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1 Introduction

The generating function of a sequence a0, a1, a2, . . . is defined as

G(x) = a0 + a1x+ a2x
2 + · · · =

∑
k≥0

akx
k

The generating function of a set S is defined as

G(x) =
∑
r∈S

xr

If we allow sets to have repeats – a multiset is a set that allows repeats – then we must count the number of
times each element occurs as the coefficient:

G(x) =
∑
r∈S

(# occurrences of r) · xr

Let [xk]G(x) denote the coefficient of xk in G(x). Generating functions are useful because they allow us to work
with sets algebraically. We can manipulate generating functions without worrying about convergence (unless of
course you’re evaluating it at a point).

2 Useful Facts

1. (Generating function of N) For |x| < 1,

1

1− x
=
∑
n≥0

xn =
∏
n≥0

(1 + x2
n

)

2. (Generalized Binomial Theorem) For any α ∈ R, let(
α

k

)
:=

α(α− 1) . . . (α− k + 1)

k!

Then

(1 + x)α =
∑
n≥0

(
α

n

)
xn

3. For two sequences of the same length a1, . . . , an and b1, . . . , bn,(
n∑
k=1

ak

)(
n∑
k=1

bk

)
=

2n∑
k=1

∑
i+j=k

aibj

Also,

(
n∑
k=1

ai

)2

=

n∑
k=1

a2i + 2
∑

1≤i<j≤n

aiaj
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4. The Maclaurin series of f is equal to

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

This is a way of forcibly extracting coefficients if necessary/possible.

3 Problems

1. (Logan Dymond) If xk, yk are integers such that 0 ≤ xk, yk ≤ k for all k, prove that for all n > 2, the number
of solutions to

x1 + 2x2 + 3x3 + · · ·+ nxn = n(n+ 1)

is equal to the number of solutions to

0 < 3y1 + 4y2 + 5y3 + · · ·+ nyn−2 ≤ n(n+ 1)

2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite
arithmetic progressions of ratios r1, r2, . . . , rn and first term a1, a2, . . . , an. Then the following relation is
satisfied:

1

r1
+

1

r2
+ · · ·+ 1

rn
= 1

3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers
with the following property: for any integer n there is exactly one solution of a+ 2b = n with a, b ∈ X.

4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property:
for any integer n there is exactly one solution of a+ 2b = n with a, b ∈ X.

5. (IMOSL 1998) Let a0, a1, . . . be an increasing sequence of nonnegative integers such that every nonnegative
integer can be expressed uniquely in the form ai+2aj+4ak, where i, j, k are not necessarily distinct. Determine
a1998.

6. (Putnam 2003) For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2) such
that s1, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to partition the nonnegative integers into two sets A
and B in such a way that rA(n) = rB(n) for all n?

7. (Putnam 2000) Let S0 be a finite set of positive integers. We define finite sets S1, S2, . . . of positive integers as
follows: the integer a is in Sn+1 if and only if exactly one of a− 1 or a is in Sn. Show that there are infinitely
many integers N for which SN = S0 ∪ {N + a : a ∈ S0}.

8. (China 2002) Find all natural numbers n ≥ 2 such that there exists real numbers a1, . . . , an that satisfy

{|ai − aj | | 1 ≤ i < j ≤ n} = {1, 2, . . . , n(n− 1)/2}

9. (IMC 2015) Consider all 2626 words of length 26 in the Latin alphabet. Define the weight of the word as 1
k+1 ,

where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 375.

10. (Putnam 2005) Let Sn denote the set of all permutations of the numbers 1, 2, . . . , n. For π ∈ Sn, let σ(π) = 1
if π is an even permutation and σ(π) = −1 if π is an odd permutation. Also, let ν(π) denote the number of
fixed points of π. Show that ∑

π∈Sn

σ(π)

ν(π) + 1
= (−1)n+1 n

n+ 1
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11. (IMC 2016) Let Sn denote the set of permutations of the sequence (1, 2, . . . , n). For every permutation π =
(π1, . . . , πn), let inv(π) be the number of pairs 1 ≤ i < j ≤ n with πi > πj ; i.e., the number of inversions in π.
Denote by f(n) the number of permutations π ∈ Sn for which inv(π) is divisible by n+ 1.

Prove that there exist infinitely many primes p such that f(p− 1) > (p−1)!
p , and infinitely many primes p such

that f(p− 1) < (p−1)!
p .

