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Let X be a simplicial complex and ¢ € X such that:

e ol <d,

e o is contained in a unique maximal face 7 € X.
Elementary d-collapse: X & X' = X\ {n: o cncC1}.

X is d-collapsible if there is a sequence of elementary d-collapses:

X=X 25X ... 28 x, = .

Collapsibility of X:

C(X) = minimal d such that X is d-collapsible.
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Examples
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Example 2:
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Examples

A 2-collapsing sequence for X:

X= C(X) =2.
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Examples- 1-collapsibility
A graph G = (V/, E) is chordal if it does not contain a cycle of
length > 4 as an induced subgraph.
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Examples- 1-collapsibility

Theorem (Wegner '75):
A simplicial complex X is 1-collapsible if and only if X = X(G) for
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Examples- 1-collapsibility

Theorem (Wegner '75):

A simplicial complex X is 1-collapsible if and only if X = X(G) for
some chordal graph G.

The proof relies on the following fact:

Lemma (Lekkerkerker-Boland '62):

Any chordal graph contains a simplicial vertex (a vertex whose
neighbors form a clique).
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Some properties of d-collapsibility

Claim: [Wegner '75]
X is d-collapsible = X is homotopy equivalent to a complex of
dimension < d.
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Some properties of d-collapsibility

Claim: [Wegner '75]
X is d-collapsible = X is homotopy equivalent to a complex of
dimension < d.

In particular:

Corollary:

If X is d-collapsible, then H;(X) =0 for i > d.
Claim: [Wegner '75]

Every induced subcomplex of a d-collapsible complex is
d-collapsible.
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d-Collapsibility of nerves

Let F = {Fi1,...,Fn} be a family of sets.
The nerve of the family is the simplicial complex:

N(F)={l C[n]: NjeiF;i # @}

7 Nip):

Theorem: [Wegner '75]
The nerve of a family of convex sets in R9 is d-collapsible.

Theorem: [Matou%ek-Tancer '09]
The nerve of a family of finite sets of size < d is d-collapsible.
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Complex of hypergraphs with bounded covering number
Let H be an r-uniform hypergraph.
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Complex of hypergraphs with bounded covering number
Let H be an r-uniform hypergraph.
A set Cisa cover of Hif ANC #( forall Ae H.
The covering number: 7(#) = minimal size of a cover.
Let p € N and let

Covyp={F CH: 7(F) < p}.

Example
Let # = () = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}.
123
COV}[,l - 12 o
134

Remark: Covyy 1 = N(H).
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Some previously known results:

Theorem (Jonsson '05):
Let K, be the complete graph on n vertices, and let p < 3. Then

H,'(Covap) =0
for i > (pJ2r2) —1.

Theorem (Matousek-Tancer '09):

Let H be an r-uniform hypergraph. Then I:I,-(Cov;:.[’l) = 0 for
i>r.
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Complex of hypergraphs with bounded covering number

Theorem 1: [L '19]
Covyyp is (("5P) — 1)-collapsible.

Example

Let H = ([rt”]).

The complex Covy, p is an (('t”) — 2)-dimensional sphere.
In particular, Covy p is not (("tP) — 2)-collapsible.

Corollary:

Hi(Covy,p) =0

for all i > (") — 1.
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Complex of intersecting hypergraphs

Let H be an r-uniform hypergraph.
H is (pairwise) intersecting if AN B # () for all A, B € H.
Let

Intyy = {F C H : Fis intersecting}.

Example

Let # = (&) = {{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}}.

12

13

Ints=

14
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Complex of intersecting hypergraphs

Theorem 2: [L '19]
Inty is 3 (*)-collapsible.
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Complex of intersecting hypergraphs

Theorem 2: [L '19]
Inty is 5(2 ) collapsible.

Example

Let H = (©27).
1

Inty is a (5(2r') — 1)—dimensiona| sphere.
In particular, Inty is not (%(%’) — 1)—co||apsib|e.
Corollary:

I:I,-(IntH) =0

foralllz%( )
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A bound on collapsibility

X = a simplicial complex.
S(X) = the set of sequences of vertices (vi,. .., vx) satisfying the
following property:

There exist maximal faces o1,...,0x+1 of X such that:
o v;¢ojforall 1 <i<k,
evicojforall1<i<j<k+1.

d’(X) = maximal length of a sequence in S(X).

Theorem: [Matougek-Tancer '09, L '19]
X is d'(X)-collapsible.
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A bound on collapsibility- Proof sketch

X a simplicial complex, v a vertex of X.
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X= "’ Ik(X,v)= v
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X a simplicial complex, v a vertex of X.
X\v={oceX:véo},

k(X,v)={oceX:véo ocU{v}eX}

Lemma: [Tancer '11]

C(X) < max{C(X\ v), C(Ik(X,v)) +1}.
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A bound on collapsibility- Proof sketch

X a simplicial complex, v a vertex of X.
X\v={oceX:v¢o}

k(X,v)={oceX:véo ocU{v}eX}

Lemma: [Tancer '11]
C(X) < max{C(X\ v), C(Ik(X,v)) +1}.

Lemma:
If v is not contained in all maximal faces of X, then

d'(X) > max{d'(X \ v), d'(Ik(X, v)) + 1}.
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A bound on collapsibility- Proof sketch

Reminder - Theorem:
C(X) < d'(X).

Proof
e If X is a simplex, then C(X) =0 = d'(X).
e Otherwise, there is a vertex v and a maximal face o such that
véo.
C(X) < max{C(X\ v), C(Ik(X,v))+ 1}
< max{d' (X \ v), d'(Ik(X,v)) + 1}

<d'(X). O
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Let {A1,..., A}, {Bi,..., Bk} families of sets such that:
o |Ai| <r, |Bi|<pforalll1<i<k.
e AinB;j=0forall1<i<k.
o ANB; £ forall1<i<j<k.

