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bel prize for related work in economics [36]. The Monge-Kantorovich theory is
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Economics, optic (e.g. the reflector problem), meteorology, oceanography, ki-
netic theory, partial differential equations and functional analysis (e.g. geometric
inequalities). The purpose of these fives hour lectures is to develop basic tools
for the Monge-Kantorovich theory. We will briefly mention its impact in kinetic
theory and meteorology. These applications are fully developed in the follow-
ing preprints, [11] [13] [16] [26], which you can download from my webpage at
www.math.gatech.edu/ gangbo/publications/.

The contribution on the mass of transportation theory by the author and
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1 Introduction

Assume that we are given a pile of sand occupying a region X ⊂ Rd and assume
that a set Y ⊂ Rd consists of holes. Let ρo be the distribution of the sand and
ρ1 be the distribution of the holes. We also assume that for each pair of points
(x, y) ∈ X × Y we have assigned a nonnegative number c(x, y) which represents
the cost for transporting a unit mass from x to y. A transport map T is a strategy
which tells us to move mass from x to Tx. It must satisfy a mass conservation
condition which is that ”T pushes ρo forward to ρ1” (see definition 3.1).

Monge problem Find a minimizer for

inf
T
{

∫

X

c(x, y)ρo(x)dx | T#µo = µ1}. (1)

In 1781, Monge conjectured that when c(x, y) = |x − y| there exists an optimal
map that transports the pile of sand to the holes. Two hundred years ellapsed
before Monge conjecture was proven by Sudakov in 1976, in [44]. It was recently
discovered by Ambrosio [3], that Sudakov’s proof contains a gap in the case d > 2.
Before that gap was noticed, the proof of Monge conjecture was extented to higher
dimensional spaces by Evans and the author in 1999, in [23]. The results in [44]
and [23] were recently independently refined by Ambrosio [3], Trudinger–Wang
[45] and Caffarelli–Feldman–McCann [12]. In a meanwhile, McCann and the
author [26] [27] independently with Caffarelli [10], proved Monge conjecture for
cost functions that include those of the form c(x, y) = h(x−y) where h is strictly
convex. The case c(x, y) = l(|x− y|) where l is strictly concave, which is relevant
in economics, was solved in [26] [27].

One can generalize Monge problem to arbitrary measures µ and ν when there
is no map T such that T#µ = ν. To do that, one needs to replace the concept
of transport map by the concept of transport schemes which can be viewed as
multivalued maps, coupled with a family of measures. As usually done, we denote
by 2Y the set of subsets on Y. We consider maps T : X → 2Y and associate to
each x ∈ X, a measure γx supported on Tx, and which tells how to split the mass
at x through Tx. Therefore, the cost for transporting x to Tx is

∫

Tx

c(x, y)dγx(y).

The total cost for transporting µo onto µ1 is then

∫

X

[
∫

Tx

c(x, y)dγx(y)

]

dµo(x).



3

It is more convenient to encode the information in (T, {γx}x∈X) in a measure γ
defined on X × Y by

∫

X×Y

F (x, y)dγ(x, y) =

∫

X

[
∫

Tx

F (x, y)dγx(y)

]

dµo(x).

The measure γ is to satisfy the mass conservation condition:

µ[A] = γ[A× Y ], γ[X ×B] = ν[B]

for all Borel sets A ⊂ X and B ⊂ Y.
In section 3, we introduce Kantorovich problem as a relaxation of Monge

problem. To do that, we first extend the set T (µ, ν) of maps T : X → Y such
that T#µ = ν, to a bigger set Γ(µ, ν). Then, we extend the function ρo → I[ρo] :=
∫

X
c(x, y)ρo(x) to a function Ĩ defined on Γ(µ, ν) so that if T (µ, ν) 6= ∅ then

inf
T (µ,ν)

I = inf
Γ(µ,ν)

Ĩ .

The new problem at the right handside of the previous equality will be called, as
usually done in the calculus of variations, a relaxation of the first problem.

In these notes, we formulate the mass transportation problem and under suit-
able assumptions, prove existence of solutions for both Monge and Kantorovich
problems. We incorporate in these notes prerequisites which we don’t plan to go
over during these five hour lectures. We mention how the mass transportation
fits into dynamical systems and fluids mechanic. The Wasserstein distance and
study its geometry , as a mass transportation problem, which have played an
important role in PDEs during the past few years, are studied. We also comment
on the applications of the mass transportation theory to kinetic theory, meteorol-
ogy and optimal designed. Since we anticipate that the applications to geometric
inequalities will be covered in parallel lectures given by N. Ghoussoub, we omit
them here.

2 Prerequisite for the mass transportation the-

ory

2.1 Convex Analysis: part I

The material of this section can be found in the books [20], [40]. The solutions
to the exercises in this section appear as theorems, lemma, and propositions in
these books. Throughout this section Y is a Banach space.
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Definition 2.1. Let X ⊂ Y be a convex subset of Y and let φ : X → R∪{+∞}
be a real valued function.

(i) φ is said to be convex if φ is not identically +∞ and

φ((1 − t)x+ ty) ≤ (1 − t)φ(x) + tφ(y)

for all t ∈ [0, 1] and all x, y ∈ X.
(ii) φ is said to be strictly convex if φ is not identically +∞ and

φ((1 − t)x+ ty) < (1 − t)φ(x) + tφ(y)

for all t ∈ (0, 1) and all x, y ∈ X such that x 6= y.
(iii) φ is said to be lower semicontinuous on X if

lim inf
n→+∞

φ(xn) ≥ φ(x∞),

for every sequence {xn}
+∞
n=1 ⊂ X converging to x∞ ∈ X.

Remark 2.2. Suppose that φ : X → R ∪ {+∞} and we defined φ̄ : Y →
R ∪ {+∞} by

φ̄(x) =

{

φ(x) if x ∈ X

+∞ if x 6∈ X.
(2)

Note that φ̄ is convex. We refer to it as the natural convex extension of φ.

Exercise 2.3. (i) Show that φ is lower semicontinuous if and only if its epigraph
epi(φ) = {(x, t) | φ(x) ≤ t} is closed.

