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Abstract

Let X be a simplicial complex with n vertices. The missing faces of X are the sets
o ¢ X that are minimal with respect to inclusion. Assume that all the missing faces of
X are of dimension at most d. Let L; denote the j-Laplacian acting on real j-cochains
of X and let 11;(X) denote its minimal eigenvalue.

A classical result of Garland relates the spectral gaps of a complex with the spectral
gaps of the links of its faces. Our main result is a global counterpart of Garland’s result,
connecting between the spectral gaps pui(X) for £ > d and the spectral gap pg—1(X).
In particular, we establish the following vanishing result: If pg_1(X) > (1 — (kj;l)_l)n,
then H7 (X;R) =0 for all d — 1 < j < k. These results extend theorems of Aharoni,
Berger and Meshulam for flag complexes (the case d = 1).

As an application we prove a fractional extension of a Hall-type theorem of Holmsen,
Martinez-Sandoval and Montejano for general position sets in matroids.

We also prove a different lower bound on the spectral gaps g (X), in terms of the
number of vertices n and the minimal degree of a k-dimensional face. This bound follows
by an application of Gersgorin’s circle theorem to the k-Laplacian.

The last part of the thesis is dedicated to the study of some families of simplicial
complexes arising from finite geometries, which have interesting spectral and homological

properties.






Abbreviations and Notations

[n] : the set {1,2,...,n}

(Z) : the collection of all subsets of size k of the set V

2 the collection of all subsets of the set V

X (k) : the collection of all k-dimensional simplices of the complex X
X (k) : the k-dimensional skeleton of the complex X

XU . the subcomplex of X induced by U

st(X, o the star of the simplex o in the complex X

Ik(X,0) : the link of the simplex o in the complex X

degx (o) : the degree of the simplex o in the complex X
dim(o) :  the dimension of the simplex o

dim(X) :  the dimension of the complex X

fe(X) : the k-th face number of the complex X

A, : the complete simplicial complex on vertex set [n + 1]
X*xY . the join of the complexes X and Y

CF(X) . the space of real valued k-cochains of the complex X
dy, : the coboundary operator

HF (X;R) : the k-th reduced cohomology group of X with real coefficients
R the k-th reduced homology group of X with real coefficients

L (X) . the k-dimensional Laplacian of X

g (X) : the k-th spectral gap of X

Speci(X) : the spectrum of the k-dimensional Laplacian of X
conng(X) : the homological connectivity of the complex X over R
n(X) : conng(X) + 2

I(G) . the independence complex of the graph G

X(G) . the clique complex of the graph G

F(@G) . the total domination number of the graph G
F(X) : the total domination number of the complex X
I'G) the vector domination number of the graph G
I'X) : the vector domination number of the complex X



p(S)
cl(S)

om(S)

the rank of the set S in a matroid

the closure of the set S in a matroid

the size of the largest subset of .S in general position with respect
to the matroid M

the maximum of ) _¢ f(v) over all functions f in fractional general
position with respect to the matroid M

the finite field with ¢ elements

the projective space of dimension n over F,

the affine space of dimension n over F,

the simplicial complex of caps in PG(n, q)

the simplicial complex of caps in AG(n, q)

the identity matrix

the trace of the matrix A



Chapter 1

Introduction

Let X be a simplicial complex on vertex set V. A simplex o C V is called a missing face
of X if o0 ¢ X but 7 € X for any 7 C 0. The set of missing faces Mx of the complex
X completely determines X:

X={r7CcV: o¢grforalloc e Mx}.

Let h(X) = max{dim(c): 0 € Mx }.

For k > —1 let C*(X) be the space of real valued k-cochains of the complex X
and let dj, : C*(X) — C*¥*1(X) be the coboundary operator. For k& > 0 the reduced
k-dimensional Laplacian of X is defined by

Lk(X) = dk’—ldzfl + dde

Ly, is a positive semidefinite operator from C*¥(X) to itself. The k-th spectral gap of X,
denoted by ux(X), is the smallest eigenvalue of Ly.

Let G = (V, E) be a graph on n vertices. Its clique complex (or flag complex) X (G)
is the simplicial complex on vertex set V' whose simplices are the cliques of G. Note
that clique complexes are exactly the complexes with A(X) = 1. Indeed, the missing
faces of X (G) are the edges of the complement of G. Aharoni, Berger and Meshulam

[3] prove the following result:

Theorem 1.1 (Aharoni, Berger, Meshulam [3]). Let G = (V,E) be a graph, where
V| =n, and let X = X(G) be its clique complex. Then for k > 1

kpr(X) 2 (k4 1pg-1(X) —n.

Our main result is a generalization of Theorem 1.1 to complexes without large

missing faces.

Theorem 1.2. Let X be a simplicial complex with h(X) = d, on vertex set V, where



V| =n. Then for k> d
(k — d+ Dp(X) > (+ Dpe 1 (X) — dn.

Our proof combines the approach of [3] with additional new ideas. Both results can be
thought of as global variants of Garland’s method, which in its original form relates the
spectral gaps of a complex with the spectral gaps of the links of its faces; See [10, 20].

As a consequence of Theorem 1.2 we obtain

Theorem 1.3. Let X be a simplicial complex with h(X) = d, on vertex set V, where

V| =n. If |
pa—1(X) > (1 - <kjl_1> ) n,

then HI (X;R) =0 for alld—1<j <k.

Remarks. In the case d =1 it is shown in [3] that the condition in Theorem 1.3 is the
best possible: Let G be the complete r-partite graph on n = ¢r vertices, with all sides
of size £. Then yo(X(G)) = “Ln, but H™1(X(G);R) # 0.

For d = 2 we have found such extremal examples only for a few cases (see Chapter 6

for further discussion of such examples):

1. Let X be the simplicial complex whose vertices V' are the points of the affine plane

over 3, and whose missing faces are the lines of the affine plane. Let k = 2.

On the one hand, one can check that p(X) =6 = (1 - (kgl)_1> |V|. On the other
hand, H? (X;R) = R # 0 (computer checked).

2. Let X be the simplicial complex whose vertices V are the points of the projective space
of dimension 3 over F3, and whose simplices are the sets of points containing at most
two points from each line (so the missing faces are the subsets of size 3 of the lines in
the projective space). Let k = 4. One can show that 11 (X) = 36 = (1 - (k;ﬂ)_l) V.
On the other hand, H* (X;R) # 0 (computer checked).

We next give some applications of Theorem 1.2 to connectivity bounds and Hall
type theorems for general simplicial complexes.
Let n(X) = conng(X) + 2, where

conng(X) =min{i: H (X;R)#0} —1

is the homological connectivity of X over R.

A subset of vertices S C V in a graph G = (V, E) is called a totally dominating set
if for all v € V there is some u € S such that vu € E. The total domination number
of G, denoted by 4(G), is the minimal size of a totally dominating set. Let I(G) be

the independence complex of the graph, i.e. the simplicial complex whose faces are all



the independent sets o C V. The total domination number gives a lower bound on the
connectivity of I(G) (see [18, Theorem 1.2]):

N

n(I(G)) = 3(G)/2. (1.1)

(For additional lower bounds on n(I(G)) in terms of other domination parameters, see
e.g. [4, 18]).

The inequality (1.1) had been generalized to general simplicial complexes: Let X
be a complex on vertex set V. We say that a subset S C V is totally dominating if for
every v € V there is some o C S such that 0 € X but vo ¢ X. The total domination
number of X, denoted 4(X), is the minimal size of a totally dominating set in X. For a
graph G we have 3(G) = (I(G)) (the totally dominating sets of I(G) are the same as
the totally dominating sets of GG). In [2] it is shown that for any simplicial complex X,
n(X) = 5(X)/2.

Another graphical domination parameter, I'(G), has been introduced in [3] as
follows. A wvector representation of the graph G is an assignment P : V — R’ such
that P(v) - P(w) > 1 if v and w are adjacent in G, and P(v) - P(w) > 0 otherwise. A
non-negative vector o € RV is called dominating for P if 3~ .\, a(v)P(v) - P(w) > 1
for every w € V. The value of P is

|P| = min{ Z a(v) : « is dominating for P }.
veV

Let T'(G) be the supremum of |P| over all vector representations of G. It is easy to
check that I'(G) < 3(G) (see Proposition 1.5). In [3] the following was proved:

Theorem 1.4 (Aharoni, Berger, Meshulam [3]).

n(I(G)) = T(G).

With a view towards generalizing Theorem 1.4 to an arbitrary simplicial complex X,

we define a new domination parameter I'(X).

For k € N let Mx (k) be the set of missing faces of X of dimension k. Let
Jx = {ieN: Mx(i) 20} be the set of dimensions of simplices in Mx. Define
S(X) = UiGJX (1Y1)

Let 0 € S(X) and fix £ = ¢(0) € N. A wvector representation of X with respect
to o is an assignment P, : V — R’ such that the inner product P,(v) - P,(w) > 1 if
vwo € Mx(|o| + 1), and P;(v) - Py(w) > 0 otherwise. We identify the representation
P, with the matrix P, € RIVI*¢ whose rows are the vectors P;(v), for v € V.. We call
the collection P = { P, : 0 € S(X) } a vector representation of X.

For each o € S(X), let a, € RV be a non-negative vector. The set {a, : o € S(X)}



is called dominating for P if

> PPl >1
oeS(X)

(where 1 € RV is the all 1 vector). The value of P is

|P| = min Z @y - 1: {as},eg(x) is dominating for P
oeS(X)

Let T'(X) be the supremum of |P| over all vector representations P of X.

Remarks.

1. If X = I(G) for a graph G, then I'(X) coincides with the parameter I'(G) defined in
3].

2. In the case when all the missing faces are of the same size, we can bound I'(X) by

the total domination number 4(X):

Proposition 1.5. Let X be a simplicial complex with all its missing faces of dimension
equal to d. Then
(X

Our main application of Theorem 1.2 is the following extension of Theorem 1.4.

Theorem 1.6.

3 r<”(f)) > I(X).

reJx

Let Vi,...,V,, be a partition of the vertex set V. We say that a subset ¢ C V is
colorful if |o N V;| =1 for all i € [m]. Theorem 1.6 gives rise to the following Hall-type

condition for the existence of colorful simplices:

Theorem 1.7. If for every ) # I C [m)]

Il -1
I'(X[WierVi]) > 7"(' ‘T >7
TGJXMEIVA

then X has a colorful simplez.

Next we show an application of Theorem 1.7. Let M be a matroid on ver-
tex set V with rank function p. Assume p(V) = d + 1. We identify M with
the simplicial complex of its independent sets. For S C V, define its closure by
c(S)={veV:plS)=p(SU{v})}. Asubset FF C Visa flat of M if F' = cl(F), i.e.
p(FU{v}) > p(F) for all v ¢ F.

We say that a subset S C V is in general position with respect to M if for any
1 < k < d every flat of M of rank k contains at most k& points of S. This is equivalent
to requiring that any S” C S with |S’| < d + 1 is an independent set in M.



For S C V denote by ¢/(S) the maximal size of a subset of S in general position.
Let Vi,...,V,, be a partition of V. The following Hall-type theorem is proved in
[13].

Theorem 1.8 (Holmsen, Martinez—Sandoval, Montejano [13] ). If for every () # I C
[m]
-1  if [ <d+1,
ou(iertVi) > N o

then V' has a colorful subset in general position.

Let S C V. A weight function f : S — R is in fractional general position with
respect to M if for any 1 < k < d and for any flat F' of M of rank k and ¢ C FFN S of

size k — 1,
Y fw)<d
vES,
cl(vo)=F

Denote by ¢3,(5) the maximum of ) s f(v) over all functions f : S — Rx¢ in

fractional general position. We will show that
Lemma 1.9. ¢},(S) > om(S).
Here we prove the following:
Theorem 1.10. If for every () # I C [m)]
d
. Il -1
on (Uier Vi) >d2r<| | >,

r
r=1

then V' has a colorful subset in general position.
In particular, we obtain a strengthening of Theorem 1.8:

Theorem 1.11. If for every O # I C [m)]

|17l —1 if [ I| <d—+1,

oM (YierVi) > _ .
a0 (7Y i 1) > d+ 2,
then V' has a colorful subset in general position.

A known result about complexes without large missing faces is the following (see
e.g. [1, Prop. 5.4]):

Proposition 1.12. Let X be a simplicial complex on n vertices with h(X) = d. Then
H* (X;R) =0 for all k> 3%n — 1.

This will follow as a consequence of the following lower bound on the spectral gaps:



Theorem 1.13. Let X be a simplicial complex with h(X) = d on vertex set V', where
V| =n. Let k > 0 and let 0;,(X) denote the minimal degree of a simplex in X (k). Then

(X)) > (d 4+ 1)(0(X) + k + 1) — dn.

The thesis is organized as follows: Chapter 2 contains the background material
needed in the following chapters. This includes an introduction to simplicial cohomology
and to the Laplacian operators on simplicial complexes, and also material concerning
matrices (especially eigenvalues of symmetric matrices) and the theory of matroids.

In Chapter 3 we prove our main results about the spectral gaps of the Laplacian
operators. First we introduce some notation and results on complexes without large
missing faces, and then, in Section 3.2, we prove our main result Theorem 1.2, and its
corollary Theorem 1.3.

In Chapter 4 we show some applications of Theorem 1.2. Section 4.1 deals with
the vector domination parameter I'(X) of the complex X. In it we prove Proposition
1.5, Theorem 1.6 and Theorem 1.7. In Section 4.2 we apply the results of the previous
section in order to prove Theorems 1.10 and 1.11, that provide sufficient conditions for
the existence of colorful sets in general position in a matroid.