A, AL AL Ak
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Proof of Theorem 1

Reminder- Theorem 1:
Covyyp is (("FP) — 1)-collapsible.

Proof:
Let (A1,...,Ax) € S(Covy,p). There exist maximal faces

F1,..., Fks1 € Covy, p such that

o Ai ¢ Fiforalll <j<k,

e Aic Fiforall1<i<j<k+1.
Forall 1 <i < k+1, there is a set C; of size at most p that
covers F;. Since F; is maximal, then for all A € H:

AcFi < ANCG #0.

18/31



Proof of Theorem 1

Look at the families {A1,..., Ak, 0} and {Cy, ..., Ckr1}. We
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Proof of Theorem 1

Look at the families {A1,..., Ak, 0} and {Cy, ..., Ckr1}. We
have:

o Al <rforall1<i<k, |G <pforalll<j<k+1.
e Forall1<i<k, A; ¢ Fi; hence, AN C; = 0.
o Forall1<i<j<k+1, A € Fj; hence, Ain G # 0.

A A AL AD

7 z0

Ci....Ci....Ci. . . CkCxu
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Proof of Theorem 1

By Frankl-Kalai: k+1 < (7).

20/31



Proof of Theorem 1

By Frankl-Kalai: k+1 < (7).
So,

C(Covyp) < d'(Covyyp) < <r t 'D> -1

That is, Covyp is (("5P) — 1)-collapsible.
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Rainbow independent sets

Problem:

Let G be a graph, n > 1.

Find minimal k such that for any family of independent sets

li, b, ..., I of size nin G (not necessarily distinct), there exists a
rainbow independent set of size n.
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Some previous results:
Theorem (Aharoni—Briggs—Kim—Kim):
Let G = (V, E) be a chordal graph, and let n > 1 be an integer.
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fc;(n) < n.
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Theorem (Aharoni—Briggs—Kim—Kim):
Let G = (V, E) be a chordal graph, and let n > 1 be an integer.

Then
fc;(n) < n.

Theorem (Aharoni—-Briggs—Kim-Kim):
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Some previous results:
Theorem (Aharoni—Briggs—Kim—Kim):
Let G = (V, E) be a graph with maximum degree at most A.
Then Al
fo(2) < [;} +1,

and
f2(3) < A+3 ?f A is even,
A+2 if Alis odd.

Conjecture (Aharoni-Briggs—Kim—Kim):
Let G be a graph with maximum degree at most A, and let n be a
positive integer. Then

fe(n) < {A;lw (n—1)+1.
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Let A be even.
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Example (Aharoni-Briggs-Kim-Kim)

Let A be even.

Ga., = cycle of length (% + 1) n + edges connecting any two
vertices of distance at most %.

For example, for n =3, A = 4:

Choose independent sets 1, I, I3, Is, 5, Is. There is no rainbow
independent set of size 3. So

f6,5(3) > 7.

In general, fg, ,(n) = (5+1)(n—1)+1.
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Rainbow sets and collapsibility
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Rainbow sets and collapsibility
G = (V,E) a graph, n > 1 an integer. Define the simplicial
complex:

_ . U does not contain an independent
I”(G)_{UCV' set of G of size n :

Examples

e 11(G) ={0}.
e /h(G) = X(G) (the Clique Complex of G).

Proposition:

fc(n) < C(I,(G)) + 1.
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Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):
X a d-collapsible complex on vertex set V = Vi U VoW --- U Vygyg.
If {v1,va,...,vgr1} € X for every choice of vertices

vi € Vi,...,Vgs1 € Vi1, then there exists some 1 < i <d+1
such that V; € X.
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Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):

X a d-collapsible complex on vertex set V = Vi U VoW --- U Vygyg.
If {v1,va,...,vgr1} € X for every choice of vertices

vi € Vi,...,Vgs1 € Vi1, then there exists some 1 < i <d+1
such that V; € X.

Reminder: want to show:

fo(n) < C(I(G)) + 1.

Proof sketch

Assume C(1,(G)) =d.

Let h,...lg11 a family of disjoint independent sets of size n in G,
assume for contradiction there is no rainbow independent set of
size n.

That is, all rainbow sets belong to /,(G),

Therefore, by K-M, there exists 1 < j < d + 1 such that /; € I,(G).

But /; is an independent set of size n in G, a contradiction.
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Collapsibility of 1,(G)
Theorem (Kim-L):
Let G be a chordal graph. Then

C(ln(G)) <n—1.
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Theorem (Kim-L):
Let G be a graph with maximum degree at most A. Then

ch(e) < |25,

and
A+2 if Aiseven,

cls(6)) = {A +1 ifAis odd.

Since fg(n) < C(I,(G)) + 1, we recover the bounds from ABKK,
The following bound is new:

Theorem (Kim-L):

Let G be a claw-free graph with maximum degree at most A. Then

e <] (2 1) 0] o1
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Collapsibility of 1,(G) for bounded degree graphs

Conjecture:
Let G be a graph with maximum degree at most A. Then

Holds for A =2 and n < 3.
But it is not true in general!
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A counterexample for A =3
For A =3 we want: C(/,(G)) <2(n—1).
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we obtain for n = 8

C(ls(G)) > 16 > 14 = 2(n — 1).
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A counterexample for A =3
For A =3 we want: C(/,(G)) <2(n—1).

However, for the graph G =

we obtain for n = 8
C(ls(G)) > 16 >14=2(n—1).
On the other hand

fo(8) <11 <2(n—1)+1.
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Thank you!
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