(ii) Show that φ is convex if and only if its epigraph is a convex set.
(iii) Is there any extra assumption one needs to impose on X for (i) and (ii)

to hold?

Definition 2.4. Assume that X ⊂ Y is a convex set and that φ : X → R∪{+∞}
is convex.

(i) The subdifferential of φ is the set ∂φ ⊂ X × Y that consists of the (x, y)
such that

φ(z) ≥ φ(x) + y · (z − x)

for all z ∈ X.
(ii) If (x, y) ∈ ∂cφ we say that y ∈ ∂φ(x). If E ⊂ X we denote by ∂φ(E) the

union of the ∂φ(x) such that x ∈ E.
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Definition 2.5. Assume that X ⊂ Y and that φ : X → R ∪ {+∞} is not
identically +∞. The Legendre transform of φ is the function φ∗ : Y → R∪{+∞}
defined by

φ∗(y) = sup
x∈X

{x · y − φ(x)}.

Remark 2.6. Note that φ and its natural extension have the same Legendre
transform.

Exercise 2.7. Assume that φ : Y → R∪{+∞} is convex and lower semicontin-
uous.

(i) Show that φ∗ is convex and lower semicontinuous (in particular φ∗ is not
identically +∞).

(ii) Show that φ = φ∗∗ = Cφ where

Cφ = sup{g | g ≤ φ, g convex}.

(iii) Say whether or not the following hold:

(x, y) ∈ ∂φ⇐⇒ (y, x) ∈ ∂φ∗

Definition 2.8. A subset Z ⊂ Y × Y is said to be cyclically monotone if for
every natural number n, for every {(xi, yi)}

n
i=1 ⊂ Z and every permutation σ of

n letter, we have that
n

∑

i=1

|xi − yi|
2 ≤

n
∑

i=1

|xi − yσ(i)|
2.

Exercise 2.9. Show that Z ⊂ Rd×Rd is cyclically monotone if and only if there
exists a convex function φ : Rd → R ∪ {+∞} such that Z ⊂ ∂φ.

Exercise 2.10. Assume that Ω ⊂ Rd is an open, convex set and that φ : Ω → R
is convex. Then

(i) φ is continuous on Ω. The gradient map ∇φ is defined almost everywhere
and is a Borel map.

(ii) If (xn, yn) ∈ ∂φ and xn → x∞ in Ω, then every subsequence of {yn}
∞
n=1

admits a subsequence that converges to some y∞ ∈ ∂φ(x). Conclude that ∂φ is
closed.

(iii) The function φ is twice differentiable almost everywhere in the sense of
Alexandrov [2]: for almost every xo, ∇φ(xo) exists and there exists a symmetric
matrix A such that

φ(xo + h) = φ(xo)+ < ∇φ(xo), h > +
1

2
< Ah;h > +o(|h|2).

(iv) Differentiability of φ fails only on a rectifiable set of dimension less than
or equal to d− 1.
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The proofs of (i) and (ii) is easy while the proof of (iii) needs a little bit more
thinking and can be found in [1]. The proof of (iv) is the most difficult one and
we refer the reader to [2].

Exercise 2.11. Assume that φ : Rd → R is convex. Show that φ is strictly
convex if and only if φ∗ is differentiable everywhere on {x | φ(x) < +∞}.

Exercise 2.12. Assume that c ∈ C1(Rd × Rd) and that K,L ⊂ Rd are compact
sets. For u, v : Rd → R ∪ {−∞}, not identically ∞ we define

uc(y) = inf
k∈K

{c(k, y) − u(k)}, vc(x) = inf
l∈L

{c(x, l) − v(l)}.

(i) Show that uc and vc are Lipschitz.
(ii) Show that if v = uc then (vc)

c = v.
(iii) Determine the class of u for which (uc)c = u.

The next exercise is very similar to exercise 2.12 except that now, we have
lost the property that K,L are compact, by replacing them by Rd.

Exercise 2.13. Assume that c ∈ C1(Rd×Rd) and that c(z) = l(|z|) for a function
l that grows faster than linearly as |z| tends to +∞. For u, v : Rd → R∪ {−∞},
not identically ∞ we define

uc(y) = inf
k∈Rd

{c(k, y) − u(k)}, vc(x) = inf
l∈Rd

{c(x, l) − v(l)}.

(i) Show that uc and vc are locally Lipschitz.
(ii) Show that if v = uc then (vc)

c = v.
(iii) Say whether or not (uc)c = u for arbitrary u.

2.2 Measure Theory

Throughout this section X, Y and Z are Banach spaces. We denote by P(Z)
the set of probability measures on Z. Most of the statements below stated for
X ⊂ Rd are still valid if we substitute Rd by a polish space.

Material we assume that you know and which we don’t recall
1. The definition of a measure (nonnegative), a Borel measure and a Radon

measure on Z. Definition of a probability measure on Z.
2. The total variation of γ ∈ P(Z) is γ[Z].
3. The definition of the weak ∗ convergence on the set of measure.
4. The definition of Lp(Z, γ) for 1 ≤ p ≤ +∞ and γ a measure on Z.
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Examples of measures (a) Assume that zo ∈ Z. The dirac mass at zo is the
measure δzo

defined by

δzo
[B] =

{

1 if zo ∈ B

0 if zo 6∈ B
(3)

for B ⊂ Z.
(b) If Z is a subset of Rd and ρ : Z → [0,+∞] is a Borel function whose total

mass is 1, we define µ := ρdx by

µ[B] =

∫

B

ρdx,

for all B ⊂ Z Borel set. That measure is said to have ρ as a density and to be
absolutely continuous with respect to Lebesgue measure.

Exercise 2.14. Suppose that X ⊂ Rd. (i) Show that every probability measure
µ ∈ P(X) is the weak ∗ limit of a convex combination of dirac masses.

(ii) Show that every probability measure µ ∈ P(X) is the weak ∗ limit of
a sequence of measures that are absolutely continuous with respect to Lebesgue
measure.

Definition 2.15. A Borel measure µ on X is said to have xo as an atom if
µ{xo} > 0.

Exercise 2.16. Suppose that µ is a Borel measure on X. Show that the set of
atoms of µ is countable.

