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The Problem – Formal Definition

u Given convex sets 𝐾(, 𝐾*, 𝐾+, … in ℝ.

u Choose 𝑥0 ∈ 𝐾0 online (𝑥2 = 0)
u Cost 𝐴𝐿𝐺6 = ∑08(6 ||𝑥0 − 𝑥0;(||
u Goal – minimize competitive ratio

u 𝜎 arbitrary instance
u 𝑂𝑃𝑇6(𝜎) optimal offline cost

cr(𝐴𝐿𝐺) ≔ max
D,6

𝐴𝐿𝐺6 𝜎
𝑂𝑃𝑇6 𝜎



Motivation

u Metrical task systems (MTS)
u Given convex functions 𝑓(, 𝑓*, 𝑓+, …
u Choose 𝑥0 online (𝑥2 = 0)
u Cost 𝐴𝐿𝐺6 = ∑08(6 ||𝑥0 − 𝑥0;(|| + 𝑓0 𝑥0

u Convex body chasing: role of geometry in MTS
u Related to k-server
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Results

u [FL 93] 𝑑 lower bound, 
Competitive general chasing (𝑑 = 2 case)

u [BB+ 17] 𝑑I(.)-competitive nested chasing
u [AB+ 18] 𝑶(𝒅 𝐥𝐨𝐠𝒅)-competitive nested chasing

u [BL+ 18] 𝑂 𝑑 log 𝑑 -competitive nested chasing, 
𝑒𝑥𝑝 𝑑 -competitive general chasing



Talk outline

1. Warm-up ideas from general chasing
2. Centroid and Recursive Greedy – two motivating ideas
3. Recursive Centroid – 𝑂 𝑑 log 𝑑 -competitive, analysis



Part 1 – Warm-up ideas
A lower bound, a bad algorithm, and two reductions
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𝐴𝐿𝐺 ≥ 2 ⋅ 𝑂𝑃𝑇

𝐴𝐿𝐺 ≥ 𝑑 ⋅ 𝑂𝑃𝑇

𝐴𝐿𝐺𝑂𝑃𝑇
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𝑂𝑃𝑇

u 𝐴𝐿𝐺 unbounded
u 𝑂𝑃𝑇 = 𝑂(1)
u Not competitive L
u Bounded: 𝑑I(.)-competitive

𝐴𝐿𝐺



Reductions

u Bounded: 𝑑𝑖𝑎𝑚(𝐾() = 𝑂 1 , 𝑂𝑃𝑇 = Ω(1)
u 𝑓 𝑑 ⋅ 𝑑𝑖𝑎𝑚(𝐾() total cost ⇒ 𝑓 𝑑 -competitive
u Guess-and-double

u Tighten: end when 𝑑𝑖𝑎𝑚 𝐾6 ≤ (
* 𝑑𝑖𝑎𝑚 𝐾(

u Apply repeatedly
u Cost decreases geometrically



Recap of Part 1

u 𝑑 lower bound
u Greedy is not good
u Suffices to halve diameter with bounded cost



Part 2 – Two initial ideas
Centroid, recursive greedy, and why neither is good enough



Idea 1 – Centroid

u Move to “center” of 𝐾6

u (𝐾6 bounded)

u Centroid of 𝐴 ⊆ ℝ^ is 𝜇 𝐴 ≔ ∫a𝑥 𝑑𝑥

u Motivation: cut large portion of 𝐾6 each step

𝑥6 = 𝜇 𝐾6Centroid Algorithm:
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Advantage of Centroid

u Grünbaum [‘60] ⇒ 𝑉𝑜𝑙 𝐾6 ≤ (1 − 𝑐) ⋅ 𝑉𝑜𝑙(𝐾6;()

u Volume drops 𝑂(2.) in 𝑂(𝑑) steps
u Step cost at most 𝑑𝑖𝑎𝑚 𝐾6 = 𝑂 1
u 𝑂 𝑑 total cost? 

≤ 1 − 𝑐 6 ⋅ 𝑉𝑜𝑙(K2)
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Problem with Centroid

Diameter constant
Not competitive 

L



Summary – Centroid 

u 𝑉𝑜𝑙 𝐾6 drops quickly
u 𝐷𝑖𝑎𝑚 𝐾6 stays constant



Idea 2 – Recursive Greedy

u “Refuse to move back and forth”
u In ℝ(, run Greedy
u In ℝ.

u Fix orthogonal hyperplanes 𝑆(, … , 𝑆.
u For 𝑖 = 1,… , 𝑑

u Run 𝑅𝐺.;(on sets 𝑆0 ∩ 𝐾6

𝑅𝐺.;( – Recursive Greedy in (𝑑 − 1) dimensions



Idea 2 – Recursive Greedy

𝑆(
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Idea 2 – Recursive Greedy