4 Solutions

1. (Logan Dymond) If xk, yk are integers such that 0 ≤ xk, yk ≤ k for all k, prove that for all n > 2, the number
of solutions to

x1 + 2x2 + 3x3 + · · ·+ nxn = n(n+ 1)

is equal to the number of solutions to

0 < 3y1 + 4y2 + 5y3 + · · ·+ nyn−2 ≤ n(n+ 1)

Solution: We want the xn(n+1) coefficient of

n∏
i=1

i∑
j=0

xij =

n∏
i=1

xi(i+1) − 1

xi − 1

to be equal to the xn(n+1) coefficient of

(1 + x+ x2 + +̇xn
2+n−1)

n−2∏
i=1

i∑
j=0

x(i+2)j =
xn(n+1) − 1

x− 1

n−2∏
i=1

x(i+1)(i+2) − 1

xi+2 − 1
=

n∏
i=1

xi(i+1) − 1

xi − 1

2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite
arithmetic progressions of ratios r1, r2, . . . , rn and first term a1, a2, . . . , an. Then the following relation is
satisfied:

1

r1
+

1

r2
+ · · ·+ 1

rn
= 1

Solution: We have

1

1− x
=
∑
k≥0

xk =

n∑
k=1

∑
i≥0

xak+irk =

n∑
k=1

xak

1− xrk

or

1 =

n∑
k=1

xak · 1− x
1− xrk

limx→1−1
1−x

1−xrk
= 1

rk
concludes the proof.

Note: Be cautious when plugging in values of x (or taking limits)! Here it is a finite series so it’s okay.
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3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers
with the following property: for any integer n there is exactly one solution of a+ 2b = n with a, b ∈ X.

Solution: Let f(x) :=
∑
s∈X x

s. Then∑
n≥0

xn =
∑
a,b∈X

xa+2b =
∑
a∈X

xa
∑
b∈X

x2b = f(x)f(x2)

Now remember the identity
∑
n≥0 x

n = (1 + x)(1 + x2)(1 + x4)(1 + x8) . . . . It suggests we can take f(x) =

(1 + x)(1 + x4)(1 + x16) . . . . It remains to show that [xk]f ∈ {0, 1} for all k, which is clear.

Note: From generating functions, we can derive a combinatorial solution! If we expand f(x) = (1 + x)(1 +
x4)(1 + x16) · · · = 1 + x + x4 + x5 + x16 + . . . , note that each xk must be the sum of distinct powers of 4,
i.e., X is the set of all numbers whose base 4 representations have just 0s and 1s as digits. Can you prove
combinatorially that this set works?

4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property:
for any integer n there is exactly one solution of a+ 2b = n with a, b ∈ X.

Solution: This one is a little more involved. Take f(x) = (1 + x)(1 + x−4)(1 + x16)(1 + x−64) . . . (1 + x(−4)
k

).
Then

f(x)f(x2) =
(1 + x)(1 + x2)(1 + x4)(1 + x16) . . . (1 + x2

k+1

)

xm

for some big m. We don’t actually have to calculate the value of m; just note that this expands into something
of the form

f(x)f(x2) = x−a + x−a+1 + · · ·+ xb−1 + xb

and we can make a and b arbitrarily large by taking k large enough. Thus we can capture all integers.

Note: There is a combinatorial construction of X using base −4 expansion!

5. (IMOSL 1998) Let a0, a1, . . . be an increasing sequence of nonnegative integers such that every nonnegative
integer can be expressed uniquely in the form ai+2aj+4ak, where i, j, k are not necessarily distinct. Determine
a1998.

Solution: Let S := {a0, a1, . . . } and f(x) :=
∑
s∈S x

s. Then

∏
n≥0

(1 + x2
n

) =
1

1− x
=

∑
a,b,c∈S

xa+2b+4c = f(x)f(x2)f(x4)

Take f(x) = (1 +x)(1 +x8)(1 +x64) . . . . This is the numbers whose base 8 representations have just 0s and 1s.

6. (Putnam 2003) For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2) such
that s1, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to partition the nonnegative integers into two sets A
and B in such a way that rA(n) = rB(n) for all n?

