx1, . . . , xqu Ă Su “ detrKnpxr, xsqsr,sPrqs. (3.14)

In the language of the theory, S can be viewed as a determinantal point process on Z` with
correlation kernel Kn. Since Gpn, nq “ Λ1 “ maxS ´n` 1, a restatement of (3.3) is that

PpmaxS ď k ` n´ 1q “ 1`
n
ÿ

l“1

p´1ql

l!

ÿ

x1,...,xlěk`n

Pptx1, . . . , xlu Ă Sq for k P Z`,

which is an application of the inclusion/exclusion principle. This furnishes a probabilistic in-
terpretation of (3.3). For a proof of (3.14) and a detailed discussion of the notions in this
paragraph, we refer the reader to [3], [4], and [18].

A useful conclusion from (3.14) is that

detrKnpxr, xsqsr,sPrqs ě 0 for any x1, . . . , xq P Z` . (3.15)

Moreover, this determinant equals 0 if q ą n. One can also make these observations more
directly using Proposition 3.3; we have

detrKnpxr, xsqsr,sPrqs “ det

»

–

ÿ

i,jPrns

axr
i C

´1pj, iqbxs
j

fi

fl

r,sPrqs

“
1

pq!q2

ÿ

i1,...,iqPrns

ÿ

j1,...,jqPrns

detraxr
is
ss,rPrqs detrC´1pjs, irqsr,sPrqs detrbxr

js
sr,sPrqs

(3.16)

“
1

q!

ÿ

i1,...,iqPrns

ÿ

j1,...,jqPrns

detraxr
is
ss,rPrqs detrbxr

js
sr,sPrqs

q! detrCpjs, irqsr,sPrqs
, (3.17)

where the last equality requires q ď n; otherwise the determinants in (3.16) are zero. For each
choice of i1, . . . , iq and j1, . . . , jq, the summand is a probability by (3.13) and, hence, the sum
is nonnegative.

For the purposes of asymptotics as well as to extend Theorem 3.4 to the case of nonin-
jective parameters, it is useful to express (3.2) as a contour integral. Let us write a and b
for the parameter sequences paiqiPN and pbjqjPN, respectively. For m,n P N, x, y P Z` and
z P Crta1, . . . , amu, define

F a,b
m,n,xpzq “

śn
j“1p1´ zbjq

śm
i“1pz ´ aiq

¨ zm`x. (3.18)

and the contour integral

Ka,b
m,npx, yq “

1

p2πiq2

¿

|w|“ρ

¿

|z|“ρ

F a,b
m,n,xpzqF

b,a
n,m,ypwq

1´ zw
dz dw, (3.19)

where max1ďiďm ai _max1ďjďn bj ă ρ ă 1 and the circles of integration are oriented counter-
clockwise.
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Theorem 3.5. Let m,n P N. Then

PpGpm,nq ď kq “ 1`
n
ÿ

l“1

p´1ql

l!

ÿ

x1,...,xlPZ`
xiěk

detrKa,b
m,npxi, xjqsi,jPrls for any k P Z` . (3.20)

Proof. If paiqiPrns and pbiqiPrns are injective, for each u P Dp0, 1q, the only singularities of the

functions z ÞÑ
F a,b
n,n,xpzq

1´ zu
and w ÞÑ

Fb,a
n,n,ypwq

1´ wu
inside Dp0, 1q are simples poles at a1, . . . , an and

b1, . . . , bn, respectively. Therefore, by Cauchy’s residue formula and (3.2),

Ka,b
n,npx, yq “

ÿ

i,jPrns

Resai F
a,b
n,n,x Resbj F

b,a
n,n,y

1´ aibj

“
ÿ

i,jPrns

ax`ni by`nj

1´ aibj

ś

kPrns

p1´ aibkqp1´ akbjq

ś

kPrns
k‰i

pak ´ aiq
ś

kPrns
k‰j

pbk ´ bjq

“ Knpx` n, y ` nq

for x, y P Z` provided that paiqiPrns and pbiqiPrns are injective. Then, by Theorem 3.4,

PpGpn, nq ď kq “ 1`
n
ÿ

l“1

p´1ql

l!

ÿ

x1,...,xlPZ`
xiěk

detrKa,b
n,npxi, xjqsi,jPrls for k P Z` . (3.21)

We claim that both sides of (3.21) are continuous in parameters paiqiPrns and pbiqiPrns. Then
(3.21) holds even if paiqiPrns or pbiqiPrns has repeats. In particular, setting ai “ 0 for m ă i ď n
and bj “ 0 for n ă j ď m, we obtain the result. To prove the claim, note that PpGpn, nq ď kq
is continuous because it can be written as the finite sum of probabilities

PpW pi, jq “ Api, jq for i, j P rnsq “
ź

i,jPrns

p1´ aibjqa
Api,jq
i b

Api,jq
j (3.22)

over matrices A P Zrnsˆrns` for which maxπPΠpm,nq
ř

pi,jqPπ Api, jq ď k, and (3.22) is continuous.
Pick δ ą 0 small so that

max
1ďiďn

ai _ max
1ďjďn

bj ă ρ´ δ, (3.23)

where ρ is as in (3.19). Then there exists C ą 0 (which depends on n and δ) such that
Ka,b
n,npx, yq ď Cρx`y for any x, y P Z`, which leads to the bound

detrKa,b
n,npxi, xjqsi,jPrls “

ÿ

σPSl

sgnpσq
l
ź

i“1

Ka,b
n,npxi, xσpiqq ď l!Clρ2

řl
i“1 xi ,

which is summable over x1, . . . , xl ě k. Hence, the inner sum in (3.21) converges uniformly
on the set r0, ρ ´ δq2n. This and continuity of Ka,b

n,n imply that the right-hand side of (3.21) is
also continuous on r0, ρ ´ δq2n. Since ρ ´ δ can be chosen arbitrarily close to 1, the claim is
proved.

Since ρ ă 1, using the identity p1´ zwq´1 “
ř8

l“0 z
lwl and Fubini-Tonelli theorem, we can

rearrange (3.19) as

Ka,b
m,npx, yq “

1

p2πiq2

¿

|w|“ρ

¿

|z|“ρ

8
ÿ

l“0

F a,b
m,n,x`lpzqF

b,a
n,m,y`lpwq dz dw
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“

8
ÿ

l“0

Ia,bm,n,x`lI
b,a
n,m,y`l, (3.24)

where

Ia,bm,n,x “
1

2πi

¿

|z|“ρ

F a,b
m,n,xpzqdz “

1

2πi

¿

|z|“1

F a,b
m,n,xpzqdz. (3.25)

4 Steepest-descent analysis

Fix q P p0, 1q and set ai “
?
q for i P rms and bj “

?
q for j P rns. Then (3.18) becomes

Fm,n,xpzq “
p1´ z

?
qqn

pz ´
?
qqm

¨ zm`x (4.1)

for m,n P N, x, y P Z` and z P Crt?qu. In this special case, we will drop superscripts a and
b in (3.19) and (3.25) as well. Theorem 3.5 asserts that

PpGpm,nq ď tq “ 1`
8
ÿ

l“1

p´1ql

l!