In Chapter 5 we prove Theorem 1.13. As a consequence we obtain a new proof of
Proposition 1.12. We also present examples showing that the inequalities in Theorem
1.13 are tight. In the case of d = 1 we characterize all such extremal cases.

In Chapter 6 we introduce some families of simplicial complexes arising from differ-
ent finite geometries. Some of these complexes are extremal examples for Theorems
1.2 and 1.3. This chapter is mostly “experimental”’, meaning it includes many com-
puter calculations, some conjectures based on them, and partial results supporting the
conjectures.

Chapter 7 contains concluding remarks, which include the main conjectures and

open questions arising from our work.
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Chapter 2

Background

2.1 Matrix eigenvalues

In this section we state some known results about eigenvalues of matrices that we will
use later. We refer the reader to [14] for the proofs and additional results.
Let A € R™™ be a symmetric matrix. Let Ay < Ay < -+ < )\, be its eigenvalues.

We will need the following characterization of the eigenvalues of A:

Theorem 2.1 (Courant-Fischer). For 1 <k <n

) (Az, x)
Ar = min max ,
U 0#zeU (x,z)

where the minimum is taken over all subspaces U C R™ of dimension k.

Denote by Amin(A) the minimal eigenvalue of A and by Apax(A) its maximal eigen-

value. By Theorem 2.1 (applied to the minimal and maximal eigenvalues A; and \,,) we

obtain (A )
xT,x
Amax(A) T Vi S P (2.1)
and 4
Amin (A) (Az, @) (2.2)

= min .
0#zeR™ (x,T)
In the following chapters we will implicitly apply the next results:

Lemma 2.2. Let A, B € R™™"™ be symmetric matrices, then
)\max(A + B) < Amax(A) + )\max(B)

and
)\min(A + B) Z )\mln(A) + )\mln(B)

Lemma 2.3. Let A € R™*" be a symmetric matriz, and let B € R*¥** be a principal
submatriz of A (i.e. a matriz obtained by removing some of the rows of A and their
corresponding columns). Then Amax(B) < Amax(A) and Apin(B) > Amin(A).

11



In particular, if A is positive semidefinite and B is a principal submatrix of A, we obtain
by Lemma 2.3 that B is also positive semidefinite.
Another result about eigenvalues of matrices that we will need is the following

theorem:

Theorem 2.4 (Gersgorin circle theorem). Let A € C"*" and A € C be an eigenvalue
of A. Then there is some i € [n| such that

A= ai] < ]
J#i
Proof. Let v = (z1,...,2,) € C" be an eigenvector of A with eigenvalue A\. Choose
k € [n] such that |z)| = max { |z;| : i € [n] }. We have Av = Av, therefore for any i € [n],

Az = 2?21 a;jxj. In particular for i = k we obtain

n
AT = E Q;Tj = QgrTE + g afjTj.
=1 ik

Therefore
()\ - akk)xk = Z ApiTy.
J7Fk
Since v is an eigenvector of A, we have v # 0, thus |z;| > 0. By taking absolute value

and dividing by |z| we get

A —apk| =

Z. kakw-‘ . avillx:
‘ JFk RITI gzj#k‘ k]H ]’§Z|akj‘a
|z |z =

where the last inequality follows since |x;| < |xy| for all j € [n], by the choice of k. O

2.2 Simplicial cohomology

Next we recall some definitions and basic facts about simplicial complexes and cohomol-
ogy. For a more complete introduction see e.g. [11].

A simplicial complex is a family X of finite subsets of some set S, such that if o € X
and 7 C o, then also 7 € X. We call the sets ¢ € X the simplices of X, or the faces
of X. For each simplex o € X we define the dimension of o to be dim(o) = |o| — 1.
The dimension of the complex X, denoted by dim(X), is the maximal dimension of a
simplex in X. The verter set of X is V(X) = {,cx 0. We will always assume that X
is finite, i.e. V(X)) is finite.

We denote the set of k-dimensional simplices in X by X (k), and we define the face
numbers fr(X) = | X (k).

Y is a subcomplex of X if it is a simplicial complex, and each simplex of Y is also a

simplex of X.

12



The k-dimensional skeleton of X is the subcomplex of X consisting of all the faces
of X of dimension k or less. It is denoted by X ().

For U Cc V,let X[U] ={0c € X :0 C U} be the subcomplex of X induced by U.

For o € X(k), let the star of o in X be the subcomplex

st(X,o)={reX:7Uce X},
and the link of ¢ in X be the subcomplex
k(X,o)={reX:7UceX,7No=0}.

Let
degy(o)=[{neXk+1):0Cn}|=|{veV\c: cU{v} e X}|

be the degree of o in X.

An ordered simplex is a simplex with a linear ordering of its vertices. For two ordered
simplices 0 € X and 7 € 1k(X, o) denote by [0, 7|, or simply by o7, their ordered union.
Similarly, for v € V' denote by vo the ordered union of {v} and o.

For 7 C o, both given an order on their vertices, we define (o : 7) to be the sign of
the permutation on the vertices of o that maps the ordered simplex o to the ordered
simplex [0\ 7, 7] (where the order on the vertices of o \ 7 is the one induced by the
order on o).

A simplicial k-cochain is a real valued skew-symmetric function on all ordered
k-simplices. That is, ¢ is a k-cochain if for any two k-simplices o, in X that are equal
as sets, it satisfies ¢(6) = (6 : 0)p(0).

For k > 0 let C*(X) denote the space of k-cochains on X. For k = —1 we define
CHX)=R.

We will use the following lemma implicitly in future calculations.

Lemma 2.5. Let 7,n € X(k) and ¢ € C¥(X). Let 0,0 € X be ordered simplices such
that 7,m C 0 and 0 C 7Nn, and let &, 7, 1, 0 be equal as sets to o, T, n and 0 respectively.
Then

1 (0:7)=(0:7)-(7:7), and if |o\ 7| =1 then (0 : 7) = (0 : &) - (5 : 7).
2. ¢(7)? = (7).
3. (0:7)p(1) = (0 : 7)$(7), and if |7\ 0] = 1 then
(7:0)p(7) = (7 : 0)p(7).
4 Iflo\7| =1 and|o\n| =1 then
(0 :7)(0 :n)p(T)p(n) = (6 : 7)(G : 7)(T)d(7).

13



5. If|T\ 0| =1 and |n\ 0| =1 then

(7:0)(n:0)p(r)p(n) = (7 : 0)(7) : 0)p(7)d(7)-

Proof.

1. Let 71 be the permutation on the vertices of o that maps o to [oc\ 7,7| = [0 \ 7, 7],
and let w9 be the permutation on the vertices of 7 that maps 7 to 7. Extend 7 to
a permutation 72 on the vertices of o, that maps [0\ 7,7] to [0 \ 7, 7]. It satisfies

sign(my) = sign(m2). Define m = Ty o 1. 7 maps o to [0 \ 7, 7], therefore
(o :7) = sign(m) = sign(7e) - sign(m1) = sign(me) - sign(m ) = (7:7) - (0 : 7).

Assume now that |0\ 7| = 1 and let {v} = o\ 7. Let 73 be the permutation on
the vertices of ¢ that maps o to &, and m4 be the permutation that maps & to
[6\ 7,7] =vT = [0\ 7,7]. Then the permutation 7’ = m4 o 73 maps o to [0 \ 7, 7],

therefore

(0 : 1) = sign(n’) = sign(my) - sign(ns) = (6 :6) - (6 : 7).

2. Since ¢ is a cochain, we have ¢(7)? = (7 : 7)2¢(7)? = ¢(7)2.

3. By the first part of this lemma

and since ¢ is a cochain

(c:T)T:7)0(T) = (0 : T)P(T).

The second equality is similar: By the first part of the lemma

(7:0)p(7) = (7: 7)(7 : 0)op(),

and since ¢ is a cochain

4. By part 3 of this lemma we have

(0 7)o :n)o(1)p(n) = (0 7)(0 : 7)(T)p(7)-

14



Then by part 1

(0 :7) (o :m(T)d(1) = (0:6)(d: T)(0: 6)(G : NP(T)d (7
(

5. The proof is similar to the proof of part 4. O

For k > 0 let the coboundary operator dj, : C¥(X) — C*+1(X) be the linear operator
defined by

k+1
dkp(0) =Y (=1)'¢(0),
i=0
where for an ordered (k + 1)-simplex o = [vg,...,Ukt1], 0; is the ordered simplex
obtained by removing the vertex v;, that is o; = [vo, ..., 0, ..., vk+1]. Equivalently, we

can write

dip(o) = Y (o:7)o(r),

T€o(k)

where o(k) C X (k) is the set of all k-dimensional faces of o, each given some fixed order

on its vertices.

For k = —1 we define d_; : C7}(X) =R — C%X) by d_1a(v) = a, for every a € R,
velV.

For each k& > —1 we define an inner product on C*(X) by

Y. d(0)(o)

ceX (k)

This induces a norm on C*(X):

1/2
o]l = ( > ¢(U)2) :
ceX(k)

Let df : C*1(X) — C*(X) be the adjoint of dj, with respect to this inner product.
We can write df¢ explicitly: For ¢ € C*(X) and ¢ € C*1(X),

(drp, ) = D dplo)plo)= > > (o:m)b(n)¥(0)

ceX (k+1) oeX (k+1) reo(k)

= Z Z (o:7)o(T Z Z o7 T) ()P (vT)
TeX (k) ceX(k+1),7Co TeX (k) velk(X,T)

= 2 |em) > wler)) = <¢, > w<w>>.
reX (k) velk(X,7) velk(X,7)

15



Thus we obtain
dip(r) = > ().
velk(X,7)

Let k > 0. Let H* (X;R) = Ker(dy)/Im(dg_1) be the k-th reduced cohomology
group of X with real coefficients.

Let O = di_,, and let Hy (X;R) = Ker(dy)/ Im(dg41) be the k-th reduced homology
group of X with real coefficients.

For k = —1 we define H~' (X;R) = Ker(d_;) and H_; (X;R) = C~*(X)/Im(dp).
We have H~' (X;R) = H 1 (X;R) =0if X # {0}, and H*(X;R) = H_; (X;R) =R
if X = {0}.

For all (finite) simplicial complexes X we have Hy, (X;R) = H* (X;R) for all k > —1.

Also, if X is homotopy equivalent to another simplicial complex V', then H* (X;R) =
H* (V;R) for all k> —1.

Let A,,_; be the complete simplicial complex on vertex set [n], i.e. the complex
whose simplices are all the subsets o C [n]. This is an (n — 1)-dimensional complex.
Then its k-skeleton A(¥)

n_q is the simplicial complex on vertex set [n] whose simplices are

all the subsets of [n] of size at most k + 1. The following result is well known:

Claim 2.6.

g f—1<i<k—1,
HZ (Aflk_)l’R> _ o Zf ST S
RO i =k

Let X and Y be simplicial complexes on disjoint vertex sets. We define a new
simplicial complex:
X*xY={oUr:0eX, TeY}.

X %Y is called the join of X and Y.

If X = {v}* X’ (where we view {v} as the simplicial complex with only one vertex
v), then we say that X is a cone over v. In this case we have, since X is homotopy
equivalent to a point, H* (X;R) = 0 for all k > —1.

We will denote by X x X the join of X with a disjoint copy of itself. Also, we will
denote the complex X * X - X (k times) by X**.

We will need the following theorem:

Theorem 2.7 (Mayer-Vietoris exact sequence). Let A, B, X be simplicial complexes
such that X = AU B. Then the following sequence is exact:

o HYY (AN B;R) — H* (X;R) — H* (A;R) @ H” (B;R) — - -

One special case of the Mayer-Vietoris sequence is the following. Let V be the
vertex set of X, and let v € V. Define A = X[V \ {v}] and B = st(X,v). We have
X =AUB and AN B =1k(X,v). Also, since B = {v} *1k(X,v) (i.e. B is a cone) , we
have H* (B;R) = 0 for all k£ > —1. Therefore by Theorem 2.7 we obtain
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Proposition 2.8. The following sequence is exact:
= H(IK(X,0);R) — B (X5R) — HY (X[V\ {v}];R) — -+

Another consequence of Theorem 2.7 is the following result of Meshulam (see [18,
Theorem 1.1]).

Theorem 2.9. Let X be a clique complex that satisfies Hy (X;R) # 0. Then for all

j>0
. k+1
(X)) > 29t )
fi(X) > <j+1>

2.3 Higher Laplacians

For k > 0 define the lower k-Laplacian of X by L, (X) = dy_1d}_, and the upper
k-Laplacian of X by L; (X) = djdi. The reduced k-Laplacian of X is the positive
semidefinite operator on C*(X) given by

Ly (X) = Ly, (X) + L (X).

For k = —1 we define L_; (X) (a) = d* ;d_1(a) = n - a, where n = |V (X)].
Let k> 0 and o € X(k). We define the k-cochain 1, by

L) (o:7) if o =7 (as sets),
o\T) =
0 otherwise.

The set {15},ex () forms a basis of the space C*(X), that we will call the standard
basis.

For a linear operator T : C¥(X) — C¥(X), let [T] be the matrix representation of
T with respect to the standard basis. We denote by [T, - the matrix element of [T at
index (14, 1;).