Solution: Let f(x) :=
∑
a∈A x

a and g(x) :=
∑
b∈B x

b. We want

f(x) + g(x) =
∑
n≥0

xn =
1

1− x
, and

∑
a1,a2∈A

xa1+a2 −
∑
a∈A

x2a =
∑

b1,b2∈B

xb1+b2 −
∑
b∈B

x2b

so
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f(x)2 − f(x2) = g(x)2 − g(x2) =

(
1

1− x
− f(x)

)2

−
(

1

1− x2
− f(x2)

)
= f(x)2 + f(x2)− 2f(x)

1− x
+

1

(1− x)2
− 1

1− x2
=⇒

x

1− x2
= f(x)− (1− x)f(x2) =

∑
a∈A

(
xa + x2a+1 − x2a

)
Expand x

1−x2 = x+x3+x5+. . . , so the right-hand side cannot have any even powers. Hence, 2a ∈ A =⇒ a ∈ A.
Also we want the odd coefficients to be exactly 1, so 2a+ 1 ∈ A =⇒ a 6∈ A. Also since every integer must be
in at least one set, we must have a ∈ A =⇒ 2a ∈ A and a ∈ A =⇒ 2a+ 1 ∈ B.

To finish, we make our construction in the following way: put 0 ∈ A, and let the above two rules place the rest
of the integers. It’s easy to check that it places each integer in exactly one set.

Note: The combinatorial construction for A is the set of numbers with an even number of 1s in its binary
representation, and B is odd number of 1s.

7. (Putnam 2000) Let S0 be a finite set of positive integers. We define finite sets S1, S2, . . . of positive integers as
follows: the integer a is in Sn+1 if and only if exactly one of a− 1 or a is in Sn. Show that there are infinitely
many integers N for which SN = S0 ∪ {N + a : a ∈ S0}.
Solution: Let fn(x) :=

∑
s∈Sn

xs. Then, we have fn+1(x) = (1 + x)
∑
s∈S x

s (mod 2), so fN ≡ (1 + x)Nf0(x)

(mod 2). We want it in the form of f(x) ≡ (1 + xN )f0(x) (mod 2). However, if N is a power of 2, then
(1 + x)N ≡ 1 + xN (mod 2) (this is seen from Pascal’s triangle), so all N = 2k work as long as N > max{S0}
(to avoid internal cancellation).

8. (China 2002) Find all natural numbers n ≥ 2 such that there exists real numbers a1, . . . , an that satisfy

{|ai − aj | | 1 ≤ i < j ≤ n} = {1, 2, . . . , n(n− 1)/2}

Solution: Let S = {a1, . . . , an} and f(x) =
∑
s∈S x

s. Then

f(x)f(1/x) = (xa1 + · · ·+ xan)(x−a1 + · · ·+ x−an)

= n− 1 + x−n(n−1)/2 + · · ·+ xn(n−1)/2

= n− 1 +
xn(n−1)/2+1 − x−n(n−1)/2

x− 1

= n− 1 +
x(n

2−n+1)/2 − x−(n2−n+1)/2

x1/2 − x−1/2

Take x = exp 3πi
n2−n+1 =: exp 2iθ to get

|f(x)|2 = f(x)f(x) = n− 1 +
sin 3π

2

sin θ
= n− 1− 1

sin θ
< n− 1− 1

θ
= n− 1− 2

3π
(n2 − n+ 1)

This quantity is negative for all n except n = 2, 3, 4. Then take the following constructions: {0, 1}, {0, 1, 3},
and {0, 1, 4, 6}.

9. (IMC 2015) Consider all 2626 words of length 26 in the Latin alphabet. Define the weight of the word as 1
k+1 ,

where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 375.

Solution: Let ani be the number of n-letter words with 26− i distinct letters, and let fn(x) :=
∑
i anix

i. Since
ani = (26− i)a(n−1)i + (i+ 1)a(n−1)(i+1), we have

5



Putnam Generating Functions Cody Johnson

fn(x) = f ′n−1(x)(1− x) + 26fn−1(x)

Now let In :=
∫ 1

0
fn(x)dx. Integrating by parts, we get

In = [fn−1(x)(1− x)]10 + 27In−1 = −fn−1(0) + 27In−1 = 27In−1

since fn−1(0) = a(n−1)0 = 0. Since I1 = 1, we get I26 = 2725 = 375.

Note: The weight function 1
k+1 motivated this solution, since it looks like

∫ 1

0
xkdx.

