Generating Functions

October 22, 2016

Cody Johnson

ctj@math.cmu.edu

1 Introduction

The generating function of a sequence a_0, a_1, a_2, \ldots is defined as

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k>0} a_k x^k$$

The generating function of a set S is defined as

$$G(x) = \sum_{r \in S} x^r$$

If we allow sets to have repeats - a multiset is a set that allows repeats - then we must count the number of times each element occurs as the coefficient:

$$G(x) = \sum_{r \in S} (\# \text{ occurrences of } r) \cdot x^r$$

Let $[x^k]G(x)$ denote the coefficient of x^k in G(x). Generating functions are useful because they allow us to work with sets algebraically. We can manipulate generating functions without worrying about convergence (unless of course you're evaluating it at a point).

2 Useful Facts

1. (Generating function of N) For |x| < 1,

$$\frac{1}{1-x} = \sum_{n>0} x^n = \prod_{n>0} (1+x^{2^n})$$

2. (Generalized Binomial Theorem) For any $\alpha \in \mathbb{R}$, let

$$\binom{\alpha}{k} := \frac{\alpha(\alpha - 1) \dots (\alpha - k + 1)}{k!}$$

Then

$$(1+x)^{\alpha} = \sum_{n>0} {\alpha \choose n} x^n$$

3. For two sequences of the same length a_1, \ldots, a_n and b_1, \ldots, b_n ,

$$\left(\sum_{k=1}^{n} a_{k}\right) \left(\sum_{k=1}^{n} b_{k}\right) = \sum_{k=1}^{2n} \sum_{i+j=k} a_{i} b_{j}$$

Also,

$$\left(\sum_{k=1}^{n} a_i\right)^2 = \sum_{k=1}^{n} a_i^2 + 2 \sum_{1 \le i < j \le n} a_i a_j$$

4. The Maclaurin series of f is equal to

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$

This is a way of forcibly extracting coefficients if necessary/possible.

3 Problems

1. (Logan Dymond) If x_k, y_k are integers such that $0 \le x_k, y_k \le k$ for all k, prove that for all n > 2, the number of solutions to

$$x_1 + 2x_2 + 3x_3 + \dots + nx_n = n(n+1)$$

is equal to the number of solutions to

$$0 < 3y_1 + 4y_2 + 5y_3 + \cdots + ny_{n-2} < n(n+1)$$

2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite arithmetic progressions of ratios r_1, r_2, \ldots, r_n and first term a_1, a_2, \ldots, a_n . Then the following relation is satisfied:

$$\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n} = 1$$

- 3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers with the following property: for any integer n there is exactly one solution of a + 2b = n with $a, b \in X$.
- 4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property: for any integer n there is exactly one solution of a + 2b = n with $a, b \in X$.
- 5. (IMOSL 1998) Let a_0, a_1, \ldots be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_i + 2a_j + 4a_k$, where i, j, k are not necessarily distinct. Determine a_{1998} .
- 6. (Putnam 2003) For a set S of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs (s_1, s_2) such that $s_1, s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_A(n) = r_B(n)$ for all n?
- 7. (Putnam 2000) Let S_0 be a finite set of positive integers. We define finite sets S_1, S_2, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of a-1 or a is in S_n . Show that there are infinitely many integers N for which $S_N = S_0 \cup \{N + a : a \in S_0\}$.
- 8. (China 2002) Find all natural numbers $n \geq 2$ such that there exists real numbers a_1, \ldots, a_n that satisfy

$$\{|a_i - a_j| \mid 1 \le i < j \le n\} = \{1, 2, \dots, n(n-1)/2\}$$

- 9. (IMC 2015) Consider all 26^{26} words of length 26 in the Latin alphabet. Define the weight of the word as $\frac{1}{k+1}$, where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 3^{75} .
- 10. (Putnam 2005) Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}$$

11. (IMC 2016) Let S_n denote the set of permutations of the sequence (1, 2, ..., n). For every permutation $\pi = (\pi_1, ..., \pi_n)$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \le i < j \le n$ with $\pi_i > \pi_j$; i.e., the number of inversions in π . Denote by f(n) the number of permutations $\pi \in S_n$ for which $\operatorname{inv}(\pi)$ is divisible by n + 1.