One can write explicitly the matrix representation of the Laplacian operators in the

standard basis:

Claim 2.10. For k>0

.
k+1 ifo=r1,

[Ll;]a;: (c:ont)-(tr:0nT7) if [oNT|=F,
\0 otherwise,
degx (o) ifo=r,

[Lﬂ(”: —(c:onT)-(t:0n7) if loNnt|=k,ocUT e X(k+1),
\0 otherwise,
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and
k+1+degx(o) ifo=r,

Lkl,, = (c:onT)-(t:on7) if lont|=koUr ¢ X(k+1),

0 otherwise.

Proof. First we write out L; and L explicitly. For ¢ € C*(X) and 7 € X (k) we have

Li¢(r) =dided(r) = > drgpor) = Y Y (7:0)p(0)

velk(X,T) velk(X,r) 0Cwr,
ex (k)
= Z (vt :7T)o(T) + Z (vt vn)o(vn) | .
velk(X,T) ner(k—1)

Let v € Ik(X,7) and n € 7(k —1). Let {u} = 7\ 7, and let 7 be the permutation on the
vertices of 7 that maps 7 to un. We can extend 7 to a permutation 7 on the vertices
of v7 by mapping v to itself (and we have signm = sign7). 7 maps v7T to vun. By
composing 7 with a single transposition, we get a permutation that maps vr to uwvn,

therefore

(vt :vn) = —sign(m) = —(7: 7).

So we have

Lior) = Y - 33 (rineln).

velk(X,T) velk(X,7) ner(k—1)

We have a one-to-one correspondence

. velk(X,7), . 0eX(k),|0NT|=kK,
{(U,Tl) : nGT((k}—l))} N {9 G (e }

defined by (v,n) — {v} Un (its inverse being: 0 — (0 \ 7,0 N 7)).

Let § € X (k) such that |6 N 7| =k and OUT € X(k+1). Let {v} =6\ 7 and
n=6N71. We have (vn: 0) = (0 : n) (since they are, correspondingly, the sign of the

permutation mapping vn to 6, and the sign of its inverse). Thus we have

(72 m)p(vn) = (7 : m)(vn = 0)¢(6) = (7 :)(0 : n)o(0)
=(r:71NO)TNO:)@:7NO)(TNO:n)P(0) = (T:7N0)O:7NO)H(H).

Therefore we obtain

Lig(r) =degy(r)¢(r) = > (7:700)(0:7N6)p(6).
PeX(k),
|TNO|=k,
TUOEX (k+1)
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Similarly,

Lyg(r) =dydi_yd(r) = Y (ren)didm) = Y (r:n) Y o(vn)

ner(k—1) ner(k—1) velk(X,n)
= > (Ermetn)+ Y. Y. (rin)e(un)
ner(k—1) ner(k—1) leké—tX,n),
=(k+1De(m)+ D (T:7N0)(0:7N60)G(0).
feX(k),
|TN6|=k
So
Lig(r) = (k+1+degy(T)¢(r)+ Y (T:7N0)(0:7N0)H(0).
0eX(k),
|TNo|=k,
TUOZ X (k+1)

For any operator T" on C*(X), 7)., = T(15)(7). Therefore plugging in ¢ = 1, we

obtain
[L;ﬂﬂ.a:Lzla(T) = degy (7)15(7) — Z (t:7N6)(O:7NEO)1,(0)
7 90X (k),
|TNb|=k,
TUOEX (k+1)
degx (o) ifo=r,

=q—(c:onNT)(t:0n7) if [oN7|=k ocUTe€ X(k+1),

0 otherwise,

[LI;]TO-:L];]-O'(T):(k+]-)1a'(7—)+ Z (t:7N0O)O:7NHO)1,(0)
9eX (k),
|TNO|=k
k+1 if o=,
=q(c:on7)(r:onT) if [oNT| =k,

0 otherwise,
and therefore

k+1+degyo if o =,
Lkl o = (c:onT)(r:onT) if [on7|=k ocUTr ¢ X(k+1),

0 otherwise.
O

Let X be a simplicial complex on vertex set V', with |V| = n. The following upper

bound on the eigenvalues of the Laplacian is implicit in [8]:
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Lemma 2.11. Let k > 0 and let XA be an eigenvalue of Ly (X). Then
A <n.

Here we give another proof. We will use the following lemma, which will be also needed
later, for the proof of Claim 4.2:

Let k > 0 and let X be the (k + 1)-dimensional simplicial complex on vertex set V
\%4
> k+2)
such that o ¢ X. Denote by L the matrix obtained from Lz (X ) by keeping only the

rows and columns corresponding to faces of X.

with full k-dimensional skeleton, whose (k 4 1)-dimensional faces are the sets o € (

Lemma 2.12. L =nl — [L; (X)].

Proof. By Claim 2.10 we have for 0,7 € X (k)

deg (o) if o=,
_ . onT|=k,
[L;(X)]U’T =9 —(c:onN7)-(t:0nT) if UUL’QX‘(’C+1),
\O otherwise.
n—k—1—degy(o) if o =,
. . oNT|=k,
=49 —(c:onN7)-(t:0n7) if UU"T’QX‘(IC+1),
0 otherwise.
n— L (X)), ifo=r
—[Lk (X)],,  otherwise.
Therefore L = nl — [Ly (X)]. O

Proof of Lemma 2.11. Let ¢ € C*¥(X) be an eigenvector of Ly (X) with eigenvalue
A. Then, by Lemma 2.12, its coordinate vector [¢] is also an eigenvector of L with
eigenvalue n — A. But [L;: (X' )] is a positive semidefinite matrix, hence L is positive
semidefinite too (as a principal submatrix of a positive semidefinite matrix), therefore
n—A>0,s0 X <n. O

Let Spec;,(X) be the spectrum of Ly (X), i.e. a multiset whose elements are the
eigenvalues of the Laplacian. The following theorem allows us to compute the spectrum

of the join of simplicial complexes (see [8, Theorem 4.10]).

Theorem 2.13. Let X = X1 *--- % X,,,. Then

Specy(X) = U Spec;, (X1) + - - + Spec;, (Xin),

i1 tim—=k—m—1,
—1<i;<dim(X;) Vj€[m]
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2.3.1 The simplicial Hodge theorem
The following discrete version of Hodge’s theorem had been observed by Eckmann in [9)].

Theorem 2.14 (Simplicial Hodge theorem).
H* (X;R) = Ker Ly, (X).

To prove Theorem 2.14 we will need the following results:

Claim 2.15. Ker L, = Kerd;, N Kerdj_;.

Proof. Let ¢ € Kerdy, NKerd;,_,. Then
Ly¢ = dy—1dy,_1¢ + dpdrd =0+ 0 =0,
therefore ¢ € Ker L. On the other hand, if ¢ € Ker Ly, then

0= (Lio, ) = (dp—1dj,_1¢ + dpdid, ¢) = (dp_1d},_1 ¢, ¢) + (didy, d)
= <d271¢7 d271¢> + (dr¢, dro) = Hd’émez + Hdk¢||2-

We obtain that Hdlt—lqu = ||dro|| = 0, therefore dj ¢ = 0 and dy¢ = 0, so ¢ €
Kerdy NKerd; _;. ]

Theorem 2.16 (Simplicial Hodge decomposition).
C*(X) = Kerdy, ® Imd} = Ker L, ® Im dj_; ® Im d}.
Proof. We have the following decompositions of C*(X):
CH*(X) =Imd} ® (Imd})* = Im d} @ Ker dy,

and
CH(X)=Imdj_1 ® (Imdy_1)* = Imdy_, @ Kerd} .

We can apply the second decomposition on the subspace Ker dy:
Kerdy = (Imdj_y NKerdy) @ (Kerd;_; NKerdy) .

By Claim 2.15, Kerdj,_; N Kerdy, = Ker Lj,. Also, since dpd—1 = 0, Imdj,_1 C Ker d,

hence Imdy_1 N Kerd, = Imdj_1. Therefore we have
Kerd, =Imdi_1 @ Ker Ly,

hence C*(X) = Im d; ® Kerd, = Imd; ®Imd,_; © Ker L, as wanted. O

We obtain Theorem 2.14 as a corollary:
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Proof of Theorem 2.14.

Ker d;, B Imd;_1 & Ker L
Im dk—l N Im dk—l

H* (X:R) = >~ Ker L.

O

Since Ly (X) is positive semidefinite, we obtain as a consequence of Theorem 2.14:

Corollary 2.17. H* (X;R) = 0 if and only if ui(X) > 0.

For example, we can use the simplicial Hodge theorem to easily compute the

Laplacian spectra of the complete k-dimensional skeleton Agc_)lz

Claim 2.18.
{n,n,...,n} if —1<i<k-—1,
Spec (A1) = () mes

{0,0,...,0,n,n,...,n} ifi=k.
—_— —

(ZH) times (", ') times

Proof. For i < k — 1 we can check by Claim 2.10 that L; (Agi)l) = nl, therefore all
the eigenvalues are equal to n.
~ n—1
For i = k, we have by Claim 2.6 H* (A(k) 'R) = R(k+1), therefore, by Theorem

n—1»
2.14, 0 is an eigenvalue of the k-th Laplacian of multiplicity (eri) It is easy to check
by Claim 2.10 that

T (Li (A%)) = (b + 1)<kil> - n<”;1>

But there are (kzl) — (Z;i) = (ngl) non-zero eigenvalues, all of them at most n (by

Lemma 2.11), therefore they must all be equal to n. O

2.4 Matroids

In this section we recall some definitions and basic results about matroids. For additional
results about matroids see [19], and see [6] for more results on the topology of the

independence complex of a matroid.

Definition 2.19. A matroid is a pair M = (V,Z), where V is a finite set, and Z is a

collection of subsets of V' such that:
1. Z#0.
2. IfI€Z,then I' e Z forall I' C I.

3. Forevery A, B € Z, if |A| > | B|, then there exists v € A\ B such that BU{v} € T.
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We call the sets in 7 the independent sets of M. Note that the first two axioms in
the definition mean that Z is a (non void) simplicial complex. The last axiom is called
the augmentation property.

The maximal sets in Z (with respect to inclusion) are called the bases of M.

Claim 2.20. Let A, B € T be bases of M. Then |A| = |B].

Proof. Assume for contradiction that |A| > |B|. Then by the augmentation property
there is some v € A\ B such that BU {v} € Z. But this is a contradiction to the
maximality of B. O

Let p: 2V — N be the function defined by p(S) = max {|I|: I € S, I € T} for each
S C V. We call p the rank function of the matroid M. We also define p(M) = p(V),
the rank of the matroid M.

The following properties of the rank function are easy to check from the definition:
Claim 2.21. Let S CV andv e V. Then

1. p(S) < |S|, and p(S) = |S| if and only if S € T.

2. p(S) < p(SU{v}) <p(S) + 1.

For SCVletcl(S)={veV:p(SU{v}) =p(S)} be the closure of S.
Claim 2.22. Let S C V. Then

1. § Ccl(S).

2. p(S) = plcl(9))
Proof.

1. For each v € S, S = S U {v}, therefore p(S) = p(S U {v}). Hence v € cl(S5).

2. Assume on the contrary that p(cl(S)) > p(S). Let I C S be an independent set
such that [I| = p(S), and J C cl(S) an independent set such that |J| = p(cl(S)). So
|J| > |I], hence by the augmentation property, there exists some v € J\ I such that
I'U{v} € Z. Therefore we obtain p(SU{v}) > p(IU{v}) = |[IU{v}| > |I| = p(5),
a contradiction to v € J C cl(5). O

A flat of M is a set F' C V such that cl(F) = F.

Claim 2.23. Let Fy C F; be flats of M. If p(F1) = p(Fy), then Fy = F;.

Proof. Assume that there is some v € Fy \ Fi. Since v ¢ Fy = cl(F1), we have
p(F1 U{v}) > p(F}), therefore p(Fy) > p(Fy U{v}) > p(F1), a contradiction. O
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A loop in M is a vertex v € V such that for any I € Z, v ¢ I. We say that M is
loopless if it does not contain any loop. From now on we will always assume that M is

loopless. Also, we will identify M with Z and treat it as a simplicial complex on vertex
set V.

Claim 2.24.
1. Let S C V. Then M][S] is a matroid.

2. Let c € M. Then 1k(M, o) is a matroid.

Proof. Both M|S] and 1k(M, o) are subcomplexes of M, therefore we only have to check
that the augmentation property is satisfied in both cases.

Let A, B € M[S] such that |A| > |B|. By the augmentation property in M, there
exists v € A\ B such that BU{v} € M. But v € A C S, therefore BU{v} € M[S]. So
M][S] is a matroid.

Let A, B € Ik(M, o) such that |A| > |B|. Then AUo, BUo € M, and |AUc| > |BUo|,
therefore by the augmentation property for M there exists v € (AUo)\ (BUo) = A\ B
such that BU {v} Uo € M. But this means that B U {v} € lk(M,0). So k(M, o) is

also a matroid. ]

The following result on the topology of matroids is well known:

Theorem 2.25. Let M be a matroid. Then H* (M;R) =0 for all k < p(M) — 2.

Proof. Denote r = p(M). We argue by induction on the size of V', the vertex set of M.

If [V| = 1 then M is just a point and therefore H* (M;R) = 0 for all k > —1.

Let |V| =n for n > 1. If p(M) = n, then V € M, therefore M is the complete
complex, and H* (M;R) = 0 for all £ > —1. Otherwise, let J € M be a basis of M,
and choose some v € V'\ J. Then J € M[V \ {v}], hence p(M[V \ {v}]) = r.