Diameter ↓↓↓

J

Competitive algorithm 
[BB+ ‘17]

𝑆(

𝑆*



Problem with Recursive Greedy

u 𝑑I(.)-competitive 
u Worse than Greedy!

u Expensive recursive calls

u Diameter ↓ only 𝑂 1 − ⁄1 𝑑 after 𝑑 recursive calls



Recap of Part 2

u Centroid
u Volume drops quickly
u Diameter stays constant

u Recursive Greedy
u Controls individual dimensions
u Expensive recursive calls
u Diameter shrinks slowly



Part 3 – A better idea
Recursive Centroid: fusion of Centroid and Recursive Greedy



New Ideas

u Play centroid in recursion
u Recursion on skinny subspace

u Cheap

u Hyperplane separation ⇒ cut parallel to skinny subspace
u Progress on fat subspace



Skinny subspace

u Directional width 𝑤 𝐾, 𝑣 ≔ max
o,p∈q

⟨𝑥 − 𝑦, 𝑣⟩

u Skinny direction – 𝑣 such that 𝑤 𝐾6, 𝑣 ≲ 1/𝑑*

u 𝑆 ≔ span of 𝑘 skinny directions
u 𝐹 ≔ 𝑆y (fat subspace)



Skinny and Fat subspace 

𝑆 = 0𝐹



Skinny and Fat subspace 

𝐹

𝑆

𝑆 = 0𝐹



Skinny and Fat subspace

𝑆

𝐹

𝐹 = {0}
𝑆



Recursive Centroid

u While 𝑑𝑖𝑎𝑚 𝐾6 ≥ ⁄1 2 ⋅ 𝑑𝑖𝑎𝑚 𝐾(

u If S6 ≠ {0}

u ̅𝑡 ← 𝑡
u Run 𝑅𝐶���(��� ) on 𝐾6 ∩ 𝑥6̅ + 𝑆6̅ until empty

u 𝑥6 ← 𝜇(𝐾6)

u While ∃ skinny direction 𝑣 ∈ 𝑆6y

u 𝑆6 ← 𝑠𝑝𝑎𝑛(𝑆6, 𝑣)

𝑅𝐶���(���) – Recursive Centroid in dim(𝑆6̅) dimensions
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Recursive Centroid

Real world

𝐴𝐿𝐺’s world



Recursive Centroid

𝐴𝐿𝐺’s world

Real world Cut parallel to 𝑆



Main theorem

u Recall 𝑑 lower bound

Recursive Centroid is 𝑂(𝑑 log 𝑑)-competitive [ABCGL ‘18]



Proof outline

u Potential Φ6 ≔ 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾6

u ‘Step’ = Recursive call + move to centroid of 𝐾6

u Cost of 1 step = 𝑂(1)
u 𝑂(𝑑 log 𝑑) steps
u 𝑂(𝑑 log 𝑑) total cost



Proof part I – A single step 

u Cost 𝑂(1)
u Recursion: ⁄𝑂(𝑑 log 𝑑) ⋅ 1 𝑑* = 𝑜(1)
u Move to centroid: 𝑂(1)

u Φ6 drops (1 − 𝑐)
u 𝐾6 cut by halfspace parallel to 𝑆

Φ6 = 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾6



Proof part II – 𝑂(𝑑 log 𝑑) steps

u Φ6 drops ≥ 1 − 𝑐 �

u 𝑚 steps

u Φ6 increases ≤ 𝑑I(.)

u 𝐹 changes

u Φ�;( ≥ 𝑑;I .

u 𝑃𝑟𝑜𝑗� 𝐾�;( contains ball of radius ⁄1 𝑝𝑜𝑙𝑦 𝑑 =𝑑;I(()

Φ6 = 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾6



Proof part II – 𝑂(𝑑 log 𝑑) steps

u Φ6 drops ≥ 1 − 𝑐 �

u Φ6 increases ≤ 𝑑I(.)

u Φ�;( ≥ 𝑑;I .

𝑑I(.) 1 − 𝑐 �;( ≥ ⁄Φ�;( Φ2 ≥ 𝑑;I(.)

𝑚 ≤ 𝑂(𝑑 log 𝑑)

Φ6 = 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾6



Recap of Part 3

u Recursion on skinny subspaces
u Cheap, good cuts

u Play centroid
u Volume drop

u 𝐾6 bounded, recursion cheap ⇒ step cost 𝑂(1)
u 𝑉𝑜𝑙 𝑃𝑟𝑜𝑗� 𝐾6 drops, bounded  ⇒ 𝑂(𝑑 log 𝑑) steps



Open questions

u 𝑝𝑜𝑙𝑦(𝑑)-competitive general chasing

u 𝑒𝑥𝑝 𝑑 lower bound for general chasing
u Efficient algorithms



Thank you!
Questions?



In memory of Michael Cohen
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