Prove that there exist infinitely many primes p such that $f(p-1) > \frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1) < \frac{(p-1)!}{p}$.

4 Solutions

1. (Logan Dymond) If x_k, y_k are integers such that $0 \le x_k, y_k \le k$ for all k, prove that for all n > 2, the number of solutions to

$$x_1 + 2x_2 + 3x_3 + \dots + nx_n = n(n+1)$$

is equal to the number of solutions to

$$0 < 3y_1 + 4y_2 + 5y_3 + \dots + ny_{n-2} \le n(n+1)$$

Solution: We want the $x^{n(n+1)}$ coefficient of

$$\prod_{i=1}^{n} \sum_{j=0}^{i} x^{ij} = \prod_{i=1}^{n} \frac{x^{i(i+1)} - 1}{x^{i} - 1}$$

to be equal to the $x^{n(n+1)}$ coefficient of

$$(1+x+x^2+\dot{+}x^{n^2+n-1})\prod_{i=1}^{n-2}\sum_{j=0}^{i}x^{(i+2)j}=\frac{x^{n(n+1)}-1}{x-1}\prod_{i=1}^{n-2}\frac{x^{(i+1)(i+2)}-1}{x^{i+2}-1}=\prod_{i=1}^{n}\frac{x^{i(i+1)}-1}{x^i-1}$$

2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite arithmetic progressions of ratios r_1, r_2, \ldots, r_n and first term a_1, a_2, \ldots, a_n . Then the following relation is satisfied:

$$\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n} = 1$$

Solution: We have

$$\frac{1}{1-x} = \sum_{k\geq 0} x^k = \sum_{k=1}^n \sum_{i\geq 0} x^{a_k + ir_k} = \sum_{k=1}^n \frac{x^{a_k}}{1 - x^{r_k}}$$

or

$$1 = \sum_{k=1}^{n} x^{a_k} \cdot \frac{1-x}{1-x^{r_k}}$$

 $\lim_{x\to 1^{-1}}\frac{1-x}{1-x^{r_k}}=\frac{1}{r_k}$ concludes the proof.

Note: Be cautious when plugging in values of x (or taking limits)! Here it is a finite series so it's okay.

3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers with the following property: for any integer n there is exactly one solution of a + 2b = n with $a, b \in X$.

Solution: Let $f(x) := \sum_{s \in X} x^s$. Then

$$\sum_{n\geq 0} x^n = \sum_{a,b\in X} x^{a+2b} = \sum_{a\in X} x^a \sum_{b\in X} x^{2b} = f(x)f(x^2)$$

Now remember the identity $\sum_{n\geq 0} x^n = (1+x)(1+x^2)(1+x^4)(1+x^8)\dots$ It suggests we can take $f(x) = (1+x)(1+x^4)(1+x^4)(1+x^{16})\dots$ It remains to show that $[x^k]f \in \{0,1\}$ for all k, which is clear.

Note: From generating functions, we can derive a combinatorial solution! If we expand $f(x) = (1+x)(1+x^4)(1+x^{16})\cdots = 1+x+x^4+x^5+x^{16}+\ldots$, note that each x^k must be the sum of distinct powers of 4, i.e., X is the set of all numbers whose base 4 representations have just 0s and 1s as digits. Can you prove combinatorially that this set works?

4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property: for any integer n there is exactly one solution of a + 2b = n with $a, b \in X$.