ÿ

x1,...,xlPZ`
xiět

detrKm,npxi, xjqsi,jPrls. (4.2)

for any m,n P N and t ě 0. To prove Theorem 1.1, we will show that the right-hand side of
(4.2) with m “ tnr u and t “ nγ ` n1{3σs converges to that of (2.5). The main step here is
to establish that appropriately rescaled Km,npx, yq converges to the Airy kernel and obeys a
uniform upper bound.

Let pηkqkPN be a positive real sequence such that ηk Ñ `8. For k P N, set

nk “ t ηk u and mk “ t rηk u . (4.3)

Also, for k P N and s P R, define

pkpsq “ t ηkγ ` η
1{3
k σs u . (4.4)

Theorem 4.1. Let T ą 0.

(a) For each l P N,

lim
kÑ8

detrKmk,nk
ppkpsiq, pkpsjqqsi,jPrlsσ

lη
l{3
k “ detrApsi, sjqsi,jPrls

uniformly in s1, . . . , sl P r´T, T s.

(b) There exist N P N and constants C, c ą 0 such that

detrKmk,nk
ppkpsiq, pkpsjqqsi,jPrls ď Clll{2η

´l{3
k e´c

řl
i“1 si

for all l P N, k ě N and s1, . . . , sl ě ´T .

We give a proof of Theorem 4.1 in Section 5 via steepest descent analysis of the integral in
(3.25). In order to find a suitable deformation of the contour, we now examine Fmk,nk,pkpsq as
k Ñ `8.

Let D denote the disk having the interval p
?
q, 1{

?
qq as its diameter. We define the holo-

morphic function f on D by

fpzq “ ´r logpz ´
?
qq ` logp1´

?
qzq ` pr ` γq log z, (4.5)

where the logarithms are the principal branch. By (4.1), (4.3) and (4.4), we have

Fmk,nk,pkpsqpzq “ exp p´mk logpz ´
?
qq ` nk logp1´ z

?
qq ` pmk ` pkpsqq log zq (4.6)
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“ exp
´

ηkfpzq ` η
1{3
k σs log z `Op1qplogp1´ z

?
qq ` logpz ´

?
qq ` log zq

¯

for z P D. This leads us to choose the contour in (3.25) based on the behavior of f .
Let u and v denote the real and the imaginary parts of f ; hence,

upzq “ ´r log |z ´
?
q| ` log |1´

?
qz| ` pr ` γq log |z| (4.7)

vpzq “ ´r argpz ´
?
qq ` argp1´

?
qzq ` pr ` γq arg z. (4.8)

Note that u and the derivative

f 1pzq “

?
q

?
qz ´ 1

`
r ` γ

z
´

r

z ´
?
q

(4.9)

both extend continuously to Crt0,?q, 1{?qu via the formulas in (4.7) and (4.9).
We can rewrite (4.9) as

f 1pzq “
?
qp1` γq

pz ´ ζq2

pz
?
q ´ 1qpz ´

?
qqz

, (4.10)

where

ζ “

?
q `

?
r

1`
?
qr
. (4.11)

Hence, f 1pζq “ f2pζq “ 0 and, in view of (1.7),

f3pζq “
2
?
qp1` γq

pζ
?
q ´ 1qpζ ´

?
qqζ

“ ´
2σ3

ζ3
.

Then we have the expansion

fpzq “ fpζq `
σ3

3
p1´ z{ζq3 `Op|z ´ ζ|4q (4.12)

around ζ.
We now discuss, somewhat informally, the nature of the steepest-descent and -ascent curves

of u (i.e. curves that are tangent to the vector fields ´∇u and ∇u, respectively) emanating
from ζ. A more rigorous version of the argument here is provided in the appendix.

It follows from (4.12) that there are three steepest-descent curves D1, D2, D3 and three
steepest-ascent curves A1, A2, A3 of u which have ζ as one of their endpoints; Di and Ai come
in ζ at angles i2π{3 and π ´ i2π{3 with positive real axis for i “ 1, 2, 3. We next deduce some
global features of these curves depicted in Figure 4.1. By the Cauchy-Riemann equations, v
equals the constant vpζq “ 0 along these curves. Since ∇u “ f 1 is real-valued on the real line
and, by (4.10), has a zero only at ζ, the unique steepest-descent and -ascent curves passing
through x are along the real line for any x P Rrt0,?q, 1{?q, ζu. We conclude that D1 and A1,
which contain points of the upper half-plane, cannot intersect the real line. D1 and A1 cannot
intersect each other and themselves either due to strict monotonicity of u along these curves.
In particular, D1 and A1 do not revisit a small neighborhood of ζ as the level set v “ 0 in the
upper half-plane nearby ζ consists of segments of D1 and A1.

If D1 and A1 are bounded then, along D1 and A1, ∇u is bounded away from 0 outside a
small neighborhood of ζ and u approaches ´8 and `8, respectively. We note from (4.7) that
upzq Ñ `8 as z Ñ

?
q and upzq Ñ ´8 as z Ñ 0 or 1{

?
q. Also, upzq Ñ `8 as |z| Ñ `8;

therefore, D1 is bounded, which implies that D1 approaches either 0 or 1{
?
q. The latter is not

possible because, otherwise, A1 is trapped in the interior of the closed curve made up of D1

and the line segment rζ, 1{
?
qs, and must approach the exterior point

?
q. This contradiction

shows that D1 ends at 0. Then A1, being still cut off from
?
q, goes off to infinity. Due to

the symmetry of u, D2 and A2 are mirror images with respect to the real axis of D1 and A1,
respectively.
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0
?
q ζ 1{

?
q

A3

A1

A2

D3

D1

D2

Figure 4.1: Steepest descent curves D1, D2, D3 and steepest ascent curves
A1, A2, A3 for u at ζ.

Let Γ denote the contour consisting of D1 and D2 oriented counterclockwise. Since Γ encloses
the singularity

?
q of Fm,n,x, we can deform the contour in (3.25) to Γ.

In the proof of Theorem 4.1, we will need upper bounds on Imk,nk,pkpsq that improve expo-
nentially as sÑ `8. The following lemma will be useful to establish these bounds. See Figure
4.2 below for an illustration of the lemma.

Lemma 4.2. The circle |z| “ ζ encloses Γ r tζu.

Proof. For z P D1, we have vpzq “ vpζq “ 0. To prove the result, it suffices to show that the
function t ÞÑ vpζeitq is increasing on r0, πq. We have

dpvpζeitqq

dt
“ ∇vpζeitq ¨ piζeitq “ <pf 1pζeitqζeitq

“
p1` γqζ2<pxptqyptqq

|ζeit ´ 1{
?
q|2|ζeit ´

?
q|2

, (4.13)

where xptq “ peit ´ 1qpζe´it ´ 1{
?
qq and yptq “ peit ´ 1qpζe´it ´

?
qq. Note that <xptq ą

0,=xptq ă 0, and <yptq ą 0,=yptq ą 0, which implies (4.13) is positive.

5 Asymptotics of the correlation kernel

In this section, we give a proof of Theorem 4.1. The argument is based on representation (3.19)
for the correlation kernel and requires precise information about the behavior of the integrals
Imk,nk,pkpsq for large k P N. The following lemma shows that the Airy function arises as a
uniform limit in the asymptotics as k Ñ 8 and establishes a uniform bound, which will be
sufficient for our purposes. The proof of the lemma comes from analysis of the integrands
Fmk,nk,pkpsq along the steepest-descent contour Γ defined in Section 4.