For these lectures, we don’t expect you to master the next definition and the
proposition that follows but, since they are considered basic facts in measure
theory, we include them here.

Definition 2.17. (i) We denote by B(X) the Borel sigma algebra on the metric
space X.

(ii) Assume that µ is a Borel measure on X and ν is a Borel measure on Y.
We say that (X,B(X), µ) is isomorphic to (Y,B(Y ), ν) if there exists a one-to-
one map T of X onto Y such that for all A ∈ B(X) we have T (A) ∈ B(Y ) and
µ[A] = ν[T (A)], and for all B ∈ B(Y ) we have T−1(B) ∈ B(X) and µ[T−1(B)] =
ν[B]. For brevity we say that µ is isomorphic to ν.

The next proposition is an amazing result that is considered a basic fact in
measure theory. We refer the reader to the book by Royden [42], Theorem 16 for
its proof.
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Proposition 2.18. Let µ be a finite Borel measure on a complete separable met-
ric space X. Assume that ν has no atoms and µ[X] = 1. Then (X,B(X), µ)
is isomorphic to ([0, 1],B([0, 1]), λ1), where λ1 stands for the one-dimensional
Lebesgue measure on [0, 1].

Definition 2.19. Assume that γ is a measure on Z and that Z ′ ⊂ Z. The
restriction of γ to Z is the measure γ|Z′ defined on Z ′ by

γ|Z′ [C] = γ[C ∩ Z ′]

for all C ⊂ Z.

Exercise 2.20. Assume that Z ′ ⊂ Z and that γ ′ is a measure on Z ′. Define

γ[C] = γ ′[C ∩ Z ′]

for all C ⊂ Z. Is there any condition we must impose on Z ′ for γ to be a measure
on Z?

Definition 2.21. Assume that Z = X × Y and that γ ∈ P(Z). The first and
second marginals of γ are the measures projXγ defined on X and projY γ defined
on Y by

projXγ[A] = γ[A× Y ], projY γ[B] = γ[X ×B],

for all A ⊂ X and all B ⊂ Y.

Definition 2.22. If γ ∈ P(Z) and 1 ≤ p < +∞, the p–moment of γ is

Mp[γ] = 1/p

∫

Z

||z||pdγ(z).

Exercise 2.23. Assume that 1 < p < +∞, that {γn}
∞
n=1 ⊂ P(Rd) and that

{Mp[γ]}
∞
n=1 is a bounded set. Show that there exists a subsequence of {γn}

∞
n=1

that converges weak ∗ in P(Rd).
Warning. The limit of the subsequence must be not only a measure but a

probability measure.

Exercise 2.24. Assume that γ, γ̄ are two Borel probability measures on Rd. Show
that γ[C] = γ̄[C] for every Borel set if and only if

∫

Z

F (z)dγ(z) =

∫

Z

F (z)dγ̄(z)

for all F ∈ Co(R
d).
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3 Formulation of the mass transport problems

3.1 The original Monge-Kantorovich problem

Monge problem is in terms of transport maps which we next define. To be
able to formulate Kantorovich problem, we need to replace the transport maps
by special multivalued maps, coupled with a family of measure. We call those
transport scheme.

Definition 3.1 (Transport maps and schemes). Assume that µ is a measure
on X and that ν is a measure on Y. (i) We say that T : X → Y transports µ
onto ν and we write T#µ = ν if

ν[B] = µ[T−1(B)] (4)

for all Borel set B ⊂ Y. We sometimes say that T is a measure-preserving map
with respect to (µ, ν) or T pushes µ forward to ν. We denote by T (µ, ν) the set
of T such that T#µ = ν.

(ii) A measure γ on X × Y has µ and ν as its marginals if µ = projXγ and
ν = projY γ. We write that γ ∈ Γ(µ, ν) and call γ a transport scheme for µ and
ν.

Remark 3.2. (i) Note that (4) expresses a mass conservation condition between
the two measures.

(ii) Given two measures µ and ν, proposition 2.18 gives a sufficient condition
for the existence of a map T that transports µ onto ν. It is easy to see that such a
map may not exist in general. For instance, assume that x, y, z are three distinct
elements of X. Set µ = 1/2(δx + δy) and ν = 1/3(δx + δy + δz). Then there is no
map T that transports µ onto ν.

(iii) If γ ∈ Γ(µ, ν), (x, y) being in the support of γ expresses the fact that the
mass dγ(x, y) is transported from x to y. Here, the support of γ is the smallest
closed set K ⊂ X × Y such that γ[K] = γ[X × Y ].

Kantorovich problem. Find a minimizer for

inf
γ∈Γ(µ,ν)

∫

X×Y

c(x, y)dγ(x, y). (5)

Why is Kantorovich’s problem a relaxation of Monge’s problem? To
each T : X → Y such that T#µ = ν we associate the measure γT defined on
X × Y by

γT [C] = µ[{x ∈ X | (x, Tx) ∈ C}].
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Exercise 3.3. Assume that µ and ν are two probability measures on Rd and that
c is a nonnegative continuous on Rd ×Rd. Define I on T (µ, ν) and Ĩ on Γ(µ, ν)
by

I[T ] =

∫

X

c(x, Tx)dµ(x), Ĩ[γ] =

∫

X×Y

c(x, y)dγ(x, y)

(i) Prove that if T#µ = ν then γT ∈ Γ(µ, ν) and I[T ] = Ĩ[γT ].
(ii) Prove that if µ and ν don’t have atoms then {γT | T ∈ T (µ, ν)} is weak ∗

dense in Γ(µ, ν).
(iii) Conclude that infT I =

∫

γ
Ĩ .

A detailed proof of these statements can be found in [25]

3.2 A dual to the Monge-Kantorovich problem

(still need to be written up. Will be covered during the lectures)

3.3 Existence of a minimizer

(Not completed. Will be covered during the lectures)

Theorem 3.4 (Exixtence of a unique minimizer in (7)). If p > 1 and µ,
ν are absolutely continuous with respect to Lebesgue measure then, (7) admits a
unique minimizer. In particular if p = 2, the minimizer is characterized by the
fact that it is the gradient of the convex function φ that satisfies (∇φ)#µ = ν.

