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Introduction — Motivation

Nonconvex quadratic program
max ' Qz
x

st Mz >0,i=1,...,k
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Introduction — Motivation

Nonconvex quadratic program
max ' Qz
x
st Mz >0,i=1,....k
We have 2" Az = Tr(z " Az) = Tr(Azz ") = (A, 22 T).
max (Q,zxz )
st (My,zz')>0,i=1,...,k
Can write X =z if and only if X = 0 and rank(X) = 1.
max (Q, X)
st (M;, X)>0,i=1,....k
X*=0
rank(X) =1
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Introduction — Motivation

max (@, X)

st (My, X)>0,i=1,....k
X >0
rank(X) =1

The condition rank(X) = 1 is nonconvex.
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Introduction — Motivation

max (@, X)

st (My, X)>0,i=1,....k
X >0
rank(X) =1

The condition rank(X) = 1 is nonconvex.
Convex (semidefinite program) relaxation:

max (@, X)

st (M, X)>0,i=1,....,k
X =0
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Introduction — Motivation

@ When is this relaxation tight?
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Introduction — Motivation

When is this relaxation tight?

Feasible set perspective.

Tight for every objective function if and only if every extreme ray is
rank one (Rank-One Generated/ROG).

Analogous to integral polyhedra/total unimodularity.
Burer '15, Hildebrand '16, Blekherman et al. '16.
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Introduction — Our Question

Question

Let M;, Ms be n X n symmetric matrices.

When is
S:={Y =0:(Y, M) >0,(Y, M) >0}

an ROG cone?
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Introduction — Outline

Two geometric perspectives.

Each perspective gives a sufficient condition for S to be ROG.
Together these conditions are also necessary.
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Introduction — Outline

Two geometric perspectives.

Each perspective gives a sufficient condition for S to be ROG.
Together these conditions are also necessary.

e (M,Y) =0 as a hyperplane in S™ := {n x n symmetric matrices}.
o (M,za") = 2" Myx as a quadratic form in R".
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Introduction — Recap

A set/cone is ROG if all its extreme points/rays have rank 1.

SDP relaxations of quadratic programs are tight for every objective
function if and only if the feasible set is ROG.

Consider S :={Y > 0: (Y, M;) > 0, (Y, M) > 0} (two LMIs).

Two geometric perspectives — S™ and R”.
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-
Geometry of S} — Rank

Consider S := {positive semidefinite n x n matrices} C S".

@ Red ray: [(1) 8}

& 5 o Green ray: [(1] (1)]

@ Rank 1 < extreme.
Rank > 2 < not extreme.
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-
Geometry of S} — One LMI

Fact [Ye, Zhang '03]

S:={Y =0:(MY)>0}is ROG
for any M € S3.
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-
Geometry of S — Two LMlIs

Interacting inside S} . Non-interacting inside S’} .
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-
Geometry of S — Non-interacting LMIs

If My and M> are non-interacting, then
every extreme ray of

S={Y =0:(,M)>0,(Y, M) >0}
is an extreme ray of either

{Y = 0:(Y,M;) >0}

(Y = 0: (Y, M) >0}
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-
Geometry of S — Non-interacting LMIs

If My and M> are non-interacting, then
every extreme ray of

S={Y =0:(,M)>0,(Y, M) >0}
is an extreme ray of either

{Y = 0:(Y,M;) >0}

{Y =0: (Y, M) > 0}.
= S is ROG.
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-
Geometry of S — Non-interacting LMIs

Non-interacting inside S"! when:

@ One LMI does not intersect S™, i.e.
when +=M; = 0.
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Geometry of S — Non-interacting LMIs

Non-interacting inside S"! when:

@ One LMI does not intersect S7, i.e.
when +=M; = 0.

e (£M;,X) > 0is a consequence of
(M3, X) >0 for X = 0.

@ Using S-lemma, this is true when
AMEM;) — (£M2) > 0 for some
A>0.
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Geometry of S — Non-interacting LMIs

Non-interacting inside S"! when:

@ One LMI does not intersect S7, i.e.
when +=M; = 0.

e (+£M;, X) > 0is a consequence of
(M3, X) >0 for X = 0.

