
A new proof of the 2-dimensional Halpern–Läuchli
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Abstract

We provide an ultrafilter proof of the 2-dimensional Halpern–Läuchli Theorem in
the following sense. If T0 and T1 are trees and T0 ⊗ T1 denotes their level product,
we exhibit an ultrafilter U ∈ β(T0 ⊗ T1) so that every A ∈ U contains a subset of the
form S0 ⊗ S1 for suitable strong subtrees of T0 and T1. We then discuss obstacles to
extending our method of proof to higher dimensions.

1 Introduction

Our conventions on trees mostly follow [2]. By a tree (T,≤), we mean a rooted, finitely-
branching tree of height ω so that each t ∈ T has at least 2 immediate successors. If t ∈ T ,
we set Pred(t, T ) := {s ∈ T : s � t}. The level of t ∈ T , denoted Lev(t, T ), is the number
|Pred(t, T )|. If n < ω, we set T (n) := {t ∈ T : Lev(t, T ) = n}. Given s, t ∈ T , we say that
t is an immediate successor of s in T if s ≤ t and Lev(t, T ) = Lev(s, T ) + 1. Write IS(s, T )
for the immediate successors of s in T . Note that for every s ∈ T , 2 ≤ |IS(s, T )| < ω.

A subset S ⊆ T is called a strong subtree of T if (S,≤�S) is a tree satisfying the following
two items.

1. For some increasing function f : ω → ω, we have S(n) ⊆ T (f(n)).

2. For every s ∈ S and t ∈ IS(s, T ), there is a unique t′ ∈ IS(s, S) with t ≤ t′.

If in item (1) we have a specific f : ω → ω in mind, we call S ⊆ T an f -strong subtree of
T .

If d < ω and T0, ..., Td−1 are trees, the level product, denoted T0 ⊗ · · · ⊗ Td−1, is the set⋃
n T0(n)× · · · × Td−1(n), which receives a tree structure in the obvious way.

We are now ready to state the Halpern–Läuchli Theorem [1].
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Theorem 1.1 (Halpern–Läuchli). Let d < ω, and let T0, ..., Td−1 be trees. Let
χ : T0 ⊗ · · · ⊗ Td−1 → 2 be a coloring. Then there are an increasing function f : ω → ω and
f -strong subtrees Si ⊆ Ti so that S0 ⊗ · · · ⊗ Sd−1 is monochromatic for χ.

The parameter d is referred to as the dimension. We will provide a new proof of the
Halpern–Läuchli Theorem for d = 2.

2 Warmup in one dimension

As a warmup, we will first provide a new proof for d = 1. If T is a tree, a branch through
T is a maximal linearly ordered subset of T . If x ⊆ T is a branch, then for every n < ω,
there is a unique element of T (n) in x, which we will denote by x(n). Let [T ] denote the set
of branches through T . We endow [T ] with the topology generated by the sets 〈Nt : t ∈ T 〉,
where for t ∈ T , we set Nt := {x ∈ [T ] : t ∈ x}. With this topology, [T ] is homeomorphic to
Cantor space. Of particular interest will be the ideal of nowhere dense subsets of [T ].

For X any nonempty set, let βX denote the set of ultrafilters on X. In particular,
let β([T ]) denote the set of ultrafilters on [T ], where we now view [T ] as just a set. Fix
U ∈ β([T ]) avoiding the nowhere dense ideal. Also fix any nonprincipal ultrafilter V ∈ βω.
We define the ultrafilter U ⊗ V ∈ βT as follows. If A ⊆ T , we have

A ∈ U ⊗ V ⇔ ∀Ux ∈ [T ] ∀Vn < ω (x(n) ∈ A) .