Let I be a basis of M containing v. So |I| = r and I \ {v} € lk(M,v), therefore
p(k(M,v)) > r —1.

By Proposition 2.8 we have the following exact sequence
oo = H1(k(M,v);R) — H* (M;R) — H* (M[V \ {v}];R) — -

By the induction hypothesis we have H* (M[V \ {v}];R) = 0 for all k <7 — 2, and
H* (Ik(M,v);R) = 0 for all k < p(Ik(M,v)) — 2, therefore H*~! (Ik(M, v);R) = 0 for
all k <r —2. Hence H* (M;R) =0 for all k < r — 2. O

Remark. It is in fact known that M is homotopy equivalent to a bouquet of (p(M)—1)-

dimensional spheres (see [6]).
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Chapter 3

Spectral gaps of complexes

without large missing faces

In this chapter we prove our main results on the spectral gaps of generalized flag
complexes. Section 3.1 contains some definitions and results that we will need, and

Section 3.2 contains the proofs of Theorems 1.2 and 1.3.

3.1 Missing faces and sums of degrees

Let X be a complex on vertex set V with h(X) =d. Let k > d and 0 € (k‘il) Define

T(G)—{ré(diJ:TgéX(d)}.

So T'(9) is the set of all d-dimensional simplices in # that do not belong to X, and § € X
if and only if 7'(0) = (). Let
Mis(0) = () =

TET(0)

and

TET(9)

Since every 7 € T'(0) has d + 1 vertices it follows that m (#) < d + 1. Another simple

observation is the following:

Lemma 3.1. Let 0,7 € X(k) such that [T No| = k. Then if c UT € X(k+ 1),
m(cUT) =0, otherwise 2<m(cUT) <d+ 1.

Proof. Denote 0 \ 7 = {v} and 7\ 0 = {w}. f cUT € X(k+ 1) then T(c UT) = 0,
therefore m(cU7T) =0. If cUT ¢ X(k+ 1), then every n € T'(c U 7) must contain
both v and w (otherwise 7 will be contained in o or in 7, a contradiction to n ¢ X (d)).
Therefore m (c UT) > 2. O
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The following is a known result on clique complexes (see [3, Claim 3.4], [5]):

Lemma 3.2. Let X be a clique complex with n vertices and let o € X (k). Then

Z degy (1) — kdegx (o) < n.
T€o(k—1)

We will need a version of this lemma for complexes without large missing faces:

Lemma 3.3. Let X be a simplicial complex on vertex set V. with h(X) =d. Let k > d
and o € X(k). Then

d+1
Z degx(r)=k+ 1+ (k+1)degx(c +Zr—1 HveV:m(vo)=r}.
T€o(k—1)

Proof.
D, degx(m)= 3> > 1=3, > 1
T€o(k—1) T€o(k—1) velk(X,T) veV reo(k-1),
Telk(X v)
=D 1+ > D> 1+ Y Y 1L (B
veo rea(k—1), velk(X,o) T€0(k—1), veV\o, t€o(k—1),
T€lk(X,v) Telk(X, v) vélk(X,0) T€lk(X,v)

We consider separately the three summands on the right hand side of (3.1):

1. For v € o, there is only one 7 € o(k — 1) such that 7 € 1k(X,v), namely 7 = o \ {v}.
Thus the first summand is k& + 1.

2. For v € Ik(X,0), any 7 € o(k — 1) is in lk(X,v), therefore the second summand is
(k+1)degx (o).

3. Let v € V'\ o such that v ¢ Ik(X,0). Let 7 € o(k— 1) and let u be the unique vertex
in o\ 7. If 7 € Ik(X,v) then every missing face of X contained in vo must contain
u, so u € Mis (vo). If 7 ¢ 1Ik(X,v), then there is a missing face of X contained
in v7, and therefore it doesn’t contain the vertex w. Hence, u ¢ Mis (vo). Since
v € Mis (vo), the number of 7 € o(k —1) such that 7 € 1k(X,v) is exactly m (vo) — 1.

Hence the third summand is

d+1
N mwe)-1) = - D{veV:mo)=r}|.
veV\o, r=2
vélk(X,0)
We obtain
d+1
Z degx (T —k+1+(k+1)degX(a)+Z(r—1)]{1}6 Vim(vo)=r}.

T€o(k—1) r=2
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A slightly different version of the previous lemma is the following:

Lemma 3.4. Let X be a simplicial complex with h(X) = d on vertex set V, where
[V|=n. Let k>0 and 0 € X(k). Then

> degx(r) = (k—d+1)degx(0) <dn— (d—1)(k+1).
T€o(k—1)

Proof. As in the proof of Lemma 3.3, we have

> degx(r)=(k+1)(degx () + 1)+ > Y 1
T€o(k—1) veV\eo, T€o(k—1),
vlk(X,o) T€lk(X,v)
Let v € V'\ o such that v ¢ 1k(X, o). For each 7 € o(k — 1) such that 7 € 1k(X,v), let u
be the unique vertex in o\ 7. Since v7 € X but vo ¢ X, u must belong to every missing
face of X contained in vo. Also v must belong to every such missing face, since o € X.

Therefore, since h(X) = d, we can have at most d such different vertices u, therefore
Hreok—1): T €lk(X,v)}| <d.
Thus we obtain

Z degx (1) < (k+1)(degx (o) +1) + Z d

T€a(k—1) veV\o,
vélk(X,0)

<(k+1)(degx(o)+1)+(n—k—1—degx(o))d
=dn—(d—1)(k+1)+ (k—d+1)degx (o).

3.2 Spectral gaps

In this section we prove Theorems 1.2 and 1.3.
Let X be a simplicial complex with h(X) = d on vertex set V', where |V| = n, and
let k> d. For ¢ € C*(X) and u € V we define ¢, € C*~1(X) by

ur) ifu ,T),
bu(r) = ¢(ur) € 1k(X,7)

0 otherwise.

Let By, : CF(X) — C*(X) be the linear transformation whose matrix representation in

the standard basis is

kdegx (o) =2y eo(k-1) degx (1) if o =1,
(Bilrg = | (m(oUT) =2) (010 n7)-(r:onr) if TG
0 otherwise.
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Let Ry = (d — 1)Ly — By, and let A\; be the largest eigenvalue of Ry.
The proof of Theorem 1.2 depends on the following two ingredients:

Proposition 3.5. Let ¢ € CF(X). Then

(k—d+1)(Lgg, &) = > (Li—16u, $u) — (R, &) -

ueV

Proposition 3.6. A\ < dn.

We postpone the proof of these propositions to the end of this section, and first show

how they imply Theorem 1.2.

Theorem 1.2. For k > d
(k—d+ Dpe(X) = (k + 1) pg—1(X) — dn.

Proof. Let 0 # ¢ € C*(X) be an eigenvector of Ly with eigenvalue pz(X). By Proposi-

tion 3.5 we obtain

(k —d+ 1)pe(X) [8]* = (k — d +1) (Lyo, 6)
= {Lk1¢u bu) = (Red, &) = 1 (X) Y loul® = e 19l

ueV ueV
But
Sleal?>=D" > eu(m)?= D > ur)?
ueV u€V reX (k—1) T€X (k—1) uelk(X,r)
=(k+1) > ¢(0)* =k+1) ).
ceX(k)
Therefore

(k—d+ 1)pe(X) = (k 4+ D pp—1(X) = Ay,
and by Proposition 3.6
(k —d+ )pup(X) > (k + 1)pp—1(X) — dn.
O

For the proof of Theorem 1.3 we will need the following result, which will also be

used in Section 4.1.

Claim 3.7. Fork>d—1,

0> (M o - ((51) <1) (3.2
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If in addition X has complete (d — 1)-dimensional skeleton, then there is equality in
(3.2) for0 <k <d-—1.

Proof. We argue by induction on k. The case k = d— 1 is clear. Let k > d. By Theorem
1.2 and the induction hypothesis we obtain

k+1 d
X)> St ) - —%
A )_k_d+1uk 1(X) P

PG ()]st
(e () )

Now assume that X has complete (d — 1)-dimensional skeleton, and let £ < d — 1.

Then we have (kzl) = 0, therefore the inequality in the claim is just ug(X) > n. But

one can see by Claim 2.10 that in this case Ly is the scalar matrix with diagonal elements
n, thus uk(X) = n. O

Theorem 1.3. If

fd—1(X) > (1 - <k jl_ 1) _1> n,

then H (X;R) =0 for alld—1 < j < k.

Proof. Let d —1 < j < k. We have by Claim 3.7

(3 e ((3)-)»

=
&
>
v

) () ) (03 )
() (00 ) ()
Thus, by Corollary 2.17, H’ (X;R) = 0. O

In order to prove Proposition 3.5 we will need the following claims.

Claim 3.8 (see [3, Claim 3.1]). For ¢ € C*(X)

ldegl® = > degx(a)p(0)* =2 > > ¢(on)d(wn).
)

ceX(k neX (k—1) vwelk(X,n)
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Proof.

ldep|? = > drp(r)*= ( > <r:01>¢<91>> ( > <7:02>¢<02>)

TeX (k+1) TeX(k+1) \01€7(k) O2€7(k)
= 2 Z O D DD (0T 62)0(60)6(62)
Te€X (k+1) ocer(k) TeEX(k+1) 01€7(k) O2€7(k),
02401
= ) deg(o)p(0)®+ D D D (T:61)(1:02)d(01)¢(6).
ceX(k) TeX (k+1) 61€7(k) O2€T(k),
02401

Now look at the map

neX (k=-1), reX (k+1
{no.u) il ks {(r00.00) 5, G205 )
defined by (1, v,w) — (vwn,vn,wn). For each (7,01, 62) in the codomain, let n = 6; N O,
{v} =61\ 02 and {w} =0\ 0;. (n,v,w) is the unique element sent to (7, 61,602). So

the map is a bijection, therefore we obtain

kgl = > degx(o

ceX (k)

+ 03 > S (vwn o) (vwn = wy)(vn)d(wn)
neX(k—1)veV weV\{v},
vwelk(X,n)

Z degy(0)o(0)? — 2 Z Z d(vn)p(wn).

ceX(k neX (k—1) vwelk(X,n)

Claim 3.9. For ¢ € C*(X)

Sldrdul’= D> D degx(r)p(0) =2k Y. > gur)p(wr)

ueV ceX(k) Te€a(k—1) TeX (k—1) vwelk(X,7)

-2 > ¥ > ¢ (vun)p(wun).

neX (k—2) vwelk(X,n) uelk(X,vn)Nk(X,wn)
uglk(X,vwn)

Proof. First we apply Claim 3.8 to ¢, € CF~1(X):

lde—16ul® = Y degx(T)éu(r)®> =2 > Y dulvn)du(wn).

reX(k—1) neX (k—2) vwelk(X,n)
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Summing over all vertices we obtain

S lldicadull> =D > degy(r)¢u(r)?

ucV ueV reX(k—1)

-2 Z Z Z Gu(vn) o (wn)

ueV neX(k—2) vwelk(X,n)

= > degy (7)o (ur)?

ueV reX (k—1)Nlk(X,u)

Y Y S olvun)swan)

neX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn)

Y ) degx(m)g(o)’

ceX(k) reo(k—1)

-2 Y3 > ¢(vun)g(wun).

neEX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn)

Let n € X(k —2), vw € 1k(X,n), and u € Ik(X,vn) N1k(X,wn). We split into two
different cases: u € Ik(X, vwn) or u ¢ 1k(X, vwn). Assume that u € lk(X,vwn), and let
7 = un. Then we have vw € 1k(X, 7). This defines a map

€X (k—2), . T€X(k—-1),
{(n,vw, u) vwelk(WX,n),(uelk)(X,vwn)} - {(T’ vw) : vwell(<(X,7)')} :

Each pair (7,vw) has a preimage of size k (these are the tuples (7 \ u,vw,u) for each

u € 7). Therefore we obtain

Molldiadull?= D> > degx(T)p(0)?

ueV ceX (k) T€o(k—1)

2 Y > > d(vun)g(wun)

neX (k—2) vwelk(X,n) uelk(X,vwn)

>y > ¢(vun)p(wun)

neX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn)
uglk(X,vwn)

Yoo D degx(Mo(0) =2k Y > d(or)d(wr)

ceX (k) rec(k—1) reX (k—1) vwelk(X,r)

-2 > > o (vun)¢(wur).

neX (k—2) vwelk(X,n) uelk(X,vn)Nk(X,wn)
ulk(X,vwn)

O]

Remark. If X is a clique complex and v € lk(X,vn) N1k(X,wn) for n € X(k — 2)
and vw € 1k(X,n), then all the 1-dimensional faces of the simplex uvwn belong to X,
therefore uvwn € X (i.e. u € 1k(X,vwn)). Therefore in this case the last term of the

previous equation vanishes (see [3, Claim 3.2]).
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Claim 3.10 (see [3, Claim 3.3]). For ¢ € C*(X)

S |di—atul|” =k || dp_ 0|

ueV
Proof.
2
ol = > diaetrP= > ( > ¢<”>>'
reX(k—1) T€X (k—1) \velk(X,r)
Similarly,

SolldiasulP =" > ( > ¢u<vn>)

ueV ueV neX(k—2) \velk(X,n)

> > ( > ¢<uvn)>

neX (k—2) uelk(X,n) \velk(X,un)
2
=k > | X en)] =kldiell’
TeX(k—1) \velk(X,T)
0

Let Ay, : C*(X) — C*¥(X) be the linear transformation whose matrix representation

in the standard basis is

A, = (m(ocUT)=2)-(6:0nNT)-(t:0n7) if ou‘ig;‘(klj-l)
0 otherwise.
Claim 3.11. For ¢ € C*(X)
(Arg,d)=2 > > > $(vun)d(wun).
neX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn),
uglk(X,vwn)

Proof.

