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Abstract

For G a closed subgroup of S, we provide a precise combinatorial characterization
of when the universal minimal flow M(G) is metrizable. In particular, each such
instance fits into the framework of metrizable flows developed in [KPT] and [NVT]; as
a consequence, each GG with metrizable universal minimal flow has the generic point
property, i.e. every minimal G-flow has a point whose orbit is comeager. This solves
the Generic Point Problem raised in [AKL] for closed subgroups of Sx.

1 Introduction

In the study of abstract topological dynamics, one is often concerned with the continuous
action of a Hausdorff topological group G on a compact Hausdorff space X, often called
a G-flow. The flow X is minimal if every orbit is dense and universal if for every G-flow
Y, there is a G-map f : X — Y, where a G-map is a continuous map which respects the
G-action. It is a fact that every topological group G admits a universal minimal flow M(G)
which is unique up to G-flow isomorphism.

One common tool used to study the universal minimal flow M(G) is the greatest ambit
(S(G),1). A G-ambit (X, z0) is a G-flow X with a distinguished point zy € X whose orbit
is dense in X. The greatest ambit is then an ambit which maps onto every other G-ambit,
where a map of G-ambits is a G-map which also respects the distinguished point. Since
any minimal G-flow can be turned into an ambit by distinguishing any point, it follows that
every minimal subflow of the greatest ambit is universal, hence isomorphic to M (G).

An active field of research for the past two decades has been the attempt to classify
those Polish groups G for which M(G) is metrizable. The introduction of the seminal paper
by Kechris, Pestov and Todorcevié¢ [KPT] contains an excellent survey of early efforts in
this direction. In this paper, the authors provide a general way of constructing M (G) for
many closed subgroups of S, the group of permutations of N endowed with the pointwise
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convergence topology. Interestingly, the greatest ambit is not the primary tool used to study
M(G) in this case.

The closed subgroups of S, are exactly those Polish groups which are non-Archimedean,
i.e. which admit a neighborhood basis at the identity consisting of open subgroups. The
characterization we will find most useful is that the closed subgroups of S, are exactly
the automorphism groups of countably infinite, model-theoretic structures with universe N.
We can in fact narrow our scope to certain countably infinite structures known as Fraissé
structures. These are those countably infinite structures K with universe N which are:

o locally finite — there are finite substructures A,, C K with K =, A,,

e ultrahomogeneous — every isomorphism f : A — B between finite substructures of K
extends to an automorphism of K.

Examples of Fraissé structures include the countably infinite set, the rational linear ordering,
the random graph, and the countable atomless boolean algebra. See [KPT] for many more
examples.

The most useful aspect of Fraissé structures is that they are uniquely determined by their
age, the class of finite structures which embed into K. The major insight of [KPT] is that
the dynamical properties of Aut(K) can be studied using the combinatorial properties of
Age(K). Of particular importance is the notion of (structural) Ramsey degree:

e If A B are finite substructures, let (E) denote the set of substructures of B which
are isomorphic to A. Let K be a class of finite structures, and for n € N, set [n| =
{1,2,...,n}. We say that A € K has (structural) Ramsey degree < k if for every
B € K with (E) nonempty and every r € N, there is C in K such that for every

coloring 7 : (g) — [r], there is By € (g) with |7((PK’))] < k.

If A has Ramsey degree 1, we say that A is a (structural) Ramsey object. We say that
KC has the (structural) Ramsey Property if every A € K is a Ramsey object. In section 4,
we will introduce the (embedding) Ramsey Property, and most of this paper will use this
rather than the structural version above. For now, we note the following for IC a class of
finite structures:

e K has the (embedding) Ramsey Property iff K has the (structural) Ramsey Property
and consists of rigid structures, i.e. structures with no non-trivial automorphisms.

e A € K has finite (structural) Ramsey degree iff A has finite (embedding) Ramsey
degree.

We can now state the first major theorem in [KPT].

Theorem 1.1. Let K be a Fraissé structure with Age(K) = K. Set G = Aut(K). Then the
universal minimal flow M(QG) is a single point iff K has the embedding Ramsey Property.

Topological groups G with M (G) a single point are called extremely amenable. Another
major theme of [KPT] is that if K is a Fraissé structure with universe N and G = Aut(K)
is not extremely amenable, we can often express M(G) as a logic action. Let XX, be the
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space of structures of the form (K, <), where < is a linear ordering of N. We endow X,
with the topology whose basic open neighborhoods are of the form N(L) = {{K,<) €
XE, : <|w = L}, where L is some linear ordering of [k] = {1,2,...,k}. With this topology,
XK, is compact and metrizable. We let G act on XF, via (K,<) - g = (K, <,) where
(m <, n) iff (g(m) < g(n)). This turns X}, into a G-flow. When K is a Fraissé structure,
<o€ XE, with (K, <¢) also a Fraissé structure, and G = Aut(K), [KPT] provides a complete
characterization of when (K, <¢) - G = M(G).

Nguyen Van Thé in [NVT] made the observation that by allowing more general logic
actions, one can describe M (G) for more groups. Let S = {S;}ic; be a set with countably
many new relation symbols of arity n(i). Let X& be the space of structures of the form
(K,{S¥ :i € I}). We endow X¥ with the topology whose basic open neighborhoods are
the sets N({T; : i € I}) == {(K,{SF : i € I}) € X& : SK|y = T;}, where T} is some
interpretation of the relation symbol S; on [k]. This topology is metrizable using a similar
metric to the linear order case. The right logic action is also defined similarly; if K is a Fraissé
structure, (K, S¥) € XK is also a Fraissé structure, and G = Aut(K), [NVT] provides a

complete characterization of when (K, SK) - G is compact and isomorphic to M (G).

Given these constructions of M(G), a natural question arises: suppose G is a closed
subgroup of S, and M(G) is metrizable; then can M (G) be described using the techniques
of [KPT] and [NVT]? Some partial progress had been made addressing this question. If
G is a topological group and M (G) has a dense G5 (i.e. generic) orbit, then we say G has
the Generic Point Property. It can be shown (see Prop. 5.10) that if M(G) has a generic
orbit, then every minimal G-flow has a generic orbit. If M(G) = (K, S¥) - G as above, then
M(G) has a dense Gy orbit, namely (K, SX)-G. For Polish groups G with the generic point
property and M (G) metrizable, Melleray, Nguyen Van Thé, and Tsankov in [MNT] have
shown that M (G) must have a very particular structure (see section 9 for a brief discussion).
In particular, when G is a closed subgroup of S., with the generic point property and M (G)
metrizable, their result implies that M(G) can be described using the techniques in [KPT]
and [NVT]. Angel, Kechris, and Lyons in [AKL] conjectured that every Polish group G with
M (G) metrizable has the generic point property. This problem has come to be known as
the Generic Point Problem.

In this paper, we show directly that if G a closed subgroup of S, with M (G) metrizable,
then M (G) can be constructed using the methods of [KPT] and [NVT]. Our main theorem
(Theorem 8.14) is the following;:

Theorem 1.2. Let K be a Fraissé class, K = Flim(K), and G = Aut(K). Then the following
are equivalent:

1. G has metrizable universal minimal flow,
2. Fach A € K has finite Ramsey degree,

3. There is a countable set S of new relation symbols and (K, S¥) € XX so that (K, S¥)
is also a Fraissé structure and M(G) = (K, SK) . G.

As a consequence, this settles the Generic Point Problem for closed subgroups of S,
(Corollary 8.15).



Corollary 1.3. Let G be a closed subgroup of So with metrizable universal minimal flow
M(G). Then G has the Generic Point Property.

The paper is organized as follows. Sections 2 through 5 provide a review of topology,
Fraissé structures, structural Ramsey theory, and KPT correspondence, respectively. Section
6 provides a representation of the greatest ambit (S(G), 1) for closed subgroups of Se,
and section 7 gives a new proof of Theorems 1.1 and 5.1. Section 8 proves Theorem 1.2
and, for completeness, also gives a new proof of KPT-correspondence (Theorem 5.7). As
a warning, sections 3,4, and 5, while mostly review, do contain some new notions. Section
3 introduces the notion of a Fraissé-HP class (read “Fraissé minus HP”), and section 5
discusses precompact expansions on Fraissé-HP classes. Section 4 introduces the notions
of (embedding) Ramsey Property/degree/object and contains some other new ideas and
nonstandard vocabulary.
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2 Topological Preliminaries

In this section, we will discuss the topological tools needed going forward. We should note
now that all topological spaces and groups are assumed to be Hausdorff unless explicitly
stated otherwise; in particular, any results stated for a class of topological spaces should
only be presumed to hold for those members of the class which are Hausdorff.

2.1 Topological Dynamics and Topological Semigroups

Let G be a topological group. A (right) G-flow is a pair (X, 7), where X is a compact
space and 7 : X X G — G is a continuous action, i.e. for every x € X and g,h € G, we
have 7(7(z,g),h) = 7(x,gh). Typically the action 7 is understood and suppressed, so we
write z - g for 7(x, g), or simply g when there is no confusion. Then we have the identity
x-(gh) = (x-g)-h. A subflow of X is a non-empty closed subspace Y C X for which
y-g€ Yforally € Y and g € G. As X is compact, we see that the intersection of a
decreasing chain of subflows of X is itself a subflow. Applying Zorn’s lemma, we see that
X contains a minimal subflow Y, a flow containing no proper subflows. Notice that if YV is
minimal and y € Y, then the orbit closure y - G is a subflow of Y, so we must havey - G =Y.
More generally, a flow Y is minimal iff every orbit is dense.

