
Complexes of graphs with bounded independence number
Minki Kim and Alan Lew

Department of Mathematics, Technion, Haifa 32000, Israel

Abstract. Let G = (V,E) be a graph and n a positive integer. Let In(G) be the simplicial complex whose simplices are the subsets of V that do not contain an
independent set of size n in G. We study the collapsibility numbers of the complexes In(G) for various classes of graphs, focusing on the class of graphs with
maximum degree bounded by ∆.

d-Collapsibility

Let X be an abstract simplicial complex on vertex set V . Let σ ∈ X such that
|σ| ≤ d and σ is contained in a unique maximal face τ ∈ X . The operation
of removing σ and all the faces containing it from X is called an elementary d-
collapse. X is d-collapsible if there is a sequence of elementary d-collapses from X
to the void complex ∅.
The collapsibility number of X , denoted by C(X), is the minimal d such that X
is d-collapsible.

Example.

(Click on picture for details)

Upper bounds on collapsibility numbers

For v ∈ V , let
X \ v = {σ ∈ X : v /∈ σ}, lk(X, v) = {σ ∈ X : v /∈ σ, σ ∪ {v} ∈ X}.

Our starting point is the following basic bound, due to Tancer:
Lemma 1 (Tancer [1]). Let v ∈ V . Then,

C(X) ≤ max{C(X \ v), C(lk(X, v)) + 1}.

By inductive application of Lemma 1 , we obtain several useful bounds on C(X)
(Click here for details) . In particular, we obtain the following result:
A missing face of X is a set τ ⊂ V such that τ /∈ X , but σ ∈ X for any σ ( τ .
Proposition 2. Let X be a simplicial complex on vertex set V . If all the
missing faces of X are of dimension at most d, then

C(X) ≤
 d|V |
d + 1

 .
Moreover, equality C(X) = d|V |

d+1 is obtained if and only if the set of missing
faces of X consists of |V |d+1 disjoint sets of size d + 1.

Rainbow independent sets

Let G be a graph, and let F = {A1, . . . , Am} be a family of (not necessarily
distinct) independent sets in G. An independent set A of size n ≤ m in G
is called a rainbow independent set with respect to F if it can be written as
A = {ai1, . . . , ain}, where 1 ≤ i1 < i2 < · · · < in ≤ m and aij ∈ Aij for each
1 ≤ j ≤ n.
For a positive integer n, let fG(n) be the minimum integer t such that every family
of t independent sets of size n in G has a rainbow independent set of size n.
The parameters fG(n) were introduced by Aharoni, Briggs, Kim and Kim in [2].

Example.

(Click on picture for details)

Rainbow sets and collapsibility

LetG = (V,E) be a simple graph. For every integer n ≥ 1, we define the simplicial
complex
In(G) = {U ⊂ V : U does not contain an independent set of size n in G}.

By a standard application of Kalai and Meshulam’s Colorful Helly Theorem for
d-collapsible complexes ([3, Theorem 2.1]), the following bound is obtained:
Proposition 3. fG(n) ≤ C(In(G)) + 1.

Main results

Our main results are the following upper bounds on the collapsibility numbers of
In(G), for different families of graphs:
Theorem 4. Let G = (V,E) be a chordal graph. Then C(In(G)) ≤ n− 1.
Moreover, if α(G) ≥ n, then C(In(G)) = n− 1.
Proposition 5. Let G be a k-colorable graph. Then C(In(G)) ≤ k(n− 1).
Theorem 6. Let G = (V,E) be a graph with maximum degree at most ∆.
Then C(In(G)) ≤ ∆(n− 1).

The bound in Theorem 6 is tight only for ∆ ≤ 2. In the case n ≤ 3 we can
prove the following tight bounds, for general ∆:
Theorem 7. Let G = (V,E) be a graph with maximum degree at most ∆.
Then

C(I2(G)) ≤
∆ + 1

2

 .
Theorem 8. Let G = (V,E) be a graph with maximum degree at most ∆.
Then

C(I3(G)) ≤


∆ + 2 if ∆ is even,
∆ + 1 if ∆ is odd.

Combining these bounds with Proposition 3 , we recover several of the bounds
for fG(n) first proved by Aharoni et al. in [2]. The following bound is new:
Theorem 9 (Click here for more details). Let G be a claw-free graph
with maximum degree at most ∆. Then

fG(n) ≤
∆

2
+ 1

 (n− 1)
 + 1.

Some conjectures and a counterexample

The following conjecture was proposed in [2]:
Conjecture 10 (Aharoni, Briggs, Kim, Kim [2]). Let G be a graph
with maximum degree at most ∆, and let n be a positive integer. Then

fG(n) ≤
∆ + 1

2

 (n− 1) + 1.

It is natural to ask whether the following extension of Conjecture 10 holds:
Question 11 (Aharoni). Let G be a graph with maximum degree at
most ∆, and let n be a positive integer. Does the following bound hold?

C(In(G)) ≤
∆ + 1

2

 (n− 1).

Theorems 6,7 and 8 settle the question affirmatively in the special cases where
∆ ≤ 2 or n ≤ 3. Unfortunately, the bound in Question 11 does not hold in
general. We found a family of counterexamples to the case ∆ = 3. The proof is
topological; it follows by bounding the Leray number, a homological variant of the
collapsibility number, of our complexes.