Lemma 5.1. Let T ą 0.

(a)

lim
kÑ8

ση
1{3
k Imk,nk,pkpsq

ζFmk,nk,pkpsqpζq
“ Aipsq

uniformly in s P r´T, T s.
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Figure 4.2: A plot of the contour vpzq “ 0 (light blue) and the circle |z| “ ζ (brown)
for q “ 1{4 and r “ 1.

(b) There exist N P N and constants C, c ą 0 such that

|Imk,nk,pkpsq| ď Cη
´1{3
k e´cs|Fmk,nk,pkpsqpζq|

for k ě N and s ě ´T .

Proof of (a). Because Γ is symmetric about the real axis and the upper half of Γ makes an
angle of 2π{3 with the positive real axis at ζ, if ε ą 0 is sufficiently small, the points ζ 1 “
ζ ` ζεσ´1eip2π{3`φq and ζ 1 are on Γ for some φ P p´π{6, π{6q. Split Γ into two parts Γ1 and Γ2

with endpoints at ζ 1 and ζ 1, where Γ1 is the part passing through ζ. Note that we can change
the contour of integration Γ by deforming Γ1 into Γ11, the broken line segment with vertices at
ζ, ζ 1 and ζ 1 oriented from ζ 1 to ζ 1, see Figure 5.1. The proof is complete once we show that

lim
kÑ8

ση
1{3
k

ζFmk,nk,pkpsqpζq
¨

1

2πi

ż

Γ11

Fmk,nk,pkpsqpzqdz “ Aipsq (5.1)

lim
kÑ8

η
1{3
k

ż

Γ2

Fmk,nk,pkpsqpzq

Fmk,nk,pkpsqpζq
dz “ 0, (5.2)

both uniformly in s P r´T, T s.
If ε is sufficiently small, we have for z on Γ11

Fmk,nk,pkpsqpzq

Fmk,nk,pkpsqpζq
“ exp

ˆ

ηkpfpzq ´ fpζqq ` η
1{3
k σs logpz{ζq

˙

¨ exp

ˆ

´ pmk ´ rηkq log

ˆ

z ´
?
q

ζ ´
?
q

˙

` pnk ´ ηkq log

ˆ

1´ z
?
q

1´ ζ
?
q

˙˙

¨ exp

ˆ

ppkpsq ´ ηkγ ´ η
1{3
k σsq logpz{ζq

˙

“ exp

ˆ

ηkσ
3

3
p1´ z{ζq3 ´ η

1{3
k σsp1´ z{ζq

˙
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0
?
q ζ

ζ 1

ζ 1

2π{3

2π{3` φ

Γ1

Γ11

Γ2

Figure 5.1: Contours Γ1 (blue), Γ2 (purple) and Γ11(red).

¨ exp

ˆ

Op|z ´ ζ|q `Opη
1{3
k |s||z ´ ζ|2q `Opηk|z ´ ζ|

4q

˙

.

This comes from (4.5), (4.6), (4.12) and the expansion

logpz{ζq “ ´p1´ z{ζq `Op|z ´ ζ|2q.

Hence, changing the variables via z “ ζp1´ σ´1η
´1{3
k uq and rearranging terms, we arrive at

ση
1{3
k

ζFmk,nk,pkpsqpζq
¨

1

2πi

ż

Γ1

Fmk,nk,pkpsqpzqdz “
1

2πi

ż

Ck

eu
3
{3´su`Opη

´1{3
k p|u|`|s||u|2`|u|4qqdu, (5.3)

where contour Ck consists of the line segments from εη
1{3
k e´ipπ{3´φq to 0 and from 0 to εη

1{3
k eipπ{3´φq.

See Figure 5.2.

0 ζ

π{3´ φ

εη
1{3
k

ζε{σ
2π{3` φ

Figure 5.2: Contours Γ11 (blue) and Ck (red).

We now consider the difference of the right-hand sides of (2.1) (with θ “ π{3´φ) and (5.3).
Let C denote a common implicit constant in the error terms in (5.3). Put a “ cospπ ´ 3φq{3
and b “ cospπ{3 ´ φq. Note that φ Ñ 0 as ε Ñ 0; therefore, a and b can be made arbitrarily
close to ´1{3 and 1{2, respectively. For u P Ck,

|eu
3
{3´supeOpη

´1{3
k p|u|`|s||u|2`|u|4qq ´ 1q| “ ea|u|

3
´sb|u||eOpη

´1{3
k p|u|`|s||u|2`|u|4qq ´ 1| (5.4)
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ď ea|u|
3
´sb|u|`Cη

´1{3
k p|u|`|s||u|2`|u|4q

¨ Cη
´1{3
k p|u| ` |s||u|2 ` |u|4q (5.5)

ď ea|u|
3
`Tb|u|`Cη

´1{3
k p|u|`T |u|2`|u|4q

¨ Cη
´1{3
k p|u| ` T |u|2 ` |u|4q (5.6)

ď CεeCεp1` T |u| ` |u|3q

¨ expppa` Cεq|u|3 ` pTb` CεT q|u|q. (5.7)

Here, (5.4) follows because u has direction e˘ipπ{3´φq. For (5.5), we use the inequality |ez´1| ď

|z|e|z| for z P C. Finally, (5.6) and (5.7) are due to |s| ď T and |u| ď εη
1{3
k . Note that the

right-hand side of (5.6) does not depend on s and converges to 0 as k Ñ8 pointwise. Moreover,
the right-hand side of (5.7) does not depend on k and is integrable provided that a ` Cε ă 0,
which is the case if ε ą 0 is small enough. Hence, (5.1) follows from dominated convergence.

We now turn to (5.2). Since log |1´ z
?
q| and log |z ´

?
q| are bounded on Γ, we obtain

|Fmk,nk,pkpsqpzq|

|Fmk,nk,pkpsqpζq|
“ exp

´

ηkpupzq ´ upζqq ` pη
1{3
k σs`Op1qq log |z{ζ| `Op1q

¯

(5.8)

for z P Γr t0u. Introduce a small parameter δ P p0, 1q. Since u is decreasing along Γ away from
ζ, we have supΓ2

upzq ă upζq. Also, log |z{ζ| is bounded on Γ minus the disk |z| ď δ. These
observations, assumption |s| ď T and (5.8) imply existence of constants C, c ą 0 such that

|Fmk,nk,pkpsqpzq|

|Fmk,nk,pkpsqpζq|
ď Ce´cηk , (5.9)

for z P Γ2 with |z| ě δ. By boundedness of the first two terms in (4.7),

upzq ´ upζq “ pγ ` rq log |z{ζ| `Op1q (5.10)

for 0 ă |z| ď δ. Using this and |s| ď T leads to

ηkpupzq ´ upζqq ` pη
1{3
k σs`Op1qq log |z{ζ| “ ηk

ˆ

pγ ` r `Opη
´2{3
k qq log |z{ζ| `Op1q

˙

The right-hand side is less than ´c1ηk for some constant c1 ą 0 for all large enough k provided
that δ is small enough. Hence, an equality of the form (5.9) also holds for |z| ď η and k large
enough. It follows that

η
1{3
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Γ2

Fmk,nk,pkpsqpzq

Fmk,nk,pkpsqpζq
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cη
1{3
k lengthpΓ2qe

´cηk , (5.11)

which implies the uniform convergence in (5.2).

