
Elegantly colored paths and cycles in edge colored random graphs

Lisa Espig ∗ Alan Frieze † Michael Krivelevich‡

May 24, 2017

Abstract

We first consider the following problem. We are given a fixed perfect matching M of [n] and
we add random edges one at a time until there is a Hamilton cycle containing M . We show that
w.h.p. the hitting time for this event is the same as that for the first time there are no isolated
vertices in the graph induced by the random edges. We then use this result for the following
problem. We generate random edges and randomly color them black or white. A path/cycle is
said to be zebraic if the colors alternate along the path. We show that w.h.p. the hitting time
for a zebraic Hamilton cycle coincides with every vertex meeting at least one edge of each color.
We then consider some related problems and (partially) extend our results to multiple colors.
We also briefly consider directed versions.

1 Introduction

This paper studies the existence of nicely structured objects in (randomly) colored random graphs.
Our basic interest will be in what we call zebraic paths and cycles. We assume that the edges of
a graph G have been colored black or white. A path or cycle will be called zebraic if the edges
alternate in color along the path. We view this as a variation on the usual theme of rainbow paths
and cycles that have been well-studied. Rainbow Hamilton cycles in edge colored complete graphs
were first studied in Erdős, Nešetřil and Rödl [8]. Colorings were constrained by the number of
times, k, that an individual color could be used. Such a coloring is called k-bounded. They showed
that allowing k to be any constant, there was always a rainbow Hamilton cycle, provided that
the number of vertices n was sufficiently large. Hahn and Thomassen [17] were next to consider
this problem and they showed that k could grow as fast as n1/3 and there still be a rainbow
Hamilton cycle and conjectured that the growth rate of k could in fact be linear. In an unpublished
work Rödl and Winkler [22] in 1984 improved this to n1/2. Frieze and Reed [16] improved this to
k = O(n/ log n) and finally Albert, Frieze and Reed [2] (and Rue) improved the upper bound on
k to n/64. In another line of research, Cooper and Frieze [5] discussed the existence of rainbow

Hamilton cycles in the random graph G
(q)
n,p which consists of the random graph Gn,p where each
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edge is independently and randomly given one of q colors. Here and elsewhere, we use “chosen
randomly” to signify “chosen uniformly at random”. They showed that if p ≥ 21 logn

n and q ≥ 21n
then with high probability (w.h.p.), i.e. probability 1 − o(1), there is a rainbow colored Hamilton

cycle. Frieze and Loh [14] improved this to p ≥ (1+o(1)) logn
n and q ≥ n+o(n). Ferber and Krivelevich

[10] improved it further to p = logn+log logn+ω(n)
n and q ≥ n + o(n). Bal and Frieze [3] considered

the case q = n and showed that p ≥ K logn
n suffices for large enough K. Ferber and Krivelevich

[10] proved that if p� logn
n and q = Cn colors are used, then w.h.p. Gn,p contains (1− o(1))np/2

edge-disjoint rainbow Hamilton cycles, for C large enough.

In this paper we study the existence of other colorings of paths and cycles. Our first result does not
at first sight fit into this framework. Let n be even and let M0 be an arbitrary perfect matching
of the complete graph Kn. Now consider the random graph process {Gm} = {([n], Em)} where
Em = {e1, e2, . . . , em} is obtained from Em−1 by adding a random edge em /∈ Em−1, for m =
0, 1, . . . , N =

(
n
2

)
.

Let
τ1 = min {m : δ(Gm) ≥ 1} ,

where δ denotes minimum degree. Then let

τH = min {m : Gm ∪M0 contains a Hamilton cycle H ⊇M0} .

Theorem 1 τ1 = τH w.h.p.

Remark 1 In actual fact there are two slightly different versions. One where we insist that M0 ∩
Em = ∅ and one where Em is chosen completely independently of M0. Our proof of the theorem
covers both cases. We will first give a proof under the assumption that Em is chosen independently
and then in Remark 17 see how to obtain the other case.

We note that Robinson and Wormald [21] considered a similar problem with respect to random
regular graphs. They showed that one can choose o(n1/2) edges at random, orient them and then
w.h.p. there will be a Hamilton cycle containing these edges and following the orientations.

Theorem 1 has an easy corollary that fits our initial description. Let {G(r)
m } be an r-colored

version of the graph process. This means that G
(r)
m is obtained from G

(r)
m−1 by adding a random

edge and then giving it a random color from [r]. Let Em,i denote the edges of color i in {G(r)
m } for

i = 1, 2, . . . , r. When r = 2 denote the colors by black and white and let Em,b = Em,1, Em,w = Em,2.

Then let G
(b)
m be the subgraph of G

(2)
m induced by the black edges and let G

(w)
m induced by the white

edges. Let

τ1,1 = min
{
m : δ(G(b)

m ), δ(G(w)
m ) ≥ 1

}
,

and let
τZH = min

{
m : G(2)

m contains a zebraic Hamilton cycle
}
.

Corollary 2 τ1,1 = τZH w.h.p.

Our next result is a zebraic analogue of rainbow connection. For a connected graph G, its rainbow
connection rc(G), is the minimum number r of colors needed for the following to hold: The edges
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of G can be r-colored so that every pair of vertices is connected by a rainbow path, i.e. a path
in which no color is repeated. Recently, there has been interest in estimating this parameter for
various classes of graph, including random graphs (see, e.g., [7, 13, 18, 20]). By analogy, we say
that a connected graph with a two-coloring of its edges is zebraicly connected if there is a zebraic
path joining every pair of vertices.

Theorem 2 At time τ1, Gτ1 with a random black-white coloring of its edges is zebraicly connected,
w.h.p.