If X and Y are G-flows, a G-map f : X — Y is a continuous map which respects the
G-action, i.e. f(z-g) = f(z)- g for each z € X and g € G. Notice that the dots on the left
and the right express different G-actions. An isomorphism of G-flows is a bijective G-map
(by compactness, the inverse is continuous, hence also a G-map). A flow X is universal iff
for each minimal flow Y, there is a G-map f : X — Y. It is a fact that every topological
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group G admits a unique universal minimal flow M(G) up to G-flow isomorphism. The rest
of this section will be spent proving this fact. The proof we will use is to first prove the
existence and uniqueness of the greatest G-ambit S(G). Then any minimal subflow of S(G)
is universal, and we will show that any universal minimal flow is isomorphic to any minimal
flow of S(G).

A G-ambit (X, xo) consists of a G-flow X and a distinguished point zy € X with dense
orbit. A typical example of a G-ambit is the orbit closure: start with any G-flow X and
any zo € X, then (zo- G, x) is a G-ambit. For ambits (X, zg) and (Y, y), a map of G-
ambits is a G-map f : X — Y with f(zo) = yo. Notice that if there is a map of G-ambits
(X, z0) = (Y,90), it must be unique since f is determined on the dense set xy - G. The
greatest ambit (S(G), 1) is characterized by being universal for the class of G-ambits, i.e.
for any G-ambit (X, xg), there is a map of G-ambits f : (S(G),1) — (X, (). Since maps
between ambits are unique, the greatest ambit, should it exist, is unique up to a unique
isomorphism of G-ambits. The following theorem is well known:

Theorem 2.1. For any topological group G, there exists a greatest G-ambit (S(G),1).

One of the major advantages of considering the greatest ambit is that it carries the
structure of a left-topological semigroup: we say that a semigroup S is a left-topological
semigroup if S is a compact topological space in which left multiplication is continuous, i.e.
for each s € S, the map A\; : S — S with A\(t) = st is continuous. A right ideal of S is
a non-empty subset I C S with IS C I. A right ideal is minimal if it does not properly
contain any right ideals. Equivalently, I is a minimal right ideal iff xS = I for every z € I;
in particular, since S = A,(S) and S is compact, minimal right ideals are always closed
(closed always refers to the topology; we will write 2 C I when we mean closed with respect
to the operation). A quick Zorn’s lemma proof shows that minimal right ideals always exist
in left-topological semigroups.

If G is a topological group, we can give the greatest ambit (S(G), 1) a left-topological
semigroup structure as follows. If z,y € S(G) and we want to define zy, consider the
orbit closure X := z-G. Then (X, ) is an ambit, and there is a unique map of G-ambits
fz 1 (S(G),1) = (X, x). Then we can define zy = f,(y). Associativity follows once we note
that f, o f, = fu. Notice that f, is continuous and for g € G, we have z - g = f,(1- g).
Any constructive proof of the existence of the greatest ambit (see section 1 of [KPT], for
instance) shows that the map ¢ — 1 g is a homeomorphism of G onto its image, and it
is common to identify G as a subspace of S(G). Using this identification, we see that the
closed right ideals of S(G) are exactly the subflows, and the minimal right ideals are exactly
the minimal subflows.

Notice that if Y is another minimal G-flow, we can turn Y into a G-ambit by distin-
guishing any y € Y. Let ¢ : S(G) — Y be the unique map of ambits. If I C S(G) is a
minimal right ideal, then as Y is minimal, ¢|; must be surjective. Hence I is a universal
minimal flow. It can be shown (see, for example, Uspenskij [U] section 3) that any G-map of
a minimal right ideal (i.e. minimal subflow) of S(G) to itself is an isomorphism; this shows
that the universal minimal flow M (G) is unique up to G-flow isomorphism.

See Auslander [A] or Uspenskij [U] for a more detailed exposition of topological dynamics
and the universal minimal flow. See [HS] or [EEM] for more on topological semigroups.



2.2 Filters, Ultrafilters, and the S-compactification
Let X be a set. A filter on X is a collection F C P(X) satisfying the following:

e F is nontrivial: X € F and ) & F,
e F is upwards closed: if A € F and A C B, then B € F,

e F is closed under finite intersections: if A, B € F, then AN B € F.

Notice that the union of a chain of filters is also a filter, so by Zorn’s Lemma, every filter
is contained in a maximal filter. These are called ultrafilters. Equivalently, ultrafilters are
those filters which contain A or X \ A for every A C X. The prototypical example of an
ultrafilter is a principal ultrafilter, one of the form p, := {A C X : x € A} for some fixed
reX.

Let X and Y be sets, f : X — Y any function, g : X — Y a surjective function, F a
filter on X, and G a filter on Y. Then f(F), the push forward of F, is the filter on Y with
A e f(F)iff f7Y(A) € F. The pre-image filter g~ (G) is the filter on X generated by the
sets g71(B) for B € G. The push forwards of ultrafilters are ultrafilters, but pre-images of
ultrafilters are typically just filters.

The dual notion to a filter is an ideal, a collection Z C P(X) which is nontrivial () € Z
and X ¢ 7), downwards closed, and closed under finite unions. Z is an ideal iff {A C X :
X\ A € 7} is afilter; we call this the dual filter of Z. Every ideal is contained in a maximal
ideal, and Z is a maximal ideal iff {A C X : X \ A € T} is an ultrafilter.

Denote the space of ultrafilters on X by SX; we endow SX with the topology whose
basic open sets are of the form A := {p € BX : A € p} for A C X. Notice that each of these
basic open sets is closed, A = cl(A), and ALUX \ A= 8X. We can identify X as a subspace
of BX by identifying each x € X with the principal ultrafilter p,. Notice that {p.} = {z},
so under the identification, X is an open, discrete subspace of 5X.

The main property of the space AX is that it is the Stone-Cech compactification of X this
is to say that X is a compact Hausdorff space into which X embeds densely via inclusion,
and furthermore, if Y is another compact Hausdorff space and f : X — Y is any function,
there is a unique continuous extension f : X — Y making the following diagram commute:

Let G be an infinite discrete group, and form SG. We can give G a left-topological
semigroup structure as follows:

e For each fixed g € GG, the map h — hg has a unique continuous extension to SG,

e For each fixed p € G, the map h — ph has a unique continuous extension to 5G.



Associativity must be verified, but is straightforward. Note that it was arbitrary whether
we started with left or right multiplication; however, you can only choose one of left or right
multiplication to be continuous. Here, we have chosen a semigroup structure where right
multiplication by elements of G is continuous and left multiplication by any p € BG is
continuous. We can also identify elements of SG with ultrafilters on G. For A C G and
p,q € BG, we have A € pq iff {h € G : Ah™! € p} € ¢. In particular, if p € fG and g € G,
we have A € pg iff Ag~! € p. For more on semigroup compactifications, see [HS] or [EEN].

A brief discussion of the topological properties of the space X for X discrete is in order.
For our purposes, one of the most useful facts about SX is that it is extremely disconnected,
i.e. the closure of every open set is open. The consequence of this that we are interested
in is the following: any compact, extremely disconnected space embeds no nontrivial metric
spaces (see Theorem 3.40 of [HS]). A general fact from topology (see [W], p. 166) says that
the continuous image of a compact metric space in a Hausdorff space is metrizable. Therefore
exhibiting lots of continuous maps from a compact space of interest into X for various X
is a useful tool; we will use this in section 8.

3 Fraissé structures

We now move towards the case we will consider, where G is a closed subgroup of S... In this
section, we describe a canonical way of viewing any such group. Recall that S, is the group
of permutations of N endowed with the pointwise convergence topology; a basis of open
sets at the identity is given by G,,, the pointwise stabilizer of {1,2,...,n}. A compatible
left-invariant metric is given by d(g, h) = 1/n iff n is least with g~ 'h & G,,.

A language L = {R; : 1 € I} U{f; : j € J}U{cx : k € K} is a collection of relation,
function and constant symbols. Each relation symbol R; has an arity n;, € N, as does
each function symbol f;. An L-structure A = (A, R®, jA, c) consists of a set A, relations
RA C A™ | functions fJA : A" — A, and constants cit € A; we say that A is an L-structure on
A. If A, B are L-structures, then g : A — B is an embedding if ¢ is a map from A to B such
that RM(x1, ..., xn,) < RP(9(21), .., 9(2n,)), 9(fH (@1, 2))) = fP(g(21), ..., 9(2,)), and
g(c) = cB for all relations, functions, and constants, respectively. If there is an embedding
g : A — B, we say that B embeds A. An isomorphism is a bijective embedding, and an
automorphism is an isomorphism between a structure and itself. If A C B, then we say that
A is a substructure of B, written A C B, if the inclusion map is an embedding. A is finite,
countable, etc. if A is.

Let K be a countably infinite L-structure. We say that K is locally finite if there are
finite substructures A,, C K with A,, € A,;; and K = J,, A,,. Then |J, A,, is said to be
an exhaustion of K. We set Fin(K) to be the set of finite substructures of K, and we set
K = Age(K), the age of K, to be the class of finite L-structures which embed into K, i.e.
those structures isomorphic to some structure in Fin(K). It is natural to ask which classes
of finite structures are the age of a countably infinite locally finite structure. If K is a class
of finite structures, we call K an age class if IC satisfies the following:

e [Cis closed under isomorphism, contains countably many isomorphism types, and con-
tains structures of arbitrarily large finite cardinality



e [ has the Hereditary Property (HP): if B € K and A C B, then A € K,

e K satisfies the Joint Embedding Property (JEP): if A);B € K, then there is C € K
which embeds both A and B.

It is not hard to verify that K is an age class iff = Age(K) for K some countably infinite
locally finite structure. In general, there could be many non-isomorphic K that work.

A countably infinite locally finite structure K is a Fraissé structure if K is ultrahomoge-
neous:

e For any A € Fin(K) and any embedding ¢g : A — K, there is an automorphism of K
extending g.