Proof of (b). It suffices to show that there exist C, c ą 0 and N P N such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ck

eu
3
{3´su`Opη

´1{3
k p|u|`|s||u|2`|u|4qqdu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ce´cs (5.12)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Γ2

Fmk,nk,pkpsqpzq

Fmk,nk,pkpsqpζq
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cη
´1{3
k e´cs (5.13)

for all s ě ´T and k ě N .
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0

eipπ{3´φq

e´ipπ{3´φq

l

Figure 5.3: Contour obtained from deforming a part of Ck (dashed) into line segment
l.

We first consider the case s ě 0. Choose k large and deform the part of the contour Ck in
(5.3) that contains 0 and has endpoints at e˘ipπ{3´φq into the line segment l from e´ipπ{3´φq to
eipπ{3´φq as in Figure 5.3. Recall a and b from the proof of (a). For w “ b` iy P l, we have

<
´

w3{3´ sw `Opη
´1{3
k p|w| ` s|w|2 ` |w|4qq

¯

“ b3{3´ by2 ´ bs`Opη
´1{3
k p1` sqq

ď 1{3´ bs` Cη
´1{3
k p1` sq ď 1´ bs{2 (5.14)

for some constant C ą 0 and sufficiently large k. Similarly, for w P Ck with |w| ě 1 and ε ą 0
sufficiently small, we get

<
´

w3{3´ sw `Opη
´1{3
k p|w| ` s|w|2 ` |w|4qq

¯

“ a|w|3 ´ sb|w| `Opεp1` s|w| ` |w|3qq

ď pa` Cεq |w|3 ` Cε´ pb´ Cεqs (5.15)

for some constant C ą 0. Bounds (5.14) and (5.15) imply (5.12) for s ě 0.
Recall δ ą 0 introduced after (5.8) and that supzPΓ2

upzq ă upζq. Also, it follows from
Lemma 4.2 that supzPΓ2

log |z{ζ| ă 0. Then, by (5.8), there exist constants C, c ą 0 such that

|Fmk,nk,pkpsqpzq|

|Fmk,nk,pkpsqpζq|
ď Ce´cηk´cη

1{3
k s (5.16)

for z P Γ2 with |z| ě δ. Moreover, choosing k large, δ small and using (5.8) and (5.10), we
obtain

|Fmk,nk,pkpsqpzq|

|Fmk,nk,pkpsqpζq|
ď C exp

´

ηkppγ ` r `Opη
´1
k qq log |z{ζ| `Op1qq ` η

1{3
k σs log |z{ζ|

¯

ď Ce´cηk´cη
1{3
k s (5.17)

for z P Γ2 with 0 ă |z| ď δ, for some constants C, c ą 0. Then (5.13) for s ě 0 follows from
(5.16) and (5.17).

Let C and c refer to the constants in (5.12) and (5.13) for s ě 0. Suppose now that
s P r´T, 0q. Then the integrand in (5.12) is bounded by

exppa|u|3 ` Tb|u| ` C1εp1` T |u| ` |u|
3qq (5.18)
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for some constant C1 ą 0. If ε is small enough, (5.18) is integrable over Ck. It follows from this
and (5.11) that (5.12) and (5.13) still hold after replacing C by a larger constant if necessary.

Proof of Theorem 4.1. We will first obtain (b). By Lemma 5.1(b), there exist constants C, c ą 0
such that

|Imk,nk,pkpsq`l| “

ˇ

ˇ

ˇ
I
mk,nk,pkps`η

´1{3
k σ´1

r lq

ˇ

ˇ

ˇ
ď Cη

´1{3
k e´cps`η

´1{3
k σ´1

r lq|Fmk,nk,pkpsq`lpζrq| (5.19)

for s ě ´T for sufficiently large k. Observe the identities γ1{r “ γr{r, σ1{r “ σr{r
1{3 and

ζr “ 1{ζr from (1.6), (1.7) and (4.11). Hence, we have

nk “ t η1k{r u, mk “ t η1k u

pkpsq “ t η1kγ1{r ` η
11{3
k σ1{rs u

for k P N and s P R, where η1k “ rηk. Then, another application of Lemma 5.1(b) with r and
sequence pη1kqkPN yields

|Ink,mk,pkptq`l| “

ˇ

ˇ

ˇ
I
nk,mk,pkpt`η

´1{3
k σ´1

r lq

ˇ

ˇ

ˇ
ď C 1η

´1{3
k e´c

1
pt`η

´1{3
k σ´1

r lq|Fnk,mk,pkptq`lpζ1{rq| (5.20)

for t ě ´T , for sufficiently large k and some constants C 1, c1 ą 0. In fact, because s, t ě ´T , we
can assume that c1 “ c at the expense of having larger constants C,C 1. Also, it can be verified
from (4.1) that

Fmk,nk,pkpsq`lpζrqFnk,mk,pkptq`lpζ1{rq “ ζpkpsq´pkptqr . (5.21)

Combining (5.19), (5.20) and (5.21), we obtain

|Imk,nk,pkpsq`lInk,mk,pkptq`l| ď Ce´cps`tqηk
´2{3e´cσ

´1
r η

´1{3
k lζpkpsq´pkptqr (5.22)

for all integer l ě 0. In view of (3.19), summing over l yields

|Kmk,nk
ppkpsq, pkptqq| ď

Cη
´1{3
k

1´ e´cσ
´1
r η

´1{3
k

η
´1{3
k ζpkpsq´pkptqe´cps`tq. (5.23)

The first factor on the right-hand side is bounded; thus,

|Kmk,nk
ppkpsq, pkptqq| ď Cηk

´1{3e´cps`tqζpkpsq´pkptqr (5.24)

for s, t ě ´T , sufficiently large k P N and some constant C ą 0. Now, using (5.24), properties
of the determinant and Hadamard’s inequality gives

det rKmk,nk
ppkpsiq, pkpsjqqsi,jPrls “ det

”

ζpkpsjq´pkpsiqr Kmk,nk
ppkpsiq, pkpsjqq

ı

i,jPrls
(5.25)

ď Clη
´l{3
k

l
ź

i“1

e´csi

˜

l
ÿ

j“1

e´2csj

¸1{2

“ pecTCqlη
´l{3
k

l
ź

i“1

e´csi

˜

l
ÿ

j“1

e´2cpsj`T q

¸1{2

ď pecTCqlll{2η
´l{3
k

l
ź

i“1

e´csi ,

which is (b) after redefining the constant C.
Each entry of the matrix on the right-hand side of (5.25) is bounded uniformly in s1, . . . , sl P

r´T, T s by (5.24). Therefore, to prove (a), it suffices to show that

lim
kÑ`8

σrη
1{3
k ζpkptq´pkpsqr Kmk,nk

ppkpsq, pkptqq “ Aps, tq (5.26)
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uniformly in s, t P r´T, T s. Let L ą 0 and ε ą 0. By Lemma 5.1a, there exist N P N such that
ˇ

ˇ

ˇ

ˇ

ˇ

σrηk
1{3Imk,nk,pkpsq`l

ζrFmk,nk,pkpsq`lpζrq
´Aips` η

´1{3
k σ´1

r lq

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

L
(5.27)

