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1 Introduction

The generating function of a sequence ag, a1, as, ... is defined as

G(z) = a0+ a1z +aza® + - = 3 aat
k>0

The generating function of a set .S is defined as

G(z) = Z:ﬂ

res
If we allow sets to have repeats — a multiset is a set that allows repeats — then we must count the number of
times each element occurs as the coefficient:

G(z) = Z(# occurrences of 1) - z”

resS

Let [#*]G(x) denote the coefficient of ¥ in G(x). Generating functions are useful because they allow us to work
with sets algebraically. We can manipulate generating functions without worrying about convergence (unless of
course you're evaluating it at a point).

2 Useful Facts

1. (Generating function of N) For |z| < 1,

2. (Generalized Binomial Theorem) For any o € R, let

(a) ala—1)...(a—k+1)

k k!
Then
o & n
(1+z)*= Z <n>x
n>0
3. For two sequences of the same length ay,...,a, and by,..., by,
n n 2n
() () -2 & o
k=1 k=1 k=1i+j=k
Also,

n 2 n
(Zal) :Za?+2 Z a;a;
k=1 k=1

1<i<j<n
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4.

10.

The Maclaurin series of f is equal to

> £(k)

=0

This is a way of forcibly extracting coefficients if necessary /possible.

Problems

. (Logan Dymond) If zy, yx are integers such that 0 < xy,y, < k for all k, prove that for all n > 2, the number

of solutions to

1+ 2x9 +3x3+ -+ nx, =n(n+1)

is equal to the number of solutions to

0<3y1 +4y2 +5ys + - +nyp—2 <n(n+1)

. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite
arithmetic progressions of ratios rq,7s,...,7, and first term ai,as,...,a,. Then the following relation is
satisfied:

1 1 1
—t — 4.4+ — =1
1 2 T'n

(USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers
with the following property: for any integer n there is exactly one solution of a + 2b = n with a,b € X.

. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property:

for any integer n there is exactly one solution of a + 2b = n with a,b € X.

. (IMOSL 1998) Let ag,a1,... be an increasing sequence of nonnegative integers such that every nonnegative

integer can be expressed uniquely in the form a; 4 2a; 4-4ay, where %, j, k are not necessarily distinct. Determine
a1998-

. (Putnam 2003) For a set S of nonnegative integers, let rg(n) denote the number of ordered pairs (s1, s2) such

that s1,s9 € S, s1 # S92, and s1 + s3 = n. Is it possible to partition the nonnegative integers into two sets A
and B in such a way that r4(n) = rg(n) for all n?

. (Putnam 2000) Let Sy be a finite set of positive integers. We define finite sets Sy, Sa, ... of positive integers as

follows: the integer a is in S, 41 if and only if exactly one of a — 1 or a is in S,,. Show that there are infinitely
many integers N for which Sy = SoU{N +a:a € Sy}.

. (China 2002) Find all natural numbers n > 2 such that there exists real numbers aq, ..., a, that satisfy

{la; —aj| |1 <i<j<n}={1,2,...,n(n—1)/2}

. (IMC 2015) Consider all 2626 words of length 26 in the Latin alphabet. Define the weight of the word as k%rl,

where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 37°.

(Putnam 2005) Let S,, denote the set of all permutations of the numbers 1,2,... ,n. For 7 € S, let o(m) =1
if 7 is an even permutation and o(m) = —1 if 7 is an odd permutation. Also, let v(7m) denote the number of

fixed points of 7. Show that
o(m) n
G SLP/A G B L
> - (-1)

n+1
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11. (IMC 2016) Let S,, denote the set of permutations of the sequence (1,2,...,n). For every permutation 7 =
(71,...,my), let inv(7) be the number of pairs 1 < i < j <n with 7; > 7;; i.e., the number of inversions in 7.
Denote by f(n) the number of permutations 7w € S,, for which inv(r) is divisible by n + 1.

Prove that there exist infinitely many primes p such that f(p — 1) > M, and infinitely many primes p such

P
that f(p—1) < (”_Tf)!.

4 Solutions

1. (Logan Dymond) If x4, yx are integers such that 0 < zy,yr < k for all k, prove that for all n > 2, the number
of solutions to

X1+ 202+ 3z + - +nx, =n(n+1)

is equal to the number of solutions to

0<3y; +4y2+5ys + - +nyp—2 <n(n+1)

Solution: We want the ("1 coefficient of

nopiliHl)

f[wa =1l——

i=1j=0 i=1
to be equal to the (1) coefficient of
n-2 i n(n+1) _ 1 222 G+D(+2) _q noi(il) _
2, j,n*+n—1 (i+2)j _ T z _ z
(14+z+22+ fz )HZ&U = ——— H T _H T
i=1 j=0 i=1 i=1
O
2. (PFTB) Suppose that the set of natural numbers (including 0) is partitioned into a finite number of infinite
arithmetic progressions of ratios ry,79,...,7, and first term a1, as9,...,a,. Then the following relation is
satisfied:
1 1 1
—+—+-+—=1
1 T2 n

Solution: We have

or

limy,_,q-1 11795?% = % concludes the proof.

