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1 Introduction

A greedy algorithm is an algorithm that chooses the optimal choice in the short run.

2 Examples

1. Prove that every nonnegative integer can be written uniquely as the sum of one or more distinct powers of 2.

Solution: It’s true for N = 0. Suppose it’s true for all n < N . Take k such that 2k ≤ N < 2k+1, and include 2k

in its representation. We know N−2k has a representation. Furthermore, the largest term in its representation
must be less than 2k since N − 2k < 2k+1 − 2k = 2k. Finally, to prove uniqueness, we show that at each step
we are forced to take this value of 2k. Indeed, if we didn’t, the largest possible representation we could have is
20 + 21 + · · ·+ 2k−1 = 2k − 1 < N , contradiction.

2. (Zeckendorf’s theorem) Prove that every positive integer can be written uniquely as the sum of one or more
Fibonacci numbers, no two of which are consecutive.

Solution: It’s true for N = 0. Suppose it’s true for all n < N . Take k such that Fk ≤ N < Fk+1, and
include Fk in its representation. If N = Fk then we’re done. Otherwise, we know N −Fk has a representation.
Furthermore, the largest term in its representation must be less than Fk−1 since N − Fk < Fk+1 − Fk = Fk−1.

I’ll leave proving uniqueness as an exercise. Start with the assumption that two distinct sets of Fibonacci
numbers sum to the same number.

3. Let ∆ be the maximum degree in a graph. Prove that the chromatic number of that graph is at most ∆ + 1.

Solution: Iteratively color vertices with any color that has not been used by any of its neighbors. Such a color
will always exist since there are at most ∆ neighbors and ∆ + 1 colors.

Extra: (Brooks’ theorem) Assume the graph is connected and simple. Prove that equality holds if and only if
it is either a complete graph or an odd cycle.

4. Let A1, . . . , An be subsets of {1, 2, . . . , n} of size 3. Prove that
⌊
n
3

⌋
members of {1, 2, . . . , n} can be colored

such that each Ai has at least one member that is not colored.

Solution: Let’s start with all of {1, 2, . . . , n} colored and iteratively un-color the one in the most completely
colored sets. Formally, let A be the set of completely colored sets at a given moment. Iteratively find the
element that reduces A by the largest amount, and un-color it.

Suppose that after x applications of this algorithm, all elements of A become disjoint. Then the algorithm
would terminate after x+ |A| applications in total. However, note that x ≤ n

2 because each application removes
at least 2 sets, and |A| ≤ n−x

3 because there are n − x numbers remaining to be partitioned into disjoint sets
of size 3. Therefore,

x+ |A| ≤ x+
n− x

3
=
n

3
+

2x

3
≤ n

3
+
n

3
=

2n

3

which implies the algorithm terminates in at most
⌈
2n
3

⌉
applications. Therefore, this algorithm colors at most⌊

n
3

⌋
.
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5. (IMO 1983) Is it possible to choose 1983 distinct positive integers, all less than or equal to 100, 000, no three
of which are consecutive terms of an arithmetic progression?

Solution: We greedily choose numbers and find a pattern. After small cases we see {1, 2, 4, 5, 10, 11, 13, 14, 28, 29}.
The sequence jumps at 4, 10, and 28, all of which are 1 more than a power of 3, so perhaps we should look at
{0, 1, 3, 4, 9, 10, 12, 13, 27, 28} in base 3. Indeed, these all consist of just 0s and 1s in ternary.

Consider the set S of all numbers ≤ 100, 000 whose ternary representations consist of just 0s and 1s. If any
three x, y, z ∈ S satisfy y−x = z−y, or x+z = 2y, then each corresponding digit of x and z must match up, so
x = z. Thus S has no arithmetic progressions. Since 1 + 111111111113 < 100, 000, we have |S| ≥ 211 > 1983.
Finally shift each term up by 1 to get a construction of strictly positive integers.

6. (Russia 2005) In a 2×n array, we have positive reals such that the sum of the numbers in each of the n columns
is 1. Show that we can select one number in each column such that the sum of the selected numbers in each
row is at most n+1

4 .

