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d-Collapsibility

Let X be a simplicial complex and σ ∈ X such that:

• |σ| ≤ d ,

• σ is contained in a unique maximal face τ ∈ X .

Elementary d-collapse: X
σ−→ X ′ = X \ {η : σ ⊂ η ⊂ τ}.

X is d-collapsible if there is a sequence of elementary d-collapses:

X = X1
σ1−→ X2

σ2−→ · · · σk−1−−−→ Xk = ∅.

Collapsibility of X :

C (X ) = minimal d such that X is d-collapsible.
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Examples

Example 1:

C (X ) = 0 ⇐⇒ X is a simplex

Example 2:

X is not 1-collapsible
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Examples

A 2-collapsing sequence for X :

C (X ) = 2.
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Examples- 1-collapsibility
A graph G = (V ,E ) is chordal if it does not contain a cycle of
length ≥ 4 as an induced subgraph.

The Clique complex X (G ) of a graph G = (V ,E ):

• Vertices= V

• Simplices= Cliques in G

5 / 31



Examples- 1-collapsibility
A graph G = (V ,E ) is chordal if it does not contain a cycle of
length ≥ 4 as an induced subgraph.

The Clique complex X (G ) of a graph G = (V ,E ):

• Vertices= V

• Simplices= Cliques in G

5 / 31



Examples- 1-collapsibility
A graph G = (V ,E ) is chordal if it does not contain a cycle of
length ≥ 4 as an induced subgraph.

The Clique complex X (G ) of a graph G = (V ,E ):

• Vertices= V

• Simplices= Cliques in G

5 / 31



Examples- 1-collapsibility
A graph G = (V ,E ) is chordal if it does not contain a cycle of
length ≥ 4 as an induced subgraph.

The Clique complex X (G ) of a graph G = (V ,E ):

• Vertices= V

• Simplices= Cliques in G

5 / 31



Examples- 1-collapsibility
A graph G = (V ,E ) is chordal if it does not contain a cycle of
length ≥ 4 as an induced subgraph.

The Clique complex X (G ) of a graph G = (V ,E ):

• Vertices= V

• Simplices= Cliques in G

5 / 31



Examples- 1-collapsibility

Theorem (Wegner ’75):

A simplicial complex X is 1-collapsible if and only if X = X (G ) for
some chordal graph G .

The proof relies on the following fact:

Lemma (Lekkerkerker-Boland ’62):

Any chordal graph contains a simplicial vertex (a vertex whose
neighbors form a clique).
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Some properties of d-collapsibility

Claim: [Wegner ’75]

X is d-collapsible =⇒ X is homotopy equivalent to a complex of
dimension < d .

In particular:

Corollary:

If X is d-collapsible, then H̃i (X ) = 0 for i ≥ d .

Claim: [Wegner ’75]

Every induced subcomplex of a d-collapsible complex is
d-collapsible.
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d-Collapsibility of nerves

Let F = {F1, . . . ,Fn} be a family of sets.
The nerve of the family is the simplicial complex:

N(F) = {I ⊂ [n] : ∩i∈IFi 6= ∅}.

Theorem: [Wegner ’75]

The nerve of a family of convex sets in Rd is d-collapsible.

Theorem: [Matoušek-Tancer ’09]

The nerve of a family of finite sets of size ≤ d is d-collapsible.
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Complex of hypergraphs with bounded covering number
Let H be an r -uniform hypergraph.

A set C is a cover of H if A ∩ C 6= ∅ for all A ∈ H.
The covering number: τ(H) = minimal size of a cover.
Let p ∈ N and let

CovH,p = {F ⊂ H : τ(F) ≤ p}.

Example

Let H =
([4]

3

)
= {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

Remark: CovH,1 = N(H).
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Homology of CovH,P

Question:
Let H be an r -uniform hypergraph. What is the maximal i such
that H̃i (CovH,p) 6= 0?

Some previously known results:

Theorem (Jonsson ’05):

Let Kn be the complete graph on n vertices, and let p ≤ 3. Then

H̃i (CovKn,p) = 0

for i ≥
(p+2

2

)
− 1.

Theorem (Matoušek-Tancer ’09):

Let H be an r -uniform hypergraph. Then H̃i (CovH,1) = 0 for
i ≥ r .
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Complex of hypergraphs with bounded covering number

Theorem 1: [L ’19]

CovH,p is
((r+p

r

)
− 1
)
-collapsible.

Example

Let H =
([r+p]

r

)
.

The complex CovH,p is an
((r+p

r

)
− 2
)
-dimensional sphere.

In particular, CovH,p is not
((r+p

r

)
− 2
)
-collapsible.

Corollary:

H̃i (CovH,p) = 0

for all i ≥
(r+p

r

)
− 1.
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Complex of intersecting hypergraphs

Let H be an r -uniform hypergraph.