(Ao, ¢) = Z Z (m(cUT)=2)(c:0onNT)(T:0N7)p(T)p(0)
reX(k)  oeX(k),
|loNT|=k,
oUT¢ X (k+1)

= > > > (m(vwh) — 2)(v0 : 0)(wo : 0)¢(v0)p(wh)
0eX (k—1) velk(X,0) welk(X,0),
vwh¢ X (k+1)

= Y Y (mowd) - 26wh)d(wh).

0eX (k—1) velk(X,0) welk(X,0),
vwhe¢ X (k+1)
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Let < be an order on the vertices of X. Look at the map

neX (k—2), vwelk(X,n), 0eX (k—1),
{(n,u, vw) : uElk(X,vn)Nlk(X,wn), } {(G,U,w) :v,welk(X,B),v<w,}
uglk(X,vwn) vwhe¢ X (k+1)

defined by (1, u,vw) — (un,v,w). Note that for any (1, u,vw) in the domain, we have
u, v, w € Mis (uvwn). Let (0, v,w) in the codomain, and let u € Mis (vwé) \ {v, w} and
n =0\ {u}. Then vw € lk(X,n) (since vwn doesn’t contain u, therefore can’t contain
any missing face). Similarly, u € Ik(X,vn) N1k(X,wn), but u ¢ 1k(X, vwn) (otherwise
uown = vwh € X(k+ 1)). Therefore (n,u,vw) is in the preimage of (0, v, w). Hence

(0,v,w) has a preimage of size m (vwf) — 2. So we have

(App, )= > D> Y (m(vwd) —2)¢(v0)d(wd)
e X (k—1) velk(X,0) welk(X,0),
vwd¢ X (k+1)

S S (m(owh) - 2)6(vh)é(wh)

0eX (k—1) velk(X,0) welk(X,0),
v<w,
vwl¢ X (k+1)

2 > > 3 é(vun)d(wun).

neX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn),
uglk(X,vwn)

Proof of Proposition 3.5. Let ¢ € C¥(X). By Claim 3.11 we have

(Brd o) = > (ksdegx > degx(r ) ¢(0)?
k)

ceX( T€o(k—1)

Yoo > ¢ (vun)p(wun).

neX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn)
uglk(X,vwn)

By Claims 3.8 and 3.9 we obtain

kllde)? =Y ldiordul® + D | kdegy(o) = > degx(r) | ¢(0)?

ueV oeX (k) T€o(k—1)

+20) > > ¢ (vun)g(wun)

neX (k—2) vwelk(X,n) uelk(X,vn)Nlk(X,wn)
uglk(X,vwn)

= ldi16ul® + (Brs, 6) -

ueV
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Then by the previous equation and Claim 3.10, we obtain

kLo, 8) = k (didio + dirdi_16,0) = k |[digl|* + & || dj_y 6|
=3 ldio16ul® + (Bro, o) + 3 ||di_odul|?

ueV ueV

= Z <Ll~c—1¢u, ¢u> + <Bk¢)7 ¢> :

ueV

Substracting (d — 1) (Li¢, ¢) from both sides of the equation we get

(k—d+1) (Li¢, ) = > (Li—16u, du) — (((d — 1)L — Bi)¢, ¢)

ueV

= Z <Lk71¢u7 ¢u> - <Rk¢’ ¢> ’

ueV

For the proof of Proposition 3.6 we will need the next result, which follows from the
definition of By and Claim 2.10.

Claim 3.12. The matriz representation of Ry, in the standard basis is

S ooy degx ()~ (k—d+1) degx () +(d-D)(k+1)  if 5 = T,

[Bilyr =4 (d+1—m(cUT)) (c:0nNT) - (T:0NT) ifautfg;‘(?il),

0 otherwise.

Proof of Proposition 3.6. Let K, be the (k+1)-dimensional simplicial complex on vertex
set V', with full k-skeleton, whose (k + 1)-dimensional faces are the simplices 1 € (kKQ)
such that m (n) = r. By Claim 2.10, we have

degy (o) ifo=r,
(L (KT)LW =49 —(c:onN7)-(r:0n7) if [oN7T|=km(cUT)=r,
0 otherwise.

HveV:moe)=r} ifo=r,
=4 —(c:on7)-(r:on7) if oN7|=km(cur)=r (3.3)

0 otherwise.

Denote by My, , the principal submatrix of [Lg (K r)] obtained by keeping only the rows
and columns corresponding to simplices in X (k). My, is a positive semidefinite matrix

(as a principal submatrix of a positive semidefinite matrix).
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Define a new matrix

d
My, = [Re] + > (d+1—7)My,.
r=2
Since My, is positive semidefinite it follows that Apmax(—Mj,) < 0 for all 2 <r < d

and therefore

d

Me = Amaxc([Br]) < Amax(Mi) + > (d+ 1= 1) Amax(— M) € Amax (M), (3.4)
r=2

By equation (3.3), Lemma 3.1 and Claim 3.12 we see that the matrix My is diagonal,

and

(Mp)oo =Y degx(n) — (k—d+1)degx (o) + (d = 1)(k +1)
neo(k—1)
d
+Z(d+1—r)-|{v€V:m(va):r}|.
r=2

Let 0 € X (k). We can write
degx(o) =[{veV:velk(X,o)}|
and
E+1=[{veV:veo}],
and by Lemma 3.3
Z degx(n) ={veV:veo}+(k+1)-{veV:velk(X, o)}
neo(k—1)

d+1

+Z(r—1)-[{v€V:m(va):r}|.

r=2
Hence,
(Mi)oo=d-{veV:iveo}|+d- {veV :velk(X, o)}
d+1
—i—Zd-]{vEV:m(va):rH <d-|V|=dn.

r=2

Therefore Apax(My) < dn, so by inequality (3.4): A\ < dn. O
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Chapter 4

Vector domination and geometric

Hall type theorems

In this chapter we show some applications of our main results. In Section 4.1 we prove a
new lower bound on the connectivity of a simplicial complex X, depending on its vector
domination number I'(X). Then in Section 4.2 we apply this bound to find sufficient

conditions for the existence of colorful sets in general position in a matroid.

4.1 Vector domination

In this section we study the vector domination number I'(X) of a simplicial complex X,
leading up to the proof of Theorem 1.6 that provides an upper bound on I'(X) in terms
of the homological connectivity of X.

First we prove Proposition 1.5, relating I'(X) to the total domination number 5(X).

Proposition 1.5. Let X be a simplicial complex with all its missing faces of dimension

equal to d. Then

Proof. Let S be a totally dominating set in X. Let 0 € S(X) = (dl/l). Let f, be the
characteristic vector of S\ o. Define a, = é foif o C S, and a, = 0 otherwise. Then

for every vector representation P of X and every w € V we have

S ac(W)Pr(v) - Po(w) = > Y %Pg(v)-Pg(w).

ceS(X)veV ge(dfl) veS\o

S is totally dominating, therefore there is some 7 C S such that 7 € X but wr ¢ X.
Since all the missing faces are of dimension d we must have |7| > d, and by taking a

subset if necessary we may assume |7| = d. For every o € ( dil)’ let u be the unique
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vertex in 7 \ 0. Then wuo = w7 is a missing face of X, thus P,(u) - P,(w) > 1. Hence

S Y Re Rwz Y S=d=1

‘76(451) veS\a o€(y7y)

S0 > ses(x) ag Py P > 1, therefore {ag},e5(x) is dominating for P. So we have

PE Y Y- XA (S)EE ()

ceS(X)veV (df )vGS\a
Therefore I'(X) < (;’(5()). O

Let X be a simplicial complex on vertex set V. For each i € Jx, let X; be the
complex on the same vertex set, whose missing faces are M x (7). Note that X; has full
(¢ — 1)-dimensional skeleton and X = Xi.

We want to bound the spectral gaps of X by the spectral gaps of the complexes Xj.

icJx
We will need the following lemma:

Lemma 4.1. Let Ay,..., Ay, be simplicial complexes on vertex set V', where |V| = n.
Then for all k > 0

(Mt A) > Zuk(Ai) — (m —1)n.
=1

Proof. We argue by induction on m. For m = 1 the statement is trivial. Assume m = 2.
For any complex C' on vertex set V' containing A; N As, denote by f)k(C) the principal
submatrix of [Ly (C)] obtained by keeping only the rows and columns corresponding to
simplices of A1 N As.

We have Amin(Lr(C)) > pr(C) and Apax(Li(C)) < Amax(Li (C)) < n (by Lemma
2.11).

We will check by Claim 2.10 that

[Lk (Al N AQ)] = ik(Al) + ik(Ag) — ik<A1 U AQ)
Let 0,7 € (A1 N Ay)(k). We consider the following cases:

e If 0 = 7 then

[Li (A1 N A2)], , = dega,na,(0) +k+1
={ne(AinA)k+1): o Cn}|+k+1
={neAik+1):oCnt+[{neA(k+1): o Cn}f
—H{ne(AiUA)(k+1): o Cnt+k+1
= [Li (A1)]y o + [Li (A2)], 0 — [Li (A1 U A9)],
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If |oN7| < k then
[Lk (Ar N A2)l, = [Li (A1)],, = [Li (A2)],,» = [Lk (A1 U A2)],, . =0,
so in particular

[Li (A1 N A2)], - = [Li (A1)l » + [Lk (A2)],, — [Lk (A1 U Ag)], .

IfloNn7|=kand cUT € (A1 N Ag)(k + 1), then again

[Li (A1 0 Ag)],, . = [Li (A1)],,, = [Li (A2)], , = [Li (A1 U Ag)], . =0,

(L (A1 N A2)], . = [Li (A1)], , + [Li (A2)], » — [Li (A1 U A2)],, .

IfloNnt|=kand o UT ¢ (A1 N A2)(k + 1), then either c UT € (41 U A2)(k+ 1) or
ocUT ¢ (Al UAQ)(k+1).

In the first case we can assume without loss of generality that o U7 € A1(k + 1) but
oUT ¢ Ag(k+1). Then

[Li (A1), + (L (A2)],, — [Lr (A1 U A2)],
=0+ (c:on7)-(r:0N7)—0=[Lg (A1 NA)], .

In the second case we must have c UT ¢ A1(k+ 1) and o U7 ¢ Aa(k + 1), therefore

[Lk (A1 N Ag)], = [Lk (A1)],
= [Lk (A2)l,, = [Lk (A1UA)], = (0:0nT) - (T:0NT),

(L (A1 N Ag)], - = [Li (A1)],, - + [Li (A2)], , — [Li (A1 U A2)], .

Hence [Lk (Al N Ag)] = Ek(Al) + f/k(AQ) - Ek(Al U AQ), therefore

(1 (A1 0 Ag) > Anin (L (A1) + Amin (L (A2)) — Amax(Li (A1 U Ag))
> (A1) + pe(Az) — n.

For m > 2 we obtain by the case m = 2 and the induction hypothesis:

pe (Nt Ai) > e (Ar) + pe(NityAs) —n

> (A1) + (ZHk(Ai) —(m - 2)”) —n=y m(Ai)— (m—1)n.
=2 i=1
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O

For i € Jx let Y; be the i-dimensional complex on vertex set V' with full (i — 1)-
dimensional skeleton whose i-dimensional faces are the sets in Mx(i). Denote the

maximal eigenvalue of L™ | (V;) by AL, (X).

Claim 4.2. For alli e Jx

pie1(Xi) = n = A (X).

Proof. By Lemma 2.12 we have L] | (Y;) = nl — L;i—1 (X;). So every eigenvector of
L;_1 (X;) with eigenvalue A is an eigenvector of of thl (Y;) with eigenvalue n — A. In

particular, n — p;—1(X;) is the largest eigenvalue of L | (). O

Claim 4.3. For k >0,
k+1) .,
:U'k(X) >n— Z < i >)‘max(X)'
1€Jx

Proof. By Lemma 4.1 we obtain

k(X)) = pr(Nics Xi) = > m(X3) = (|x| = 1)n.
i€Jx

Applying Claim 3.7 to each of the complexes X; (note that h(X;) =i and X; has full

(i — 1)-dimensional skeleton) we get
)2 3 (T e - (("71) =1) ] - sl - 0

Then by Claim 4.2

w02 5 |(M7 )0 = (77 1) ] = 0x1 - 0m
=n- Y (k JZF 1) M (X).

i€Jx

Claim 4.4.

> (" ) 2 0

i€Jx

Proof. Let k be the integer such that



Let j <k — 2. By Claim 4.3,

therefore by Corollary 2.17 we have H; (X;R) = 0. So n(X) > k, thus

= (4 > 5 (=

i€Jx ie€dx

Claim 4.5. Leti € Jx. Then for ¢ € C*1(Y;),

(Lf (Yi) ¢, 0) < Z Z (¢(vo) — p(wa))>.

Ue(z“—/l) vwelk(Y;,0)

Proof.