Note: Be cautious when plugging in values of = (or taking limits)! Here it is a finite series so it’s okay.
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3. (USAMO 1996, weakened) Determine (with proof) whether there is a subset X of the nonnegative integers
with the following property: for any integer n there is exactly one solution of @ 4+ 2b = n with a,b € X.

Solution: Let f(x):= ) .y x°. Then

an — Z l,a+2b — Z 20 Z Z,2b — f(x)f(zZ)

n>0 a,beX aceX beX

Now remember the identity >, -q2" = (1 +2)(1 + 22)(1 + 2*)(1 4+ 28).... It suggests we can take f(x)
(14 2)(1 + 2*)(1 + 2).... It remains to show that [#¥]f € {0, 1} for all k, which is clear. O
Note: From generating functions, we can derive a combinatorial solution! If we expand f(z) = (1 + «)(1 +
(1420 =1+ 2+ 2 +2°+ 2% + ..., note that each 2 must be the sum of distinct powers of 4,

i.e., X is the set of all numbers whose base 4 representations have just Os and 1s as digits. Can you prove
combinatorially that this set works?

4. (USAMO 1996) Determine (with proof) whether there is a subset X of the integers with the following property:
for any integer n there is exactly one solution of a + 2b = n with a,b € X.

Solution: This one is a little more involved. Take f(z) = (14 z)(1+ z~4)(1 + 2')(1 + z=64) ... (1 + 2(-9").
Then

(14+2)(1+ xQ)(l + x4)(1 + xlﬁ) (1 x2k+1)

fl@)f(a?) =

for some big m. We don’t actually have to calculate the value of m; just note that this expands into something
of the form

F@)f@?) =20 4o ot 4o b=t g

and we can make a and b arbitrarily large by taking k large enough. Thus we can capture all integers. O

Note: There is a combinatorial construction of X using base —4 expansion!

5. (IMOSL 1998) Let ag,a1,... be an increasing sequence of nonnegative integers such that every nonnegative
integer can be expressed uniquely in the form a; +2a; +4ay, where 7, j, k are not necessarily distinct. Determine
a1998-

Solution: Let S := {ag,a1,...} and f(x) := > _gx°. Then

[[a+2*) == > 2" = f(a)f(«*)f (=)

n>0 a,b,ceS

Take f(x) = (1+x)(1+2%)(1+2%).... This is the numbers whose base 8 representations have just 0s and 1s.

6. (Putnam 2003) For a set S of nonnegative integers, let rg(n) denote the number of ordered pairs (sy, s3) such
that s1,s5 € 5, 81 # s9, and s1 + so = n. Is it possible to partition the nonnegative integers into two sets A
and B in such a way that r4(n) = rg(n) for all n?

Solution: Let f(x):=3, ., 2% and g(x) := Y, .5 2”. We want

f@) +g@) =) a" = , and
1—-2z
n>0
E xa1+a2 _ § a:Q — E $b1+b2 _ E me
aj,az€EA acA by,bo€B beB

SO
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= ) = gla) - ota”) = (1= f@02< L 16)

1—=x 1—=x
=f@V+f@%—i@2+%lf@2—lfﬂ

— f(LL') _ (1 _ I)f(l‘Q) — Z (ma +x2a+1 _ 1'2“)

acA

=

x
1—z2

Expand 75 = x+a34+25+. .. so the right-hand side cannot have any even powers. Hence, 2a € A = a € A.

Also we want the odd coefficients to be exactly 1,s02a+1€ A = a ¢ A. Also since every integer must be
in at least one set, we must havea € A =— 2a € Aanda€ A — 2a+1¢€ B.

To finish, we make our construction in the following way: put 0 € A, and let the above two rules place the rest
of the integers. It’s easy to check that it places each integer in exactly one set. O

Note: The combinatorial construction for A is the set of numbers with an even number of 1s in its binary
representation, and B is odd number of 1s.

. (Putnam 2000) Let Sy be a finite set of positive integers. We define finite sets S1,Sa, ... of positive integers as
follows: the integer a is in S, 41 if and only if exactly one of a — 1 or a is in S,,. Show that there are infinitely
many integers N for which Sy = SoU{N +a:a € Sp}.

Solution: Let fn(x) =3 g 2. Then, we have f,i1(z) = (1+2) > cgz* (mod 2),so fy = (1+2)" fo(z)
(mod 2). We want it in the form of f(z) = (1 + 2V)fy(z) (mod 2). However, if N is a power of 2, then

(14 2)Y =1+ 2 (mod 2) (this is seen from Pascal’s triangle), so all N = 2* work as long as N > max{Sy}
(to avoid internal cancellation). O
(China 2002) Find all natural numbers n > 2 such that there exists real numbers ay, ..., a, that satisfy

{la; —aj| |1 <i<j<n}={12,...,n(n—1)/2}

Solution: Let S = {ay,...,a,} and f(z) = >, gx°. Then

f@)f(1/z) = (@™ + 4 2%) (a7 4 )
=n—14gn=D/2 4 4 pn(n-1)/2
xn(n—l)/2+1 _ Z‘_n(n_l)/Z
=n—-1+
z—1
2(MP—n+1)/2 _ = (n*—n+1)/2
:Tl*1+ x1/2_$_1/2
Take = = exp ni‘i’xﬂ =: exp 216 to get
F@P = @@ =n—1+ 52 L L 2
D= I = sing " sing " g " 3o TN

This quantity is negative for all n except n = 2,3,4. Then take the following constructions: {0, 1}, {0,1,3},
and {0,1,4,6}. O

. (IMC 2015) Consider all 2626 words of length 26 in the Latin alphabet. Define the weight of the word as k%rl,
where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 37°.