We consider now how we can extend our results to more than two colors. Suppose we have r colors
[r] and that r | n. We would like to consider the existence of Hamilton cycles where the ith edge
has color (i mod r) + 1. Call such a cycle r-zebraic. Our result for this case is not as tight as
for the case of two colors. We are not able to prove a hitting time version. We will instead satisfy

ourselves with a result for G
(r)
n,p. Let

pr =
r

αr

log n

n

where
αr =

⌈r
2

⌉
.

Theorem 3 Let ε > 0 be an arbitrary positive constant and suppose that r ≥ 2.

lim
n→∞

Pr(G(r)
n,p contains an r-zebraic Hamilton cycle) =

{
0 p ≤ (1− ε)pr
1 p ≥ (1 + ε)pr

.

The proofs of Theorems 1–3 will be given in Sections 4–6.

1.1 Directed Versions

There are some very natural directed versions of these results. With respect to Theorem 1
one can consider the directed graph process where the edges of the complete digraph ~Kn are
randomly ordered as e1, e2, . . . , en(n−1). We can then consider a sequence of digraphs Dm =
([n], {e1, e2, . . . , em}),m ≥ 1 and consider hitting times for various properties. For example, sup-
pose in addition one is given a perfect matching M =

{
f1, f2, . . . , fn/2

}
together with an orientation

of each edge in M . One can ask for the likely hitting time for the existence of a directed Hamilton
cycle that contains M and respects the given orientation. Assume w.l.o.g. that fi = (2i − 1, 2i)
for i = 1, 2, . . . , n/2, so that fi is oriented from 2i − 1 to 2i. Let ~τH be the hitting time for the
existence of such a cycle. Let ~τ1 be the hitting time for each 1 ≤ i ≤ n/2 to have an in-neighbor in
n/2 + 1, n/2 + 2, . . . , n and for each n/2 + 1, n/2 + 2, . . . , n to have an out-neighbor in 1 ≤ i ≤ n/2.
Clearly ~τH ≥ ~τ1.

Theorem 4 ~τ1 = ~τH w.h.p.

Our other results will have directed analogs too. Suppose then that D
(r)
n,p,m ≥ 1 is an r-colored

version of the directed graph Dn,p. A directed r-zebraic Hamilton cycle is the directed analog what
we see in Theorem 3. Then we have
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Theorem 5 Let ε > 0 be an arbitrary positive constant and suppose that r ≥ 2.

lim
n→∞

Pr(D(r)
n,p contains an r-zebraic directed Hamilton cycle) =

{
0 p ≤ (1− ε)pr
1 p ≥ (1 + ε)pr

.

Notice that we do not claim a hitting time version for the case r = 2. It is unclear what the simple
necesary condition should be. We discuss this further in Section 7.

There is a notion of directed zebraic connection when we 2-color a digraph and ask for a directed
zebraic path from any vertex to any other vertex. Let ~τ1,1 be the hitting time for Dm to have
i-degree and out-degree at least one.

Theorem 6 At time ~τ1,1, D~τ1,1 with a random black-white coloring of its edges is directed zebraicly
connected, w.h.p.

We will briefly discuss the proofs of these directed analogs in Section 7.

2 Notation

All logarithms will have base e unless explicitly stated otherwise.

For a graph G = (V,E) and S, T ⊆ V we let eG(S) denote the number of edges contained in S,
eG(S, T ) denote the number of edges with one end in S and the other in T . Let eG(S) = eG(S, S)
and let NG(S) denote the set of neighbors of S that are not in S.

We next list certain values and notation that we will use throughout our proofs. They are here
for easy reference. The reader is encouraged to skip reading this section and to just refer back as
necessary.

t0 =
n

2
(log n− 2 log log n) and t1 =

n

2
(log n+ 2 log log n)

t2 =
t0
10

and t3 =
t0
5

and t4 =
9t0
10
.

ζi = ti − ti−1 for i = 3, 4.

pi =
ti(
n
2

) , i = 0, 1, 2.

n0 =
n

log2 n
and n′0 =

n0

log4 n
and n1 =

n

10 log n
.

nb =
n log log log n

log log n
and nc =

200n

log n
.

L0 =
log n

100
and L1 =

log n

log log n
.

`0 =
log n

200
and `1 =

2 log n

3 log log n
and νL = ``10 = n2/3+o(1).
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The following graphs and sets of vertices are used.

Ψ0 = Gt2 \M0 = ([n], Et2 \M0).

V0 = {v ∈ [n] : dΨ0(v) ≤ L0} .
Ψ1 = Ψ0 ∪ {e ∈ Eτ1 \ Et2 : e ∩ V0 6= ∅} .
Vλ = {v ∈ [n] : v is large} .
Vσ = [n] \ Vλ.
EB = {e ∈ Et4 \ Et3 : e ∩ V0 = ∅} .
Vτ =

{
v ∈ [n] \ V0 : degEB (v) ≤ L0

}
.

The definition of “large” depends on which theorem we are proving.

Sometimes in what follows we will treat certain values as integer, when they should really be
rounded up or down. We do this for conveneience and claim that rounding either way will not
affect the validity of what is claimed.

3 Probabilistic Inequalities

We will need standard estimates on the tails of various random variables.

Chernoff Bounds: Let B(n, p) denote the binomial random variable where n is the number of
trials and p is the probability of success.

Pr(|B(n, p)− np| ≥ εnp) ≤ 2e−ε
2np/3 for 0 ≤ ε ≤ 1. (1)

Pr(B(n, p) ≥ anp) ≤
( e
a

)anp
for a > 0. (2)

For proofs, see the appendix of Alon and Spencer [1].