Solution: This one is a little more involved. Take $f(x) = (1+x)(1+x^{-4})(1+x^{16})(1+x^{-64})\dots(1+x^{(-4)^k})$. Then

$$f(x)f(x^2) = \frac{(1+x)(1+x^2)(1+x^4)(1+x^{16})\dots(1+x^{2^{k+1}})}{x^m}$$

for some big m. We don't actually have to calculate the value of m; just note that this expands into something of the form

$$f(x)f(x^2) = x^{-a} + x^{-a+1} + \dots + x^{b-1} + x^b$$

and we can make a and b arbitrarily large by taking k large enough. Thus we can capture all integers. \Box

Note: There is a combinatorial construction of X using base -4 expansion!

5. (IMOSL 1998) Let a_0, a_1, \ldots be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_i + 2a_j + 4a_k$, where i, j, k are not necessarily distinct. Determine a_{1998} .

Solution: Let $S := \{a_0, a_1, \dots\}$ and $f(x) := \sum_{s \in S} x^s$. Then

$$\prod_{n>0} (1+x^{2^n}) = \frac{1}{1-x} = \sum_{a,b,c \in S} x^{a+2b+4c} = f(x)f(x^2)f(x^4)$$

Take $f(x) = (1+x)(1+x^8)(1+x^{64})...$ This is the numbers whose base 8 representations have just 0s and 1s.

6. (Putnam 2003) For a set S of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs (s_1, s_2) such that $s_1, s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_A(n) = r_B(n)$ for all n?

Solution: Let $f(x) := \sum_{a \in A} x^a$ and $g(x) := \sum_{b \in B} x^b$. We want

$$f(x) + g(x) = \sum_{n \ge 0} x^n = \frac{1}{1 - x}$$
, and

$$\sum_{a_1, a_2 \in A} x^{a_1 + a_2} - \sum_{a \in A} x^{2a} = \sum_{b_1, b_2 \in B} x^{b_1 + b_2} - \sum_{b \in B} x^{2b}$$

SO

$$f(x)^{2} - f(x^{2}) = g(x)^{2} - g(x^{2}) = \left(\frac{1}{1-x} - f(x)\right)^{2} - \left(\frac{1}{1-x^{2}} - f(x^{2})\right)$$
$$= f(x)^{2} + f(x^{2}) - \frac{2f(x)}{1-x} + \frac{1}{(1-x)^{2}} - \frac{1}{1-x^{2}} \Longrightarrow$$
$$\frac{x}{1-x^{2}} = f(x) - (1-x)f(x^{2}) = \sum_{a \in A} \left(x^{a} + x^{2a+1} - x^{2a}\right)$$

Expand $\frac{x}{1-x^2} = x + x^3 + x^5 + \dots$, so the right-hand side cannot have any even powers. Hence, $2a \in A \implies a \in A$. Also we want the odd coefficients to be exactly 1, so $2a + 1 \in A \implies a \notin A$. Also since every integer must be in at least one set, we must have $a \in A \implies 2a \in A$ and $a \in A \implies 2a + 1 \in B$.

To finish, we make our construction in the following way: put $0 \in A$, and let the above two rules place the rest of the integers. It's easy to check that it places each integer in exactly one set.

Note: The combinatorial construction for A is the set of numbers with an even number of 1s in its binary representation, and B is odd number of 1s.

7. (Putnam 2000) Let S_0 be a finite set of positive integers. We define finite sets S_1, S_2, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of a-1 or a is in S_n . Show that there are infinitely many integers N for which $S_N = S_0 \cup \{N + a : a \in S_0\}$.

Solution: Let $f_n(x) := \sum_{s \in S_n} x^s$. Then, we have $f_{n+1}(x) = (1+x) \sum_{s \in S} x^s \pmod{2}$, so $f_N \equiv (1+x)^N f_0(x) \pmod{2}$. We want it in the form of $f(x) \equiv (1+x^N) f_0(x) \pmod{2}$. However, if N is a power of 2, then $(1+x)^N \equiv 1+x^N \pmod{2}$ (this is seen from Pascal's triangle), so all $N=2^k$ work as long as $N > \max\{S_0\}$ (to avoid internal cancellation).