Proof: Theorem 3.4 is fundamental in many applications of the Monge-
Kantorovich theory. The case p = 2 was first proved by Brenier in [5]. The
general case was independently proved by Caffarelli [10], and Gangbo & McCann
[27].

4 The Wasserstein distance

Assume that µ and ν are two probability measures on Rd and that 0 < p < +∞.
We define

W p
p (µ, ν) := inf

γ
{

∫

Rd×Rd

|x− y|pdγ(x, y) : γ ∈ Γ(µ, ν)}. (6)

When µ and ν don’t have atoms then

W p
p (µ, ν) := inf

s
{

∫

Rd

|x− s(x)|pdµ(x) : s#µ = ν}. (7)
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Definition 4.1 (The Wasserstein distance). . It is well-known that Wp is a
metric for p ≥ 1 and W p

p is a metric for 0 < p ≤ 1. When p = 2, W2 is called the
Wasserstein distance [39].

5 Example of cost functions; fluids mechanic

and dynamical systems

Many mechanical systems can be described via a lagrangian L : Rd × Rd → R,
defined on the phase space Rd×Rd. Customarily, L(x, ·) satisfies some convexity
assumptions and L(·, v) satisfies suitable growth or periodicity conditions. To
make the reader get to the main point faster, we omit specify here to specify
the conditions on L ∈ Cr(Rd × Rd), which can be found in the appendix. Now,
we introduce a Hamiltonian associated to L, the so-called Legendre transform of
L(x, ·). For (x, p) ∈ Rd × Rd) we set

H(x, p) = sup
v∈Rd

{v · p− L(x, v)}, ((x, p) ∈ Rd × Rd).

The Hamiltonian H is continuous and by (H3), H(x, ·) is continuously differen-
tiable. Also, the map

(x, v) → (x,∇vL(x, v)) = T(x, v)

is of class Cr−1(Rd ×Rd) and its restriction to Td ×Rd is one-to-one. It inverse

(x, p) → (x,∇pH(x, p)) = S(x, p)

is then of class Cr−1(Rd×Rd). This proves that H is in fact of class Cr(Rd×Rd).
One studies the kinematics and dynamics of these systems through the action

c(T, xo, xT ) = inf
σ
{

∫ T

0

L(σ, σ̇)dt | σ(0) = xo, σ(T ) = x1}, (8)

where the infimum is performed over the set AC(T ;xo, xT ) of σ : [0, T ] → Rd

that are absolutely continuous and that satisfy the endpoint constraint σ(0) = xo,
σ(T ) = xT . By rescalling, we may assume that T = 1.

Given two probability densities ρo and ρ1 on Rd, the Monge-Kantorovich
problem is then

inf
r#ρo=ρ1

∫

Rd

c(1, x, r(x))ρo(x)dx = inf
g(·,·)

{

∫ T

0

dt

∫

Rd

L(x,g(t, x))ρo(x)dx
}

(9)
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where the infimum is performed over the set of g : [0, 1] × Rd → Rd such that
g(0, x) = x and g(1, ·)#ρo = ρ1. The expression at the left handside of (9) is Wc̄

where c̄ = c(1, ·, ·).
When (9) admits a unique minimizer ḡ (see proposition 7.1 for a condition

on L that ensures such properties), we define the path

ρ̄(t, ·) = ḡ(t, ·)#ρo (10)

When L(x, v) = |v|p/p for some p ∈ (0,+∞) then t→ ρ̄(t, ·) is a geodesic for the
Wasserstein distance (see [4] and [37] ). The passage from Lagrangian to Eulerian
coordinates is done through the ODE

ġ(t, x) = V(t,g(t, x)), g(0, x) = x. (11)

We combine (9) and (11) to obtain that

Wc̄(ρo, ρ1) = inf
ρ(·,·), V

{

∫ 1

0

dt

∫

Rd

L(y,V(t, y))ρ(t, y)dy
}

, (12)

where the infimum is performed over the set of pairs (ρ,V) such that

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1 and
∂ρ

∂t
+ div(ρV) = 0.

When L(x, v) = |v|2/2, one can recognize the expression in (12) to be the minimal
kinetic energy spent by the system during its evolution, from time t = 0 to time
t = T, given in Lagrangian form.

6 Applications

6.1 The Kinetic Fokker-Planck equations

Before formulating the kinetic Fokker-Planck equations (KFPE) we introduce few
definitions.

Definition 6.1 (Maxwellians and local Maxwellians). Assume that f is a
probability density on the phase space Td × Rd. Define

ρ(t, x) =

∫

Rd

f(t, x, v)dv, F (t, x, v) =
f(t, x, v)dv

ρ(t, x)
.

The bulk velocity and the temperature associated to f are:

uF (x) :=

∫

Rd

vF (x,v)dv, θF (x) = 1/d

∫

Rd

|v − uF (x)|2F (x,v)dv. (13)
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• The Maxwellian with bulk velocity u ∈ Rd and temperature θ > 0 is

Mu,θ(v) := (2πθ)−d/2e−
|v−u|2

2θ .

• The space dependent Maxwellian with bulk velocity uF (x) and temperature
θF (x) is denoted MF (x,·).
• Finally, the local Maxwellian corresponding to f on the phase space is Mf

defined by
Mf (x,v) = ρ(x)MF (x,·)(v).

• We call M the set of local Maxwellians.

The kinetic Fokker-Planck equations are

∂tf(t, x, ·) + v · ∇xf(t, x, ·) = Lp(f(t, x, ·)). (14)

Here,

Lp(F (x, ·))(v) = θp
F (x)divv

[

F (x, ·)∇v ln(
F (x, ·)

MF (x, ·)
)
]

∇v, and divv are the gradient and the divergence with respect to the v variables
and p is a parameter.

Physicits expect (14) to admits solutions that conserve their total energy:

∫

Td×Rd

|v|2

2
f(t, x, v)dxdv.

Because, the solutions obtained so far are not known to be ”smooth enough”
checking the energy conservation property remains an important challenge in ki-
netic theory.

Chief advantage of working with the Wasserstein distance. The Wasser-
stein distance has the advantage of requiring very little in the way of estimates
on spacial regularity. To be more precised, the expression ∂tf+v∇xf is the limit
as h tends to 0 of

f(t+ h, x+ hv,v) − f(t, x,v)

h
.