ˇ

ˇ

ˇ

ˇ

ˇ

σrη
1{3
k Ink,mk,pkptq`l

ζ1{rFnk,mk,pkptq`lpζ1{rq
´Aipt` η

´1{3
k σ´1

r lq

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

L
, (5.28)

for s, t P r´T, T s, 0 ď l ă Lσrη
1{3
k and k ě N . Using Lemma 5.1b, boundedness of the Airy

function on r´T, L` T s and (5.21), we can combine (5.27) and (5.28) via triangle inequality to
obtain
ˇ

ˇ

ˇ
σrη

1{3
k ζpkptq´pkpsqr Imk,nk,pkpsq`lInk,mk,pkptq`l ´ σ

´1
r η

´1{3
k Aips` η

´1{3
k σ´1

r lqAipt` η
´1{3
k σ´1

r lq
ˇ

ˇ

ˇ

ă
Cε

Lη
1{3
k

(5.29)

for some constant C ą 0. By uniform continuity of the Airy function on r´T, L ` T s, we also
have

|Aips` η
´1{3
k σ´1

r lqAipt` η
´1{3
k σ´1

r lq ´Aips` xqAipt` xq| ă
ε

L
(5.30)

whenever s, t P r´T, T s, 0 ă l ď Lσrη
1{3
k , x P rη

´1{3
k σ´1

r pl ´ 1q, η
´1{3
k σ´1

r ls and k ě N , by
choosing N larger if necessary. It follows from (5.29) and (5.30) that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σrη
1{3
k ζpkptq´pkpsqr Imk,nk,pkpsq`lInk,mk,pkptq`l ´

η
´1{3
k σ´1

r l
ż

η
´1{3
k σ´1

r pl´1q

Aips` xqAipt` xqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă
Cε

Lη
1{3
k

for some constant C ą 0. We now sum over 0 ă l ď Lσrη
1{3
k and obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σrη
1{3
k ζpkptq´pkpsqr

ÿ

0ălďLσrη
1{3
k

Imk,nk,pkpsq`lInk,mk,pkptq`l ´

L
ż

0

Aips` xqAipt` xqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă Cε

(5.31)

for some constant C ą 0. Moreover, choosing L large enough, we have
ˇ

ˇ

ˇ

ˇ

ż `8

L

Aips` xqAipt` xqdx

ˇ

ˇ

ˇ

ˇ

ă ε (5.32)

Finally, summing (5.22) over l ą Lσrη
1{3
k gives

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σrη
1{3
k ζpkptq´pkpsqr

ÿ

ląLσrη
1{3
k

Imk,nk,pkpsq`lInk,mk,pkptq`l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ce´cps`t`2Lq ă ε (5.33)

for s, t P r´T, T s, k ě N and some constants C, c ą 0 provided that L is sufficiently large. Then,
we conclude (5.26) from (5.31), (5.32) and (5.33).

6 Proof of Theorem 1.1

In this section, we combine Theorem 4.1 with standard estimates on the Airy kernel to establish

lim
kÑ`8

8
ÿ

l“1

p´1ql

l!

ÿ

q1,...,qlPN
qiěpkpsq

det rKmk,nk
pqi, qjqsi,jPrls “

8
ÿ

l“1

p´1ql

l!

ż

rs,8ql

detrApxi, xjqsi,jPrlsdx1 . . . dxl

(6.1)
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for any s P R. Note that (6.1) implies Theorem 1.1 on account of (2.5) and (4.2).
We first derive a uniform bound in k for the inner sum on the left hand-side of (6.1).

Lemma 6.1. Let T ą 0. There exist N P N and constants C, c ą 0 such that
ÿ

q1,...,qlPN
qiěpkpsiq

det rKmk,nk
pqi, qjqsi,jPrls ď Clll{2e´c

řl
i“1 si

for l P N, k ě N and s1, . . . , sl ě ´T .

Proof. Noting that

qi “ pkpsiq ` qi ´ pkpsiq “ pkpsi ` pqi ´ pkpsiqqη
´1{3
k σ´1q,

we obtain from Theorem 4.1b that there exists N P N and C, c ą 0 such that

detrKmk,nk
pqi, qjqsi,jPrls ď Clll{2η

´l{3
k exp

˜

´c
l
ÿ

i“1

´

si ` pqi ´ pkpsiqqη
´1{3
k σ´1

¯

¸

whenever k ě N , s1, . . . , sl ě ´T and qi ě pkpsiq for i P rls. Summing over qi ě pkpsiq for
i P rls yields

ÿ

q1,...,qlPN
qiěpkpsiq

det rKmk,nk
pqi, qjqsi,jPrls ď Clll{2e´c

řl
i“1 si

η
´l{3
k

´

1´ e´cη
´1{3
k σ´1

¯l

Since η
´1{3
k ď C 1p1´ e´cη

´1{3
k σ´1

q for some constant C 1 ą 0, the result follows.

A similar inequality holds for the Airy kernel.

Lemma 6.2. Let T ą 0. There exists a constant C ą 0 such that
ż

x1,...,xlPR
xiěsi

det rApxi, xjqsi,jPrls dx1 . . . dxl ď Cle´
řl

i“1 si

for l P N and s1, . . . , sl ě ´T .

Proof. It follows from (2.3) that A is symmetric and

ÿ

i,jPrls

vi Apxi, xjqvj “
ÿ

i,jPrls

ż 8

0

vi Aipxi ` tqAipxj ` tqvjdt

“

ż 8

0

ÿ

i,jPrls

vi Aipxi ` tqAipxj ` tqvjdt

“

ż 8

0

˜

l
ÿ

i“1

Aipxi ` tqvi

¸2

dt ě 0

for any v1, . . . , vl P R. That is, rApxi, xjqsi,jPrls is a nonnegative-definite matrix. Therefore, by
(2.4) and Hadamard’s inequality, there exists a constant C ą 0 such that

detrApxi, xjqsi,jPrls ď
l
ź

i“1

Apxi, xiq ď Cle´
řl

i“1 xi

whenever xi ě ´T for i P rls. Integrating over xi ě si for i P rls, where si ě ´T , completes the
proof.
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Proof of Theorem 1.1. Introduce ε ą 0 and S ą s. By Lemma 6.1,

8
ÿ

l“1

1

l!

ÿ

q1,...,qlPN
qiěpkpsq

max qiěpkpSq

det rKmk,nk
pqi, qjqsi,jPrls ď Ce´cS

8
ÿ

l“1

ll{2e´cspl´1qCl´1

pl ´ 1q!

for k ě N for some constants C, c ą 0 and N P N. The right-hand side is finite by the root test
and can be made less than ε choosing S sufficiently large. For such S, we similarly obtain from
Lemma 6.2 that

8
ÿ

l“1

1

l!

ż

x1,...,xlěs
max xiěS

detrApxi, xjqsi,jPrlsdx1 . . . dxl ă ε.

Hence, it suffices to prove the following truncated version of (6.1).

lim
kÑ8

8
ÿ

l“1

p´1ql

l!

ÿ

q1,...,qlPN
pkpsqďqiăpkpSq

det rKmk,nk
pqi, qjqsi,jPrls

“

8
ÿ

l“1

p´1ql

l!