Solution: Let ay; be the number of n-letter words with 26 — ¢ distinct letters, and let f,,(z) := >, an;z'. Since
Ani = (26 —9)a(—1); + (i + 1)am—1)@i+1), we have
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10.

11.

fn(z) = f;lil(m)(l —x) +26f,-1(x)

Now let I, := fol fn(z)dz. Integrating by parts, we get

Ly =[fo_1(x)(1 —2)]g + 2711 = — fn1(0) + 271,y = 271,
since f,—1(0) = a(n—_1)0 = 0. Since I} = 1, we get I = 27%% =375, O
Note: The weight function %ﬂ motivated this solution, since it looks like fol zFda.

(Putnam 2005) Let S,, denote the set of all permutations of the numbers 1,2,...,n. For 7 € S, let o(7) =1
if 7 is an even permutation and o(w) = —1 if 7 is an odd permutation. Also, let v(7) denote the number of

fixed points of w. Show that
o(m) n
N (o)t
> - (-1)

‘ITESn n+1

Solution: Let fn(x) =3 cq o(m)2z*(™. Then we can either have (n + 1) or n + 1 gets sent somewhere in a

cycle. The number of cycles of length ¢ for which n 4+ 1 can get sent to is ( and depending on the cycle

n!
n—{+1)1"
length the parity alternates,. Furthermore, none of the elements in this cycle are fixed points, so we have the
recurrence

fani(@) = > o(ma"™ = Za(ﬂx““’“‘mml); S o(matt™

TESni1 TESy TESn_1

n! i n! o
+ Z o(m)z’ ™ — ' Z o(m)a™ 4+ ...

(n—2)! & (n=3)! &
= QTfn(iL') +n- [fn(z) - xfn—l(‘r)]

Furthermore, we can hand-calculate that fi(z) = x, fa(x) = 22 — 1, and after a few terms we can guess that
fau(z) = (x —1)" Y(z +n —1). To show by induction, we just need

zz—1)" z+n-—1)+n-[z-1)"z+n-1)—z@-1)"?*(z+n-2)] = (- 1)"(z+n)

(IMC 2016) Let S,, denote the set of permutations of the sequence (1,2,...,n). For every permutation = =
(71, ...,7p), let inv(m) be the number of pairs 1 <i < j < n with m; > 7;; i.e., the number of inversions in 7.
Denote by f(n) the number of permutations 7 € S,, for which inv(7) is divisible by n + 1.

Prove that there exist infinitely many primes p such that f(p — 1) > , and infinitely many primes p such

that f(p—1) < @.

Solution: Let gn(x) := >, cq. ™) Let’s add n 4 1 in all possible places to all elements of S,,. If we add
n 4+ 1 at the very end of a permutation, it creates no new inversions. If we add it second-to-last, it creates one
new inversion. All the way until when we add it to the very beginning where it creates n new inversions. Thus
gnt1(@) =1 +xz+ -+ 2")gy(x). With ¢g;(z) = 1, we have

(p=1)!
p

(x—1)(22=1)...(2" = 1)
(z —1)"

g(x)=14+2)Q+z+23) .. QA+z+---+2"1) =

where x # 1 and g, (1) = |S,| = n!. Using roots of unity filter with w = e2™*/P for prime p > 3,

2 1), (wPDk - 1)
P

pflp—1)=(p— 1)+ z_: (wF — 1)(w
k=1
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The numerator is simplified to p using the identity (z —w*)(z —w?*)... (z —w®"V*) = 1424 .. +2P~1. Thus
it remains to show that the following sum is positive when p = 3 (mod 4) and negative when p =1 (mod 4):

p—1 1 (p—1)/2 1 1
2T ot ]

k=1 k=1
(p—1)/2 14 -1k (p—1)/2 w(Pfl)k‘/2+2w7(pfl)k/2
(p—1)/2 E(p=1)m (P=1)/2 (_1\k km
B 1 cos = B 1 (=1)% cos =
B _ —1)/2 -1~ _ —1)/2 -1
2p(—1)-1)/ P (sin %ﬂy) 20 (—1)=1)/ Pt (sin %T)p
For very large p, the k = 1 term determines the sign of the whole sum since cos %’r is decreasing in magnitude

and sin %’r is increasing in magnitude (note that 0 < %’r < Z). Thus, for very large p we get that (—1)®+1)/2

is the sign of pf(p — 1) — (p — 1)!, the desired result.
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