Solution: Re-order the columns so that the top row is in increasing order:

a1 a2 a3 · · · an
1− a1 1− a2 1− a3 · · · 1− an

Choose the value of k such that a1 + · · ·+ ak ≤ n+1
4 < a1 + · · ·+ ak+1. We claim that

n+ 1

4
≥ (1− ak+1) + · · ·+ (1− an) = (n− k)− (ak+1 + · · ·+ an)

or

ak+1 + · · ·+ an ≥
3n− 1

4
− k

Comparing averages, we have

ak+1 + · · ·+ an
n− k

≥ a1 + · · ·+ ak+1

k + 1
>

n+ 1

4(k + 1)

Finally, it’s easy to show that n−k
k+1

n+1
4 ≥ 3n−1

4 − k by AM-GM.

7. (IMO 2014)A set of lines in the plane is in general position if no two are parallel and no three pass through
the same point. A set of lines in general position cuts the plane into regions, some of which have finite area;
we call these its finite regions. Prove that for all sufficiently large n, in any set of n lines in general position it
is possible to colour at least

√
n lines blue in such a way that none of its finite regions has a completely blue

boundary.

Solution: We start with all of the lines uncolored and color them blue iteratively, while keeping track of bad
lines by marking certain intersection points.

At each step, color any line that does not pass through any marked intersection points. For each other blue
line it intersects, consider this following diagram:

X

CA

D B

` `′

`A `C

`D `B
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Above, A,B,C,D are chosen to be the closest to X possible. If A and B are unmarked, mark them. Else if C
and D are unmarked, mark them. Else, at least two of `A, `B , `C , `D are blue, so mark any of them that are
not blue-blue (there are at most 2 points to mark). It’s easy to see this process guarantees that no blue region
is created. At the end of the process, suppose we have colored k lines. Then the number of marked vertices, at
least 2

(
k
2

)
, is at least the number of uncolored lines, n− k, so

2

(
k

2

)
= k(k − 1) ≥ n− k =⇒ k ≥

√
n

3 Problems

1. (Germany 2000) There are stones with a total mass of 9 tons that should be transported by trucks. None of
the stones is heavier than 1 ton and each vehicle has a capacity of 3 tons. Determine the minimum number of
necessary trucks such that the stones can certainly be transported at the same time.

2. Prove that for each positive integer n, there exists a unique set of integers a1, a2, . . . such that for ai ≤ i for
all i and

n = a1 · 1! + a2 · 2! + a3 · 3! + . . .

3. (Netherlands 2014) Let n be a positive integer. Daniel and Merlijn are playing a game. Daniel has k sheets of
paper lying next to each other on a table, where k is a positive integer. On each of the sheets, he writes some
of the numbers from 1 up to n (he is allowed to write no number at all, or all numbers). On the back of each of
the sheets, he writes down the remaining numbers. Once Daniel is finished, Merlijn can flip some of the sheets
of paper (he is allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making all of the numbers
from 1 up to n visible at least once, then he wins. Determine the smallest k for which Merlijn can always win,
regardless of Daniel’s actions.

4. (VTRMC 2014) Consider the harmonic series
∑
n≥1

1
n = 1 + 1

2 + 1
3 + . . . . Prove that every positive rational

number can be obtained as an unordered partial sum of this series. (An unordered partial sum may skip some
of the terms 1

k .)

5. (Gabriel Dospinescu) Which rational numbers can be written as the sum of the inverses of finitely many pairwise
distinct triangular numbers?

6. (IMC 1997) Let 1 < α ≤ 2 be a real number.

(a) Show that α has a unique representation as an infinite product

α =

(
1 +

1

n1

)(
1 +

1

n2

)
. . .

where each ni is a positive integer satisfying ni+1 ≥ n2i .
(b) Show that α is rational if and only if its infinite product has the following property: For some m and all

k ≥ m, nk+1 = n2k.

7. (IMOSL 2001, generalized) A set of three nonnegative integers {x, y, z} with x < y < z is called historic if
{z − y, y− x} = {a, b} for 0 < a < b. Show that the set of all nonnegative integers can be written as the union
of pairwise disjoint historic sets.