> Y (9(vo) — d(wo))?

c€Y;(i—2) vwelk(Y;,o)

= > Y degy(vo)e 2 ). Y. ovo)e(w

o€Y;(i—2) velk(Y;,0) o€Y;(i—2) vwelk(Y;,0)

> degy(mom)?*—2 D> Y. bvo)p(wo

neY;(i—1) c€Y;(i—2) vwelk(Y;,0)

By Claim 3.8 we have

(L (Vi) ¢, 0) = ||di10||

= Z degy, (n)¢(n)* — 2 Z Z ¢(vo)d(wo).

neY;(i—1) o€Y; (i—2) vwelk(Y;,o)

Hence

(LE (V) ¢0) = > Y. (9(vo) — ¢(wa))?

o€Y;(i—2) vwelk(Y;,o)

(i —1) Z degy, (n)d(n)* < Z Z (¢(vo) —

neY;(i—1) o€Y;(i—2) vwelk(Y;,0)

Y; has full (i — 1)-dimensional skeleton, therefore Y;(i — 2) = (Z‘_/l) Thus

(LE )eey< > D (6(vo) = g(wo))?

ce (1\—/1) vwelk(Y;,0)

41
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Claim 4.6. Let P be a vector representation of X. Then for alli € Jx

Mnax(X) < i+ max <Pg(v)-ZPU(w)).

o€(,Y,) vev weV

Proof. Let ¢ € C*=1(Y;). For o € Y;(i —2) = (Z‘_/l) and v,w € V' \ 0, v # w, we have, by
the definition of P, P,(v) - P,(w) > 1 if vw € k(Y;,0), and P,(v) - P,(w) > 0 otherwise.

Therefore we obtain

S (6e) - dwa))
Je(iyl) vwelk(Y;,0)
<5 Y Y (Blo) - 6(we)*Ey(v) - Brlw)
oe(iyl) v,weV\o
2

= > ) 6wo)’Pa(v)- > Prlw)— Y.

oe(,V,) veV\e weV\o oe(,V) llveV\o
< Z Z ¢<’UO’)2PU<’U)- Z P, (w)

o€ (1Y1) veV\o weV\o
< ¢(vg)2 . max P, (v) - P, (w). (4.1)

Since Y; has full (¢ — 1)-dimensional skeleton, we have

Y Y swe?= Y S swe=i Y em?=illél’. (42)

ae(iyl) veV\o o€Y;(i—2) velk(Y;,0) neY;(i—1)

Combining (4.1),(4.2) and Claim 4.5 we obtain

(L (Yi) ¢, 0) < Z Z (¢(vo) — d(wa))?

”E(i:) vwelk(Y;,0)

<illel?s e Pov)s 30 Polw)

(1)) veV\o weV\o
<ifglP - max  Py(v)- Y Py(w)
oe(,0y), weV

Thus

l
Mo (X) = max W <i- max (Pg(v) . Z Pg(w)> .

max ’
0#£peCi—1(Y;) ae(i‘:l),ve\/
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Lemma 4.7. Let P be a vector representation of X. Then
|Pl=max{a-1: a>0aP,PI <1 VoeS(X)}.

Proof. Let o1,...,0m be all the sets in S(X). For each i € [m] let 4; = P,,PL €
RIVIXIVI Note that A; = AZT. Define the matrix

A= (A1]As] - |An)T € ROWDXIVI,

Let x € R™VI. Write & = (g |0t | - - - |, ), where a,, € RIVI for each i € [m]. We
have m
TA = ZanAi = Z ozaPan,
=1 ceS(X)
therefore

|P| = min { Z ay-1: a, >0Ve e S(X), Z asP,PT > 1}
aeS(X) ceS(X)
=min{z-1:2>0,2zA>1}.
By linear programming duality

|P|=max{y-1:y>0,yAT <1}.

But yAT = (yAi|yAs|---|yAn), so yAT < 1 if and only if yA4; < 1 for all i € [m].
Therefore
|Pl=max{y-1:y>0,yP,PT <1 VYoecS(X)}.

O
Let Z, denote the positive integers, and Q4 the positive rationals. Let a € ZK and
Vo={(v,0)):veV,1<i<a(v)}.
Define the projection 7 : V, — V by 7((v,4)) = v, and let
Xo=m'X)={oCV,: m(0) € X}.

The missing faces of X, are the sets o C V, such that |7(¢)| = |o| and 7(¢) is a missing
face of X.

Claim 4.8. For all k> —1

HY (X;R) = H* (X4;R).
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Proof. We argue by induction on N = |V,|. If N = n then x is an isomorphism of

simplicial complexes, and the claim is trivial.

Assume N > n. Then there must be some v € V such that |77 1(v)] = ¢t > 2.
Note that V; \ {(v,t)} = Vu, where a/(u) = a(u) for all u € V other than v, and
a'(v) = a(v) — 1. Therefore X[V, \ {(v,t)}] = Xa[Vr] = Xo. So by the induction
hypothesis we have for all £k > —1

H" (Xa[Va \ {(v,)};R) = H" (X,;R) = H* (X;R).

In addition, each maximal face o of 1k(X,, (v,t)) contains the vertex (v, 1) (since for
every 7 € Xg, if (v,t) € 7 then 7(7 U {(v,1)}) = (1) € X, hence 7 U {(v,1)} € X,).
So 1k(X,, (v,t)) is a cone over the vertex (v, 1), therefore H; (Ik(X,, (v,t));R) = 0 for
all j > —1.

By Proposition 2.8 we obtain for all £ > —1

a* (XG;R) = A" (Xa[va\{(vat)}];R) = H* (X7R)

Remark. It can be shown that 7 induces a homotopy equivalence between X, and X
(see [16, Lemma 2.14]).

Theorem 1.6.

Proof. Let P = {PU}UeS(X) be a vector representation of X. Let a € QK such that
aP,PT <1 for all 0 € S(X). Write @ = a/k where k € Z; and a € ZY. Denote
N = |Va| => ey a(v). For o € S(X,) and (v,j) € V; define

Qo ((v,5)) = Proy(v) if |n(o)| = |o],

0 otherwise.

Q={Q,: o€ S(X,)} is a vector representation of X,: Let o € S(X,) of size r — 1,
and let 0 = (v,4),u = (u, j) € V, such that oo € Mx,(r). Then n(uvo) = uvn(o) €

Mx (7). In particular |7(o)| = |o|, therefore, since P is a representation of X,

Qo (D) - Qo) = Py (v) - Proy () > 1.
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Let r € Jx. By Claim 4.6

)‘7r;1ax(Xa) <r- max QU((Uvj)) ’ Z QU((w7 k))

% .
UE(T_Cll),(U7])6Va (w’k)eva

= . max (PT(U) . Z a(w)PT(w)> <r-k.

re(,V,)wev weV

By Claim 4.4 we obtain

3 (”(fa>>r-k2 3 (”(f“)>k’r}1ax(Xa)2N-

TGJXa

Therefore

reJx

the last equality following from Claim 4.8. Thus by Lemma 4.7

|P|=max{a-1:a>0,aP,Pl <1Vo € S(X)}

=sup{a-1: OJGQK, ongPaT <1Vo e S(X)} < Z 7“<n(i<)>v

reJx

therefore I'(X) <> ;. r(”(X)). O

r

For the proof of Theorem 1.7 we need the following Hall-type condition for the

existence of colorful simplices, which appears in [4, 17], and more explicitly in [18]:

Proposition 4.9. Let Z be a simplicial complex on vertex set W = U, W;. If for all
0#1cC[m]
n(Z[WierWi]) > |1

then Z contains a colorful simplex.

Theorem 1.7. If for every ) # I C [m)]

Il -1
D(X[WietVi)) > ) 7“<‘ ’r >,
TE€JIX ;e Vi)

then X has a colorful simplez.

Proof. Let () ## I C [m]. By Theorem 1.6 we have

$ 7"<n(X[UieIVi]>)>ZF(X[Uz’e[V%])> 3 T(;Iy—1>7

T T
TE€JIX[u;e Vi) T€IX (e Vi)
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therefore
N(X[WierVi])) > || - 1.

Thus by Proposition 4.9 X has a colorful simplex. O

4.2 Colorful sets in general position

In this section we apply our results to prove Theorems 1.10 and 1.11.

First we prove Lemma 1.9:

Lemma 1.9. ¢3},(S) > ¢oum(S5).

Proof. Let f be the characteristic function of a set S’ C S in general position. Let
1 <k <d, and let F be a flat of M of rank k£ and ¢ C F NS of size k — 1. Then

Y fw)={ves :dwr)=F} <|SNF|l<k<d,

veS,
cl(vo)=F

so f is in fractional general position. Therefore

©m(S) > e (9).
O

Let M be a matroid of rank d + 1 on vertex set V. Let M be the simplicial complex
on vertex set V' whose simplices are the subsets S C V in general position with respect
to M. The missing faces of M are the dependent sets S C V with |S| < d 4 1 such that
any |S|— 1 points in S are independent in M.

Claim 4.10. For U C V,
eu(U) < d-T(M[U]).

Proof. We construct a vector representation of the complex M[U]. Let 1 < r < d and
let F, be the set of flats of M of rank 7.
Let 0 € S(M[U]) with |o| = — 1, and let v € U. Define P,(v) € R”" by

1 if cl(vo) = F,
Py(v)(F) = ‘
0 otherwise.

For v,w € U, if vwo is a missing face of M[U] of dimension r then vwo lies in a flat of
rank r, which is spanned by any r points in vwo. In particular cl(vo) = cl(wo) € F,
therefore

P,(v) - Py(w) = 1.

Hence P is a vector representation of M[U].
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Let f: U — Rxg be a function in fractional general position with Y _; f(v) =
¢4, (U). Define a € RY by a(v) = f(v)/d.

Letw € U, and let F' = cl(wo). If F' ¢ F; then P, (w) = 0, therefore Y _; a(v) Py (v)-
P,(w)=0<1. If F € F, then

S 0B Bw) = Y a) =5 3 fw)<1
vel vel, veU,
cl(vo)=F cl(vo)=F

So aP, P <1 for each o € S(M[U]), therefore by Lemma 4.7

em(U)
s

D)) > Pl > a-1=

Theorem 1.10. If for every O # I C [m]

-1
SHEMOET) ol (|
r=1

then V' contains a colorful subset in general position.
Proof. Let () # I C [m]. By Claim 4.10
~ o (Uier Vi) d ] -1
D(M[WierVi]) > g ZT( . )

r=1

Thus by Theorem 1.7 there is a colorful simplex of M, i.e. a colorful subset of V in

general position. O

Theorem 1.11. If for every O # I C [m]

Il —1 if [I] < d+1,

om(YierVi) >
di (Y i 2 d 2,

then V' contains a colorful subset in general position.

Proof. Let ) # I C [m]. Assume |I| < d + 1. The d-dimensional skeleton of M[Jie;V;]
is M[U;erVi], therefore for all 0 < k <d—1

a* (M[uiefvi];R) — H* (MU Vi R).

M|[U;eV;] are matroids, therefore by Theorem 2.25 H* (M|[W;c Vi]; R) = 0 for 0 < k <

p(WierVi) — 2. Hence n(M[UieVi]) > p(WiesV;). But
p(UicrVi) = min{d + 1, pp(Uier Vi) },
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so if par(Wier Vi) > (I — 1, then n(M[WiesVi]) > |1] — 1.
Assume now that |I| > d+ 2. If opr(UierVi) > dezl r(‘ltl) then, by Lemma 1.9,
on(Wicr Vi) > dezl r(m*l), and therefore by Theorem 1.6 and Claim 4.10

r

d ViisP g ~ . | . )
;T<77(M[Lizelvz])) > T(M[Uie Vi) > Sé’M(UdzeIVz) . ;r<|ﬂr 1>’

so n(M[JserVi]) > |I| — 1. Therefore by Proposition 4.9 there is a colorful subset of V'
in general position. O

The following claim shows that Theorem 1.11 implies Theorem 1.8:

Claim 4.11. Let k > d. Then

ir<k;1> . <2kd— 2)_

Proof. By Vandermonde’s identity

s ()

Thus

:10((’2:1)—) <kr1>0<d1><kd1)
=S () ) () ()

() - (0)

Therefore it is enough to show that for each 0 <r < d—1

o) ()= () (30 »

For r = 0 the inequality trivially holds, therefore we may assume r > 1. Let

[e=]

F={(AB):ABCk-1,|Al=d—r|B=r}
and
H={(c,C):CCk—-1],|C|=r,ceC}u{D:DcClk—1],|D|=d}.
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We have |F| = (Z:i) (kzl) and |H| = r(k;l) + (kgl). We will show that there exists an
injection ¢ : H — F, and thus inequality (4.3) holds.

For (¢,C) € H, take d — r — 1 elements in [k — 1] \ C (there are such elements since
[k =1 \C|=k—1—r>d—r—1.) Define A to be the union of these elements and
the singleton {c}. Define ¢(c,C) = (A4, C).

For D € H, let A, B be any partition of D with sizes |A| = d—r, |B| = r, and define
#(D) = (4, B).

Now we show that ¢ is injective: Let (A, B) € ¢(H). If ANB = ) then ¢—1(A, B) =
AU B. If the sets intersect, let ¢ be the only element of AN B, and then ¢~1(4, B) =
(¢, B). O
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Chapter 5

Minimal degrees and spectral

gaps

In this chapter we prove Theorem 1.13 and its corollary Proposition 1.12. We also
present examples showing that the inequalities in Theorem 1.13 are tight. In the case

of clique complexes we characterize all the extremal examples.