H is (pairwise) intersecting if A ∩ B 6= ∅ for all A,B ∈ H.
Let

IntH = {F ⊂ H : F is intersecting}.

Example

Let H =
([4]

2

)
= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
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Complex of intersecting hypergraphs

Theorem 2: [L ’19]

IntH is 1
2

(2r
r

)
-collapsible.

Example

Let H =
([2r ]

r

)
.

IntH is a
(

1
2

(2r
r

)
− 1
)

-dimensional sphere.

In particular, IntH is not
(

1
2

(2r
r

)
− 1
)

-collapsible.

Corollary:

H̃i (IntH) = 0

for all i ≥ 1
2

(2r
r

)
.
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A bound on collapsibility

X = a simplicial complex.

S(X ) = the set of sequences of vertices (v1, . . . , vk) satisfying the
following property:

There exist maximal faces σ1, . . . , σk+1 of X such that:

• vi /∈ σi for all 1 ≤ i ≤ k ,

• vi ∈ σj for all 1 ≤ i < j ≤ k + 1.

d ′(X ) = maximal length of a sequence in S(X ).

Theorem: [Matoušek-Tancer ’09, L ’19]

X is d ′(X )-collapsible.
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A bound on collapsibility- Proof sketch
X a simplicial complex, v a vertex of X .

X \ v = {σ ∈ X : v /∈ σ},

lk(X , v) = {σ ∈ X : v /∈ σ, σ ∪ {v} ∈ X}.

Lemma: [Tancer ’11]

C (X ) ≤ max{C (X \ v), C (lk(X , v)) + 1}.

Lemma:
If v is not contained in all maximal faces of X , then

d ′(X ) ≥ max{d ′(X \ v), d ′(lk(X , v)) + 1}.
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Reminder - Theorem:
C (X ) ≤ d ′(X ).
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v /∈ σ.
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Skew-intersecting families of sets

Lemma: [Frankl ’82, Kalai ’84]

Let {A1, . . . ,Ak}, {B1, . . . ,Bk} families of sets such that:

• |Ai | ≤ r , |Bi | ≤ p for all 1 ≤ i ≤ k .

• Ai ∩ Bi = ∅ for all 1 ≤ i ≤ k .

• Ai ∩ Bj 6= ∅ for all 1 ≤ i < j ≤ k .

Then

k ≤
(
r + p

r

)
.
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Proof of Theorem 1

Reminder- Theorem 1:
CovH,p is

((r+p
r

)
− 1
)
-collapsible.

Proof:
Let (A1, . . . ,Ak) ∈ S(CovH,p). There exist maximal faces
F1, . . . ,Fk+1 ∈ CovH,p such that

• Ai /∈ Fi for all 1 ≤ i ≤ k ,

• Ai ∈ Fj for all 1 ≤ i < j ≤ k + 1.

For all 1 ≤ i ≤ k + 1, there is a set Ci of size at most p that
covers Fi . Since Fi is maximal, then for all A ∈ H:

A ∈ Fi ⇐⇒ A ∩ Ci 6= ∅.
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Proof of Theorem 1

Look at the families {A1, . . . ,Ak , ∅} and {C1, . . . ,Ck+1}. We
have:

• |Ai | ≤ r for all 1 ≤ i ≤ k, |Ci | ≤ p for all 1 ≤ j ≤ k + 1.

• For all 1 ≤ i ≤ k , Ai /∈ Fi ; hence, Ai ∩ Ci = ∅.
• For all 1 ≤ i < j ≤ k + 1, Ai ∈ Fj ; hence, Ai ∩ Cj 6= ∅.
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Proof of Theorem 1

By Frankl-Kalai: k + 1 ≤
(r+p

r

)
.

So,

C (CovH,p) ≤ d ′(CovH,p) ≤
(
r + p

r

)
− 1.

That is, CovH,p is
((r+p

r

)
− 1
)
-collapsible.
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Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.

That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .
Denote such minimal k by fG (n).

Example:

21 / 31



Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.
That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .

Denote such minimal k by fG (n).

Example:

21 / 31



Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.
That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .
Denote such minimal k by fG (n).

Example:

21 / 31



Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.
That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .
Denote such minimal k by fG (n).

Example:

21 / 31



Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.
That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .
Denote such minimal k by fG (n).

Example:

21 / 31



Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.
That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .
Denote such minimal k by fG (n).

Example:

21 / 31



Rainbow independent sets

Problem:
Let G be a graph, n ≥ 1.
Find minimal k such that for any family of independent sets
I1, I2, . . . , Ik of size n in G (not necessarily distinct), there exists a
rainbow independent set of size n.
That is, there exist 1 ≤ i1 < i2 < · · · < in ≤ k and vij ∈ Iij such
that {vi1 , . . . , vin} is independent in G .
Denote such minimal k by fG (n).