8. (Math Prize for Girls 2010) Let S be a set of n points in the coordinate plane. Say that a pair of points is
aligned if the two points have the same x-coordinate or y-coordinate. Prove that S can be partitioned into
disjoint subsets such that (a) each of these subsets is a collinear set of points, and (b) at most n3/2 unordered
pairs of distinct points in S are aligned but not in the same subset.
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9. (IMOSL 2013) Let n be an positive integer. Find the smallest integer k with the following property; Given
any real numbers a1, · · · , ad such that a1 + a2 + · · · + ad = n and 0 ≤ ai ≤ 1 for i = 1, 2, · · · , d, it is possible
to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in
each group is at most 1.

10. (IMO 2014) For each positive integer n, the Bank of Cape Town issues coins of denomination 1
n . Given a finite

collection of such coins (of not necessarily different denominations) with total value at most most 99 + 1
2 , prove

that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most
1.

4 Solutions

1. (Germany 2000) There are stones with a total mass of 9 tons that should be transported by trucks. None of
the stones is heavier than 1 ton and each vehicle has a capacity of 3 tons. Determine the minimum number of
necessary trucks such that the stones can certainly be transported at the same time.

Solution: Consider 10 stones of mass 0.9 each; clearly these cannot be packed into 3 trucks, so we need at least
4. To show 4 trucks suffices, place stones arbitrarily (but validly) in three trucks until you cannot place any
more. Then each truck must have at least 2 tons in it (else we can pack more). Therefore, we have packed at
least 6 tons, which means we can pack the remaining mass, less than 9− 6 = 3 tons, into a fourth.

2. Prove that for each positive integer n, there exists a unique set of integers a1, a2, . . . such that for ai ≤ i for
all i and

n = a1 · 1! + a2 · 2! + a3 · 3! + . . .

Solution: It’s true for N = 0, 1. Suppose it’s true for all n < N . Take k such that k! ≤ N < (k + 1)! and j
such that jk! ≤ N < (j + 1)k!. We know that N − jk! has a representation. Furthermore, the largest term
in its representation must be less than k! since N − jk! < (j + 1)k! − jk! = k!. Finally, to prove uniqueness,
we show that at each step we are forced to take this value of jk!. Indeed, if we didn’t, the largest possible
representation we could have is

(j − 1)k! +

k∑
i=1

i · i! = (j − 1)k! +

k∑
i=1

[(i+ 1)!− i!] = (j − 1)k! + k!− 1 = jk!− 1 < N

contradiction.

3. (Netherlands 2014) Let n be a positive integer. Daniel and Merlijn are playing a game. Daniel has k sheets of
paper lying next to each other on a table, where k is a positive integer. On each of the sheets, he writes some
of the numbers from 1 up to n (he is allowed to write no number at all, or all numbers). On the back of each of
the sheets, he writes down the remaining numbers. Once Daniel is finished, Merlijn can flip some of the sheets
of paper (he is allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making all of the numbers
from 1 up to n visible at least once, then he wins. Determine the smallest k for which Merlijn can always win,
regardless of Daniel’s actions.

Solution: On the first page, one side must have at least
⌈
n
2

⌉
numbers on it. Then perform this algorithm with

k− 1 pages and n−
⌈
n
2

⌉
=
⌊
n
2

⌋
. The sufficient number of applications of this is equal to the number of binary

digits of n, blog2 nc + 1. As a construction that we can’t do it in less, consider when the ith page consists of
those numbers whose ith binary digit is 1 on one side and 0 on the other side.

4. (IMOSL 2001, generalized) A set of three nonnegative integers {x, y, z} with x < y < z is called historic if
{z − y, y− x} = {a, b} for 0 < a < b. Show that the set of all nonnegative integers can be written as the union
of pairwise disjoint historic sets.

Solution: For each historic set {x, y, z} with x < y < z that we construct, color x red, y green, and z blue.
Begin with all nonnegative integers uncolored. Then iteratively perform the following algorithm: consider the
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smallest uncolored number k; if k+a is uncolored construct the set {k, k+a, k+a+b} and color it accordingly.
Otherwise, construct the set {k, k + b, k + a+ b} and color it accordingly.