McDiarmid’s Inequality: Let Z = Z(Y1, Y2, . . . , Yn) be a random variable where Y1, Y2, . . . , Yn
are independent for i = 1, 2, . . . , n. Suppose that

|Z(Y1, . . . , Yi−1, Yi, Yi+1, . . . , Yn)− Z(Y1, . . . , Yi−1, Ŷi, Yi+1, . . . , Yn)| ≤ ci

for all Y1, Y2, . . . , Yn, Ŷi and 1 ≤ i ≤ n. Then

Pr(|Z −E(Z)| ≥ t) ≤ 2 exp

{
− t2

2(c2
1 + c2

2 + · · ·+ c2
n)

}
. (3)

For a proof see for example [11](Lemma 21.16) or [19](Remark 2.28).

4 Proof of Theorem 1

4.1 Outline of proof

It is well known (see for example [11](Theorem 4.2) and [19](Section 5.1)) that w.h.p. we have
t0 ≤ τ1 ≤ t1.

Our strategy for proving Theorem 1 is broadly in line with the 3-phase algorithm described in [6].
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(a) We will take the first t3 edges plus all of the next τ1− t3 edges incident to vertices that have a
low degree in Gt2 . We argue that w.h.p. this contains a perfect matching M1 that is disjoint
from M0. The union of M0,M1 will then have O(log n) components w.h.p.

(b) M0 ∪M1 induces a 2-factor made up of alternating cycles. We then use a selection of about ζ4

edges from Et4 \Et3 to make the minimum cycle length Ω(n/ log n). This selection is carefully
designed to avoid dependence issues, as is the case of the selection in (c).

(c) We then use a large subset of the final t2 edges to create a Hamilton cycle containing M0.
This involves a second moment calculation. The edges used to create the cycle here are from
Et0 \ Et4 . It follows that w.h.p. we will have created a Hamilton cycle contained in Gτ1 .

We are working in a different model to that in [6] and there are many more conditioning problems
to be overcome. For example, in [6], it is very easy to show that the random digraph D3−in,3−out
contains a set of O(log n) vertex disjoint cycles that contain all vertices. Here we have to build a
perfect matching M1 from scratch and to avoid several conditioning problems. The same is true
for (b) and (c). The broad strategy is the same, the details are quite different.

4.2 Phase 1: Building M1

We begin with Ψ0 = Gt2 \M0. Then let V0 denote the set of vertices that have degree at most
L0 = logn

100 in Ψ0. Now create Ψ1 = ([n], E1) by adding those edges in Eτ1 \ Et2 that are incident
with V0 and are disjoint from M0. We argue that w.h.p. Ψ1 is a random graph with minimum
degree one in which almost all vertices have degree Ω(log n). Furthermore, we will show that w.h.p.
Ψ1 is an expander, and then it will not be difficult to show that it contains the required perfect
matching M1.

Let a vertex be large if its degree in Gt1 is at least L0 and small otherwise. Let Vλ denote the set
of large vertices and let Vσ denote the set of small vertices.

The calculations for the next lemma will simplify if we observe the following: Suppose that m = Np.
It is known that for any monotone property of graphs

Pr(Gm ∈ P) ≤ 3 Pr(Gn,p ∈ P). (4)

In general we have for not necessarily monotone properties:

Pr(Gm ∈ P) ≤ 3m1/2 Pr(Gn,p ∈ P). (5)

For proofs of (4), (5) see Bollobás [4](Theorem 2.2) or Frieze and Karoński [11](Lemmas 1.2 and
1.3) or Janson,  Luczak and Ruciński [19](Lemma 1.10).

We will have reason to deal with a random sequence of multi-graphs defined as follows: Let
x1, x2, . . . , xt, . . . , be random sequence where for all i ≥ 0, xi+1 is chosen uniformly at random
from [n], independently of x1, x2, . . . , xi. For a positive integer t we let Γt be the multi-graph with
edges e1, e2, . . . , et where ei = {x2i−1, x2i} for i ≥ 1. If after removing the loops and repeats of
edges from Γt we have τ edges then the graph we obtain has the same distribution as Gτ . Given
this, we couple Γt with Gτ where τ = τ(Γt) is a random variable.

Let Z1 denote the number of loops and let Z2 denote the number of repeated edges in Γt2 . Now Z1

is distributed as Bin(t2, 1/n) and then the Chernoff bound (2) implies that

Pr(Z1 ≥ log2 n) ≤ e− log2 n. (6)
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We are doing more than usual here, because we need probability O(n−0.51), rather than just proba-
bility o(1). We require this in order to enable us to easily handle the case where we have to choose
edges disjoint from M0, as explained in Remark 17. There is one exception to this probabilistic
requirement. Let T be the event that t0 ≤ τ1 ≤ t1. We do not require that Pr(T ) = 1−O(n−0.51).
A probability of 1− o(1) will suffice.

Now Z2 is dominated by Bin(t2, t2/N) and then the Chernoff bound (2) implies that

Pr(Z2 ≥ log3 n) ≤ e− log3 n. (7)

The properties in the next lemma will be used to show that w.h.p. Ψ1 is an expander.

Lemma 3 The following holds with probability 1−O(n−0.51):

(a) |V0| ≤ n99/100.

(b) If x, y ∈ Vσ then the distance between them in Gt1 is at least 10.

(c) If S ⊆ [n] and |S| ≤ n0 = n
log2 n

then eGt1 (S) ≤ 10|S|.

(d) If S ⊆ [n] and |S| = s ∈ [n′0 = n0

log4 n
, n1 = n

10 logn ] then |NΨ1(S)| ≥ s log n/25.

(e) No cycle of length 4 in Gt1 contains a small vertex.

(f) No vertex of degree one in Gτ1 is incident with an edge of Et1 ∩M0.