Fix A ∈ U ⊗V . We will show that A contains a strong subtree of T . To see this, first set

AV := {x ∈ [T ] : {n < ω : x(n) ∈ A} ∈ V}

By the definition of U ⊗ V , we have AV ∈ U . As U avoids the nowhere dense ideal, AV is
somewhere dense. This means that for some t ∈ T , AV is dense in Nt. Pick any x ∈ AV with
t ∈ x. Then {n < ω : x(n) ∈ A} ∈ V . So for some n < ω, we have t ≤ x(n) and x(n) ∈ A.
Set S(0) = {x(n)}.

Assume S(m) = {s0, ..., sk−1} has been determined. Let
⋃
i<k

IS(si, T ) = {t0, ..., t`−1}. For

each i < `, we can find xi ∈ AV with ti ∈ xi. Then
⋂
i<`

{n < ω : xi(n) ∈ A} ∈ V . So for some

suitably large n, set S(m+ 1) = {xi(n) : i < `}.

3 The proof for 2 dimensions

The proof for d = 2 will be very similar to the proof for d = 1. We will choose ultrafilters
U ∈ β([T0 ⊗ T1]) and V ∈ βω and form U ⊗ V as before, and argue that every A ∈ U ⊗ V
contains a subset of the form S0 ⊗ S1 for some f -strong subtrees S0 and S1. The added
difficulty in dimension 2 is that we must choose U more carefully.

Notice first that [T0⊗T1] ∼= [T0]× [T1]. Let πi : [T0]× [T1]→ [Ti] be the projection maps.
We call Z ⊆ [T0]× [T1] a dense-by-dense-filter, or DDF for short, if
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1. π0(Z) ⊆ [T0] is dense.

2. Letting (Z)x = {y ∈ [T1] : (x, y) ∈ z}, the collection {(Z)x : x ∈ π0(Z)} generates a
filter of dense subsets of [T1].

If s ∈ T0 and t ∈ T1, we say Z ⊆ Ns×Nt is (s, t)-DDF if the relativized analogs of items (1)
and (2) hold. We call Z ⊆ [T0] × [T1] somewhere DDF if Z is (s, t)-DDF for some s ∈ T0
and t ∈ T1.

Proposition 3.1. The collection of somewhere DDF subsets of [T0]× [T1] is weakly partition
regular, i.e. for any k < ω and partition [T0] × [T1] = P0 ∪ · · · ∪ Pk−1, some Pk contains a
somewhere DDF subset.

Proof. We prove a “relativized” version. First suppose that X ⊆ [T0] is non-meager and
Y ⊆ [T1] is somewhere dense. By zooming in to a suitable Ns ⊆ [T0] and Nt ⊆ [T1], we may
assume that X ⊆ [T0] is nowhere meager and Y ⊆ [T1] is dense.

Fix a partition X × Y = P0 ∪ · · · ∪ P`−1. We will attempt to find D ⊆ P0 which is DDF.
Enumerate T0 := {sn : n < ω}. First set Y = Y0. At stage k, starting with k = 0, we find if
possible some xk ∈ X ∩Nsk so that Yk+1 := (P0)xk ∩ Yk is dense. If we can do this for every
k < ω, then P0 contains a DDF subset as desired.

Suppose we fail at stage k. This means that for every x ∈ X ∩Nsk , there is some tx ∈ T1
so that (P0)x ∩ Yk ∩ Ntx = ∅. Since X is nowhere meager, there is some t ∈ T1 so that
X ′ := {x ∈ X ∩Nsk : tx = t} is non-meager. Setting Y ′ = Yk ∩Nt, we have X ′ non-meager,
Y ′ somewhere dense, and the partition relative to X ′ × Y ′ has one fewer piece.

We can now complete the proof of Halpern–Läuchli for d = 2. Let U ∈ β([T0]× [T1]) be
an ultrafilter chosen so that every large set contains a somewhere DDF subset. Let V ∈ βω
be any non-principal ultrafilter, and define U ⊗ V exactly as before.

Fix A ∈ U ⊗ V . We will show that A contains a subset of the form S0 ⊗ S1 for suitable
strong subtrees S0 ⊆ T0 and S1 ⊆ T1. First set

AV := {(x, y) ∈ [T0]× [T1] : {n < ω : (x(n), y(n)) ∈ A} ∈ V}.