ż

rs,Sql

detrApxi, xjqsi,jPrlsdx1 . . . dxl. (6.2)

By Lemma 6.1 and finiteness of
ř8

l“1 l
l{2Cle´csl{l!, we can conclude (6.2) from dominated

convergence if we show that

lim
kÑ8

ÿ

q1,...,qlPN
pkpsqďqiăpkpSq

det rKmk,nk
pqi, qjqsi,jPrls “

ż

rs,Ssl

det rApxi, xjqsi,jPrls dx1 . . . dxl. (6.3)

for each l P N.
Fix l P N. For k P N, consider the partition of the interval rs,8q into intervals of length

σ´1η
´1{3
k with endpoints at

tpq, kq “ s` pq ´ pkpsqqσ
´1η

´1{3
k

for q ě pkpsq. Observe that pkptpq, kqq “ q. Also, for pkpsq ď q1, . . . , ql ă pkpSq, we have

s ď tpqi, kq ă s` ppkpSq ´ pkpsqqσ
´1η

´1{3
k ď S ` 1 for each i P rls. Therefore, by Theorem 4.1a,

there exists N P N such that
ˇ

ˇ

ˇ
det rKmk,nk

pqi, qjqsi,jPrls ´ σ
´lη

´l{3
k det rAptpqi, kq, tpqj , kqqsi,jPrls

ˇ

ˇ

ˇ
ă εσ´lη

´l{3
k (6.4)

whenever k ě N and pkpsq ď qi ă pkpSq for i P rls. By uniform continuity of detrApxi, xjqsi,jPrls
on rs, S ` 1sl, choosing N larger if necessary, we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

det rKmk,nk
pqi, qjqsi,jPrls ´

ż

Rq1,¨¨¨ ,ql,k

detrApxi, xjqsi,jPrls dx1 ¨ ¨ ¨ dxl

ˇ

ˇ

ˇ

ˇ

ˇ

ă 2εσ´lη
´l{3
k , (6.5)

where Rq1,...,ql,k denotes the product of the intervals rtpqi, kq, tpqi`1, kqs for i P rls. The pairwise
intersections of tRq1,...,ql,k : pkpsq ď qi ă pkpSqu are Lebesgue null-sets and their union is

rtppkpsq, kq, tppkpSq, kqs
l “ rs, tppkpSq, kqs

l. (6.6)

Hence, by the triangle inequality and (6.5),
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

q1,...,qlPN
pkpsqďqiăpkpSq

det rKmk,nk
pqi, qjqsi,jPrks ´

ż

rs,tppkpSq,kqsl
detrApxi, xjqsi,jPrlsdx1 ¨ ¨ ¨ dxl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(6.7)
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ă 2εσ´lη
´l{3
k ppkpSq ´ pkpsqq

l ď 2εpS ´ s` 1ql, (6.8)

The set in (6.6) differs from rs, Ssl by a set of measure

|tppkpSq, kq
l ´ Sl| ď σ´1η

´1{3
k lpS ` 1ql´1, (6.9)

where the inequality follows from |tppkpSq, kq ´ S| ď σ´1η
´1{3
k and the mean value theorem.

Because (6.9) can be made arbitrarily small and the Airy kernel is bounded on rs, S ` 1s, we
have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

rs,tppkpSq,kqsl
detrApxi, xjqsi,jPrlsdx1 ¨ ¨ ¨ dxl ´

ż

rs,Ssl
detrApxi, xjqsi,jPrlsdx1 ¨ ¨ ¨ dxl

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε, (6.10)

for k ě N by choosing N large enough. Now (6.3) follows from combining (6.7) and (6.10).

A Steepest-descent curves of harmonic functions

In this section, we provide a more rigorous justification for Figure 4.1 than indicated in the main
text. Our argument relies on some well-known facts from the theory of ODEs, which we briefly
recall here. Let d P N, U be an open subset of Rd, x0 P U and F : U Ñ Rd be a continuously
differentiable function. A solution of the initial value problem

x1ptq “ F pxptqq xpt0q “ x0 (A.1)

is a (necessarily twice continuously) differentiable function ϕ : I Ñ U , where I is an open
interval containing t0, such that ϕ1ptq “ F pϕptqq for all t P I and ϕpt0q “ x0. There exists
a unique solution Φ : J Ñ U of (A.1) that is maximal in the sense that any other solution
ϕ : I Ñ U of (A.1) is a restriction of Φ to I. Let α and β denote the left and the right endpoints
of J , respectively, and K be a compact subset of U . Then, either α “ ´8 or Φptq R K for
some t P pα, t0s. Similarly, either β “ `8 or Φptq R K for some t P rt0, βq. The proof of
these assertions can be found in standard texts on differential equations; see, for example, [1,
Chapter 2], [15, Section 7.2].

Let u : U Ñ R be a twice continuously differentiable function and ϕ : I Ñ U be a continu-
ously differentiable curve parametrized by arclength, that is, |ϕ1ptq| “ 1 for all t P I. We call ϕ,
respectively, a stationary, steepest-descent and steepest-ascent curve of u if

d

dt
pupϕptqqq “ 0,´|∇upϕptqq| and |∇upϕptqq|, (A.2)

respectively, for all t P I. Since the directional derivative ∇u ¨η along any direction η is bounded
by |∇u|, along a steepest-descent curve, u decreases most rapidly and along a steepest-ascent
curve, u increases most rapidly. Note also that ϕ is a steepest-descent curve of u if and only if
the reversed curve t ÞÑ ϕp´tq is a steepest-ascent curve of u.

We specialize the setting to the case of d “ 2 from now on and identify R2 with C in the
usual manner px, yq Ø x ` iy. The dot product of z, w P C is defined as z ¨ w “ <pzwq. Let
V be a nonempty open subset of U such that the gradient ∇u ‰ 0 on V . Then the stationary,
steepest-descent and steepest-ascent curves of u that lie in V satisfy the ODEs

z1ptq “ i
∇upzptqq
|∇upzptqq|

, z1ptq “ ´
∇upzptqq
|∇upzptqq|

and z1ptq “
∇upzptqq
|∇upzptqq|

,

respectively. Since
∇u
|∇u|

is continuously differentiable on V , if we choose an initial value zpt0q “

z0 P V in any of these ODEs, the resulting initial value problem admits a unique maximal
solution Φ : J Ñ V .
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We now focus attention to the steepest-descent curves of harmonic functions; these functions
are locally the real and imaginary parts of holomorphic functions. To fix some notation, let f
denote a nonconstant, holomorphic function on U , and put u “ <f and v “ =f . The Cauchy-
Riemann equations assert that Bxu “ Byv and Byu “ ´Bxv, which imply

∇upzq “ pBxupzq,´Bxvpzqq “ f 1pzq ∇vpzq “ pBxvpzq, Bxupzqq “ if 1pzq. (A.3)

Lemma A.1. ϕ is a steepest-descent or -ascent curve of u if and only if ϕ is a stationary curve
of v.

Proof. Using the chain rule and (A.3), we compute

ˆ

d

dt
upϕptqq

˙2

`

ˆ

d

dt
vpϕptqq

˙2

“
`

∇upϕptqq ¨ ϕ1ptq
˘2
`
`

∇vpϕptqq ¨ ϕ1ptq
˘2

“
`

<
`

f 1pϕptqqϕ1ptq
˘˘2

`
`

=
`

f 1pϕptqqϕ1ptq
˘˘2

“ |f 1pϕptqq|2 “ |∇upϕptqq|2.