Another useful, equivalent definition is that K is a Fraissé structure iff it is countably infinite,
locally finite, and for every A C B € Age(K), every embedding ¢g : A — K can be extended
to an embedding h : B — K. This is often called the extension property for K. The proof
that this is equivalent to ultrahomogeneity uses a standard technique known as the back and
forth method. The back and forth method is also used to show that if two Fraissé structures
have the same age, then they are isomorphic. However, not all age classes are the ages of
Fraissé structures. A class of finite structures K is a Fraissé class if K is an age class which
additionally satisfies the Amalgamation Property (AP):

e [fABCeKand f: A— Bandg:A — C are embeddings, there is D € I and
embeddings r: B - D and s : C — D withro f =sog.

It is actually enough in the definition of AP to take f, g, and r to be inclusion maps.
The following theorem is the starting point for Fraissé theory:

Theorem 3.1 (Fraissé). K is a Fraissé class iff K = Age(K) for some Fraissé structure K.
Furthermore, each Fraissé class K admits up to isomorphism a unique Fraissé structure K

with K = Age(K).

If K is a Fraissé class and K is the unique structure guaranteed by Theorem 3.1, then
we write K = Flim(K), the Fraissé limit of K.

We can also define Fraissé limits of more general classes. If K is a countable structure
and L C Age(K) is closed under isomorphism, we say that K is K-homogeneous if any
partial isomorphism of structures in K can be extended to an automorphism of K. Most
often, we will use this added generality when IC is a Fraissé-HP class; i.e. a class of fi-
nite structures which satisfies every condition of being a Fraissé class except possibly the
Hereditary Property. If K is a class of structures which is not necessarily hereditary, let
Kl:={A:3B € L(A C B)}. Now if K is a Fraissé-HP class, a similar back and forth proof
shows that up to isomorphism, there is a unique countably infinite locally finite structure
with age K| which is K-homogeneous; we will also call this the Fraissé limit.

Our interest in Fraissé structures stems from the following:

Theorem 3.2. G is a closed subgroup of S iff G is the automorphism group of a relational
Fraissé structure on N.



Proof. If K is a relational Fraissé structure and G = Aut(K), then if g, € G and g,, — g with
g € S, then g must also be an automorphism of K and hence in G. Conversely, suppose
G is a closed subgroup of S,,. For every a € <“N, introduce a relational symbol Ry of arity
len(a), and let L = {R; : @ € <“N}. Give N an L-structure by declaring that Rz (b, ..., by)
iff there is g € G with g(a;) = b; for each i <n. Then K = (N, {R¥ : @ € <“N}) is a Fraissé
structure with Aut(K) = G. O

For a more detailed exposition of Fraissé theory, see [Ho].

4 Structural Ramsey Theory

In this section, we introduce some of the ideas underlying structural Ramsey theory. How-
ever, we begin with a discussion of Ramsey theory for embeddings, as this is what we will
use in the rest of the paper. Proposition 4.4 makes the connection between the structural
and embedding versions explicit.

A partial k-coloring ~y of a set X is a function v : Y — [k], where Y C X and [k] =
{1,2,....,k}. A coloring v of X is full if dom(y) = X. We will often write ; for v~ !(z). If
dom(~y) is unspecified, then + is presumed to be a full coloring. If v is a coloring of X and
Y C dom(y), we say that Y is monochromatic if Y C ~; for some .

If A,B are L-structures, write Emb(A, B) for the set of embeddings from A to B, and
write A < B if Emb(A,B) # ). If C is a class of finite L-structures, we say that A € C is
a Ramsey object if for any B € C with A < B, there is C € C, A < C, such that for any
full 2-coloring of Emb(A, C), there is f € Emb(B, C) with f o Emb(A, B) monochromatic.
We say that C has the Ramsey Property (RP) if each A € C is a Ramsey object. The choice
of 2 colors is arbitrary; a straightforward induction on the number of colors shows that if
A € C is a Ramsey object, then for any £ > 2 and any B € C with A < B, thereisa C € C
such that for any k-coloring of Emb(A, C), there is f € Emb(B, C) with f o Emb(A,B)
monochromatic.

Once again, we are using an embedding version of Ramsey object/Ramsey property, as
opposed to the structural version defined in the introduction. A useful translation between
the two versions is as follows: suppose 7 : Emb(A, C) — [r] is a coloring which additionally
has v(f) = v(g) whenever f = go h for some h € Aut(A). Let us call such a v a structural
coloring. Then we may define ~' : (g) — [r] via v/(Ag) = v(f) for any f € Emb(A, C)
with Im(f) = Ay. Conversely, suppose 7 : (g) — [r] is a coloring. Then we can define
v Emb(A, C) — [r] via v/(f) = v(Im(f)). Notice that this 4" is a structural coloring. In
what follows, should “embedding” or “structural” not be specified, “Ramsey” will always
refer to embedding Ramsey. We will borrow the hook-arrow notation used in [MP],

C— (B

to mean that for any full k-coloring of Emb(A, C), there is f € Emb(B,C) with f o
Emb(A, B) monochromatic. We use the standard arrow notation,

C— (B)p

to mean that for any full k-coloring of (g), there is By € (g) with (io) monochromatic.

9



If C and D are classes of structures, we say that C is cofinal in D if for any A € D,
there is B € C with A < B. Suppose that D is the age of a countably infinite locally finite
structure D and that C is cofinal in D. For A € C, we say that S C Emb(A, D) is thick if
for any B € C with A < B, there is an f € Emb(B,D) with f o Emb(A,B) C S. We say a
partial coloring v of Emb(A, D) is large if dom(7) is thick.

Proposition 4.1. Suppose D is a countably infinite locally finite structure, D = Age(D),
and C is cofinal in D. Let A € C and fix any k > 2. Then the following are equivalent:

1. A is a Ramsey object in C,

2. A is a Ramsey object in D,

3. For any full k-coloring v of Emb(A, D), there is some ~y; which is thick,
4. For any large k-coloring v of Emb(A, D), there is some ~y; which is thick.

Proof. (1 < 2) and (4 = 3) are straightforward.

For (2 = 4), fix v a large k-coloring of Emb(A, D). Say A < B € D, and fix C € D for
which C — (B)# holds. Since 7 is large, find f € Emb(C, D) with foEmb(A, C) C dom(7).
Then find z € Emb(B, C) with fozoEmb(A, B) monochromatic. For eachi < k, let D; C D,
where B € D; iff there is f € Emb(B, D) with f o Emb(A,B) C 7;. We have just shown
that each B > A is in some D;.

Suppose for sake of contradiction that no D; was cofinal in D. For each ¢ < k, pick
A, € D, A < A, so that any B’ € D which embeds A; is not in D;. Now use JEP for D
to find A’ embedding each A;. But A’ € D; for some i < k, so this is a contradiction. Now
observe that each D; is hereditarily closed, so if D; is cofinal, then D; = D. This means that
~; must be thick, so we are done.

For (3 = 2), let D = J,, B,, be an exhaustion with A < B;. Suppose B € D witnesses
the fact that A is not a Ramsey object. Call a coloring v of Emb(A,B,,) bad if there is
no f € Emb(B,D) with f o Emb(A,B) monochromatic. So for each n, there is a bad k-
coloring of Emb(A,B,,). In particular, if  is a bad k-coloring of Emb(A,B,,) and m < n,
the restriction of v to Emb(A,B,,) is also bad. We can now use Kénig’s lemma to find a

bad full k-coloring of Emb(A, D). O

Often, we will use Proposition 4.1 with a Fraissé structure K, where we can say more.

Lemma 4.2. Let K be a Fraissé structure with K = Age(K). Suppose A,B € K, and let
f A — B be an embedding. If S C Emb(B,K) is thick, then T := {xo f : z € S} C
Emb(A, K) is also thick.

Proof. Fix C € Fin(K). By repeated use of the extension property, find D € Fin(K),
C C D, such that for each g € Emb(A, C), there is h € Emb(B, D) with g = ho f (here we
view Emb(A, C) C Emb(A, D) in the natural way). Now as S is thick, find x € Emb(D, K)
with x o Emb(B,D) C S. Then z|c € Emb(C,K), and z|c o Emb(A,C) C T O

Proposition 4.3. Let K be a Fraissé structure with K = Age(K), and suppose B € K is a
Ramsey object. Then if A < B, then A is a Ramsey object.
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Proof. Let f: A — B be an embedding, and fix v a full 2-coloring of Emb(A, K). Let ¢ be
the full 2-coloring of Emb(B, K) defined by d(z) = v(z o f). For some 4, J; is thick. Then
by Lemma 4.2, v, = {x o f : x € §;} is thick. ]

We say that A € C has Ramsey degree k if k is least such that for any B in C with
A < B and any r > k, there is C € C such that for any r-coloring v of Emb(A, C), there is
f € Emb(B, C) such that |y(f o Emb(A,B))| < k. One could define the notion of an (r, k)-
Ramsey object, which would be defined just as above for some particular r > k. However,
this is unnecessary; an induction on r shows that A is an (r, k)-Ramsey object iff A is a
(k + 1, k)-Ramsey object. Therefore the notion of Ramsey degree is sufficient. We use a

similar hook-arrow notation,
C— (B)2,

to mean that for every r-coloring v of Emb(A,C), there is f € Emb(B,C) with |y(f o
Emb(A,B))| < k. We use the standard arrow notation,

C — (B)X
to mean that for every r-coloring ~ of (g), there is By € (g) with |’y((BA°))\ <k.

Proposition 4.4. A € C has structural Ramsey degree k iff A has embedding Ramsey degree
k- |Aut(A)].