But, in terms of the Wasserstein distance W2 on P(Td × Rd), we have that

W 2
2 (f(t+ h, x+ hv,v), f(t, x+,v)) ≤ h2E(fo).

That first order approximation of f(t+ h, x+ hv,v) by f(t, x,v) in terms of the
Wasserstein distance, means that we don’t need to worry about existence of ∂tf
and v · ∇xf separately.
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Remark 6.2 (Homogeneous vs. inhomogeneous Fokker-Planck). (a)
When fo(x,v) ≡ fo(v), ones seeks for a solution f of (14) that satisfies f(t, x,v) ≡
f(t,v). In that case, (14) becomes linear, and its study becomes much more
simpler; (14) is then called the homogeneous Fokker-Planck equation. Jordan-
Kinderlehrer-Otto were the first to show in [29], that the scheme (3) of lemma
6.3, produces an approximate solution to the homogeneous Fokker-Planck equa-
tion. (1), (2) and (4) were not needed there.

(b) When fo(x,v) 6≡ fo(v) (14) is referred to as the inhomogeneous Fokker-
Planck. In that case, the evolutive system is decidely, a nonlinear second order
differential equation with nonlocal coefficients. These coefficients may be very
small. I am not aware of any classical tools that could then be used to obtain
existence of solutions that conserve energy.

Entropy functionals. Assume that f ∈ Pa(Td ×Rd) and that, as in (13), F is
the conditional velocity distribution associated to f. The entropy of F (x, ·) is

S(F (x, ·)) =

∫

Rd

F (x,v) ln(F (x,v))dv (15)

and the entropy of f is

H(f) =

∫

Td×Rd

f(x,v) ln(f(x,v))dxdv.

The relative entropies of G ∈ Pa(Rd) with respect to MF (x,·), and the relative
entropies of f with respect to Mf are

S(G|MF (x, ·)) =

∫

Rd

G ln(
G

MF (x,·)

)

dv, H(f |Mf ) =

∫

Td×Rd

f ln
( f

Mf

)

dxdv.

(16)

Lemma 6.3 (A discrete scheme). Fix an initial phase space density fo defined
on the phase space Td × Rd, and fix a time step h > 0. Inductively define fk in
terms of fk−1 through the following algorithm:

(1) First, run the streaming: define f̃k(x,v) = fk−1(x− hv,v).

(2) Define ρk(x) =
∫

Rd f̃k(x,v)dv and the precollision conditional velocity distri-

bution F̃k by ρk(x)F̃k(x,v) = f̃k(x,v).

(3) Now run the collisions through steepest descent of the relative entropy: for
each x, let Fk(x, ·) minimize the functional

G→
W 2

2 (G, F̃k(x, ·))

θp

F̃k(x,·)

+ hS(G|MF̃k(x,·))
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over the set Pa(R
d) of probability density functions on Rd.

(4) Finally, reconstruct fk through fk(x, v) = ρk(x)Fk(x,v).

Definition 6.4 (Approximate solutions to the kinetic Fokker-Planck).
Define a time dependent phase space probability density f (h)(t, x,v) through

f (h)(t, x,v) = fk(x− (t− kh)v,v) for t ∈ [tk, tk+1),

and by convention, tk = kh.

Theorem 6.5. Assume that p = 1 and T > 0. Assume that the sixth moment
∫

Td×Rd fo(x,v)|v|6dxdv of the initial probability density fo is finite. Then the set

{f (h)} is weakly compact in L1((0, T ) × Td × Rd)) and a subsequence of {f (h)}
converges weakly to an f(t, ·, ·) ∈ Pa(Td × Rd). Furthermore,

(i) ∂tf
(h) + x · ∇vf

(h) − L1(f
(h)) tends to 0 in the distributional sense.

(ii) f is a solution to the kinetic Fokker-Planck equations (14) and the con-
servation of energy holds:

∫

Td×Rd

|v|2

2
f(t, x, v)dxdv =

∫

Td×Rd

|v|2

2
f(0, x, v)dxdv.

That theorem is proved in [13].

Open problem 1. For parameters ε > 0, consider equation

∂tfε + v · ∇xfε =
1

ε
Lp(fε) (17)

that admits a solution since we could solve (14). As ε tends to 0 does {fε}ε tends
to a limit f where ρ, uF satisfy the Euler equations of compressible fluids

∂t(ρuF ) + divx(ρuF ⊗ uF ) = −∇xp, ∂tρ+ divx(ρuF ) = 0.

Here ρ, F and uF are given through f ≡ f(t, x,v) as in (13) and Definition 6.1.

Open problem 2. Under what assumptions on the initial density fo is the
solution of (14) unique? A more modest but, still difficult question is: assume
that we are given two initial velocity distributions fo and f̃o on the phase space
Td × Rd, and let f (h) and f̃ (h) be the corresponding solution obtained in lemma
6.5. Do we control the Wasserstein distance W2(f

(h), f̃ (h)) in terms of W2(fo, f̃o).
Comments. The point is to understand the stability of our algorithm. The

answer to problem 2 can be readily shown in the case of the homogeneous Fokker-
Planck system [37]. aaa
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6.2 Semigeostrophic equations

The semi-geostrophic systems are new to the mathematical community, but are
attracting more and more attention because of their similarities with the Euler
equations of incompressible fluids (see the review paper by L.C. Evans [22] or
[6]).

The semi-geostrophic systems are used by meteorologists to model how fronts
arise in large scale weather patterns. It is a 3-D free boundary problem which is
an approximation of the 3-D Euler equations of incompressible fluid, in a rotating
coordinate frame around the Ox3-axis where, the effects of rotation dominate. It
was first introduced by Eliassen [21] in 1948, and rediscovered by Hoskins [28]
in 1975. Since then, it has been intensively studied by geophysicists ( e.g. [17],
[18], [41], [43] ). One of the main contributions of Hoskins was to show that
the semi-geostrophic system, could be solved in particular cases by a coordinate
transformation which then allows analytic solutions to be obtained. The subse-
quent new system is, at least formally, equivalent to the original semi-geostrophic
system, and has the advantage to be more tractable. Hoskins claimed that, in
the new system, the mechanisms for the formation of fronts in the atmosphere
could be modelled analytically.