Example:

21 / 31



Some previous results:

Theorem (Aharoni–Briggs–Kim–Kim):

Let G = (V ,E ) be a chordal graph, and let n ≥ 1 be an integer.
Then

fG (n) ≤ n.

Theorem (Aharoni–Briggs–Kim–Kim):

Let G be a k-colorable graph, and n ≥ 1 an integer. Then

fG (n) ≤ k(n − 1) + 1.

Theorem (Aharoni–Briggs–Kim–Kim):

Let G = (V ,E ) be a graph with maximum degree at most ∆, and
let n ≥ 1 be an integer. Then

fG (n) ≤ ∆(n − 1) + 1.

Last bound is not tight for ∆ ≥ 3.
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Some previous results:

Theorem (Aharoni–Briggs–Kim–Kim):

Let G = (V ,E ) be a graph with maximum degree at most ∆.
Then

fG (2) ≤
⌈

∆ + 1

2

⌉
+ 1,

and

fG (3) ≤

{
∆ + 3 if ∆ is even,

∆ + 2 if ∆ is odd.

Conjecture (Aharoni–Briggs–Kim–Kim):

Let G be a graph with maximum degree at most ∆, and let n be a
positive integer. Then

fG (n) ≤
⌈

∆ + 1

2

⌉
(n − 1) + 1.
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Example (Aharoni-Briggs-Kim-Kim)

Let ∆ be even.

G∆,n = cycle of length
(

∆
2 + 1

)
n + edges connecting any two

vertices of distance at most ∆
2 .

For example, for n = 3, ∆ = 4:

Choose independent sets I1, I2, I3, I4, I5, I6. There is no rainbow
independent set of size 3. So

fG4,3(3) ≥ 7.

In general, fG∆,n
(n) =

(
∆
2 + 1

)
(n − 1) + 1.
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Rainbow sets and collapsibility

G = (V ,E ) a graph, n ≥ 1 an integer. Define the simplicial
complex:

In(G ) =
{
U ⊂ V : U does not contain an independent

set of G of size n

}
.

Examples

• I1(G ) = {∅}.
• I2(G ) = X (G ) (the Clique Complex of G ).

Proposition:

fG (n) ≤ C (In(G )) + 1.
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Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai–Meshulam ’05):

X a d-collapsible complex on vertex set V = V1 ·∪ V2 ·∪ · · · ·∪ Vd+1.
If {v1, v2, . . . , vd+1} ∈ X for every choice of vertices
v1 ∈ V1, . . . , vd+1 ∈ Vd+1, then there exists some 1 ≤ i ≤ d + 1
such that Vi ∈ X .

Reminder: want to show:

fG (n) ≤ C (In(G )) + 1.

Proof sketch
Assume C (In(G )) = d .
Let I1, . . . Id+1 a family of disjoint independent sets of size n in G ,
assume for contradiction there is no rainbow independent set of
size n.
That is, all rainbow sets belong to In(G ),
Therefore, by K-M, there exists 1 ≤ j ≤ d + 1 such that Ij ∈ In(G ).
But Ij is an independent set of size n in G , a contradiction.
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Collapsibility of In(G )

Theorem (Kim–L):

Let G be a chordal graph. Then

C (In(G )) ≤ n − 1.

Theorem (Kim–L):

Let G be a k-colorable graph. Then

C (In(G )) ≤ k(n − 1).

In fact, dim(In(G )) ≤ k(n − 1)− 1.

Theorem (Kim–L):

Let G be a graph with maximum degree at most ∆. Then

C (In(G )) ≤ ∆(n − 1).

Last bound is not tight for ∆ ≥ 3.
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Collapsibility of In(G ) for bounded degree graphs

Theorem (Kim–L):

Let G be a graph with maximum degree at most ∆. Then

C (I2(G )) ≤
⌈

∆ + 1

2

⌉
,

and

C (I3(G )) ≤

{
∆ + 2 if ∆ is even,

∆ + 1 if ∆ is odd.

Since fG (n) ≤ C (In(G )) + 1, we recover the bounds from ABKK,
The following bound is new:

Theorem (Kim–L):

Let G be a claw-free graph with maximum degree at most ∆. Then

fG (n) ≤
⌊(

∆

2
+ 1

)
(n − 1)

⌋
+ 1.
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Collapsibility of In(G ) for bounded degree graphs

Conjecture:

Let G be a graph with maximum degree at most ∆. Then

C (In(G )) ≤
⌈

∆ + 1

2

⌉
(n − 1).

Holds for ∆ = 2 and n ≤ 3.
But it is not true in general!
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A counterexample for ∆ = 3
For ∆ = 3 we want: C (In(G )) ≤ 2(n − 1).

However, for the graph G =

we obtain for n = 8

C (I8(G )) ≥ 16 > 14 = 2(n − 1).

On the other hand

fG (8) ≤ 11 < 2(n − 1) + 1.
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Thank you!
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