Proof. Set t = |Aut(A)|, and fix r > kt. Assume A has structural-Ramsey degree k, and
let B € C with A < B. Find C € C with C — (B)% ;.. Fix any r-coloring v of Emb(A, C).
Fix a bijection ¢ : P([r]) — [2"], and define a (2")-coloring ¢ with 6(f) = ¢({i € [r] :
dh € Aut(A)(f o h € 7;)}). Then 0 is a structural coloring, so find f € Emb(B, C) with
f o Emb(A,B) at most k-colored for §. Then f o Emb(A,B) is at most (kt)-colored for ~.

Now since A has structural-Ramsey degree k, find D € C such that for every E € C,
there is a structural r-coloring vg of Emb(A, E) where for every f € Emb(D,E), the set
f o Emb(A,D) is at least k-colored. Then one can use vg to find an (rt)-coloring dg of
Emb(A,E) where each f o Emb(A,D) is at least (kt)-colored. One way to do this is as
follows: first fix a bijection p : Aut(A) — [t]. Form the equivalence relation ~ on Emb(A, E)
where f ~ g iff f = goh for some h € Aut(A). Let (f) denote the equivalence class of f.
Let ¢ : (Emb(A,E)/ ~) — Emb(A, E) choose a member of each equivalence class. Now if
f € Emb(A,E) and h € Aut(A) is the unique automorphism with ¢({f)) o h = f, then set
S6(f) = ((f) — 1)t + p(h).

Conversely, if A has finite embedding-Ramsey degree, then A also has finite structural-
Ramsey degree, completing the proof. O]

Corollary 4.5. A € C is an embedding Ramsey object iff A is a structural Ramsey object
and 1is rigid.

The proof of the following proposition is nearly identical to the proof of Proposition 4.1
and is therefore omitted:

Proposition 4.6. Suppose D is a countably infinite locally finite structure, D = Age(D),
and C is cofinal in D. Let A € C, and fix r > k. Then the following are equivalent:
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1. A has Ramsey degree t < k in C,
2. A has Ramsey degree t < k in D,

3. Any full r-coloring of Emb(A, D) has some subset of k or fewer colors which form a
thick subset,

4. Any large r-coloring of Emb(A, D) has some subset of k or fewer colors which form a
thick subset.

There is a similar analogue to Proposition 4.3, which we also state without proof.

Proposition 4.7. Suppose K is a Fraissé structure, K = Age(K), and suppose B € K has
Ramsey degree k. Then if A < B, then A has Ramsey degree t < k.

Using Proposition 4.6, we can provide another definition of Ramsey degree which will be
extremely useful going forward. Let D be a countably infinite locally finite structure with
D = Age(D), and let A € D. Call a subset S C Emb(A,D) syndetic if SN X # @ for
every thick X € Emb(A, D). Call a coloring v of Emb(A, D) a syndetic coloring if each ~;
is syndetic. Now we have:

Proposition 4.8. A has Ramsey degree t > k (t possibly infinite) iff there is a syndetic
k-coloring of Emb(A, D).

Remark. The words thick and syndetic come from topological dynamics. If G is an infinite
group and S, T C G, we say T is thick if the collection {T'g : g € G'} has the finite intersection
property, and we say S is syndetic if G\ S is not thick.

Suppose K is a Fraissé structure with G = Aut(K) and A € Fin(K). If X € Emb(A,K),
then X is thick (resp. syndetic) according to our definition iff {g € G : g|a € X} is thick
(resp. syndetic) in the usual sense.

5 KPT Correspondence

We have now developed enough background to state the results in [KPT]. Our discussion will
have two notable differences however. First we will be using embedding Ramsey throughout.
Second, we will develop the theory using Fraissé-HP classes, as this will allow us more
flexibility in section 8. Later, we will provide new proofs of Theorems 5.1 and 5.7 (see
Theorem 7.3 and the discussion after Corollary 8.15).

Theorem 5.1. If K is a Fraissé-HP class, K = Flim(K), and G = Aut(K), then M(G) is
a singleton iff K has the Ramsey Property.

Let L be a language and L* = LUS, where S = {S; : i € N} and the S; are new
relational symbols of arity n(i). If A is an L*-structure, write A|;, for the structure obtained
by throwing away the interpretations of the S;. If £* is a class of L*-structures, set K*|, =
{A*|L : A" € K*}. If K = K*| and K£* is closed under isomorphism, we say that £* is an
expansion of K. If A* € K* and A*|, = A, then we say that A* is an expansion of A. If
f € Emb(A,B) and B* is an expansion of B, we let A(f, B*) be the unique expansion of A
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so that f € Emb(A(f,B*), B*). The expansion K* is precompact if for each A € I, the set
{A* € K*: A*|, = A} is finite.

If £* is an expansion of the class I, it will be useful to think of the pair (K*,K) as a
category as follows. If X C K is aset (as opposed to a proper class), say that X is adequate for
KC if X contains at least one representative of each isomorphism type in K. For X adequate,
let Catyx (K*, K) be the category C' with Ob(C') = {A* : A* is an expansion of some A € X}
and with Arr(C) the set of embeddings between structures in Ob(C'). If £* and K** are two
expansions of the class K in languages L* and L**, we say that K* and K** are isomorphic
expansions if for some adequate X, there is a fully faithful functor ®x : Catx(K*,K) —
Catx (K, K) with fully faithful inverse satisfying

e Oy (A*)|L = A%, for any A* € Ob(Catx(K*,K)),
o Oy (f) = f forany f € Arr(Cat(K*, K)).

We will call such a ®x an isomorphism of expansions. Notice that L* need not equal L** for
K* and K** to be isomorphic.

Proposition 5.2. If K* and K** are isomorphic, then for any adequate X, there is an
isomorphism of expansions ®x : Catx (K*, K) — Catx (K**, K).

Proof. Let X and Y be adequate, and suppose that there is an isomorphism of expansions
® . Since isomorphisms of expansions are trivial on embeddings, it is enough to define
®y on objects. For A € Y, choose isomorphic Ax and an isomorphism fa : Ax — A.
Let A* be a K*-expansion of A. Then ®x(Ax(fa,A")) is a K**-expansion of Ax. Set
Dy (A*) = A(fi', Px(Ax(fa,A%))). Tt is straightforward to check that this works. O

If K* is an expansion of the Fraissé-HP class K, we say that the pair (X*, K) is reasonable
if for any A;B € K, embedding f : A — B, and expansion A* of A, then there is an
expansion B* of B with f : A* — B* an embedding. When K* is also a Fraissé-HP class,
we have the following equivalent definition.

Proposition 5.3. Let K* be a Fraissé-HP expansion class of the Fraissé—HP class K with
Fraissé limits K*, K respectively. Then the pair (K*,K) is reasonable iff K*|, = K.

Proof. Assume that K*|;, = K. Fix A* € Fin(K*) N £* and B € K with A*|; C B. Use
the extension property for K to find an embedding f : B — K*|; extending the inclusion
of A*|;. Now define the expansion B* of B by declaring that SB"(zy,...,x,,) holds iff
SX*(f(x1), ..., f(zn,)) holds. This is enough to show that (K*, K) is reasonable.

Conversely, suppose (K*, K) is reasonable. Let K* = |, A% be a K*-exhaustion, and let
K = |J, B, be a K-exhaustion. Set A, = A’|.; let f; : Ay — B, for some large enough
ny. Using the reasonable property, choose an expansion B;, of B,, with f; : A] — B, an
embedding. Then use the extension property for K* to find an embedding f; : B,, — A,,
extending f; ' for some large enough ny. If f; is defined and k is even, use the extension
property for K to find fry1 : A,, — B, ., extending f L If k is odd, use the reasonable
property and the extension property for K* to define fi;; extending f, !, We proceed in
this manner, building an isomorphism |J,, fon : K = K*|p. O

13



Now suppose (K*, K) is reasonable and precompact. Set
Xy = {(K,S) : (A, S|4) € K* whenever A € Fin(K) N K}

We topologize this space by declaring the basic open neighborhoods to be of the form
N(A*) = {K' € X¢ : A* C K'}, where A* is an expansion of some A € Fin(K) N K.
We can view X« as a closed subspace of

H {A*: A is an expansion of A}.

AcFin(K)NK

Notice that since (K*, K) is precompact, Xy~ is compact. If | J, A, = K is an exhaustion, a
compatible metric is given by

d((K, S), (K, T)) = 1/k(S,T)

where k(S,T) is the largest k for which (A, S|a,) = (Ag, T|a,)-

We can now form the (right) logic action of G = Aut(K) on Xy by setting K’ - g to
be the structure where S (21, ..., 2,,) holds iff SX'(g(z1), ..., g(z,)) holds. It is easy to
check that this action is jointly continuous, turning Xy« into a G-flow. For readers used to
left logic actions, acting on the right by ¢ is the same as acting on the left by g—!.

Proposition 5.4. If IC is a Fraissé-HP class and K* and KC** are isomorphic expansions of
IC with each reasonable and precompact, then Xy« = Xjcex.

Proof. Let K = Flim(K), and fix a K-exhaustion J,, A,. Set X = Fin(K) N K, and let
Oy : Catx(K*,K) — Catx(K*,K) be an isomorphism of expansions. Define a map ¢ :
Xier — Xjeoe via (K, S)) = U, ®x((A,, S|a.)). Notice that since ® x respects embeddings,
the right hand side is a member of Xj««. It is straightforward to check that this is a
continuous bijection which respects G-action. O

First let us consider when Xy- is a minimal G-flow. We say that the pair (K*, ) has
the Ezpansion Property (ExpP) when for any A* € ¥, there is B € K such that for any
expansion B* of B, there is an embedding f : A* — B*.