Then the conclusion readily follows from definition (A.2).

Let z0 P U and n denote the smallest positive integer such that the derivative f pnqpz0q ‰ 0.
We now show that, in a neighborhood of z0, the level set v “ vpz0q consists of n distinct
steepest descent curves of u passing through z0. Hence, by Lemma A.1, there are exactly n of
these curves.

Proposition A.2. Let ξ denote the direction of an nth root of f pnqpz0q. For each k P rns, there
exist an open interval Ik containing 0, an open set Uk Ă C containing z0 and a continuously
differentiable injective curve ϕk : Ik Ñ Uk such that

(a) ϕkp0q “ z0.

(b) =fpzq “ =fpz0q and z P
Ť

kPrns Uk if and only if z “ ϕkptq for some k P rns and t P Ik.

(c) ϕ1kptq “ p´1qk sgnptqn´1 f
1pϕkptqq

|f 1pϕkptqq|
‰ 0 for t P Ik r t0u and ϕ1kp0q “ ξ exppiπk{nq.

(d) For k, l P rns and k ‰ l, the images of ϕk and ϕl do not intersect except at z0.

Hence, the steepest-descent curves of u from z0 are given by the following n parametrizations.
For odd k, t ÞÑ ϕkptq for t ě 0, t P Ik and for odd k`n, t ÞÑ ϕkp´tq for t ě 0,´t P Ik. Likewise,
the steepest-ascent curves of u from z0 are given by t ÞÑ ϕkptq, t ě 0, t P Ik for even k and
t ÞÑ ϕkp´tq, t ě 0,´t P Ik for even k`n. For an illustration of the preceding lemma, see Figure
A.1 below.

Proof of Proposition A.2. By the assumption on f , there exist ε ą 0 and a holomorphic function
h on Dpz0, εq with nonzero derivative such that fpzq “ fpz0q ` hpzqn [23, Theorem 10.32].
Because f pnqpz0q “ n!h1pz0q

n and h is determined only up to multiplication by an nth root of
unity, we may assume that h1pz0q has direction ξ. Since h is nonconstant and holomorphic, by
choosing ε ą 0 small enough, we also have hpzq ‰ 0 unless z “ z0.

The level set =fpzq “ =fpz0q in Dpz0, εq is the same as the level set =phpzqnq “ 0. The last
equation holds if and only if hpzq “ 0 or hpzq has direction ωk “ exppiπk{nq for some k P r2ns,
which is equivalent to

=phpzqωkq “ 0 (A.4)

for some k P rns. The left-hand side of (A.4) is a continuously differentiable function of two
real variables with gradient iωkh1pzq, which is nonzero at z0. Hence, for each k P rns, it follows
from the implicit function theorem that there exist an open interval Ik containing 0, an open
set Uk Ă Dpz0, εq containing z0 and a continuously differentiable injective curve ϕk : Ik Ñ Uk
such that ϕkp0q “ z0, |ϕ1k| “ 1 and z P Uk satisfies (A.4) if and only if z “ ϕkptq for some t P Ik.
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ϕ2

ϕ1

(a) For ξ “ 1, we have ϕ1ptq “ it and ϕ2ptq “ ´t.
The steepest-descent curves are given by ϕ1ptq and
ϕ1p´tq for t ě 0. The steepest-ascent curves are
given by ϕ2ptq and ϕ2p´tq for t ě 0.

ϕ1

ϕ2ϕ3

(b) For ξ “ eiπ{3, we have ϕ1ptq “ t, ϕ2ptq “ eiπ{3t
and ϕ3ptq “ ei2π{3t. The steepest-descent curves are
given by ϕ1ptq, ϕ2p´tq and ϕ3ptq for t ě 0. The
steepest-ascent curves are given by ϕ1p´tq, ϕ2ptq
and ϕ3p´tq for t ě 0.

Figure A.1: The steepest-descent (blue) and -ascent (red) curves at z0 “ 0 for the
functions z2 and ´z3, respectively.

Setting z “ ϕkptq in (A.4) and differentiating with respect to t via the chain rule, we obtain
that ϕ1kptq is orthogonal to iωkh1pϕkptqq. Since h1 is nonzero and continuous, replacing ϕk with

t ÞÑ ϕkp´tq if necessary, we can make ϕ1kptq have the same direction as ωkh1pϕkptqq for t P Ik.
In particular, ϕ1kp0q “ ωkξ.

Since ωkhpϕkptqq is real-valued, we have

d

dt
pωkhpϕkptqqq “

d

dt
<pωkhpϕkptqqq “ ωkh

1pϕkptqqϕ
1
kptq “ |h

1pϕkptqq| ą 0. (A.5)

from the chain rule. Also, we can write

f 1pϕkptqq “
“

p´1qknωk
n´1hpϕkptqq

n´1
‰

ωkh
1pϕkptqq,

where the factor inside the brackets is real and has sign p´1qk sgnptqn´1 by (A.5). It follows
that

ϕ1kptq “ ωk
h1pϕkptqq

|h1pϕkptqq|
“ p´1qk sgnptqn´1 f

1pϕkptqq

|f 1pϕkptqq|
.

for t P Ik r t0u.
We have proved (a), (b) and (c). For (d), suppose that the images of ϕk and ϕl intersect

at z P U for some k ‰ l. Then, by (A.4), hpzq is orthogonal to both iωk and iωl. This implies
hpzq “ 0 and, hence, z “ z0.

Let f, u, v and ζ be as defined by (4.5), (4.7), (4.8) and (4.11), respectively. We recall that
u is harmonic on U “ Crt0,?q, 1{?qu and has nonzero gradient on U r tζu. Also, f “ u` iv
is holomorphic on V , which is C minus the intervals p´8,

?
qs and r1{

?
q,`8q. We apply

Proposition A.2 with f in a small disk centered at ζ. Then n “ 3 and, since f3pζq “ ´2σ3{ζ3,

24



we can take ξ “ eiπ{3. Hence, the level set v “ vpζq “ 0 in a small neighborhood of ζ consists
of the images of the curves ϕk : Ik Ñ Dpζ, εq as described in the lemma. In particular, we have
ϕ11p0q “ 1, ϕ12p0q “ eiπ{3 and ϕ13p0q “ ei2π{3.

We now study the global behavior of the steepest-descent and ascent-curves of u from ζ. For
each k P t1, 2, 3u, put Ik “ pt

´
k , t

`
k q, and let Φ`k and Φ´k denote the maximal steepest descent

and ascent curves in U r tζu that extend ϕk restricted to p0, t`k q and pt´k , 0q, respectively.
Since ϕkp0q “ ζ, the interval of existence for Φ`k and Φ´k are of the form p0, T`k q and pT´k , 0q,
respectively, for some T`k P rt

`
k ,`8q and T´k P p´8, t

´
k s.

Lemma A.3. T`1 “ 1{
?
q ´ ζ, T´1 “

?
q ´ ζ and Φ˘1 ptq “ ζ ` t.