Theorem 1.13. Let X be a simplicial complex with h(X) = d on vertex set V', where
V| =n. Let k > 0 and let 0;,(X) denote the minimal degree of a simplex in X (k). Then

(X)) > (d+1)(0(X) + k + 1) — dn.

Proof. By Claim 2.10, for o € X (k)

(L (X)]5p = degx (o) + k + 1,

and
S ‘[Lk(X)]a,n ={neXk):lonn =k oun¢X(k+1)}
nen);égykh
= Z HveV\o:velk(X,7),v¢lk(X, o)}
T€o(k—1)
= Z (degx (1) —1 —degx(0))
T€o(k—1)
= Z degx (1) — (k+ 1)(degx (o) + 1).
T€o(k—1)
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By Gersgorin’s Theorem (Theorem 2.4) we obtain

pe(X) 2 min | (L (X)), = D0 |12 (X)]

= i d k+1-— d k+1)(d 1
aén)?(lk) egy (o) +k+ Z egx () + (kb + 1)(degx (o) + 1)

T€o(k—1)
= min | (k+2)degy(o)+2(k+1 Z deg (T
oeX (k) T€o(k—1)
(5.1)
Recall that by Lemma 3.4 we have
> degx(r) = (k—d+1)degx(0) < dn— (d—1)(k+1). (5.2)

T€o(k—1)

Combining (5.1) and (5.2) we obtain

pur(X) = Ug}?k) ((d+1)(degx (o) + k +1) —dn)

=(d+1)(0x(X)+k+1)—dn, (5.3)
as wanted. O

We obtain Proposition 1.12 as a corollary:

Proposition 1.12. Let X be a simplicial complex on n vertices with h(X) = d. Then
H* (X;R) =0 for all k > ﬁ‘lln— 1.

Proof. Let k > #‘lln — 1. By Theorem 1.13 we have

pe(X) > (d+1)(k+1) —dn > (d—l—l)dji_ln—dn:().

So by the simplicial Hodge theorem (Corollary 2.17), H* (X;R) = 0. O

The following example shows that the inequality in Theorem 1.13 is tight:

Example. Let X1,..., X; be simplicial complexes isomorphic to Afid_l), i.e. the bound-
ary of the d-dimensional simplex. Let Y be isomorphic to A,_1, the complete complex
on r vertices. Let X = X1 % Xo*---x X; %Y. Let n = (d + 1)t + r, the number of
vertices of X. Note that all the missing faces of X are of dimension d, and X is of
dimension dt +r — 1 =n —t — 1. By Theorem 2.13

. —1<i1eyig <d—1,
pue(X) = min § g, (X1) + o0+ 3, (Xe) + p5(Y) 0 —1<j<r=1, 5.
i1t tj=k—t
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By Claim 2.18 we have

d+1 if —1<j<d-2,

i (Xi) = . ,
0 if j=d-—1,

and p1;(Y) =r for all =1 < j <r — 1. Therefore p1,(X) = n —m(d+ 1), where m is the
maximal number of indices in 41, ..., 7 that can be chosen to be equal to d — 1. That is,
m is the maximal integer between 0 and ¢ such that there exist —1 < 41,...,4—p < d—1

and —1 < 5 <r — 1 satisfying

m(d—1)+i1+-+ie—m+j=k—t

We obtain
[BEL] i 1<k <dt—1,
m =
t if dt<k<dt+r—1.
So
(d+1)(t—|[EL]) +r if —1<Ek<dt—1,
e (CERNCRE )

r if dt<k<dt+r-—1.

Let’s consider now the degrees of simplices in X: For each o € X(k), degy (o) =
n— (k+1)—s(o), where

s(o)=1[{ie€t]: |oNV(X;)|=4d}]|.
So the minimal degree of a simplex in X (k) is

—(k+1) =B if —1<k<dt—1,
5k(X):n( R -
n—(k+1)—t if dt<k<dt+r—1.

Therefore 0x(X) =n — (k+ 1) — m, thus
(d+1)((X)+k+1)—dn=mn—(d+1)m = u(X).

Hence X achieves equality in the inequality of Theorem 1.13 in all dimensions.

Now we look at the case d = 1. If X is a clique complex with n vertices, then by
Theorem 1.13 we have p(X) > 2(k+146,(X)) —n for all £ > 0, and we found a family
of examples achieving equality in all dimensions. In particular, at the top dimension we
get pg(X) = 2(k+ 1) — n. The next proposition shows that these are the only extremal

examples:

Proposition 5.1. Let X be a clique complex on a vertex set V of size n, such that
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pur(X) =2(k+1) —n for some k > 0. Then
X = (ASO))*(nikil) * AQ(k—l—l)—n—la
Proof. By (5.1) and (5.3) we have
2k +1) = n = uy(X)

> H;{lk) (k+2)degx (o) +2(k+1) E degx (T
(S
T€o(k—1)

> min (2(d E41) —
70g§?k)((egx(0)+ +1)—n)

>2(k+1)—n.

So all the inequalities are actually equalities, therefore there exists some o € X (k) such

that

Z degx(7) — kdegx (o) =n
T€o(k—1)

and degy (o) = 0. By Lemma 3.3 we have

> degy(r)=k+1+ (k+1)degy(o) + [{v eV \o: m(vo) =2}
T€o(k—1)

=|o|+{veV\co: m(vo)=2}.

So {veV\o: m(veo) =2} =n—|o| =|V\o|, hence for every vertex v € V' \ o there
is exactly one vertex u € o such that uv ¢ X(1).

Let t =n — k — 1. Denote the vertices in V' \ o by v1,...,v;. For each v; denote by
u; the unique vertex in o such that w;v; ¢ X(1).

Let U =0\ {ui,...,u } and r = |U|. Each vertex in U is connected in the graph
X (1) to any other vertex. Therefore, since X is a clique complex, we have X = X[U]*Y,
where Y = X[V \ U].

But X[U] = A,_1, therefore u;(X[U]) = r for all =1 < i <r —1, so by Theorem
2.13:

(X)) = L i 1i(X[U]) + p5(Y)

=7+ min{y;(Y) : max{—1,k —r} <j <min{k,dim(Y)}} >r. (5.4)
If the vertices uq,...,u; are not all distinct, then we have
r>lol—t=k+1—(n—k—1)=2(k+1) —n=pup(X),
a contradiction to (5.4). Therefore uq,...,u; are all different vertices, so r = pi(X).
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This implies that the inequality in 5.4 is an equality. So there exists some j > k —r
such that 1;(Y) = 0. But by Theorem 1.13 we have for all j > k —r:

(V) 22+ 1) = (n—7) =2+ 1)~ 2k —r +1)
>2(k—r+1)—-2(k—r+1)=0.

Hence we must have yy,_,(Y) = 0. Therefore H*~" (Y;R) # 0, so by Theorem 2.9 we

obtain

fl(Y)Z4<k_T+1>-

2
But we already have t = k —r + 1 edges u;v; ¢ Y (1). Therefore

L) < <n;r) Ch—ri1)= (2(k—27«+1)> k-7 1)

:2(k-r+1)(k—r):4<k;“>.

So f1(Y) = 4(k_£+1), therefore the edges uiv1, ..., uv; are the only missing faces of Y.
Thus

*(n—k—1)
Y:{u17v1}*{U27’U2}*-..*{ut7vt}% (AS_O)) .

*(n—k—1
Hence, X = (Ago)) ( ) * Ap_1. O
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Chapter 6

Some families of complexes

without large missing faces

In this chapter we introduce some families of generalized flag complexes arising from
different finite geometries. We prove some basic facts about this complexes and show
the results of computer calculations for some examples. Based on these results we
then make some conjectures about the spectral gaps and cohomology groups of these

complexes.

6.1 The class of L(d,r,m) complexes

Let d,r,m be integers, such that d > 1, r > d+ 1. Let H = (V, E) be an r-uniform
hypergraph such that any two of its edges intersect in at most m vertices. Let M be
the collection of all subsets of size d + 1 of the edges in E, and let X be the simplicial
complex on vertex set V' whose set of missing faces is M.

We will call H the underlying hypergraph of X. Since all the missing faces of X are
of dimension d, we have h(X) = d.

Denote by £(d,r, m) the family of all the simplicial complexes constructed this way.

In this chapter we will first prove some simple facts about complexes in L£(d,r, m),
and then we will present some families of complexes that we believe have interesting
spectral or homological properties. In particular we present a family of examples that

we conjecture are extremal with respect to Theorem 1.3.

Theorem 6.1. Let X € L(d,r,m) form <d—1, and let H = (V, E) be its underlying
hypergraph, with |V| =n. Then

Specy (X)={n—r,n—r,...;n—7, n,n,...,n }.
E1(3") (D-121-("3")
times times

In particular pg—1(X) =n—r.
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Proof. Note first that every o € X(d—1) = (Z) is contained in at most one edge e € F,

since otherwise there would be two edges e1,es € E such that
lexNesf > ol =d>d—1,

a contradiction tom < d — 1.
For each e € E, let

er{an(d—l):aCe}:<2>.

Define also
Fl={oceX(d-1):oc¢ge Vee E}.

So UeepFe U F' is a partition of X (d — 1). We will show that [L;_1 (X)] is a block

diagonal matrix, with blocks corresponding to this partition:

e Let 0 € F'. Then
degx (o) =n—lo|=n—d,

since if there existed some v € V' \ ¢ such that vo ¢ X, then vo would be a missing
face of X, therefore vo C e for some e € E, a contradiction to o € F'. Therefore by
Claim 2.10

[Li1(X)],, =n—d+(d—-1)+1=n.

Let 7 € X(d — 1) such that [oN7| =d—1. Then o UT € X(d), since otherwise
o U7 would be a missing face of X, therefore o U7 C e for some e € F, again a
contradiction to o € F'. Therefore by Claim 2.10

Lot (X)), =0
for any 7 # 0. So the faces in F' form a diagonal block L' = nI in [Ls—1 (X)].
e Now let e € E and let 0 € F.. We have
degy(0) =n—r,

since for each v € e\ 0 we have vo C e, therefore vo ¢ X, and for each v ¢ e, vo isn’t
contained in any edge of H (since otherwise o would be contained in two different

edges), therefore vo € X.

Let € € E\{e} and 7 € F; such that [cN7| = d—1. Assume that cUT ¢ X (d). Then
oUT C € for some ¢ € E. But then 0 C o UT C €, therefore ¢/ = e (since o C e,
and it can be contained in at most one edge). But similarly, 7 C o0 U7 C ¢, therefore
¢/ = €, a contradiction. So 0 Ut € X(d), therefore by Claim 2.10 [Ly_1 (X)}U’T =0.
So the faces in F, form a diagonal block L. in [Lg—1 (X)].
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Let 7 € F.. Then o Ut C e, therefore by Claim 2.10

n—r+d ifo=r,
[La-1 (X)],, =S (c:onT)(t:0n7T) if|lon7|=d—1,

)

0 otherwise.

Therefore L, = (n — 1)1 + [Le1 (A5")]. By Claim 2.18, Loy (A%Y) has
eigenvalue 0 with multiplicity _(7;1), and all the rest of the eigenvalues are equal to r.

Therefore the block L. has eigenvalue n — r with multiplicity (7;1), and all the rest

of the eigenvalues are equal to n. Since there are |F| such blocks, we get

Specy,_1(X)={n—rn—r,...;n—7, n,n,...,n },
B-(3") ()-1E-(")
times times
as wanted. ]

We next specialize to the case m = 1. Here we give a necessary condition for a
complex in L£(d,r, 1) for achieving equality in Theorem 1.2:
Let X € L(d,r,1). We will call a simplex o € X (k) scattering if

HveV\o:m(vo)=1} =0.

Equivalently, o is scattering if for any two edges e1, eo of its underlying hypergraph
such that |e; No| = d and |e2 N o| = d, we have (e; Ne2) \ o = 0 (that is, the edges
intersect inside o, or not at all).

Denote by Sci(X) the set of all scattering faces of X of dimension k, and let
SC(X) = Ug SCk(X)

Claim 6.2. Sc(X) is a subcomplex of X.

Proof. Let 0 € Sc(X), and let 7 C o. Let e1,es be two edges of the underlying
hypergraph such that |e; N 7| = d and |e2 N 7| = d, and assume that there is a point
u € (egNez) \ 7. But |egyNo| > d and |e2 No| > d, therefore since o is scattering, u € o.
But then we obtain |e; No| = d + 1, a contradiction to o € X. So (eg Nez) \ 7 =0,

therefore 7 is scattering. O

Theorem 6.3. Let X € L(d,r,1), and let H = (V, E) be its underlying hypergraph,
with |V| =n. Let k > d and assume that

(k—d+1pe(X) = (k+ Dpp—1(X) — dn,
i.e. there is equality in the inequality of Theorem 1.2 in dimension k. Let ¢ € CF(X) be
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an eigenvector of Ly (X) with eigenvalue pui(X). Then
{o € X(k): ¢(0) # 0} C Sci(X).

In particular, a necessary condition for X to achieve equality in Theorem 1.2 for
some k > d is the existence of scattering simplices of dimension k.

For the proof we will need the following Lemma:

Lemma 6.4. Let X € L(d,r,1) with underlying hypergraph H = (V, E), and let 0 € X.
Then for all v ¢ 1k(X,0)
m(vo) € {1,d+ 1}.