Here, we consider a particular case of the semi-geostrophic systems, the so-
called the semigeostrophic shallow water system (SGSW). We skip its derivation
that can be found in [16]. In the system below, h represents the height of the
water above a fixed region Ω and is related to what is called the generalized
geopotential function

P (t, x) = |x|2/2 + h(t, x), (t ∈ [0,+∞), h(t, x) > 0).

Let P ∗(t, ·) be the Legendre transform of P (t, ·). It is related to the geostrophic
velocity w by

α := DP (t, ·)#ρ(t, ·), w(t, y) = J(y −DP ∗(t, y)). (18)

The semigeostrophic shallow water in dual variables are






















(i) ∂α
∂t

+ div(αw) = 0 in the weak sense in [0, T ] × R2

(ii) w(t, y) := J(y −DP ∗(t, y)), in [0, T ] × R2

(iii) P (t, x) := |x|2/2 + h(t, x), in [0, T ] × Ω
(iv) α(t, ·) := DP (t, ·)#h(t, ·), t ∈ [0, T ]
(v) α(0, ·) = αo in R2.

(19)

A time discretized scheme for solving the SWGS. We fix a time step size
δ > 0. We consider the Hamiltonian

H(α) := 1/2 min
η∈Pa(Ω)

{W 2
2 (α, η) +

∫

Ω

η2dx}. (20)
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Step 1. Given αk ∈ Pa(R
d), we substitute α in (20) and define hk to be the

unique minimizer of H(αk). Let Pk be a convex function such that (∇Pk)#hk =
αk. The Euler-Lagrange equations of (20) give that

Pk(x) = |x|2/2 + hk(x).

Step 2. We set wk(y) := J(y −DP ∗
k (y)) where P ∗

k denotes the Legendre trans-
form of Pk. We solve the system of equations







∂α
∂t

+ div(αwk) = 0 in [kδ, (k + 1)δ] × R2

α(kδ, ·) := αk in R2

and set αk+1 = α((k + 1)δ, ·).

An approximate solution of the SGS. We define αh(kδ, ·) = αk and ex-
tend αδ(t, ·) on (kδ, (k + 1)δ) by linearly interpolating between αk and αk+1. In
[16] we show the following theorem.

Theorem 6.6 (Main existence result). Assume that 1 < r < +∞, and that
αo ∈ Lr(Br) is a probability density whose support is strictly contained in Br,
and let BR be the ball of center 0, and radius R := r(1 + T ). There exists h ∈
L∞((0, T );W 1,∞(Ω)) which is a limit point of {hδ}δ>0 such that h(t, ·) ∈ Pa(Ω).
Furthermore, there exist a function α ∈ L∞((0, T );Lr(Rd)), such that (α, h) is a
stable solution of (19) and

W1(α(s2, ·), α(s1, ·)) ≤ C|s1 − s2|.

for all s1, s2 ∈ [0, T ]. Here C is a constant that depends only on the initial data.

Open problem 3. Degenerate ”hamiltonian” structure and uniqueness.
No standard method apply for studying uniqueness of solution for the SGS. The
success of the current effort made by [4] to develop a rigorous tool that asso-
ciate a riemannian structure to the Wasserstein distance is a step toward find-
ing a systematic way of studying uniquess of solutions of some systems. Using
that riemannian structure, we made more precised the degenerate ”hamiltonian”
structure of the SGS which we next explain: let M be the set of probability mea-
sures on Rd. If ωo ∈ M, the tangent space at ωo is Tωo

M = {f |
∫

Rd fdx = 0}.
To each f ∈ Tωo

M we associate ψf defined by the PDE −div(ωo∇ψf ) = f. The
inner product of f, g ∈ Tωo

M suggested by [37] is

< f, g >ωo
=

∫

Rd

ωo∇ψf · ∇ψgdx.
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We propose to introduce the skew-symmetric form

βωo
(f, g) =

∫

Rd

ωoJ∇ψf · ∇ψfdx,

where J is the standard simplectic matrix such that −J 2 is the identity matrix.
For instance if the physical domain is Ω is time independent, the SGS consists in
finding t→ ω(t, ·) satisfying for all f ∈ Tω(t,·)M,

< ω̇, f >= βωo

(δH

δf
, f

)

. (21)

Uniqueness of solution in (21) will be straightfoward to establish if H was a
smooth function. The question is to know how much we could exploit the fact
that H is only semiconcave with respect to W2. For which initial condition ω(0, ·)
the variations of H matters only in some directions? This leads to the problem
of understanding the kernel of βωo

(f, ·). When d = 2, the kernel of βωo
(f, ·) is the

set of g such that ωo and ψg have the same level set. This means that there exists
a function a monotone function on β such that ψg(x) = −β(ω(x)). Hence, for a
convex function A, we have that A′ = β. A flow along degenerate directions is
given by

∂tω = div
[

ω∇
(

A′(ω)
)]

. (22)

The question is to know how much (22) contributes to the understanding of (21).

7 Appendix

Throughout this section L : Rd × Rd → R is a continuous functions such that
(H1) L(x+k,v)=L(x,v) for each (x, v) ∈ Rd × Rd and each k ∈ Zd.

We assume that L is smooth enough in the sense that there exists an integer
r > 1 such that

(H2) L ∈ Cr(Rd × Rd).

We also impose that the Hessian matrix is positive:
(H3) ( ∂2L

∂vi∂vj
(x, v)) > 0

in the sense that its eigenvalues are all positive. We need the following uniform
superlinear growth condition:

(H4) For every A > 0 there exists a constant δ > 0 such that L(x,v)
||v||

≥ A

for every x ∈ Rd and every v such that ||v|| ≥ δ. In particular, there exists a real
number B(L) such that for every (x, v) ∈ Rd × Rd, we have that

L(x, v) ≥ ||v|| −B(L).
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A continuous function L : Rd × Rd → R satisfying (H1–H4) is called a
lagrangian. In many mechanical systems, the Lagrangian L(x, ·) does not go
faster than exponentially as v tends to +∞ : there is a constant b(L) ∈ R such
that

(H5) L(x, v) ≤ e||v|| − b(L) − 1 for each (x, v) ∈ Rd × Rd.
Now, we introduce a Hamiltonian associated to L, the so-called Legendre

transform of L(x, ·). For (x, p) ∈ Rd × Rd) we set

H(x, p) = sup
v∈Rd

{v · p− L(x, v)}, ((x, p) ∈ Rd × Rd).