By definition of U ⊗ V , we have AV ∈ U . Let D ⊆ AV be an (s, t)-DDF subset for some
s ∈ T0 and t ∈ T1. Pick some (x, y) ∈ D; then {n < ω : (x(n), y(n)) ∈ A} ∈ V . Pick n >
max(Lev(s, T0),Lev(t, T1)) with (x(n), y(n)) ∈ A, and set S0(0) = {x(n)}, S1(0) = {y(n)}.

Assume S0(m) = {s0, ..., sk0−1} and S1(m) = {t0, ..., tk1−1} have been determined. Let⋃
i<k0

IS(si, T0) = {s′0, ..., s′`0−1}. For each i < `0, we can find xi ∈ π0(D) with s′i ∈ xi. Since

D is (s, t)-DDF, the set
⋂
i<`0

(D)xi is dense in Nt. Let
⋃
i<k1

IS(ti, T1) = {t′0, ..., t′`1−1}. For

each j < `1, we can find yj ∈ [T1] so that (xi, yj) ∈ D for each i < `0. Now observe that
{n < ω : ∀i < `0∀j < `1(xi(n), yj(n)) ∈ A} ∈ V . For a suitably large n, set S0(m + 1) =
{xi(n) : i < `0} and S1(m+ 1) = {yj(n) : j < `1}.
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4 Obstacles to higher dimensions

In this last section, we show that the appropriate notion of “somewhere DDF” subset of
2ω × 2ω × 2ω is consistently not weakly partition regular, which prevents the proof for d = 2
from being generalized. To be precise, let us call the notion of DDF from the last section
DDF(2) to emphasize the dimension.

For i < j < 3, let πi,j : (2ω)3 → 2ω × 2ω be the corresponding projection. Let us call
Z ⊆ (2ω)3 DDF(3) if the following conditions are met.

1. π0,1(Z) ⊆ 2ω × 2ω is DDF(2).

2. Letting (Z)(x,y) = {z ∈ 2ω : (x, y, z) ∈ Z}, the collection {(Z)(x,y) : (x, y) ∈ π0,1(Z)}
generates a filter of dense subsets of 2ω.

The notion of somewhere DDF(3) is defined similarly to the last section.

Proposition 4.1. ZFC does not prove that the collection of somewhere DDF(3) subsets of
(2ω)3 is weakly partition regular. In particular, under CH there is a 2-coloring of (2ω)3 so
that neither color class contains a somewhere DDF(3) subset.

Proof. For each n ∈ ω, let Bn = {z ∈ 2ω : z(n) = 0}. Our coloring (2ω)3 = P0 ∪ P1 will be
such that for every x, y ∈ 2ω, we have (P0)(x,y) = Bn for some n. So our construction is just
to describe the map ϕ : 2ω × 2ω → ω so that (P0)(x,y) = Bϕ(x,y). We will more-or-less use an
Ulam matrix to describe ϕ.4

Identify 2ω with ω1 \ ω. For each infinite ordinal α < ω1, let fα : α → ω \ {0} be a
bijection. We then set

ϕ(α, β) =


0 if α = β,

fα(β) if β < α,

fβ(α) if α < β

For any distinct infinite α0, α1 < ω1 and n < ω, there is at most 1 ordinal β with ϕ(α0, β) =
ϕ(α1, β) = n.

Now suppose D ⊆ P0 is (s, t, u)-DDF(3) for some s, t, u ∈ 2<ω. This implies that for some
n and every (x, y) ∈ π0,1(D), we have ϕ(x, y) < n. For any N < ω, we can find {xi : i < N}
and {yi : i < N} so that (xi, yj) ∈ π0,1(D) for each i, j < N . By making N large enough, we
can find x′0, x

′
1 and y′0, y

′
1 so that for every i, j < 2, we have ϕ(x′i, y

′
j) = k for some fixed k.

This is a contradiction.
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