8. (China 2002) Find all natural numbers $n \geq 2$ such that there exists real numbers a_1, \ldots, a_n that satisfy

$$\{|a_i - a_j| \mid 1 \le i < j \le n\} = \{1, 2, \dots, n(n-1)/2\}$$

Solution: Let $S = \{a_1, \ldots, a_n\}$ and $f(x) = \sum_{s \in S} x^s$. Then

$$f(x)f(1/x) = (x^{a_1} + \dots + x^{a_n})(x^{-a_1} + \dots + x^{-a_n})$$

$$= n - 1 + x^{-n(n-1)/2} + \dots + x^{n(n-1)/2}$$

$$= n - 1 + \frac{x^{n(n-1)/2+1} - x^{-n(n-1)/2}}{x - 1}$$

$$= n - 1 + \frac{x^{(n^2 - n + 1)/2} - x^{-(n^2 - n + 1)/2}}{x^{1/2} - x^{-1/2}}$$

Take $x = \exp \frac{3\pi i}{n^2 - n + 1} =: \exp 2i\theta$ to get

$$|f(x)|^2 = f(x)f(\overline{x}) = n - 1 + \frac{\sin\frac{3\pi}{2}}{\sin\theta} = n - 1 - \frac{1}{\sin\theta} < n - 1 - \frac{1}{\theta} = n - 1 - \frac{2}{3\pi}(n^2 - n + 1)$$

This quantity is negative for all n except n=2,3,4. Then take the following constructions: $\{0,1\}, \{0,1,3\},$ and $\{0,1,4,6\}.$

9. (IMC 2015) Consider all 26^{26} words of length 26 in the Latin alphabet. Define the weight of the word as $\frac{1}{k+1}$, where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 3^{75} . Solution: Let a_{ni} be the number of n-letter words with 26 - i distinct letters, and let $f_n(x) := \sum_i a_{ni} x^i$. Since $a_{ni} = (26 - i)a_{(n-1)i} + (i+1)a_{(n-1)(i+1)}$, we have

$$f_n(x) = f'_{n-1}(x)(1-x) + 26f_{n-1}(x)$$

Now let $I_n := \int_0^1 f_n(x) dx$. Integrating by parts, we get

$$I_n = [f_{n-1}(x)(1-x)]_0^1 + 27I_{n-1} = -f_{n-1}(0) + 27I_{n-1} = 27I_{n-1}$$

since $f_{n-1}(0) = a_{(n-1)0} = 0$. Since $I_1 = 1$, we get $I_{26} = 27^{25} = 3^{75}$.

Note: The weight function $\frac{1}{k+1}$ motivated this solution, since it looks like $\int_0^1 x^k dx$.

10. (Putnam 2005) Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}$$

Solution: Let $f_n(x) := \sum_{\pi \in S_n} \sigma(\pi) x^{\nu(\pi)}$. Then we can either have $\pi(n+1)$ or n+1 gets sent somewhere in a cycle. The number of cycles of length ℓ for which n+1 can get sent to is $\frac{n!}{(n-\ell+1)!}$, and depending on the cycle length the parity alternates,. Furthermore, none of the elements in this cycle are fixed points, so we have the recurrence

$$f_{n+1}(x) = \sum_{\pi \in S_{n+1}} \sigma(\pi) x^{\nu(\pi)} = \sum_{\pi \in S_n} \sigma(\pi) x^{\nu(\pi)+1} - \frac{n!}{(n-1)!} \sum_{\pi \in S_{n-1}} \sigma(\pi) x^{\nu(\pi)} + \frac{n!}{(n-2)!} \sum_{\pi \in S_{n-2}} \sigma(\pi) x^{\nu(\pi)} - \frac{n!}{(n-3)!} \sum_{\pi \in S_{n-3}} \sigma(\pi) x^{\nu(\pi)} + \dots$$
$$= x f_n(x) + n \cdot [f_n(x) - x f_{n-1}(x)]$$