To see it works, note that k + a+ b is initially uncolored because it’s greater than the other colored numbers.
Suppose that k + b is already colored. Then it can’t be red because it is greater than k. It can’t be green
because k + b − a, k + b − b ≥ k. If it were blue, then k + b − (a + b) = k − a must be red. However, since k
was uncolored at that moment, our algorithm says that we must color k − a+ a = k, contradiction.

5. (VTRMC 2014) Consider the harmonic series
∑
n≥1

1
n = 1 + 1

2 + 1
3 + . . . . Prove that every positive rational

number can be obtained as an unordered partial sum of this series. (An unordered partial sum may skip some
of the terms 1

k .)

Solution:

6. (Gabriel Dospinescu) Which rational numbers can be written as the sum of the inverses of finitely many pairwise
distinct triangular numbers?

Solution:

7. (IMC 1997) Let 1 < α ≤ 2 be a real number.

(a) Show that α has a unique representation as an infinite product

α =

(
1 +

1

n1

)(
1 +

1

n2

)
. . .

where each ni is a positive integer satisfying ni+1 ≥ n2i .
(b) Show that α is rational if and only if its infinite product has the following property: For some m and all

k ≥ m, nk+1 = n2k.

Solution: For k ≥ 1, let Sk := (1 + 1
k+1 , 1 + 1

k ]. Note that S1, S2, . . . partition (1, 2]. Consider the following
algorithm to choose n1, n2, . . . : find the unique k ≥ 1 such that α ∈ Sk, take n1 = k + 1, and get n2, n3, . . .
from this algorithm on α

1+ 1
n1

. Note the identity
∏
i≥0(1 + x2

i

) = 1
1−x for all 0 < x < 1.

First we show that this algorithm does not terminate and generates a sequence satisfying n1 ≤ n
1/2
2 ≤ n

1/4
3 ≤

n
1/8
4 ≤ . . . . It suffices to show that 1 < α

1+n1
≤ 1 + 1

n2
1−1

. But α
1+n1

>
1+ 1

k+1

1+ 1
k+1

= 1 and α
1+n1

≤ 1+ 1
k

1+ 1
k+1

=

1 + 1
k2+2k = 1 + 1

n2
1−1

.

Now we show that α = (1 + 1
n1

)(1 + 1
n2

) . . . . We case on the rationality of α.

Suppose α ∈ Q, and let α = p
q . If p − q = 1 then this algorithm will generate the sequence n1, n2, n3, · · · =

p, p2, p4, . . . where (1 + 1
p )(1 + 1

p2 )(1 + 1
p4 ) · · · = 1

1− 1
p

= p
p−1 = α. Otherwise, we show that eventually this

algorithm will hit a value where p−q = 1. It suffices to show that if p−q ≥ 2, then p′

q′ = α
1+ 1

n1

= pn1

q(n1+1) where

p′ − q′ < p− q. Indeed, we have p′ − q′ ≤ pn1 − q(n1 + 1) = n1(p− q)− q. But since n1 = k ≤ 1
p/q−1 = q

p−q ,

with equality impossible since p− q ≥ 2, we have p′ − q′ < p− q.
Now suppose α 6∈ Q. Let βi := (1 + 1

n1
) . . . (1 + 1

ni
). Then b1, b2, . . . is an increasing sequence, and it’s easy

to see that βi ≤ α. Therefore it converges to some β ≤ α. Now since n1 ≥ 2, we have ni ≥ 22
i−1

. Thus,
α
βi
≤ (1 + 1

n2
i
)(1 + 1

n4
i
) · · · = 1

1− 1

n2
i

≤ 1
1− 1

22
i

= 1 + 1

22i−1
. Thus, α− βi ≤ βi

22i−1
≤ α

22i−1
→ 0. Thus, α = β.

Now we show that this is the only representation. It suffices to show that n1 = k + 1 is forced. If n1 ≤ k then
(1 + 1

n1
)(1 + 1

n2
) · · · > 1 + 1

k ≥ α. If n1 ≥ k + 2 then (1 + 1
n1

)(1 + 1
n2

) · · · ≤ (1 + 1
n1

)(1 + 1
n2
1
) · · · = 1

1− 1
n1

≤
1

1− 1
k+2

= 1 + 1
k+1 < α.