@ Using S-lemma, this is true when
AMEM;) — (£M2) > 0 for some
A>0.

In sum, non-interacting when
aMy + BM; = 0 for some («, 8) # (0,0).
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-
Geometry of S} — Recap

@ Non-interacting LMIs yield ROG cones.

e My, My are non-interacting if (£Ms,Y) > 0 along with Y = 0
implies (£M;,Y) > 0.

Proposition 1

If aMy + SMs = 0 has a nontrivial solution, i.e. (e, 3) # (0,0) then S is
ROG.
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|
Showing Y ¢ Ext(S)

In general, how do we show that a cone is ROG?

Question J
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|
Showing Y ¢ Ext(S)

Question J

In general, how do we show that a cone is ROG?

Show that Y ¢ Ext(S) when:
e rank(Y) > 2.
o <Y, M1> = <Y, M2> =0.
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|
Showing Y ¢ Ext(S)

Question

In general, how do we show that a cone is ROG? J

Show that Y ¢ Ext(S) when:
e rank(Y) > 2.
o (Y, M) =(Y,Ms) =0.
Find € R such that Y 22" € S.
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Showing Y ¢ Ext(S)

Question

In general, how do we show that a cone is ROG? J

Show that Y ¢ Ext(S) when:
e rank(Y) > 2.
o (Y, M) = (Y, M) =0.
Find € R such that Y 22" € S.
@ For Y —zz" =0, need 2 € Range(Y).
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|
Showing Y ¢ Ext(S)

Question

In general, how do we show that a cone is ROG? J

Show that Y ¢ Ext(S) when:
e rank(Y) > 2.
o (Y, M) =(Y,Ms) =0.
Find € R such that Y 22" € S.
@ For Y —zz" =0, need 2 € Range(Y).
e Since (Y, M;) =0, need 0 = (zz", M;) = 2" M;x.
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Quadratic Forms — Zero Sets

Fix a candidate extreme ray Y. Define
N = {z eR": 2" Mz = 0}.

Ny :={z e R": " Moz = 0}.
When is Range(Y) N N1 NN, # {0}7?

C. Argue, F. Kiling-Karzan (CMU) ROG spectral cones defined by two LMls 15 /21



Quadratic Forms

Start with n = 3.
Consider Y € §%, rank(Y) = 2.

C. Argue, F. Kiling-Karzan (CMU) ROG spectral cones defined by two LMls 16 / 21



Quadratic Forms

Start with n = 3.
Consider Y € §%, rank(Y) = 2.

e Range(Y) is a plane.

C. Argue, F. Kiling-Karzan (CMU) ROG spectral cones defined by two LMls 16 / 21



Quadratic Forms

Start with n = 3.
Consider Y € §%, rank(Y) = 2.

e Range(Y) is a plane.
e If M1 NN, C R3 contains a plane, then it intersects every plane
nontrivially.

C. Argue, F. Kiling-Karzan (CMU) ROG spectral cones defined by two LMls 16 / 21



Quadratic Forms

Start with n = 3.
Consider Y € §%, rank(Y) = 2.
e Range(Y) is a plane.
e If M1 NN, C R3 contains a plane, then it intersects every plane
nontrivially.

Observation
S is ROG when A7 N N> contains a plane. J
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]
Quadratic Forms — A; N N5 contains a plane

Question
When does N7 N A5 contain a plane? J
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]
Quadratic Forms — A; N N5 contains a plane

Question
When does N7 N A5 contain a plane? J

o {x € R3: 2" Mz = 0} contains a plane when rank(M) < 2 and M is
indefinite.
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]
Quadratic Forms — A; N N5 contains a plane

Question
When does N7 N A5 contain a plane? J

o {x € R3: 2" Mz = 0} contains a plane when rank(M) < 2 and M is
indefinite.

e For any (o, ),

Na,ﬁ = {iL‘ € R3 . IET(OéMl + BMQ):L' = 0} DN NN,
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Quadratic Forms — A; N N5 contains a plane