(g) The maximum degree in G10n logn is less than 100 log n. Crude but easy to verify.

(h) τ1 ≤ 10n log n.

Proof (a) Let V ′0 denote the set of vertices of degree at most L0 + 1 in Γt2 . Then in our
coupling |V0| ≤ Z1 +2Z2 + |V ′0 |. This is because if v ∈ V0 \V ′0 then it must lie in a loop or a multiple
edge. Also, v ∈ L0 might have degree L0 + 1 in Gt2 , but might lose an edge from the deletion of
M0 to create Ψ1.

Now, applying (1) with ε = 4/5 we get

Pr
(
v ∈ V ′0

)
≤ Pr

(
B

(
2t2,

1

n

)
≤ log n

100
+ 1

)
≤ n−1/99.

It follows, that E(|V ′0 |) ≤ n98/99. We now use inequality (3) to finish the proof. Indeed, changing
one of the xi’s can change |V ′0 | by at most one. Hence, for any u > 0,

Pr(|V ′0 | ≥ E(|V ′0 |) + u) ≤ exp

{
− u

2

4t2

}
.

Putting u = n2/3 into the above and using (6), (7) finishes the proof of (a).

(b) We do not have room to apply (5) here. We need the inequality(
N−a
t−b
)(

N
t

) ≤ ( t

N

)b(N − t
N − b

)a−b
(8)
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for b ≤ a ≤ t ≤ N . Verification of (8) is straightforward and can be found for example in Chapter
21.1 of [11]. We will now and again use the notation A ≤b B in place of A = O(B) when it suits
our aesthetic taste. Let `1 = 2 logn

3 log logn .

Pr(∃ x, y) ≤
11∑
k=2

(
n

k

)
k!

L0∑
`1,`2=0

(
n− k
`1

)(
n− k
`2

)( N−(2n+k−5)
t1−(k−1+`1+`2)

)(
N
t1

)
≤b

11∑
k=2

nk
L0∑

`1,`2=0

(
ne

`1

)`1 (ne
`2

)`2 ( t1
N

)`1+`2+k−1( N − t1
N − (`1 + `2 + k − 1)

)2n−(`1+`2−4)

≤b n
11∑
k=2

logk−1 n

L0∑
`1,`2=0

(
3 log n

`1

)`1 (3 log n

`2

)`2
n−2+o(1)

= O(n−0.51).

(c) We can use (4) here with p1 = t1/N . If s = |S|, then in Gn,p1 where p1 = t1/N and N =
(
n
2

)
,

Pr(eGt1 (S) > 10|S|) ≤ 3

((s
2

)
10s

)
p10s

1 ≤ 3

(
s2e

20s
· log n+ 2 log log n

n− 1

)10s

≤
(
s log n

n

)10s

.

So,

Pr(∃ S) ≤
n0∑
s=10

(
n

s

)(
s log n

n

)10s

≤
n0∑
s=10

(ne
s

)s(s log n

n

)10s

=

n0∑
s=10

(
e
( s
n

)9
log10 n

)s
= O(n−0.51).

(d) For this we will only use Et2 ⊆ E(Ψ1). We can use (4) here with p2 = t2/N . For v ∈ V \ S,
Pr(v ∈ NΨ1(S)) ≥ 1− (1− p2)s−1 ≥ sp2

2 for s ≤ n1. Here we have s− 1 in place of s as we need to
exclude the edges of M0 in this calculation. So |NΨ1(S)| stochastically dominates Bin(n− s, sp22 ).

Now (n− s) sp22 ∼
s logn

20 and so using the Chernoff bound (1) with ε ∼ 1/5,

Pr(|NΨ1(S)| < s log n/25) ≤ e−s logn/1501.

So,

Pr(∃ S) ≤
n1∑
s=n′0

(
n

s

)
e−s logn/1501 ≤

n1∑
s=n′0

(ne
s
· n−1/1501

)s
= O(n−0.51).

(e) The expected number of such cycles is bounded by(
n

4

)
3!

2

L0∑
k=0

4

(
n− 4

k

)(N−n−3
t1−4−k

)(
N
t1

)
≤ n4

(
t1
N

)4(N − t1
N − 4

)n−1

+ n4
L0∑
k=1

(ne
k

)k ( t1
N

)k+4( N − t1
N − k − 4

)n−k−1

≤b log4 n

1 +

L0∑
k=1

(
e1+o(1) log n

k

)kn−1+o(1)

= O(n−0.51).
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(f) We will first argue that if V1 is the set of vertices of degree at most one in Gt0 then

Pr(|V1| ≥ 2 log4 n) = O(n−0.51).

Indeed, fix a set U ⊆ V of size u. For v ∈ U , let d(v, V \ U) denote the number of edges incident
with v and V \ U . Then, the the probability U is a subset of V1 in Gn,p0 is at most

Pr(d(v, V \ U) ≤ 1,∀v ∈ U) = ((1− p0)n−u + (n− u)p0(1− p0)n−u−1)u

<

(
log3 n

n

)u
.

Hence, with u = log4 n we have

Pr(|V1| ≥ u) ≤
(
n

u

)(
log3 n

n

)u
≤
(
ne

u
· log3 n

n

)u
= o(n−2).

We now apply (5) to prove the result for Gt0 .

We now consider adding the final max {0, τ1 − t0} edges. (We only know that Pr(τ1 ≥ t0) = 1−o(1)
and not 1−O(n−0.51) and so we do not assume that τ1 ≥ t0 here.) Let B be the event that any of
these edges is (i) incident with V1 and (ii) lies in M0. Thus,

Pr(B) ≤ O(n−0.51) + 10n log n · 4 log4 n

n
· 1

n
= O(n−0.51).