Proposition 5.5. Let K* be a reasonable, precompact Fraissé-HP expansion class of the
Fraissé-HP class K with Fraissé limits K*, K respectively. Let G = Aut(K). Then the
G-flow Xic= is minimal iff the pair (K*,K) has the ExpP.

Proof. Suppose the pair has ExpP. Let A* € K*, and find B € K witnessing the ExpP for
A*. Pick any K’ € Xy, and find B’ C K’ with B[, = B. Then there is an embedding
f A" - B' C K, hence K* C Age(K’). Now fix a basic open neighborhood N(C*)
of X+, where C* expands C € Fin(K) N K. Let f : C* — D’ be an embedding. Use
ultrahomogeneity in K to find g € G extending f. Then K'-g € N(C*); hence Xy~ is
minimal.

Conversely, suppose the pair does not have ExpP. Find A* € Fin(K*) N K£* for which
there is no B € K witnessing ExpP. Now use Konig’s Lemma to find a K' € X with
A* & Age(K'). Tt follows that K'- G N N(A*) = (), so X+ is not minimal. O
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Corollary 5.6. With the assumptions of Proposition 5.5, suppose (K*,K) has EzpP. Let
A € K, and let A* be an expansion of A. Then Emb(A* K*) is a syndetic subset of
Emb(A, K).

Proof. Let B € K witness the ExpP for A*. If X C Emb(A, K) is thick, find ¢ € Emb(B, K)
with g o Emb(A,B) C X. Let B* = B(g,K*). Since B witnesses ExpP for A*, find
f € Emb(A*,B*). Now go f € Emb(A*, K*) N X. ]

The following extends Theorem 5.1 and is one of the major theorems in [KPT]. This
theorem in its full generality is proven in [NVT]:

Theorem 5.7. Let K* be a reasonable, precompact Fraissé—HP expansion class of the Fraissé—
HP class KC with Fraissé limits K*, K, respectively. Let G = Aut(K). Then Xy = M(Q)
iff the pair (K*,K) has the ExpP and K* has the RP.

Remark. Pairs (K*, K) of Fraissé-HP classes which are reasonable, precompact, and satisfy
the ExpP and RP are called ezcellent.

When (K*, K) is an excellent pair, the Ramsey Property for K* tells us something about
the combinatorics of K

Proposition 5.8. Let (K*,K) be an excellent pair. Then every A € K has finite Ramsey
degree. In particular, the Ramsey degree of A is equal to the number of expansions of A € K*.

We will prove this by using some of the ideas developed in section 4.

Lemma 5.9. With (K*,K) as in Proposition 5.8, let A € K and A* be an expansion of A.
Then X C Emb(A*, K*) is thick iff X =T N Emb(A*, K*) with T C Emb(A, K) thick.

Remark. “Thick” above is referring to two different notions of thickness. In general, when
we say X C Emb(A, D) is thick/syndetic, this means with respect to the class D = Age(D).

Proof. (=) If X C Emb(A*, K*) is thick, fix B € £ with A < B. Pick any expansion B* of
B, then as X C Emb(A*, K*) is thick, find gg € Emb(B*, K*) with gg o Emb(A*,B*) C X.
Now set 7" = (Jp.p 9B © Emb(A,B). Then 7" C Emb(A,K) is thick, asis ' = 7" U X.
Then X =T N Emb(A*, K*) as desired.

(<) If X = TN Emb(A*,K*) with T C Emb(A,K) thick, then fix B* € K* with
A* < B*. Then find C € K witnessing the ExpP for B*. As T'C Emb(A, K) is thick, find
g € Emb(C,K) with g o Emb(A,C) C T. Let C* = C(g,K*) be the unique expansion of
C so that g € Emb(C*, K*). As C witnesses ExpP for B*, pick f € Emb(B*, C*). Now we
have go f € Emb(B*, K*) and g o f o Emb(A*, B*) C T'N Emb(A*, K*). ]

Proof of Proposition 5.8. Fix A € K, and let Ay, ..., Ay list the expansions of A. We can
now write
Emb(A,K) = | |Emb(A; K*).
i<k
Fix a k+1-coloring v of Emb(A, K). Find a thick 73 € Emb(A, K) so that Ty NEmb(A;, K*)
is monochromatic. If thick 7; € Emb(A,K) has been determined, find thick T;;; C
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Emb(A,K), T;y1 C T;, so that T;;; N Emb(A;;;, K*) is monochromatic. Then T}, C
Emb(A, K) is thick and |y(7}%)| < k. This shows that A has Ramsey degree < k.

For the other bound, note that by Corollary 5.6, Emb(A;, K*) is syndetic. Let v be the
coloring of Emb(A, K) with v(f) = ¢ iff f € Emb(A;, K*). Then ~ is a syndetic k-coloring,
so by Proposition 4.8, A has Ramsey degree > k. [

In the setting of Theorem 5.7, we can consider the orbit of K* in X« = M(G). Notice
that K/ = K* - g iff K’ &2 K* iff K’ has age K* and satisfies the extension property. We can
write out which K’ satisfy these assumptions as a countable intersection of open conditions
in Xjc«. Since Xy is minimal, each K’ has age K*.

Now fix A € Fin(K) N K, and let A* be an expansion. If Bx € £* and A* C B*, let
N(A* C B*) C Xy« be defined as follows: K’ € N(A* C B*) iff either A(ia, K') # A* or
if there is an embedding f : B* — K’ with f|ax = ia. Then N(A* C B*) is open, and
K’ € X satisfies the extension property iff it is in each N(A* C B*). The orbit K* - G
is also dense since Xy- is minimal; hence K* - G is a generic orbit in Xx+. Note that any
G-flow can have at most one generic orbit as the intersection of two generic subsets of any
Baire space is nonempty. The following proposition is proved in [AKL] (Prop. 14.1).

Proposition 5.10. Let G be a Polish topological group and suppose M(G) has a generic
orbit. Then if Y is a minimal G-flow, then Y has a generic orbit.

If G is Polish and M (G) has a generic orbit, G is said to have the generic point property.
Angel, Kechris, and Lyons posed the following question ([AKL] Question 15.2):

Question 5.11 (Generic Pont Problem). Let G be a Polish group with metrizable universal
minimal flow. Does G have the generic point property?

Our new proof of Theorems 5.1 and 5.7 will have the added benefit of solving the Generic
Point Problem for G a closed subgroup of S.

6 The Greatest Ambit

In the remaining sections, we fix once and for all a relational Fraissé class K with Fraissé
limit K, which we suppose has universe N. Set G = Aut(K). For each n € N we also let
A, € Fin(K) with A, = {1,2,...,n}. As a shorthand, write H,, for Emb(A,, K); let i,
denote the inclusion A,, — A,, for m <n and 7,, denote the inclusion embedding A,, C K.

Suppose f € Emb(A,,,A,). As K is a Fraissé structure, the map f: H, — H,, given
by f (9) = go f is surjective. Let SH, denote the S-compactification of the discrete space
H,. Then f has a unique continuous extension f : SH, — BH,, which is also surjective. If
q € BH, and S C H,,, then S € f(q) iff f=1(S) € ¢, i.e. f(q) is just the pushforward of ¢ by
f . We will primarily be interested in the case when f = 1.

Form the space im SH,, := {a €[], BH, : 7, (a(n)) = a(m)}. Topologically, we view
l’&l BH, as a subspace of [, BH,. Let 1 € lgn B H, denote the element where on each level
n, the ultrafilter is principal on the embedding ¢,. Our goal is to give @ﬁHn a G-flow
structure; then (1&1 fH,,1) will be the greatest G-ambit. To do this, we first take the
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peculiar step of stripping away the pointwise convergence topology on G, replacing it with
the discrete topology. Form SG, which here will always refer to the compactification of G
as a discrete space. Endow BG with the left-topological semigroup structure extending G.
For the most part, we will only need the right G-action that arises from this structure; if
p€ PG, g€ G, and S C G, then S € pgiff Sg~t €p

Let 7, : fG — [H, be the unique continuous extension of the map m,(g) = g|a, , and
let 7 : G — lim SH,, be given by (7(p))(n) = 7,(p). Implicit in this definition is that
Tm = 1, 0 T, which follows since 7, = i, o m,. Notice that 7 is continuous, 1 = 7(1s), and
{7(g) : g € G} is dense, hence 7 is surjective. We can use the semigroup structure on G to
give l'glﬁHn a G-action.

Proposition 6.1. Ifp,q € G are such that 7(p) = 7(q), then ©(pg) = 7(qg) for any g € G.

Proof. Fix S C H,, and g € G. Choose n large enough so that A,, U g(A,,) C A,. Set
T={feH,: fog|a, €S} Then we have:

ml(S)epge{heG hgen, (S} ep
< {heG:hgla, €Step
< {heG:hla, €T}ED
s {heG:hla, €T} Eq
& 71, (9) € qg O

We now can define 7(p) - g := 7(pg). That this is an action follows from associativity of
BG. More explicitly, if a € l‘&nﬂHm g € G,and S C H,,, we have for large n that

S € ag(m) e {f € H,: fog|a, €S} € a(n).
Our use of right actions instead of left actions is justified by the following:

Proposition 6.2. The right action of G on T&nﬁHn 1s jointly continuous when G is given
the pointwise convergence topology.

Proof. First note that a basis for the topology on @nﬁHn is given by sets of the form
S:={a:S € a(m)}, where S C H,, and m € N. So suppose S C H,, and ag € S.
Fix n large enough so that g(A,,) C A,, and let T = {f € H, : fog|a, € S}. Letting
Up=1{h€G:h|a, =gla,}, then T-U, C8S. O

Theorem 6.3. (1&1 BH,, 1) is the greatest G-ambit when G is given the pointwise conver-
gence topology.