The Hamiltonian H is continuous and by (H3), H(x, ·) is continuously differen-
tiable. Also, the map

(x, v) → (x,∇vL(x, v)) = T(x, v)

is of class Cr−1(Rd ×Rd) and its restriction to Td ×Rd is one-to-one. It inverse

(x, p) → (x,∇pH(x, p)) = S(x, p)

is then of class Cr−1(Rd×Rd). This proves that H is in fact of class Cr(Rd×Rd).
These arguments are standard and can be found in [32] pp 1355.

If (x, v) ∈ Rd × Rd and p = ∇vL(x, v), because both L(x, ·) and H(x, ·) are
convex and Legendre transform of each other then

v = ∇pH(x, p), ∇xL(x, v) = −∇xH(x, p). (23)

One studies the kinematics and dynamics of these systems through the action

c(T, xo, xT ) = inf
σ
{

∫ T

0

L(σ, σ̇)dt | σ(0) = xo, σ(T ) = x1}, (24)

where the infimum is performed over the set AC(T ;x, y) of σ : [0, T ] → Rd

that are absolutely continuous and that satisfy the endpoint constraint σ(0) = x,
σ(t2) = y.

In the light of (H3) and (H4), there exists σo ∈ AC(T ;x, xT ) that is a mini-
mizer in (24) and σo satisfies the Euler-Lagrange equations

d

dt
[∇vL(σo(t), σ̇o(t))] = ∇xL(σo(t), σ̇o(t)), 0 < t < T. (25)

The infimum in (24) represents the cost for transporting a unit mass from xo

to xT during the time interval T > 0. There maybe several σo minimizer in (24), if
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the minimum is performed other AC(T ;xo, xT ). Therefore, the differential equa-
tion (25) may have multiple solutions in AC(T ;xo, xT ). It is natural to ask if given
(xo, v) ∈ Rd × Rd, (25) has a unique solution σ for all t ∈ R, when we prescribe
σ(0) = xo, and σ̇(0) = v. We briefly recall what is known about the initial value
problem and how one ensures existence of a flow Φ : R×Rd ×Rd → Rd×Rd as-
sociated to the Lagrangian L, defined by Φ(t, x, v) = (φ(t, x, v), φ̇(t, x, v)) where
φ satisfies

d

dt
[∇vL(σ(t), σ̇(t))] = ∇xL(σ(t), σ̇(t)), σ(0) = (x, v). (26)

Here, we have set σ(t) = φ(t, x, v) and have temporarily drop the argument (x, v)
in φ(t, x, v), to make the text more readable Define

p(t) = ∇vL(σ(t), σ̇(t))

so that by (23), we have that (26) is equivalent to

σ̇(t) = ∇pH(σ(t), p(t)) ṗ(t) = −∇xH(σ(t), p(t)) σ(0) = x, p(0) = ∇vL(v, v).
(27)

Now (27) is a standard initial value problem and so, it admits a unique maximal
solution on an open interval (t−, t+). That solution satisfies the conservation law

H(σ(t), p(t)) = H(σ(0), p(0)), (t ∈ (t−, t+)). (28)

As a byproduct, (26) admits a unique maximal solution on the same interval
(t−, t+). Set q = ∇vL(x, v). We display the dependence in (x, q) and in (x, v) and
introduce the flow:

Φ(t, x, v) = (σ(t), σ̇(t)), Φ(0, x, q) = (x, v).

together with the so-called dual-flow Φ∗ :

Φ∗(t, x, q) = (σ(t), p(t)), Φ(0, x, q) = (x, q).

This terminology of dual flow is justified by the following fact:

Φ(t, x, v) = S ◦ Φ∗ ◦ T,

where S and T are the diffeomorphisms defined through the functions L and H
that are Legendre dual of each other.

As in [32] we can ensure that the completness assumption t− = −∞ and
t+ = +∞ holds. For that it is enough to impose that L satisfies (H5) so that

H(x, p) ≥ ||p||Log||p|| + b(L) + 1 ≥ ||p|| + b(L). (29)
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If (29) holds then by (28) we have that

||p(t)|| ≤ c̄ := H(φ(0), p(0)) − b(L). (30)

We combine (27) and (30) to have that

||φ̇(t)|| ≤ ||∇pH||L∞(Td×B̄c̄(0)) (31)

where Bc̄(0) is the open ball in Rd of center 0 and radius c̄. Consequently, ||p(·)||+
||φ(·)|| are locally bounded in time. This shows that in that case we must have
that t− = −∞ and t+ = +∞. Consequently, under the completeness assumption
which we make in the sequel, the flow φ is well-defined for all t ∈ R. Furthermore,
it satisfies

Φ(t+ s, x, v) = Φ(t,Φ(s, x, v)), ((t, s) ∈ R × R, (x, v) ∈ Rd × Rd). (32)

This is a byproduct of the uniqueness property of solutions of (26). Also if T > 0
and Φ(T, x, v) = Φ(0, x, v) then Φ(·, x, v) must be periodic of period T.

Φ(t+ T, x, v) = Φ(t, x, v), ((t, x, v) ∈ R × Rd × Rd). (33)

In the next proposition, we assume that

L(x, v) = l(v) +W (x),

that W is Td-periodic of class C2, and that there exists a number el > 0 such
that

< ∇2l(v)a; a >≥ el||a||
2

for all a ∈ Rd. We show that for small times T > 0 there exists a unique opimal
path σx,y that minimizes σ →

∫ T

0
L(σ, σ̇)ds over AC(T, x, y). Let us denote by

eW the smallest eigenvalue of ∇2W, and let c1 be the Poincare constant on (0, 1),
defined to be the largest number c1 such that

c1

∫ 1

0

b2ds ≤

∫ 1

0

ḃ2ds

for all b ∈ C1
0 (0, 1).