Here the first O(n−0.51)) accounts for the probability that τ1 − t0 ≥ 10n log n or |V1| ≥ 2 log4 n.
Note that Pr(τ1 ≥ 10n log n) = o(n−1). The proof of this follows from a straigthforward estimate
of the expected number of components of size at most n/2 at time 10n log n, see for example the
proof of Theorem 4.1.of [11]. After this, each of the at most 10n log n edges (see (f)) has probability
4 log4 n

n · 1
n of being in M0 and being incident with V1.

(g) We apply (4) with p = 10n log n/N and find that the probability of having a vertex of degree
exceeding 100 log n is at most

3n

(
n− 1

100 log n

)(
20 log n

n− 1

)100 logn

≤ 3n

(
e1+o(1)

5

)100 logn

= O(n−10). (9)

(h) τ1 > 10n log n implies that G10n logn contains a component of size at most n/2. Thus, with p
as in (h),

Pr(τ1 > 10n log n) ≤ 3

n/2∑
k=1

(
n

k

)
(1− p)k(n−k) ≤ 3

n/2∑
k=1

nke−5k logn = o(1).

2

Remark 4 Because T occurs w.h.p. we have that the statements in Lemma 3 hold with probability
1−O(n−0.51) if we condition on T occuring. This follows from Pr(A | B) ≤ Pr(A)/Pr(B). Indeed,
this is also true for any of the events below that are shown to hold with this probability.
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Lemma 3 implies the following:

Lemma 5 With probability 1−O(n−0.51),

S ⊆ [n] and |S| ≤ n/2000 implies |NΨ1(S)| ≥ |S|. (10)

Proof Assume that the conditions described in Lemma 3 hold. Let N(S) = NΨ1(S) and
e(S) = eΨ1(S). We first argue that if S ⊆ Vλ and |S| ≤ n/2000 then

|N(S)| ≥ 4|S|. (11)

From Lemma 3(d), we only have to concern ourselves with |S| ≤ n′0 or |S| ∈ [n1, n/2000].

If |S| ≤ n′0 and T = N(S) then in Ψ1 we have, using Lemma 3(g),(h), and accounting for the edges
in M0 being forbidden,

e(S ∪ T ) ≥ |S|
(

log n

200
− 1

)
and |S ∪ T | ≤ |S| (1 + 100 log n) ≤ n0. (12)

It is important to note that to obtain (12) we use the fact that vertices in V0 \Vσ are given all their
edges in Ψ1.

Equation (12) and Lemma 3(c) imply that |S| logn
200 ≤ 10|S ∪ T | and so (11) holds with room to

spare.

If |S| ∈ [n1, n/2000] then we choose S′ ⊆ S where |S′| = n1 and using Lemma 3(d), see that

|N(S)| ≥ |N(S′)| − |S| ≥ log n

25
· 200|S|

log n
− |S|.

This yields (11), again with room to spare.

Now let S0 = S ∩ Vσ and S1 = S \ S0. Then we have

|N(S)| ≥ |N(S0)|+ |N(S1)| − |N(S0) ∩ S1| − |N(S1) ∩ S0| − |N(S0) ∩N(S1)|. (13)

But |N(S0)| ≥ |S0|. This follows from (i) Ψ1 has no isolated vertices (follows from Lemma 3(f)),
and (ii) Lemma 3(b) means that S0 is an independent set and no two vertices in S0 have a common
neighbor. Equation (11) implies that |N(S1)| ≥ 4|S1|. We next observe that trivially, |N(S0)∩S1| ≤
|S1|. Then we have |N(S1) ∩ S0| ≤ |S1|, for otherwise some vertex in S1 has two neighbors in S0,
contradicting Lemma 3(b). Finally, we also have |N(S0)∩N(S1)| ≤ |S1|. If for a vertex in S1 there
are two distinct paths of length two to S0 then we violate one of the conditions – Lemma 3(b) or
(e).

So, from (13) we have

|N(S)| ≥ |S0|+ 4|S1| − |S1| − |S1| − |S1| = |S|.

2

Next let G = (V,E) be a graph with an even number of vertices that does not contain a perfect
matching. Let v be a vertex not covered by some maximum matching, and suppose that M is a
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maximum matching that isolates v. Let S0(v,M) = {u 6= v : M isolates u}. If u ∈ S0(v,M) and
e = {x, y} ∈ M and f = {u, x} ∈ E then flipping e, f replaces M by M ′ = M + f − e. Here e is
flipped-out. Note that y ∈ S0(v,M ′).

Now fix a maximum matching M that isolates v and let

A(v,M) =
⋃
M ′

S0(v,M ′)

where we take the union over M ′ obtained from M by a sequence of flips.

Lemma 6 Let G be a graph without a perfect matching and let M be a maximum matching and v
be a vertex isolated by M . Then |NG(A(v,M))| < |A(v,M)|.

Proof Suppose that x ∈ NG(A(v,M)) and that f = {u, x} ∈ E where u ∈ A(v,M). Now
there exists y such that e = {x, y} ∈M , else x ∈ S0(v,M) ⊆ A(v,M). We claim that y ∈ A(v,M)
and this will prove the lemma. Since then, every neighbor of A(v,M) is also a neighbor via an edge
of M .

Suppose that y /∈ A(v,M). Let M ′ be a maximum matching that (i) isolates u and (ii) is obtainable
from M by a sequence of flips. Now e ∈M ′ because if e has been flipped out then either x or y is
placed in A(v,M). But then we can do another flip with M ′, e and the edge f = {u, x}, placing
y ∈ A(v,M), contradiction.