Proof. Let (X, x9) be a G-ambit, and let p : fG — X be the continuous extension of the
map g — Zp - g (remember that SG is the compactification constructed from the discrete
topology on G). Write p(p) = z - p; notice that if U 3 xy - p is an open neighborhood,
then {g € G : xo-g € U} € p. We will show that if 7(p) = 7(q), then x¢-p = zo-¢q. So
suppose Zo - p # %o - ¢. As compact Hausdorff spaces are normal, pick U,,V,,U,, V, open
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neighborhoods of xy - p, xo- ¢ with Fp CV,, Vq CV,, and V,NV, = 0. For each y € X\ V,, let
WP be a neighborhood avoiding U,. For each n, let G,, C G denote the pointwise stabilizer
of A,; use joint continuity to find Y} a neighborhood of y and nf) € N with Y/ - G,,» C W}
As the YP cover X \ V,, find a finite subcover C,. Repeat these steps for ¢, and let N be the
largest of any n, ni mentioned in C,, C,.

Now if zg-g € U, we must have z-(gGxn) C Vj; if this were not the case, then for h € gGy
with zo-h € X\V,, we have zo-h € Y} for some Y € C,. Hence x¢-(9Gn) = (10h)Gy C WP,
a contradiction since W? N U, = ). Similarly for ¢q. Let S, := {f € Hy : 3g € G(glay =
fand 29 - g € U,)}. Do likewise for ¢. Then {g € G : zp-g € U,} C 7' (S,) € p,
{g€G:29-9g€ U} Cay'(S,) €q, and 7y (S,) N7y (S,) = 0. Hence 7(p) # 7(q).

Thus there is a well-defined map ¢ : @nﬁHn — X with p = p o 7. To show that ¢ is a
G-map, we need to show that ¢ is continuous and respects G-action. Since 7 is a continuous
and closed map, we see that ¢ is continuous. For fixed g € G, observe that p — x - (pg)
and p — (zo - p) - g are two continuous extensions of h — 1z - hg, so are equal. Hence
p(pg) = p(p) - g for any p € G, g € G. Now let « € lgIgBHn, g € G, and pick p € BG with
(p) = a. Then p(a - g) = ¢(7(p) - 9) = ¢(7(pg)) = p(pg) = p(p) - 9 = ¢(a) - g. Hence ¢ is
a G-map. O

As a first application, we easily obtain the following corollary, originally due to Pestov
[P].

Corollary 6.4. If G is a closed subgroup of S with infinite metrizable universal minimal
flow M(G), then as a topological space, M(G) = 2N.

Proof. Let Y C 1&1 BH, be infinite metrizable. Notice that if Y is a subflow, then Y has
no isolated points. Recall that SH,, embeds no infinite compact metric space. Consider the
projection of lim S H,, onto the n-th coordinate; the image of Y is metrizable, hence finite.
Hence for each n, there is a finite Y,, C SH,, with a(n) € Y,, for any o € Y. It follows that
Y = @ Y,. m

Remark. Lionel Nguyen Van Thé has pointed out to me that the construction in this section
is essentially a more explicit version of the original construction of the greatest ambit S(G)
(of any topological group G) given by Pierre Samuel [Sa]. His construction proceeds as
follows: let V be a basis of open neighborhoods of the identity. For p € SG (as a discrete
group), let p* be the filter generated by sets of the form {SV : S € p,V € V}. Now set p ~ ¢
iff p* = ¢*; we then obtain S(G) = G/ ~. Dana Bartosovéd uses this approach to extend
some of the results from [KPT] to uncountable structures (see [B]). The representation of
the greatest ambit presented here was also discovered by Pestov (Corollary 3.3 in [P]).

7 Extreme Amenability

We now turn to the proof of Theorem 5.1; though logically the material in section 8 does
not depend on this section, this will provide an introduction to many of the ideas used there.
Since M (G) is isomorphic to any minimal subflow of im S H,, it is enough to characterize
when 1&1 G H, has a fixed point.
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We say that an ultrafilter p € SH,, is thick if each S € p is thick. Denote the set of thick
ultrafilters on H, by R,.

Proposition 7.1. R, # 0 iff A, is a Ramsey object in K.

Proof. To see this, we need to show that the non-thick subsets of H,, form an ideal iff A, is a
Ramsey object. If A,, is a Ramsey object, suppose S C H,, is thick, and suppose S = 17 UT5.
By the equivalence of (1) and (4) in Proposition 4.1, we see that one of Ty or T5 is thick.
Conversely, if A, is not a Ramsey object, then use the equivalence of (1) and (3) in
Proposition 4.1 to find disjoint S, T C H,, with S LT = H,, and neither S nor T thick. [

Proposition 7.2. Suppose m <n, A, is a Ramsey object, and f € Emb(A,,, A,,). Then if
p € R, there is ¢ € R, with f(q) = p.

Proof. Form the preimage filter f~(p). If T € f~'(p), then T D f~1(S) for some S €
p. Suppose T is not thick; find a large enough N so that for each ¢ € Hy, we have
go Emb(A,,Ay) € T. It follows that for any ¢ € Hy, g o Emb(A,,,Ay)o f € S. As
Emb(A,,Ay)o f C Emb(A,,, Ay), we see that S is not thick, a contradiction. Now extend
F1(p) to any ¢ € BH,, avoiding the non-thick ideal. O

It follows from Propositions 7.1 and 7.2 that T&an # () iff K has the Ramsey Property.
It is natural to ask whether this is a subflow of @ BH,; in fact, we can do even better. The
following theorem implies Theorem 5.1.

Theorem 7.3. o € @BHn is a fized point iff a € @Rn.

Proof. Suppose a € @an, and let S € a(m). Fix g € G; we want to show that S € ag(m).
Let n > m be large enough so that A,, Ug(A,,) C A, and set Ty = {f € H,, : f|a,, €S},
To={f€H,: fog|a,, €5} If S & ag(m), then we have T1NT5 € a(n). Now pick N large
enough so that A,, Ug(A,) C Ay. As «(n) is thick, fix h € Hy with h o Emb(A,,Ay) C
Ty N'Ty. But now set x = hogla, 0" = hoil og|a,. Since gla, € Emb(A,, Ay), we
have h o g|a, € T1 N'Ty, hence x € S. Similarly h oY € T} N Ty, implying x & S. This is a
contradiction.

Conversely, if a(m) is not thick, suppose S € «a(m) is not thick, and find n > m such
that f o Emb(A,,, A,) € S for each f € H,. Then we have

ﬂ {feH,: foreS}=0.

reEmb(A,,An)
Hence for some g € G, we must have S € ag(m), and a cannot be a fixed point. n

Remark. Miiller and Pongracz in [MP] use different methods to show the following: let K
be a Fraissé structure, K = Age(K), and G = Aut(K). Suppose each A € K has Ramsey
degree < d for some fixed d € N. Then |M(G)| < d.
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8 Metrizability of M(G)

We now consider the case where M(G) is metrizable. Corollary 6.4 tells us that if M(G)
is metrizable, then M(G) = limY,,, where Y, is a finite subset of 5H,. To characterize the
ultrafilters that can appear in such a Y,,, we need to introduce some new terminology.

If Fi,..., F}, are filters on H,,, we say that {Fy, ..., Fy} is thick if every S € (F1N---N Fy)
is thick. Note that S € (FiN---NFy) iff S =S U---US, with S; € F;. It will often
be the case that each F; is a filter on some X; C H,; when there is no confusion, we will
identify F; with its pushforward to a filter on H,. Note that if {F],..., F}} is thick and F’
is another filter on H,, then {F},..., F}, F'} is also thick. We will frequently consider the
following thick set of filters:

Proposition 8.1. Let A, have Ramsey degree k, and let v be a full syndetic k-coloring of
H,. Let F; C P(~;) consist of those X C ~; which are syndetic. Then {Fi, ..., F}.} is a thick
set of filters.

Proof. First we show each F; is a filter; we prove this for Fi. Certainly Fj is upward closed.
Suppose S,T C ~; are syndetic. Form the (k + 3)-coloring § by letting 6, = (SN T),
Okr1 = S\T, Opy2 =T\ S, Ops3 = \(SUT),and 6; =y for 2 < i < k. If (SNT)is
not syndetic, then H, \ (SNT) = dy - Udgyg is thick. So some subset of k colors among
02, ..., Op+s must form a thick subset. Since each 9, for 2 < j < k is syndetic, for one of
X =(S\T),(T\S), (7 \ (SUT)) we have dg LI - -- L & U X thick. But this contradicts
the fact that S and T are syndetic. Hence S NT is syndetic, and F} is a filter. To see that
{Fy, ..., F} is thick, pick S; € F; for 1 <i < k. Then consider a full 2k-coloring of H,, with
colors S;, (v; \ ;) for i < k. Some k equivalence classes form a thick subset; as each §; is
syndetic, S; must be one of the equivalence classes. O

Remark. We will call {F}, ..., Fy} as in Proposition 8.1 the syndetic filters for .

If X C H, is thick, we say that S C H,, is syndetic relative to X if X \ S is not thick.
Notice that if Y C H,, is thick and S is syndetic relative to X for some X D Y, then S is
also syndetic relative to Y.

Proposition 8.2. The following are equivalent:
1. A, has Ramsey degree t < k,
2. There is a thick set {al, ...,ar} of k ultrafilters on H,.

Proof. (2 = 1) Fix a (k + 1)-coloring vy of H,. For each 1 < i < k, there is some ;, € a,.
Then | |, ;< 7j, must be thick.

(1 = 2) Fix v a syndetic t-coloring of H,. Let {F}, ..., F;} be the syndetic filters for ~.
We will be done once we prove the following lemma; we distinguish this lemma because it is
somewhat stronger than what we need and we will use it later.