Finally, for part (b), we have shown that if α ∈ Q, then the sequence has such a tail. Also, if the sequence has
such a tail, then α =

∏
1≤i<m(1 + 1

ni
) · 1

1− 1
nm

∈ Q, so we’re done.
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8. (Math Prize for Girls 2010) Let S be a set of n points in the coordinate plane. Say that a pair of points is
aligned if the two points have the same x-coordinate or y-coordinate. Prove that S can be partitioned into
disjoint subsets such that (a) each of these subsets is a collinear set of points, and (b) at most n3/2 unordered
pairs of distinct points in S are aligned but not in the same subset.

Solution: We will use induction on n. As a base case, n = 0 is trivial. Now assume that there are at most k3/2

pairs of aligned points in S is for all 0 ≤ k ≤ n− 1, for some positive integer n.

Consider the largest subset T of S whose points either all have the same x-coordinate or all have the same
y-coordinate (in fact, assume without loss of generality it is the same x-coordinate). Let t = |T |. For each
point P ∈ T , it is part of another set of size at most t with the same y-coordinate, so the number of points in
S\T aligned with some point in T is at most t · t = t2. But obviously this can only be at most n pairs because
that is the number of points in total. Therefore, it suffices to prove that

min{t2, n}+ (n− t)3/2 ≤ n3/2

If n ≤ t2, then

min{t2, n}+ (n− t)3/2 ≤ n+ (n−
√
n)3/2 ≤ n3/2

for n ≥ 4, or t ≥ 2. When t = 1, no two points are aligned, the problem statement clearly holds. If n ≥ t2,
then

min{t2, n}+ (n− t)3/2 ≤ t2 + (n− t2)3/2 ≤ n3/2

where the rightmost inequality can be seen from the fact that the inequality holds at n = t2 and the right-hand
side always grows faster than the left-hand side (since n3/2 is convex and the right-hand side is its translation
t2 units to the right and up).

9. (IMOSL 2013) Let n be an positive integer. Find the smallest integer k with the following property; Given
any real numbers a1, · · · , ad such that a1 + a2 + · · · + ad = n and 0 ≤ ai ≤ 1 for i = 1, 2, · · · , d, it is possible
to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in
each group is at most 1.

Solution: This is a generalization of the Germany stones in trucks problem. Consider the set a1 = · · · =
a2n−1 = n

2n−1 . We see that a1 + · · ·+ a2n−1 = (2n− 1) n
2n−1 = n, and if any two are in the same group then it

will have sum at least 2n
2n−1 > 1. Therefore, at least k = 2n− 1 groups are necessary.

Now suppose that we pack the numbers into as few groups as possible, say g1 ≤ · · · ≤ gm. Then gi + gj > 1
for all i, j, else we could combine the groups. Thus,

2n = (g1 + g2) + (g2 + g3) + · · ·+ (gm + g1) > 1 + 1 + · · ·+ 1 = m

so m ≤ 2n− 1.

10. (IMO 2014) For each positive integer n, the Bank of Cape Town issues coins of denomination 1
n . Given a finite

collection of such coins (of not necessarily different denominations) with total value at most most 99 + 1
2 , prove

that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most
1.

Solution: Replace 100 with m and 99 + 1
2 with m − 1

2 . Assume there is at most 1 coin of denomination 1
2k

(else combine them into one coin of denomination 1
k ) and at most 2k coins of denomination 1

2k+1 (else combine
them into one coin of denomination 1). We can also assume that there are no coins of denomination 1 because
it would reduce the problem to m− 1 groups of size (m− 1)− 1

2 , which is the same problem.

For each k group all the coins of the form 1
2k+1 and 1

2k+2 . There is at most a total value of 2k
2k+1 + 1

2k+2 < 1

in each of these groups. For 1 ≤ k ≤ m− 1, this is m− 1 groups that take care of the coins of denomination 1
3

to 1
2m . We would also have to place 1

2 into its own group, which is a total of m groups.
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For all coins of denomination smaller than 1
2m , place these into whatever groups still have space. Assume that

some coin can’t be packed. This means all the other groups are packed with at least 1− 1
2m+1 coins, which is

a contradiction because the total value would be at least m
(

1− 1
2m+1

)
> m− 1

2 .
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