2

Define
EA = Et3 \ E(Ψ1) = {f1, f2, . . . , fρ}

where we see from Lemma 3(a),(g),(h) that with probability 1−O(n−0.51) we have

ζ3 ≥ ρ ≥ ζ3 − 100n99/100 log n ∼ n log n

20
.

Lemma 7 Given Ψ1, V0, ρ where |V0| ≤ n99/100, we have that EA is a uniformly random ρ-subset
of E2 =

(
V1
2

)
\ E(Ψ1), where V1 = [n] \ V0.

Proof This follows from the fact that if we remove any fi and replace it with any other edge
from E2 then V0 is unaffected. Thus E and E − f + g are equally likely to be EA, under our
conditioning, where f ∈ E and g ∈ E2 \E. A sequence of such changes shows that any ρ-subset of
E2 is equally likely to be EA. 2

Now consider the sequence of graphs H0 = Ψ1, H1, . . . ,Hρ where Hi is obtained from Hi−1 by
adding the edge fi. We claim that if µi denotes the size of a largest matching in Hi that is disjoint
from M0, then

Pr(µi = µi−1 + 1 | µi−1 < n/2, f1, . . . , fi−1, (Ψ1 satisfies (10))) ≥ 10−7. (14)

To see this, let Mi−1 be a matching of size µi−1 in Hi−1, disjoint from M0, and suppose that v is
a vertex not covered by Mi−1. It follows from (10) and Lemma 6 that if AHi−1(v) = {g1, g2, . . . gr}

11



then r ≥ n/2000. Now consider the pairs (gj , x), j = 1, . . . , r, x ∈ AHj−1(gj). There are at least(
n/2000

2

)
such pairs and if fi lies in this collection, then µi = µi−1 + 1. Equation (14) follows from

this and Lemma 7. In fact, given Lemma 3(a), the probability in question is at least(
n/2000−n99/100

2

)
− ρ− n/2(

n
2

) > 10−7,

where we have subtracted ρ to account for some edges of EA having already been checked. And we
have subtracted the size of M0 too.

Now if there is no perfect matching in Hρ then we will have µi = µi−1 + 1 at most n/2 times. But
from (14) we see that the probability of this is bounded by Pr

(
Bin

(
ρ, 10−7

)
≤ n/2

)
. It follows

that

Pr(Hρ has no perfect matching) ≤ O(n−0.51) + Pr
(
Bin

(
ρ, 10−7

)
≤ n/2

)
= O(n−0.51).

So with probability 1 − O(n−0.51), Ψ2 = Hρ has a perfect matching. We choose such a matching
uniformly at random.

It follows by symmetry that M1 is uniformly random, conditional only on being disjoint from M0.
This will not be true if we condition on various quantities like Ψ0, V0 etc., but we only make an
unconditional claim (except for M0). We will need the following properties of the 2-factor

Π0 = M0 ∪M1.

Lemma 8 The following hold with probability 1−O(n−0.51):

(a) M0 ∪M1 has at most 10 log2 n components.

(b) There are at most nb = n log log logn
log logn vertices in total in components of size at most nc = 200n

logn .

Proof Let

ν(m) =
(2m)!

2mm!
= number of perfect matchings of K2m.

We observe that if we choose M1 completely independently of M0, then using inclusion-exclusion
we see that the probability that M0 ∩M1 = ∅ is

n/2∑
k=0

(−1)k
(
n/2

k

)
ν(n/2− k)

ν(n/2)
. (15)

Now for k constant we see that the summand in (15) is asymptotically equal to 1
2kk!

. Then by
truncating the sum in (15) at a large odd integer and using the Bonferroni inequality we see that
the sum in (15) is at least e−1/2−δ for any positive δ. We will therefore accept that Pr(M0∩M1 =
∅) ≥ 1/3 and then we can inflate the probabilities in (17), (18) by 3, at most, to handle the
conditioning on M0 ∩M1 = ∅.

(a) We generate a uniform random matching by choosing any unmatched vertex v and pairing it
with a random unmtched vertex w. Following the argument in [15] we note that if C is the cycle
of M0 ∪M1 that contains vertex 1 then

Pr(|C| = 2k) <
k−1∏
i=1

(
n− 2i

n− 2i+ 1

)
1

n− 2k + 1
<

1

n− 2k + 1
. (16)

12



Indeed, consider M0-edge {1 = i1, i2} ∈ C containing vertex 1. Let {i2, i3} ∈ C be the M1-edge
containing i2. Then Pr(i3 6= 1) = n−2

n−1 . Assume i3 6= 1 and let {i3, i4 6= 1} ∈ C be the M0 edge

containing i3. Let {i4, i5} ∈ C be the M1-edge containing i4. Then Pr(i5 6= 1) = n−4
n−3 and so on.

Having chosen C, the remaining cycles come from the union of two (random) matchings on the
complete graph Kn−|C|. It follows from this, by summing (16) over k ≤ n/4 that

Pr(|C| < n/2) ≤
n/4∑
k=1

1

n− 2k + 1
≤ n

4
× 2

n
=

1

2
.

Hence, from (1) with ε = 4/5,

Pr(¬(a)) ≤ Pr(Bin(10 log2 n, 1/2) ≤ log2 n) ≤ 2e−10 log2 n/3 = O(n−0.51). (17)

(b) It follows from (16) that

Pr(|C| ≤ nc) ≤
201

log n
.