Question
When does N7 N A5 contain a plane? J

o {x € R3: 2" Mz = 0} contains a plane when rank(M) < 2 and M is
indefinite.

e For any (o, ),
Na,ﬁ = {l‘ € R3 . IET(OéMl + BMQ):L' = 0} DN NN,

In particular, N, g contains a plane for all (a, 3).
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]
Quadratic Forms — A; N N5 contains a plane

Question
When does N7 N A5 contain a plane? J

o {x € R3: 2" Mz = 0} contains a plane when rank(M) < 2 and M is
indefinite.

e For any (o, ),
Na,ﬁ = {iL‘ € R3 . IET(OéMl + BMQ)I’ = 0} DN NN,

In particular, N, g contains a plane for all (a, 3).

Answer*
When rank(aM; + Mz) < 2 for all (a, ). J
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Geometry of Quadratic Forms — Recap

@ Y is not an extreme ray when Range(Y) N N7 NN, has a nonzero
element.
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Geometry of Quadratic Forms — Recap

@ Y is not an extreme ray when Range(Y) N N7 NN, has a nonzero
element.

e In R3, if N7 N N> contains a plane, no rank 2 extreme rays.

e N7 NN, contains a plane when rank(aM; + SMs) < 2 for all o, 5.

Proposition 2

S is ROG when rank(aM; + SMs) < 2 for all (a, B),

Span{Range(M;) U Range(Ma)} has dimension 3, and aM; + SMz = 0
has only the trivial solution («, 5) = (0,0).
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N
Main Result

Theorem 3 (A, Kiling-Karzan, '17)
{Y =0:(M,Y)>0,(M2,Y) >0} is ROG iff one of the following holds
(i) aM;y + Mz = 0 for some («, 3) # (0,0).

(ii) rank(aMy + M) < 2 for all (c, B) and
Span{Range(M;) U Range(M2)} has dimension 3.
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|
Proving Necessity (Sketch)

First consider the case of S®.
Suppose that:

(I) alMy + /8M2 ?ﬁ 0 for any (Oé,,B) 7& (070)
(ii) rank(aMy 4+ bMs) > 3 for some (a, b).
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Proving Necessity (Sketch)

First consider the case of S®.
Suppose that:

(i) oMy + BMsy # 0 for any («, 8) # (0,0).
(ii) rank(aM; + bMsy) > 3 for some (a,b).
Need to construct an extreme ray Y of rank 2.
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First consider the case of S®.
Suppose that:

(i) oMy + BMsy # 0 for any («, 8) # (0,0).
(ii) rank(aM; + bMsy) > 3 for some (a,b).
Need to construct an extreme ray Y of rank 2.
e rank(aM; + bMs) = 3 implies that N7 N N3 is “sparse.”
@ Get a vector z that is not spanned by any two vectors of N1 N Na.

@ Use infeasibility of aM; + My > 0 for («, B) # (0,0) to get w such
that Y = 227 + ww? is tight for both LMIs (w # Az for A € R).
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|
Proving Necessity (Sketch)

First consider the case of S®.
Suppose that:

(i) oMy + BMsy # 0 for any («, 8) # (0,0).
(ii) rank(aM; + bMsy) > 3 for some (a,b).
Need to construct an extreme ray Y of rank 2.
e rank(aM; + bMs) = 3 implies that N7 N N3 is “sparse.”
@ Get a vector z that is not spanned by any two vectors of N1 N Na.

@ Use infeasibility of aM; + My > 0 for («, B) # (0,0) to get w such
that Y = 227 + ww? is tight for both LMIs (w # Az for A € R).

We reduce the general case of S to the case of S3.
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Extensions/Questions

@ Necessary and sufficient conditions for more than 2 LMls.
@ Use results to analyze conic constraints.

o Alternate analysis of Burer's work on extensions of the Trust Region
Subproblem.

o Necessary and sufficient conditions for more general conic constraints.
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Thank youl!

cargue@andrew.cmu.edu
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