Lemma 8.3. Suppose A,, has Ramsey degree k, «y is a syndetic k-coloring, and {Fy, ..., Fy}
are the syndetic filters for v. Let G; be a filter on v; extending F; such that {G1, ..., G} is
thick. Then each G; can be extended to an ultrafilter U; on ~y; such that {Uy,...,Ug} is thick.
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Proof. We will show that G; can be extended to an ultrafilter U; such that {Uy, G, ..., Gi}
is thick; by relabeling and repeating, this is enough. Let P; consist of those subsets T' C v,
for which there are S; € G;, 2 <1 < k, such that T" is syndetic relative to vy U So U - - LI Sy.
I claim P; is a filter. Certainly P; is upward closed, so suppose 1,7, € P. By taking
intersections, we may suppose that there are S; € v;, ¢ > 2, such that both 77 and 75 are
syndetic relative to v, LU Sy L - -+ LU .S,. Now the proof that T} N T, is syndetic relative to
v1 LSy U -+ - LSk mimics the proof of Proposition 8.1.

Now let S € Gy, and suppose T' € P; as witnessed by S; € G;, 2 <1 < k. Then I claim
(SNT)USyU---USy is thick. Consider the (k+1)-coloring § with dom(d) = SISy - - - LSk
and with 6; = (SNT), dgr1 = (S\T), and 6; = S; for 2 < i < k. § is large, and we cannot
have (S\T)US;U---U Sy thick since T is syndetic relative to v, LI Sy U- - - LI Sg. So as each
7 is syndetic, we must have (SNT)U Sy U---U S thick. In particular, since 7, is syndetic,
S N T is non-empty.

We can now extend the filter generated by P, and G, to an ultrafilter U;. Since this
ultrafilter extends Py, {Uy, Gy, ..., G} is thick. ]

We need to develop a few ideas related to colorings before proceeding. If 7y is a k-coloring
and ¢ is an ¢-coloring both with domain X, the product coloring = ¢ is the kf-coloring with
domain X with y*d(x) = y(x)(¢ — 1)+ 6(x). We say that § refines v if §(x) = 6(y) implies
v(z) = y(y). If v is a coloring of H,, and f € Emb(A,,, A,), then f(v) is the coloring of H,
with dom(f(y)) = f~*(dom(v)) and f(7)(z) = v(z o f).

G acts on H, via g -2z = gox. This induces a continuous (left) logic action on the
compact, metrizable space of partial k-colorings with at most & colors. Explicitly, gy(g-x) is
defined iff () is, and gvy(g-x) = v(z). Below we collect some simple facts about colorings.

1. If 7 is a syndetic coloring of H,, and f € Emb(A,,, A,,), then f(v) is a syndetic coloring
of H,.

2. If A,, has Ramsey degree k, then for every large ¢-coloring v of H, with k < ¢, there
is (up to relabeling colors) a full k-coloring " € G - .

3. If 7 is a full syndetic k-coloring of H,,, then every +' € G - v is a full syndetic k-coloring.

4. Let ~,0 be full colorings of H, such that § refines v. If gy - d — &', then gy - v also
converges to some v/, and ¢’ refines 7.

Lemma 8.4. Suppose m < n, and A, and A, have Ramsey degrees k and {, respectively,
with k < £. Then there are syndetic colorings v, of H,,, H, in k,{ colors, respectively, such
that 0 refines i ().

Proof. Choose any full syndetic k, ¢ colorings +', ¢’ of H,,, H,,, respectively. Form the product
coloring P := i" (v')*¢' on H,. G - P must contain a full {-coloring § (up to relabeling colors)
which must also be syndetic. If gy - P — 6, then gy -7 converges to some coloring . v and
0 are as desired. m
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If Fis a filter on H,, and f € Emb(A,,, A,,), introduce the shorthand notation f(F) for
f~Y(F). Notice that in the proof of Proposition 7.2, we showed that if X C H,, is thick,
then f‘l(X) C H,, is also thick; it follows that if Fy, ..., F} are filters on H,, and {F7, ..., F}}
is thick, then {f(F}), ..., f(F))} is also thick. The following proposition is similar in spirit to
Proposition 7.2.

Proposition 8.5. Suppose m < n and A,,, A, have Ramsey degrees k < {, respectively.
Then if {at 1 <i <k} C BH,, is thick, there is a thick set {aJ : 1 < j < {} C H, such
that {1 (o) : 1 < j <t} ={a’ :1<i<k}.

Proof. Fix full syndetic k, ¢ colorings 7,0 of H,,, H,, respectively, with § refining i (v) as
guaranteed by Lemma 8.4. For 1 < j </, let a; be the unique number 1 < a; < k with
6; C il (7)a,- Notice that since {},, ...,k } is thick and since each ; is syndetic, without
loss of generality we may suppose v; € a;,. We can then assume that o], is an ultrafilter on
Yi-

Let P; be the filter on 6; with T € P; iff T D 6; N S for some S € i (o ); as d; is
syndetic and {i" (al,), ..., " (X))} is thick, §; .S # O for any S € i, (awt ), so P; is indeed a
filter. Let us show that {Py, ..., P} is thick. Pick T} € P; as witnessed by S; € i" (a ) for
each 1 < j < /. By taking intersections, we may assume S; depends only on a;. It follows
that S; CTyU---UTy. As j — a; is onto and {i" (al),...,i% ()} is thick, we are done.

Let {Fy,..., Fy} be the syndetic filters for §. If 7/ € F; and T; € P, for each 1 < i < ¢,
then I claim that (77 N7Ty)U---U(T;NT}) is thick. Consider the 2¢-coloring of T3 U --- U T}
with colors (177 N'Tj) and (T \ T}) for 1 < j < . Some ¢ colors must form a thick subset,
and each T7 is syndetic.

Therefore let G; be the filter generated by F; U P;; use Lemma 8.3 to obtain a thick set
of ultrafilters {a? : 1 < j < ¢}. Since o extends P;, we have that i, (a?) = ayl, completing
the proof. n

Corollary 8.6. If each A € K has finite Ramsey degree, there is @Yn C l'&nﬂﬂn with
Y, C BH,, a finite thick set.

Theorem 8.7. Let K be a Fraissé structure, with K = Age(K) and G = Aut(K). Then the
following are equivalent:

1. M(G) is metrizable,
2. Each A € K has finite Ramsey degree.

Proof. Suppose Y = @Yn - @ﬁHn with Y, C H, finite. We will show that there is
Z CY with Z a subflow of l'ﬁnﬂHn iff for each n, Y, is thick. Set Y,, = {a’ : 1 <i < k,}.
Let F, be the filter (al N---Nakr).

Suppose S € F, is not thick. Pick € Y. The proof that there is g € G with S & ag(m)
now proceeds exactly the same as the second paragraph of the proof of Theorem 7.3.

Now suppose for each n that Y, is thick. For W C G finite, m € N, and § € F,,, let
Yivs consist of those a € Y such that S € ag(m) for each g € W. Notice that Yy g C VY is
closed, hence compact.
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Claim. First, let us show that Yjy ¢ is nonempty. Fix n large enough so that g(A,,) C A,
for each ¢ € WU {lg}. For g € G, set T, = {f € H, : fog|a, € S} We will show

that the set X := Tj, \ (ﬂ gew > is not thick by mimicking the first paragraph of the

proof of Theorem 7.3. If it were, pick N large enough so that g(A,) C Ay for each
g € WU{lg} and find h € Hy so that h o Emb(A,,Ay) C X. But now for each g € W,
set g = hogla, oin, = hoil og|a,. Since g|a, and i} are both in Emb(A,,, Ay), we have
hog|a, and hoi in X. Since ho g|a, € X C Ty, we have x, € S. But this implies that
hoi) € ,ew Ty a contradiction.

Since Y, is thick and since T1, = (iy,) "' (5) € Yy, this means that (e 7o) € o
for some o € Y,. Now any o € Y with a(n) = af is a member of Yy 5. This proves the
claim.

Now observe that if W, Wy are finite subsets of G, S; € F,, and Sy € F,, (m < n),
then letting S3 = (2)1(S1) N Sy € F,, we have Yiv, s, N Y, s, 2 Yin,ums.s,- In particular,
since each Yy ¢ is compact, there is &« € Y a member of all of them. Hence a-G C Y is a
metrizable subflow of @ BH,. m

Remark. Alekos Kechris has recently pointed out to me the following application of Theo-
rem 8.7: In [KPT], it is proved in Appendix 2 that no non-compact, locally compact group
G has metrizable universal minimal flow. Now if IC is a Fraissé class with limit K such that
G = Aut(K) is non-compact and locally compact, then it follows that some object A € K
must have infinite Ramsey degree. In particular, this answers the question raised on page
174 line 10 of [KPT], showing the existence of many Fraissé classes containing objects of
infinite Ramsey degree.

Corollary 8.8. If Y = LY - LBHH, each Y, is thick, and A, has Ramsey degree
Y| < oo, then Y = M(G).

Suppose Y = @Yn C lim fH,, is the universal minimal flow and is metrizable. By
Corollary 8.8, we may assume that |Y,| := k, is the Ramsey degree of A,. It will be
useful now to abuse notation and think of K as being the Fraissé-HP class {B : B =
A, for some n}. Our goal is to interpret |J, oy Yn as Catx(KC(Y),K) for some adequate X
and expansion class C(Y") so that (K(Y), K) is excellent.

If f € Emb(A,., A,), o/, €Y, ol €Y, then we say that f € Emb(ca’ o) if f(a)) =
al.. A few things to notice — first, composition is respected, i.e. if f; € Emb(all, a2
and f, € Emb(a’2,a%), then f, o fi € Emb(a,a’?). Second, if a € limY;, then iy €
Emb(a(m), a(n)).