If we generate cycle sizes as in (a) then up until there are fewer than nb/2 vertices left, log ν ∼ log n
where ν is the number of vertices that need to be partitioned into cycles. It follows that the
probability we generate more than k = log log logn×logn

1000 log logn cycles of size at most nc up to this time is
bounded by

O(n−0.51) + Pr

(
Bin

(
10 log2 n,

201

log n

)
≥ k

)
≤ O(n−0.51) +

(
3000e

k

)k
= O(n−0.51). (18)

Thus with probability 1−O(n−0.51), we have at most

nb
2

+ knc ≤ nb

vertices on cycles of length at most nb. 2

4.3 Phase 2: Increasing minimum cycle length

In this section, we will use the edges in

EB = {e ∈ Et4 \ Et3 : e ∩ V0 = ∅}

to create a 2-factor that contains M0 and in which each cycle has length at least nc. Note that

EB ∩Ψ1 = ∅.

Note also that

Lemma 9 Given Ψ1 and Et3, EB is a uniformly random |EB|-subset of E3 =
(
V1
2

)
\ (Ψ1 ∪ Et3),

where V1 = [n] \ V0.

13



Proof This follows from the fact that if we remove any edge of EB and replace it with any
other edge from E3 then V0 is unaffected. 2

We eliminate the small cycles (of length less than nc) one by one (more or less). Let C be a small
cycle. We remove an edge {u0, v0} /∈M0 of C. We then try to join u0, v0 by a sufficiently long M1

alternating path P that begins and ends with edges not in M0. This is done in such a way that
the resulting 2-factor contains M0 but has at least one less small cycle. The search for P is done
in a breadth first manner from both ends, creating n2/3+o(1) paths that begin at v0 and another
n2/3+o(1) paths that end at u0. We then argue that with sufficient probability, we can find a pair
of paths that can be joined by an edge from EB to create the required alternating path.

We proceed to a detailed description. Let

Vτ =
{
v ∈ [n] \ V0 : degEB (v) ≤ L0

}
,

where for a set of edges X and a vertex x, degX(x) is the number of edges in X that are incident
with x.

Lemma 10 The following hold with probability 1−O(n−0.51):

(a) |Vτ | ≤ n2/5.

(b) No vertex has 10 or more Gt1 neighbors in Vτ .

(c) If C is a cycle with |C| ≤ nc then |C ∩ Vτ | ≤ |C|/200 in Gt1.

Proof

(a) Let p = |EB |
|E3| ≈

7 logn
n , assuming that |V0| = o(n). Suppose we replace EB by a subset X ⊆ E3

with edges included independently with probability p. Fix a set U ⊆ V1 = V \ V0 of size µ. For
v ∈ U , now let d(v, V1 \ U) denote the number of edges in X incident with v and V1 \ U . Then, if
n1 = |V1| = n− o(n),

Pr(d(v, V1 \ U) ≤ L0, ∀v ∈ U) =

(
L0∑
i=0

(
n1

i

)
pi(1− p)n1−i

)µ
= (n−7/10+(log 100)/100+o(1))µ < n−13µ/20.

Hence, applying (5), we have with µ = n2/5,

Pr(|Vτ | ≥ µ) ≤ O(n1/2+o(1))

(
n

µ

)
n−13µ/20 ≤ O(n1/2+o(1))

(
ne

µ
· n−13/20

)µ
= o(n−1).

(b) This time we can condition on ν = n− |V0| and µ = | {e ∈ Et4 \ Et3 : e ∩ V0 6= ∅} | ≤ n99/100 ×
10 log n. We write

Pr(v violates (b)) ≤
∑

S∈([n−1]
10 )

Pr(A(v, S)) Pr(B(v, S) | A(v, S))
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where

A(v, S) = {N(v) ⊇ S, in Gt1} ,
B(v, S) = {w has at most L0 EB-neighbors in [n] \ (S ∪ {v}),∀w ∈ S} .

Applying (4) we see that Pr(A(v, S)) ≤ 3p10
1 and then using (4) with

p =
t4 − t3 − µ(

ν
2

) ∼ 7 log n

10n
(19)

we see that

Pr(B(v, S) | A(v, S)) ≤ 3

(
L0∑
k=0

(
ν − 11

k

)
pk(1− p)ν−11−k

)10

and so

Pr(v violates (b)) ≤b
(
n

10

)
p10

1

(
L0∑
k=0

(
ν − 11

k

)
pk(1− p)ν−11−k

)10

≤ (eo(1) log n · n1/10−7/10+o(1))10

= o(n−5).

Now use the Markov inequality.

(c) Let Z denote the number of cycles violating the required property. Using (4) and ν as in (b)
and p as in (19), we have

E(Z) ≤b
nc∑
k=3

(
n

k

)
k!pk1

(
k⌈
k

200

⌉)( L0∑
`=0

(
ν − k
`

)
p`(1− p)ν−`

)dk/200e

≤
nc∑
k=3

(2n)k
(

log n+ 2 log log n

n− 1

)k
n−3dk/200e/5

= O(n−0.51).

2

Let E0 denote the intersection of the high probability events of Lemmas 3 and 10.

Lemma 11 Let V1 = [n] \ V0 and let |EB| = µ = αn log n, α = O(1) and |V1| = ν ≥ n− n99/100.

(a) If A ⊆
(
V1
2

)
with |A| = a = o(n1/2) and X is a subset of

(
V1
2

)
with |X| = O(n99/100 log n) and

A ∩X = ∅, then

Pr(EB ⊇ A | E0, X ⊆ EB) =

((ν2)−a−|X|
µ−a−|X|

)
((ν2)−|X|
µ−|X|

) (20)

= (1 + o(1))

(
2α log n

n

)a
. (21)

15



(b) A ⊆
(
V1
2

)
with |A| = a = o(n2) then

Pr(EB ∩A = ∅ | E0) =

((ν2)−a
µ

)
((ν2)
µ

) (22)

≤ exp
{
−aµ
ν2

}
. (23)

Proof (a) Equation (20) follows from Lemma 9. For equation (21), we write((ν2)−a−|X|
µ−a−|X|

)
((ν2)−|X|
µ−|X|

) =

(
µ− |X|(
ν
2

)
− |X|

)a(
1 +O

(
a2

µ− |X|

))
=

(
µ(
ν
2

))a(1 +O

(
a2

µ− |X|

)
+O

(
a|X|
µ

))
.