Proposition 7.1 (Uniqueness of paths connecting two points). Assume
T > 0 and that eW + elc1

T 2 > 0. For every x, y ∈ Rd there exists a unique σo ∈
AC(T, x, y) that satisfies the Euler-Lagrange equation (25). Therefore, σo is the

unique minimizer of σ → K[σ] =
∫ T

0
L(σ, σ̇)ds over AC(T, x, y).
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Proof: Assume that σo ∈ AC(T, x, y) satisfies (25). We write Taylor approxi-
mation of L(σ, σ̇) around (σo, σ̇o), use that satisfies the Euler-Lagrange equation
(25) and that 0 = σ(0) − σo(0) = σ(t) − σo(T ) to conclude that

K[σ] −K[σo] ≥

∫ T

0

(eW |σ − σo|
2 + el|σ̇ − σ̇o|

2)ds ≥

∫ T

0

(eW +
elc1
T 2

)|σ − σo|
2ds.

This concludes the proof of the proposition. QED.
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de vecteurs. C.R. Acad. Sci. Paris Sér. I Math., 305:805–808, 1987.

[6] J.D. Benamou and Y. Brenier. Weak existence for the semigeostrophic equa-
tions formulated as a coupled Monge-Ampeère equations/transport problem.
SIAM J. Appl. Ana. Math. 58, no 5, 1450–1461 (1998).

[7] L.A. Caffarelli. The regularity of mappings with a convex potential. J. Amer.
Math. Soc. 5 (1992) 99–104.

[8] L.A. Caffarelli. Boundary regularity of maps with convex potentials. Comm.
Pure Appl. Math. 44 (1992) 1141–1151.

[9] L.A. Caffarelli. Boundary regularity of maps with convex potentials — II.
Ann. of Math. (2) 144 (1996) 453–496.



23

[10] L. Caffarelli. Allocation maps with general cost functions. In P. Marcellini
et al, editor, Partial Differential Equations and Applications, number 177 in
Lecture Notes in Pure and Appl. Math., pages 29–35. Dekker, New York,
1996.

[11] E.A. Carlen and W. Gangbo. Constrained Steepest Descent in the 2–
Wasserstein Metric. Annals of Mathematics. 157, 807–846, 2003.

[12] L.A. Caffarelli, M. Feldman, R.J. McCann. Constructing optimal maps in
Monge’s transport problem as a limit of strictly convex costs. J. Amer.
Math. Soc. 15 (2002) 1–26.

[13] On the solution of a model Boltzmann Equation via steepest descent in the
2–Wasserstein metric. To appear in Archive for Rational Mech. and Analysis.
Preprint www.math.gatech.edu/ gangbo/publications/.

[14] D. Cordero-Erausquin, W. Gangbo and C. Houdre. Inequalities for gener-
alized entropy and optimal transportation. To appear in AMS Contemp.
Math. Preprint www.math.gatech.edu/ gangbo/publications/.

[15] P.Cloke and M.J.P. Cullen. A semi-geostrophic ocean model with outcrop-
ping . Dyn. Atmos. Oceans, 21:23–48, 1994.

[16] M.J.P. Cullen and W. Gangbo. A variational approach for the 2-dimensional
semi-geostrophic shallow water equations. Arch. Ration. Mech. Anal. 156
(2001) 241–273.

[17] M.J.P. Cullen and R.J. Purser. An extended lagrangian theory of semi-
geostrophic frontogenesis. J. Atmosph. Sciences 41, 1477–1497 (1984).

[18] M.J.P. Cullen and R.J. Purser. Properties of the lagrangian semigeostrophic
equations. J. Atmosph. Sciences vol 40, 17, 2684–2697 (1989).

[19] M.J.P. Cullen and I. Roulstone. A geometric model of the nonlinear equili-
bration of two-dimensional Eady waves. J. Atmos. Sci., 50, 328-332, 1993.

[20] B. Dacorogna. Direct Methods in the Calculus of Variations. Springer-Verlag,
1989.

[21] A Eliassen. The quasi-static equations of motion. Geofys. Publ., 17, No 3,
1948.

[22] L.C. Evans. Partial differential equations and Monge-Kantorovich mass
transfer. Int. Press, Current Dev. Math, 26, 26–78, 1997.



24

[23] L. C. Evans and W. Gangbo. Differential equations methods for the Monge-
Kantorovich mass transfer problem Mem. Amer. Math. Soc. #654 137
(1999) 1–66.

[24] W. Gangbo. An elementary proof of the polar factorization of vector-valued
functions. Arch. Rational Mech. Anal., 128:381–399, 1994.

[25] W. Gangbo. The Monge mass transfer problem and its applications. NSF-
CBMS Conference on the Monge-Ampere equation: applications to geometry
and optimization, July 09–13 1997. Contemporary Mathematics, Vol 226,
79–103, (1999).

[26] W. Gangbo and R.J. McCann. Optimal maps in Monge’s mass transport
problem. C.R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1653–1658.

[27] W. Gangbo and R.J. McCann. The geometry of optimal transportation.
Acta Math. 177 (1996) 113–161.

[28] B.J. Hoskins. The geostrophic momentum approximation and the semi-
geostrophic equations. J. Atmosph. Sciences 32, 233–242, 1975.

[29] Jordan, Kinderleher and Otto. The variational formulation of the Fokker–
Planck equation. SIAM Jour. Math Anal., 29 1–17, 1998.

[30] L. Kantorovich. On the translocation of masses. C.R. (Doklady) Acad. Sci.
URSS (N.S.), 37:199–201, 1942.

[31] L. Kantorovich. On a problem of Monge (In Russian). Uspekhi Math. Nauk.,
3:225–226, 1948.

[32] J.N. Mather. Variational construction of connecting orbits. Ann. Inst.
Fourier, Grenoble, 43 no 5, (1993), 1349–1386.

[33] R.J. McCann. A convexity principle for interacting gases. Adv. Math. 128
153–179, 1997.

[34] R.J. McCann. Existence and uniqueness of monotone measure-preserving
maps. Duke Math. J., 80 309–323, 1995.
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