(Click on picture for details)
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Extra Material

d-Collapsibility - An example

Let X be the 2-dimensional complex:

X is not 1-collapsible: any vertex in X is contained in at least 2 different maximal faces. Hence, not even a
single elementary 1-collapse can be performed on X .
On the other hand, X is 2-collapsible:

So, C(X) = 2.



More upper bounds on collapsibility

First, we recall some definitions. For U ⊂ V , let
X [U ] = {σ ∈ X : σ ⊂ U}.

For τ ∈ X , let
lk(X, τ ) = {σ ∈ X : σ ∩ τ = ∅, σ ∪ τ ∈ X}.

Let v ∈ V . The complex X is called a cone over the vertex v if v is contained in every maximal face of X .
The following bounds are the main technical tools used for our results on the collapsibility of the complexes
In(G):

Lemma 12: Let σ = {v1, . . . , vk} ∈ X. For 0 ≤ i ≤ k − 1, let σi = {vj : 1 ≤ j ≤ i}. Let d ≥ k.
If for all 0 ≤ i ≤ k − 1,

C(lk(X \ vi+1, σi)) ≤ d− i,

and
C(lk(X, σ)) ≤ d− k,

then C(X) ≤ d.

Lemma 13: Let B ⊂ V , and let < be a linear order on the vertices of B. Let P = P(X,B) be the
family of partitions (B1, B2) of B satisfying:
•B2 ∈ X.
•For any v ∈ B2, the complex lk(X [V \ {u ∈ B1 : u < v}], {u ∈ B2 : u < v}) is not a cone over v.
If

C(lk(X [V \B1], B2)) ≤ d− |B2|

for every (B1, B2) ∈ P, then C(X) ≤ d.

Both bounds follow by simple inductive applications of Lemma 1 .



Rainbow independent sets - An example

Let n = 3. Let G be the following graph:

Let I1 , I2 , I3 be the independent sets of size 3 in G:

Look at the family:
F = {I1 , I1 , I2 , I2 , I3 , I3 }.

F does not have a rainbow independent set of size 3: Any rainbow set of F contains at most 2 vertices from
each color class. Hence, fG(3) > 6.
On the other hand, any collection of 7 independent sets of size 3 contains a rainbow independent set of size 3
(since any such collection must contain at least 3 copies of one of the independent sets I1 , I2 , or I3 ). So,

fG(3) = 7.



Rainbow independent sets in bounded degree claw-free graphs

A graph G is called claw-free if it does not contain the complete bipartite graph K1,3 as an induced subgraph.
The following is the main application of our results to the rainbow independent set problem:

Theorem 9. Let G be a claw-free graph with maximum degree at most ∆. Then

fG(n) ≤

∆

2
+ 1

 (n− 1)
 + 1.

The proof of Theorem 9 relies on bounding the collapsibility numbers of certain subcomplexes of In(G):

Proposition 14. Let G be a claw-free graph with maximum degree at most ∆, and let n ≥ 1 be an
integer. Let A be an independent set of size n− 1 in G. Then,

C(lk(In(G), A)) ≤
(n− 1)∆

2

 .

Examples in [2] show that, for even ∆, the bound in Theorem 9 is tight. Proving a tight bound for the odd
∆ case, and deciding whether such bounds hold also for general bounded degree graphs, are open questions
(see Conjecture 10 ).



A negative answer to Question 11

Let X be a simplicial complex. For i ≥ −1, let H̃i(X) be the i-th reduced homology group of X with real
coefficients. We say that X is d-Leray if for any induced subcomplex Y of X , H̃i(Y ) = 0 for all i ≥ d. The
Leray number of X , denoted by L(X), is the minimum integer d such that X is d-Leray.
The Leray number of X is a lower bound for its collapsibility number: C(X) ≥ L(X).

Let G be the dodecahedral graph. We can represent G as a generalized Petersen graph, as follows:

The graph G is 3-regular (i.e. the degree of every vertex in G is 3). The maximum size of an independent set
in G is 8.

Let n = 8. Applying standard topological tools (the Nerve Theorem and Alexander duality), we can compute
the homology groups of the complex I8(G):
Proposition 15. Let G be the dodecahedral graph. Then,

H̃i(I8(G)) =


R4 if i = 15,
0 otherwise.

In particular, L(I8(G)) ≥ 16.
We obtain C(I8(G)) ≥ L(I8(G)) ≥ 16 > 2 · (8 − 1) = 14. Therefore, I8(G) does not satisfy the bound in
Question 11 . However, it is not hard to check that fG(8) ≤ 11. So, G does not contradict Conjecture
10 .

The next result allows us to construct more examples of complexes that do not satisfy the bound in Question
11 :
Theorem 16. Let G be the disjoint union of the graphs G1, . . . , Gm. For 1 ≤ i ≤ m, let ti be the
maximum size of an independent set in Gi and let `i = L(Iti(Gi)). Let t = ∑m

i=1 ti be the maximum size
of an independent set in G, and ` = L(It(G)). Then,

` =
m∑
i=1
`i + m− 1.

Combining Theorem 16 with Proposition 15 , we obtain:
Corollary 17. Let Gk be the union of k disjoint copies of the dodecahedral graph. Then

L(I8k(Gk)) ≥ 17k − 1.

Note that the graphs Gk are 3-regular, and L(I8k(Gk))
8k−1 ≥ 17k−1

8k−1 > 21
8 > 2. Thus, the complexes I8k(Gk) do not

satisfy the bound in Question 11 .