Proof. Because f is real-valued on V XR, Φptq “ ζ` t defined for 0 ă t ă 1{
?
q´ ζ is a steepest

descent curve of u. Moreover, Φ is maximal since Φptq approaches the boundary of U r tζu as
t Ó 0 and t Ò 1{

?
q´ζ. Since Φ1 “ 1 but =ϕ12p0q ą 0 and =ϕ13p0q ą 0, for t ą 0 sufficiently small,

Φptq is not contained in the images ϕ2ppt
´
2 , 0qq and ϕ3pp0, t

`
3 qq. Hence, Φ intersects the image of

ϕ1 restricted to p0, t`1 q, the only remaining steepest descent curve. This implies, by uniqueness
of the maximal solution, that Φ “ Φ`1 . Assertions about T´1 and Φ´1 are proved similarly.

Lemma A.4.

(a) T`2 “ `8, the image Φ`2 pp0,`8qq is in H and limtÑ`8 |Φ
`
2 ptq| “ `8.

(b) T “ T`3 ă `8, the image Φ`3 pp0, T qq is in H and limtÑT Φ`3 ptq “ 0.

(c) T´2 “ ´T and Φ´2 ptq “ Φ`3 p´tq for all t P p´T, 0q.

(d) T´3 “ ´8 and Φ´3 ptq “ Φ`2 p´tq for all t P p´8, 0q.

Proof. To simplify notation, let us write Φ for Φ`3 . We first show that Φptq P H for t P p0, T q.
Since =ϕ13p0q ą 0, there exists t0 P p0, t

`
3 q such that Φptq “ ϕ3ptq P H for t P p0, t0s. As u

is continuous at ζ and is decreasing along Φ, we can choose ε ą 0 such that upΦptqq ă upzq
whenever t ě t0 and z P Dpζ, εq. To get a contradiction, suppose that Φpt1q “ x1 P R for
some t1 P pt0, T q. Then x1 ‰ ζ and ∇u “ f 1 has direction `1 or ´1 in an interval around
x1. It follows that Φ, the unique maximal steepest descent curve passing through x1, satisfies
Φptq “ x1 ´ sgnpf 1px1qqpt´ t1q for t P p0, T q, which contradicts Φpt0q P H. Hence, we conclude
that Φpp0, T qq Ă H.

We note from (4.7) that upzq{ log |z| Ñ 1 ` γ as |z| Ñ `8, which implies that Φpp0, T qq Ă
Dp0, Rq for some R ą 0. Since ∇u “ f 1 has a zero only at ζ and has no singularities other than
the poles at t0,

?
q, 1{

?
qu, there exists c ą 0 such that |∇upzq| ě c for z P Dp0, Rq r Dpζ, εq

and, hence,

d

dt
pupΦptqqq “ ´|∇upΦptqq| ď ´c for t P rt0, T q. (A.6)

We next show that T ă 8 and Φptq converges to either 0 or 1{
?
q as t Ñ T . Let δ ą 0

and K denote the set obtained by removing disks Dpx, δq for x P t0,
?
q, ζ, 1{

?
qu from the

closed disk Dp0, Rq. Since K is compact, if Φppt0, T qq Ă K then T “ `8. However, then
(A.6) forces upΦptqq Ñ ´8, which is not possible as u is bounded on K. Hence, there exists
T1 P rt0, T q such that ΦpT1q R K. If δ ą 0 is sufficiently small, ΦpT1q R Dpζ, δq as Φprt0, T qq
does not intersect Dpζ, εq, and ΦpT1q R Dp

?
q, δq since upzq Ñ `8 as z Ñ

?
q. Also because

Φpp0, T qq Ă Dp0, Rq, we conclude that ΦpT1q P Dp0, δq or ΦpT1q P Dp1{
?
q, δq. Let us first

consider the case ΦpT1q P Dp0, δq. It follows from (4.9) that zf 1pzq “ r ` γ ` Opδq for all
z P Dp0, δq. This implies existence of η ą 0 such that <pzf 1pzqq ě η|zf 1pzq| for all z P Dp0, δq.
Hence, if Φptq P Dp0, δq, we have

d

dt
p|Φptq|q “ ´

Φptq

|Φptq|
¨
∇upΦptqq
|∇upΦptqq|

“ ´
< pΦptqf 1pΦptqqq
|Φptqf 1pΦptqq|

ď ´η. (A.7)
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Then, by the (converse of the) mean value theorem, there is no t P pT1, T q such that Φptq P
Dp0, δq and |Φptq| ą |ΦpT1q|. Hence, Φptq P Dp0, δq for t P pT1, T q and, by (A.7), T ă 8 and
Φptq Ñ 0 as t Ñ T . A similar argument shows that, in the case ΦpT1q P Dp1{

?
q, δq, we have

T ă 8 and limtÑT Φptq “ 1{
?
q.

We now argue that, in fact, Φptq cannot converge to 1{
?
q as tÑ T . Let us write Ψ for the

steepest ascent curve Φ`2 and T 1 for T`2 . As in the argument for Φ, one can observe that Ψ
does not intersect the real line, and there exist t10 P p0, T

1q and ε1 ą 0 such that Ψptq R Dpζ, ε1q
for t P rt10, T

1q. For a contradiction, suppose that limtÑT Φptq “ 1{
?
q and let O denote the

interior of the Jordan curve that consists of the interval rζ, 1{
?
qs and the image of Φ. Since

<φ12p0q ą <φ13p0q, the image of Ψ contains points in O. Then, because Ψ does not intersect the
boundary of O, the image of Ψ lies in O. Since O is bounded, it follows that T 1 “ `8. Using
that Ψprt10,`8qq Ă O rDpζ, ε1q, we note the inequality

d

dt
pupΨptqqq “ |∇upΨptqq| ě c1 for t P rt10,`8q (A.8)

for some constant c1 ą 0 as in (A.6). This implies that upΨptqq Ñ `8 as tÑ `8, which is not
possible as u is bounded from above on O. This completes the proof of (b).

To prove (a), it remains to show that T 1 “ `8 and |Ψptq| Ñ `8 as t Ñ `8. Since Ψ is
parametrized with arclength,

t´ t10 “

ż t

t10

|Ψ1psq|ds ě

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

t10

Ψ1psqds

ˇ

ˇ

ˇ

ˇ

ˇ

“ |Ψptq ´Ψpt10q| (A.9)

for t P rt10, T
1q. Let O1 denote the interior of the Jordan curve that consists of the interval

r0, ζs and the image of Φ. Arguing by contradiction, suppose that Ψpp0, T 1qq Ă Dp0, R1q for
some R1 ą 0. Since Ψ does not intersect the boundary of O1, we conclude that Ψprt10, T

1qq Ă

pDp0, R1qrO1qrDpζ, ε1q. Then, T 1 “ `8 and an inequality of the form (A.8) is in place, which
leads to upΨptqq Ñ `8, which is not possible. Hence, |Ψptq| Ñ `8 and, by (A.9), T 1 “ `8.

For (c), we observe that the curve t ÞÑ Φp´tq defined on p´T, 0q is a steepest-ascent curve of

u because u is symmetric with respect to the real axis. We also have
´

Φp´tq
¯1

Ñ ei4π{3. Hence,

by Proposition A.2, Φp´tq “ ϕ2p´tq for t ą 0 sufficiently small and (c) follows. The proof of
(d) is similar.

Recall from Section 2 that the contour Γ consists of the curves Φ`3 and Φ´2 . It follows from
Lemma A.4 that Γ encloses

?
q and has finite length.
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