If f € H,,,d, €Y, and a €Y, we say that f € Emb(a!,,a) if f € Emb(a!,, a(n)) for
some n. Note that if f € Emb(a! ,a(n)), then f € Emb(a’ ,a(N)) for all N > n.

Proposition 8.9. Suppose we are given g € G with g|a,, = [ and some a € Y with a(n) =
of . If ag(m) = of,, then f € Emb(al,,od). In particular, for any f € Emb(A,,, A,), we
have f(Y,) C Y,,.

Conversely, if g, f, and «a are as above and f € Emb(a!, , o), then ag(m) = a

)
m-

Remark. Soon we will show that f(Y;,) = Y,,.
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Proof. Suppose g, f, andl a are as above; fix S C Hy,,. Let T'= {z € H, : v 0g|a,, € S}.
Then S € ag(m) iff T € a(n). But since g|a,, = f, we have S € f(a(n)) it T" € a(n).
Hence f(a3) = f(a(n)) = ag(m) = o, 0

Define C' to be the category with object set (J, . Yn and arrows defined as above. To
realize C' as Catya,neny (K(Y), K) for some expansion K(Y), fix an enumeration a, ..., al"
of the elements of each A,,. For each o, € Y,,, introduce a new N,,-ary relation symbol
R!.. Then the object o/, can now be realized as the structure (A, (R:,)men1<i<k,), Where
Ri (b, ...,by,,) holds whenever the map al, — b; is in Emb(al,,ad). If o € Y, we can
interpret av as the countably infinite locally finite structure | J, a(n). Notice that Y = X (y.

Proposition 8.10. (YY) is a reasonable precompact expansion of K which has the JEP and
the ExpP.

Proof. If a!  oJ € K(Y), pick a € Y with a(m) = o!,. As Y is minimal, find g € G with
ag(n) = a. Let N be large enough so that g(A,) € Ay. Then a(N) witnesses JEP for
ol ., ol as witnessed by the maps i)Y and g|a,,.

Now let f € Emb(A,,,A,) and !, € Y,,. Pick g € G with g|a, = f, and pick « € Y
with a(m) = o’ . Then ag~'(n) is an expansion of A,, with f € Emb(c/,, o/ ), showing that
K(Y) is a reasonable expansion of K.

Suppose K(Y) did not have the ExpP as witnessed by af . For each N € N pick ay € Y
with Emb(a’,,an(N)) = (. By passing to a convergent subsequence, suppose ay — a.
Then a- GN{¢ €Y : ((m) =al } =0, a contradiction to minimality of Y. O

Notice that the ExpP implies the following useful corollary:

Corollary 8.11. For any « € Y and any o', € K(Y), Emb(a’ , ) is a syndetic subset of
H,,.

Proposition 8.12. K(Y') has the Ramsey Property.

Proof. Pick any a € Y, and fix o} € K(Y). By Proposition 4.1, it is enough to show that
for any full 2-coloring 7 of the set Emb(a,, ), there is a color 4; which is a thick subset of
Emb(a}, ). This is equivalent to showing that 7; U (Uy<;<), Emb(ed, a)) is a thick subset
of H,. But consider the (k, + 1)-coloring ¢ of H,, given by letting §; = 1, 0k, +1 = 72, and
d; = Emb(a?, «) for 2 < i < k,; since A,, has Ramsey degree k,, and by Corollary 8.11, we
are done. O

To show that K(Y) has the AP, we note the following theorem of Nesetfil and Rodl
(Lemma 1 of [NR]).

Proposition 8.13. Let C be a class of finite structures with the JEP and the RP. Then C
has the AP.

We now have the following:

Theorem 8.14. Let K be a Fraissé structure with K = Age(K) and G = Aut(K). Then
the following are equivalent:
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1. G has metrizable universal minimal flow,
2. Fach A € K has finite Ramsey degree,

3. There is a Fraissé precompact expansion class K* with (K*,K) excellent, i.e. K* is
reasonable and has both the FxpP and the RP.

Proof. (1 < 2) was Theorem 8.7, and we have just shown (2 = 3). (3 = 2) is Proposition 5.8.
[

In light of the discussion before Proposition 5.10, we obtain:

Corollary 8.15. If G is a closed subgroup of So, with metrizable universal minimal flow,
then G has the generic point property.

We conclude with the proof of Theorem 5.7. Suppose K* is a Fraissé precompact expan-
sion class as in Theorem 8.14 (3). We will show that Xy = M(G). Let K* € X+ be the
Fraissé limit. For each n, let Al ..., Ak be the expansions of A, in K*, with K*[5, = AL
Write H} for Emb(A!, K*). Notice that im SH C lim SH,, is nonempty. Pick a € lim SH7
so that each a(n) is thick for H (we can do this as K* has RP).

If f,x € H,,, let us say that f and x have the same expansion if for large enough n, there
isr € H} with ro f = x. It is straightforward to check that this is an equivalence relation.

Claim. For g,h € G, g|a,, and h|a,, have the same expansion iff ag(m) = ah(m); we once
again mimic the proof of Theorem 7.3. Suppose g, h € G are such that g|a,, and h|a,, have
the same expansion. Pick n large enough so that g(A,,) Uh(A,,) C A,,. Let S € ag(m); set
T,={f€H,: fog|a, € Stand T, ={f € H, : foh|a, €S} For sake of contradiction,
suppose S & ah(m), so that T, \ T}, € a(n). Since g|a,, and h|a,, have the same expansion,
find r € H! with r o g|a,, = hl|a,,. Pick N large enough so that A, Ur(A,) C Ay.
Since «(n) is thick for HY, find s € H} so that s o Emb(AL, A}) C T, \ T,. But now set
r=s0rog|a, =s0il oh|a,. This tells us that x € S and x € S, a contradiction.

For the converse, suppose ag(m) = ah(m). Pick any S € ag(m) with S C H},. Then
with T}, T}, as above, we have T, N1}, N H} € a(n). Pick f € T,NT, N H. Then f o g|a,,
and foh|a,, arein H}; since K* is ultrahomogeneous, f o g|a,, and foh|a, have the same
expansion. It follows that g|a,, and h|a,, also have the same expansion. This proves the
claim.

It now follows that o - G C llen =Y with |Y,,| < k,. By the proof of Theorem 8.7, we
see that each Y, is thick. Since the Ramsey degree of A, is exactly k, by Proposition 5.8,
we must have |Y,| = k,; hence by Corollary 8.8, we have a- G = Y = M(G). Form the
expansion class C(Y'). Note that each structure in IC(Y) is isomorphic to ag(m) for some
g € Gand m € N. Pick f € H,, and g € G with g|a,, = f. Then for hy, hy € G, we have

f € Emb(ahy(m), aha(n)) < ahag(m) = ahy(m)
& hg o f and hyla,, have the same expansion

<~ f € Emb<Am(h1|Am7 K*)7 An(h2|An7 K*))
Letting X = {A,, : n € N}, this shows that ®x : Catx(K(Y),K) — Catx(K*,K) given by

~

O (ag(m)) = An(g|a,,, K*) is an isomorphism of expansions. Hence Xy« = M (G).
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9 Conclusion

While the new proof of KPT correspondence given here solves the Generic Point Problem for
closed subgroups of S, it was originally stated for any Polish group G. We briefly discuss
one possible generalization of the methods presented here.

A (relational) metric structure is of the form (X,d,{R; : i € I}), where X is a Polish
metric space, d is the metric (we assume that X has diameter less than 1), and the “relations”
R; : X™ — R are n;-ary functions which are k-Lipschitz for some k. An automorphism of
the structure is then an isometry of (X, d) which in addition preserves all of the relations R;.
The quantifier-free type of a finite tuple (z1, ..., zx) is just the (labelled) induced substructure
on {xy,...,x;}. In particular, (z1,...,zx) and (y1, ..., yx) have the same quantifier-free type
iff x; — y; is an isomorphism of the induced substructures.

A metric structure X is said to be near-ultrahomogeneous if for any (z1, ..., x), (Y1, ..., Yx)
with the same quantifier-free type and any € > 0, there is an automorphism 7 of X with
max;(d(m(z;),y;)) < e. Near-ultrahomogeneous metric structures are called metric Fraissé
structures. One of the main theorems of metric Fraissé theory is that for any Polish group G,
there is a metric Fraissé structure X with Aut(X) = G; here Aut(X) is given the pointwise
convergence topology. One can also consider the metric Fraissé class X of finite structures
which embed into X. By no means is this intended to be a complete introduction to the
theory; the interested reader should see [MT] and [Sch].

There is evidence that metric Fraissé theory can be used to investigate the dynamical
properties of Polish groups. Melleray and Tsankov in [MT] have shown that Aut(X) is
extremely amenable iff the class X satisfies an appropriate analogue of the Ramsey Property.
Perhaps it is possible to use methods similar to those in section 6 to provide a “workable”
characterization of the greatest ambit.

Problem 9.1. Let G be a Polish group. Use metric Fraissé theory and methods similar to
those in section 6 to provide a useful characterization of the greates G-ambit.

Some of the results in this paper are known to generalize to general Polish groups.
Melleray, Nguyen Van Thé, and Tsankov [MNT] have shown that if G is a Polish group,

M (G) metrizable, and G has the generic point property, then M (G) is of the form G/G),
where Gy is extremely amenable and coprecompact in G, and the completion is taken with
respect to the left uniformity on G/Gg (using the left uniformity yields a right G-action).

In particular, for G a closed subgroup of S, saying that M (G) is of the form G//Eo for G
extremely amenable and coprecompact is exactly to say that 8.14 (3) holds.
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