Furthermore, we can hand-calculate that $f_1(x) = x$, $f_2(x) = x^2 - 1$, and after a few terms we can guess that $f_n(x) = (x-1)^{n-1}(x+n-1)$. To show by induction, we just need

$$x(x-1)^{n-1}(x+n-1) + n \cdot \left[(x-1)^{n-1}(x+n-1) - x(x-1)^{n-2}(x+n-2) \right] = (x-1)^n(x+n)$$

11. (IMC 2016) Let S_n denote the set of permutations of the sequence (1, 2, ..., n). For every permutation $\pi = (\pi_1, ..., \pi_n)$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \le i < j \le n$ with $\pi_i > \pi_j$; i.e., the number of inversions in π . Denote by f(n) the number of permutations $\pi \in S_n$ for which $\operatorname{inv}(\pi)$ is divisible by n + 1.

Prove that there exist infinitely many primes p such that $f(p-1) > \frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1) < \frac{(p-1)!}{p}$.

Solution: Let $g_n(x) := \sum_{\sigma \in S_n} x^{\text{inv}(\sigma)}$. Let's add n+1 in all possible places to all elements of S_n . If we add n+1 at the very end of a permutation, it creates no new inversions. If we add it second-to-last, it creates one new inversion. All the way until when we add it to the very beginning where it creates n new inversions. Thus $g_{n+1}(x) = (1 + x + \cdots + x^n)g_n(x)$. With $g_1(x) = 1$, we have

$$g_n(x) = (1+x)(1+x+x^2)\dots(1+x+\dots+x^{n-1}) = \frac{(x-1)(x^2-1)\dots(x^n-1)}{(x-1)^n}$$

where $x \neq 1$ and $g_n(1) = |S_n| = n!$. Using roots of unity filter with $\omega = e^{2\pi i/p}$ for prime $p \geq 3$,

$$pf(p-1) = (p-1)! + \sum_{k=1}^{p-1} \frac{(\omega^k - 1)(\omega^{2k} - 1)\dots(\omega^{(p-1)k} - 1)}{(\omega^k - 1)^{p-1}}$$

The numerator is simplified to p using the identity $(x-\omega^k)(x-\omega^{2k})\dots(x-\omega^{(p-1)k})=1+x+\dots+x^{p-1}$. Thus it remains to show that the following sum is positive when $p\equiv 3\pmod 4$ and negative when $p\equiv 1\pmod 4$:

$$\begin{split} \sum_{k=1}^{p-1} \frac{1}{(\omega^k - 1)^{p-1}} &= \sum_{k=1}^{(p-1)/2} \left[\frac{1}{(\omega^k - 1)^{p-1}} + \frac{1}{(\omega^{-k} - 1)^{p-1}} \right] \\ &= \sum_{k=1}^{(p-1)/2} \frac{1 + \omega^{(p-1)k}}{(\omega^k - 1)^{p-1}} = \sum_{k=1}^{(p-1)/2} \frac{\frac{\omega^{(p-1)k/2} + \omega^{-(p-1)k/2}}{2}}{\left(\frac{\omega^{k/2} - \omega^{-k/2}}{2i}\right)^{p-1}} \frac{2}{(2i)^{p-1}} \\ &= \frac{1}{2^p (-1)^{(p-1)/2}} \sum_{k=1}^{(p-1)/2} \frac{\cos \frac{k(p-1)\pi}{p}}{\left(\sin \frac{k\pi}{p}\right)^{p-1}} = \frac{1}{2^p (-1)^{(p-1)/2}} \sum_{k=1}^{(p-1)/2} \frac{(-1)^k \cos \frac{k\pi}{p}}{\left(\sin \frac{k\pi}{p}\right)^{p-1}} \end{split}$$

For very large p, the k=1 term determines the sign of the whole sum since $\cos\frac{k\pi}{p}$ is decreasing in magnitude and $\sin\frac{k\pi}{p}$ is increasing in magnitude (note that $0<\frac{k\pi}{p}<\frac{\pi}{2}$). Thus, for very large p we get that $(-1)^{(p+1)/2}$ is the sign of pf(p-1)-(p-1)!, the desired result.