10. (Putnam 2005) Let Sn denote the set of all permutations of the numbers 1, 2, . . . , n. For π ∈ Sn, let σ(π) = 1
if π is an even permutation and σ(π) = −1 if π is an odd permutation. Also, let ν(π) denote the number of
fixed points of π. Show that ∑

π∈Sn

σ(π)

ν(π) + 1
= (−1)n+1 n

n+ 1

Solution: Let fn(x) :=
∑
π∈Sn

σ(π)xν(π). Then we can either have π(n+ 1) or n+ 1 gets sent somewhere in a

cycle. The number of cycles of length ` for which n+ 1 can get sent to is n!
(n−`+1)! , and depending on the cycle

length the parity alternates,. Furthermore, none of the elements in this cycle are fixed points, so we have the
recurrence

fn+1(x) =
∑

π∈Sn+1

σ(π)xν(π) =
∑
π∈Sn

σ(π)xν(π)+1 − n!

(n− 1)!

∑
π∈Sn−1

σ(π)xν(π)

+
n!

(n− 2)!

∑
π∈Sn−2

σ(π)xν(π) − n!

(n− 3)!

∑
π∈Sn−3

σ(π)xν(π) + . . .

= xfn(x) + n · [fn(x)− xfn−1(x)]

Furthermore, we can hand-calculate that f1(x) = x, f2(x) = x2 − 1, and after a few terms we can guess that
fn(x) = (x− 1)n−1(x+ n− 1). To show by induction, we just need

x(x− 1)n−1(x+ n− 1) + n ·
[
(x− 1)n−1(x+ n− 1)− x(x− 1)n−2(x+ n− 2)

]
= (x− 1)n(x+ n)

11. (IMC 2016) Let Sn denote the set of permutations of the sequence (1, 2, . . . , n). For every permutation π =
(π1, . . . , πn), let inv(π) be the number of pairs 1 ≤ i < j ≤ n with πi > πj ; i.e., the number of inversions in π.
Denote by f(n) the number of permutations π ∈ Sn for which inv(π) is divisible by n+ 1.

Prove that there exist infinitely many primes p such that f(p− 1) > (p−1)!
p , and infinitely many primes p such

that f(p− 1) < (p−1)!
p .

Solution: Let gn(x) :=
∑
σ∈Sn

xinv(σ). Let’s add n + 1 in all possible places to all elements of Sn. If we add
n+ 1 at the very end of a permutation, it creates no new inversions. If we add it second-to-last, it creates one
new inversion. All the way until when we add it to the very beginning where it creates n new inversions. Thus
gn+1(x) = (1 + x+ · · ·+ xn)gn(x). With g1(x) = 1, we have

gn(x) = (1 + x)(1 + x+ x2) . . . (1 + x+ · · ·+ xn−1) =
(x− 1)(x2 − 1) . . . (xn − 1)

(x− 1)n

where x 6= 1 and gn(1) = |Sn| = n!. Using roots of unity filter with ω = e2πi/p for prime p ≥ 3,

pf(p− 1) = (p− 1)! +

p−1∑
k=1

(ωk − 1)(ω2k − 1) . . . (ω(p−1)k − 1)

(ωk − 1)p−1

6
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The numerator is simplified to p using the identity (x−ωk)(x−ω2k) . . . (x−ω(p−1)k) = 1+x+ · · ·+xp−1. Thus
it remains to show that the following sum is positive when p ≡ 3 (mod 4) and negative when p ≡ 1 (mod 4):

p−1∑
k=1

1

(ωk − 1)p−1
=

(p−1)/2∑
k=1

[
1

(ωk − 1)p−1
+

1

(ω−k − 1)p−1

]

=

(p−1)/2∑
k=1

1 + ω(p−1)k

(ωk − 1)p−1
=

(p−1)/2∑
k=1

ω(p−1)k/2+ω−(p−1)k/2

2(
ωk/2−ω−k/2

2i

)p−1 2

(2i)p−1

=
1

2p(−1)(p−1)/2

(p−1)/2∑
k=1

cos k(p−1)πp(
sin kπ

p

)p−1 =
1

2p(−1)(p−1)/2

(p−1)/2∑
k=1

(−1)k cos kπp(
sin kπ

p

)p−1
For very large p, the k = 1 term determines the sign of the whole sum since cos kπp is decreasing in magnitude

and sin kπ
p is increasing in magnitude (note that 0 < kπ

p < π
2 ). Thus, for very large p we get that (−1)(p+1)/2

is the sign of pf(p− 1)− (p− 1)!, the desired result.
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