Proof. Let v ¢ 1k(X,0), and assume that m (vo) < d, that is, vo contains at least two
different missing faces of X. Every edge e € E contains at most d 4+ 1 points of vo
(otherwise it would contain d + 1 points of o, a contradiction to o € X). Therefore
every missing face of X contained in vo belongs to a different edge in E. Since every
two edges intersect in at most one vertex and all the missing faces in vo must contain

v, the intersection of all the missing faces must be {v}, therefore m (vo) = 1. O

Proof of Theorem 6.3. By examining the proof of Theorem 1.2 we can see that equality
can be achieved only if ¢ is an eigenvector of R, with eigenvalue dn. Recall that by

Claim 3.12 the matrix representation of Ry in the standard basis is

Yoneo(k—1) degx (M) —(k—d+1) degx (0)+(d—1)(k+1)  if 0 = T,

Bilyr = @d+1—m(cUT))-(c:0nNT) - (T:0nT) if UUEQ)T('(?L), (6.1)
0 otherwise.

We will show that in our case [Ry] is a diagonal matrix:
Let 0 € X (k). By (6.1) and Lemma 3.3 we have

[Ril,o = Y degy(n) — (k—d+1)degy (o) + (d—1)(k+ 1)

neo(k—1)
d+1
=d(k+1)+ddegx(0) + > (r—1)|{v eV :m(vo) =1}
r=2
d+1
:dn—Z(d—r—l—l)HvEV:m(va):r}\.
r=1

By Lemma 6.4 we obtain
[Rily, =dn—d|{v eV :m(vo) =1}
Now let 0,7 € X (k) such that cN7| =k, cUT ¢ X(k+1).
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k 0l1 [2 [3
fre(X) 712128 |7
p(X) 714 [0 |4
H,(X;Z) | 0|0 |Z5]0

Figure 6.1: The complex Cp(2,2)

k 0(1 |2 |3 k 0 |1 |2 3
Fr(X) 936 72|54 Fr(X) 13|78 234 | 234
i (X) 916 [0 |o i (X) 1319 |1 0
Hy(X;Z)||o|o0 |z |z!Y Hy (X;7Z) |0 |0 | (Z3)3 | 2%
Figure 6.2: The complex C,(2,3) Figure 6.3: The complex Cp(2,3)

By Lemma 3.1 we have m (o UT) > 2, but since o0 UT = vo for {v} =7\ o, we
obtain by Lemma 6.4 that m (0 U7) =d + 1. So by (6.1) we obtain [Ry], . = 0 for any
0,7 € X (k) such that o # 7.

So the matrix form of Ry, is

dn—d|{veV :m(vo)=1} ifo=r,
(R (X)), - = . (6.2)
0 otherwise.

Therefore, for ¢ to be an eigenvector of Ry with eigenvalue dn, we must have {v € V :
m (vo) = 1} = () whenever ¢(o) # 0. In other words, the support of ¢ must belong to
Sci(X). O

6.2 Complexes of caps in finite projective and affine spaces

Let PG(n,q) be the projective space of dimension n over Fy, and AG(n, ¢q) be the affine
space of dimension n over F,. We will think of these spaces as hypergraphs, whose
vertices are the points in the space, and the edges are the lines.

A cap in PG(n,q) (or in AG(n,q)) is a set S of points such that any line ¢ in the
space contains at most two points from S. Let Cp(n, q) be the simplicial complex whose
simplices are the caps in PG(n,q), and C,(n,q) be the complex whose simplices are the
caps in AG(n,q).

Note that Cp(n,q) is the complex in £(2,¢ + 1,1) with underlying hypergraph
PG(n,q), and Cy(n, q) is the complex in £(2, g, 1) with underlying hypergraph AG(n, q).

In Figures 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 we collect information about some examples
of complexes of caps for different affine and projective planes. When we were not able
to compute all the information about some complex, we fill the corresponding cells in

the table with question marks. If the face number in dimension k is filled by a question
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k 0 |1 2 3 4 5
Jr(X) 16 | 120 | 480 | 840 | 288 | 48
pr(X) 1612 [4 |0 6 |6
H,(X;Z) |0 |0 |0 |Z**®]0 |0
Figure 6.4: The complex C,(2,4)
k 0 |1 2 3 4 5
fe(X) 21 | 210 | 1120 | 2520 | 1008 | 168
e (X)) 21|16 |6 0 6 6
H,(X;Z) |0 |0 |0 7™ |0 0

mark, it means that we could compute the complex up to dimension k — 1 only, and we

don’t know the actual dimension of the complex.

Note that all the examples with ¢ > 2 achieve equality in the inequality of Theorem

Figure 6.5: The complex Cp(2,4)

1.2 for k = 2, but not for k£ > 2.

Furthermore, we checked the spectral gaps of the 2-Laplacian for larger affine and
projective planes, including the four non-isomorphic projective planes of order 9, and

they also achieve the extremal values (see Figures 6.7, 6.8, 6.9, 6.10). Based on this we

conjecture the following:

Conjecture 6.5. Let I1 be a projective plane of order ¢ > 3. Let X be the complex of
caps of I1, and let n = ¢> + q + 1 be the number of vertices of X. Then

pa(X)=n—-3(g+1) =¢*—2(¢+1).

Let II' be an affine plane of order ¢ > 3. LetY be the complex of caps of II', and n = ¢*

be the number of vertices of Y. Then

p2(Y) =n—3q=q°—3q.

k 01 [2 3 4 5
Fr(X) ][ 25 | 300 | 2000 | 6500 | 6600 | 1000
we(X) 25120 |10 |0 0 6

Figure 6.6: The complex Cy(2,5)
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k 0 |1 2 3
fu(X) || 49 | 1176 | 16464 | 127596 | ...
pr(X) || 49 | 42 28 9 ?

Figure 6.7: The complex Cy(2,7)

k 0 |1 2 3
fu(X) || 57 | 1596 | 26068 | 234612 | ...
pre(X) || 57 | 49 33 ? ?

Figure 6.8: The complex Cy(2,7)

i 0 |1 2 3
Fe(X) | 73] 2628 | 56064 | 686784 | ...
we(X) | 73164 | 46 ? ?

Figure 6.9: The complex Cp(2,8)

k 0 |1 2 3
F(X) |91 [ 4095 | 110565 | 1769040 | ...
we(X) || 91 | 81 | 61 ? ?

Figure 6.10: The complex Cp(2,9) (exactly the same spectral gaps were obtained also
for the three non-Desarguesian projective planes of order 9)
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k 0 1 2 3 1
(X)) | 27 351 2808 | 14742 | 50544
(X)) || 27 24 18 9 7.129507
k 5 6 7 8 -
Fr(X) || 107406 | 126360 | 63180 | 2106 | -
(X)) | 0.914125 | 0 0 9 -

Figure 6.11: The complex Cy(3,3)

k 0 |1 2 3 1
Fr(X) |81 ] 3240 | 85203 | 1654614
(X)) | 8178 |72 63

ECREEC)

Figure 6.12: The complex C,(4,3)

Remark. The face numbers of C}(2, ¢) in small dimensions are known (see [12]):

fo(Co(2,0) =* +q+1

Fi(Ch(2,0)) = sala+ 1)(a® +q+1)

PACo(2,0) = (g + D@ +q+1)

Fo(Co(2,0)) = (6>~ Dla® ~ 1)

Fi(Cy(2,0)) = a*(a® ~ e~ (g~ 2)(q -~ 3)

F5(Co(2,0) = g1’ (@ ~ D(a® ~ 1)(a —2)(a — 3)a® — 9a +21),

In order to find extremal examples for £ > 2, we looked at spaces of higher dimension.
We found some examples: C,(3,3) achieves equality in the inequalities of Theorem 1.2
up to k = 3. C,(4,3) also achieves equality up to k& = 3 (we believe it also achieves
equality for k& = 4 but we weren’t able to check it). Cy(3,3) achieves equality up to
k =4 (see Figures 6.11, 6.12 and 6.13). X = C),(3,3) is also extremal with respect to
Theorem 1.3: p1(X) =36 = (1 — (g)fl) <40, but H* (X;R) # 0 (since us(X) = 0).

The number of points in PG(n,3) is N = 1(3"*! — 1), therefore by Theorem 6.1

k 0 |1 2 3 4 ) 6
fu(X) || 40 | 780 | 9360 | 72540 | 353808 | 1010880
pe(X) || 40 | 36 | 28 16 0 ?

Figure 6.13: The complex Cp(3,3)
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11(Cp(n,3)) = 1371 — 1) — 4. For odd n this gives us p1(Cp(n,3)) = (1— (1) )N,
where k£ = %(3("“)/ 2 _1). This fact and our computations in the case n = 3 suggest

the following conjecture:

Conjecture 6.6. Let n > 3 be odd, and let k = %(3(”“)/2 —1). Then
H" (Cp(n,3);R) # 0.

Conjecture 6.6 would imply that X = Cp(n,3) (for odd values of n) are extremal
examples for Theorem 1.2 and Theorem 1.3 for k = %(3(”“)/ 2 —1). In particular this
implies (by Theorem 6.3) that there must be scattering faces of size k + 1 in X. This

brings us to the following conjecture:

Conjecture 6.7. Let n > 3 be odd. Then the mazimal size of a scattering simplex in
Cp(n,3) is 1(3+D/2 4 1),

By computer calculation we were able to check Conjecture 6.7 for n = 3. Moreover,
for n = 5, we were able to find by computer search a scattering simplex of size 14, but

could not find larger scattering simplices.
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Chapter 7
Concluding remarks

e In Chapter 3 we established the following connection between the spectral gaps of

consecutive Laplacians of a complex X without missing faces of dimension larger than
d:

Theorem 1.2. For k > d

(k —d+ (X)) > (k + D1 (X) — dn. (7.1)

As a corollary we obtained the following result.

pa-1(X) > (1 - <kji_ 1) 1) n,

then HI (X;R) =0 for alld—1< j <k.

Theorem 1.3. If

A natural question that arises is to what extent are our results sharp. In the case
d =1 (i.e. when X is a flag complex) the question was addressed by Aharoni, Berger
and Meshulam in [3], where a family of complexes achieving equality in (7.1) in
all dimensions was presented. These complexes are extremal also with respect to
Theorem 1.3.

In Chapter 6 we investigated certain families of simplicial complexes whose missing
faces are all of dimension d = 2. We managed to find extremal examples for (7.1) in
the cases k = 2, 3,4, and for Theorem 1.3 in the cases k = 2,4. One of the complexes

investigated is the following:

Let Cp(n,3) be the complex of caps in PG(n, 3), i.e. the complex whose vertices are
the points of the projective space of dimension n over F3, and whose missing faces
are the sets of three points that lie in the same line in the space. Assume that n is
odd, and let &' = 1(3(+1)/2 — 1). We conjecture that Cj(n, 3) achieves equality in
(7.1) for all k < k’. In particular this implies the following conjecture:
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Conjecture 6.6. H" (C,(n,3);R) # 0.

gy —1
By Theorem 6.1 we have p11(Cp(n,3)) = (1 - (k ;1) ) N (where N is the number
of vertices of Cp(n,3), i.e. the number of points in PG(n,3)), thus Conjecture 6.6
would imply that Cp(n,3) is extremal with respect to Theorem 1.3. We were able to

check this conjecture by computer for n = 3 (see Figure 6.13).

Other examples that we studied are the complexes C,(2,¢q) and Cp(2, ¢q) of caps in
(respectively) the affine and projective planes over F,. We were able to check by
computer for the first values of ¢ > 3 that these complexes achieve equality in (7.1)
for k = 2 (see Figures 6.2-6.10). We believe that this is true for all ¢ > 3, maybe also

for complexes of caps in non-Desarguesian planes:

Conjecture 6.5. Let 11 be a projective plane of order ¢ > 3. Let X be the complex
of caps of I1, and let n = ¢*> + q + 1 be the number of vertices of X. Then

pa(X) =n—-3(g+1) =¢" - 2(q+1).

Let IT' be an affine plane of order q > 3. Let'Y be the complex of caps of I, and

n = ¢ be the number of vertices of Y. Then
pa(Y) =n—3q=q* - 3q.

We could not find examples showing sharpness of (7.1) for d > 3. It would be
interesting to find such an example even for the first case: d = k = 3. That is,
finding a complex X on n vertices, whose missing faces are of dimension at most 3
(or preferably of dimension exactly 3), such that pz(X) = 4p2(X) — 3n. It would
be even better to find such a complex satisfying ps(X) = 0, that is, a complex with
p2(X) = 2n and H?(X;R) # 0 (since this would be an extremal example also for
Theorem 1.3).

In Chapter 5 we prove the following lower bound on the spectral gaps of a complex
X:

Theorem 1.13. Let X be a simplicial complex with h(X) = d on vertex set V', where
V| =n. Let k > 0 and let 6,(X) denote the minimal degree of a simplex in X (k).
Then

ue(X) > (d+1)(0k(X) + k+ 1) — dn. (7.2)

We also showed that the inequality (7.2) is sharp: The complexes
*t
X = (Ag‘i‘”) * Ary (7.3)
satisfy pg(X) = (d+1)(0x(X)+k+1) —dn for all 0 < k < dim(X).
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In the case of flag complexes (d = 1) we showed that all the complexes achieving
equality in (7.2) in their top dimension must have such a form (Proposition 5.1). We
don’t know if this is the case also for d > 2. It may be interesting to try to find a

complex Y of dimension k& whose missing faces are all of dimension d, such that
u(Y) = (d+1)(k +1) — dn,

but Y is not isomorphic to a complex of the form (7.3).
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