This follows from the fact that in general, if s2 = o(N) then(
N−s
M−s

)(
N
M

) =

(
M

N

)s(
1 +O

(
s2

M

))
.

(b) Equation (22) follows as for (20), and (23) follows from((ν2)−a
µ

)
((ν2)
µ

) =

a−1∏
i=0

(
ν
2

)
− µ− i(
ν
2

)
− i

.

2

By construction, we can apply this lemma to the graph induced by EB with

α ≈ t4 − t3
2n log n

≈ 7

20
.

Let a cycle C of Π0 be small if its length |C| < nc and large otherwise. Define a near 2-factor to
be a graph that is obtained from a 2-factor by removing one edge. A near 2-factor Γ consists of
a path P (Γ) and a collection of vertex disjoint cycles. A 2-factor or a near 2-factor is proper if it
contains M0. We abbreviate proper near 2-factor to PN2F.

We will describe a process of eliminating small cycles. In this process we create intermediate
proper 2-factors. Let Γ0 be a 2-factor and suppose that it contains a small cycle C. To begin the
elimination of C we choose an arbitrary edge {u0, v0} in C \M0, where u0, v0 /∈ Vτ . This is always
possible, since M0∪M1 is the union of disjoint cycles of length at least three and because of Lemma
10(c). We delete it, obtaining a PN2F Γ1. Here, P (Γ1) ∈ P(v0, u0), the set of M1-alternating paths
in G from v0 to u0. Here an M1-alternating path must begin and end with an edge of M1. The
initial goal will be to create a large set of PN2Fs such that each Γ in this set has path P (Γ) of
length at least nc and the small cycles of Γ are a strict subset of the small cycles of Γ0. Then we
will show that with probability 1−O(n−0.51), the endpoints of one of the paths in some such Γ can
be joined by an edge to create a proper 2-factor with at least one fewer small cycle than Γ0.

This process can be divided into two stages. In a generic step of Stage 1, we take a PN2F Γ as
above with P (Γ) ∈ P(u0, v) and construct a new PN2F with the same starting point u0 for its
path. We do this by considering edges from EB incident to v. Suppose {v, w} ∈ EB and that the
non-M0 edge in Γ containing vertex w is {w, x}. Then Γ′ = Γ ∪ {v, w} \ {w, x} is a PN2F with
P (Γ′) ∈ P(u0, x). We say that {v, w} is acceptable if
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(i) x,w /∈W (W defined immediately below).

(ii) P (Γ′) has length at least nc and any new cycle created (in Γ′ but not Γ) has at least nc edges.

There is an unlikely technicality to be faced. If Γ has no non-M0 edge (x,w), then w = u0 and
this is accepted if P (Γ′) has at least nc edges and it ends the round. When P (Γ′) has fewer edges
we lose one out of L0 = Ω(log n) possible branching choices and this is inconsequential. It is also
unlikely, having probability O(|EB|/

(
n
2

)
) = O(log n/n). We refer to this as event C and we remark

on it in the proof of Lemma 12 below.

In addition we define a set W of used vertices, where

W = Vτ at the beginning of Phase 2,

and whenever we look at edges {v, w} , {w, x} (that is, consider using that edge to create a new Γ′),
we add v, w, x to W . Additionally, we maintain |W | = O(n99/100), or fail if we cannot. Note also
that W accumulates as we remove short cycles.

We will build a tree T of PN2Fs, breadth-first, where each non-leaf vertex Γ yields PN2F children
Γ′ as above. When we stop building T we will have νL = n2/3+o(1) leaves, see (24). This will end
Stage 1 for the current cycle C being removed.

We will restrict the set of PN2F’s which could be children of Γ in T as follows: We restrict our
attention to w /∈ W with {v, w} ∈ EB and {v, w} acceptable as defined above. Also, we only
construct children from the first `0 = L0/2 acceptable {v, w}’s at a vertex v. Furthermore we only
build the tree down to `1 = 2 logn

3 log logn levels. We denote the nodes in the ith level of the tree by Si.
Thus S0 = {Γ1} and Si+1 consists of the PN2F’s that are obtained from Si using acceptable edges.
In this way we define a tree of PN2F’s with root Γ1 that has branching factor at most `0. Thus,

|S`1 | ≤ νL = ``10 . (24)

Now augment E0 with the properties claimed in Lemma 8. Then,

Lemma 12 Conditional on the event E0,

|S`1 | = νL

with probability 1− o(n−3).

Proof If P (Γ) has endpoints u0, v and e = {v, w} ∈ EB and e is unacceptable then (i) w lies
on P (Γ) and is within distance nc of an endpoint or (ii) x ∈W or w ∈W or (iii) w lies on a small
cycle or (iv) w ∈ Vτ . Ab initio, there are at least L0 choices for w and we must bound the number
of unacceptable choices.

The probability that at least L0/10 vertices are unacceptable due to (iii) is by Lemmas 8 and 11(a)
at most

(1 + o(1))

(
nb

L0/10

)(
7 log n

(10 + o(1))n

)L0/10

≤
(

9enb log n

L0n

)L0/10

≤
(

900e log log log n

log log n

)L0/10

= O(n−K)
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for any constant K > 0. In our application of Lemma 11, X is the set of EB-edges incident with
W and A is a possible set of EB-edges incident with v.

A similar argument deals with conditions (i) and (ii). Lemma 10(b) means that (iv) only requires
us to subtract 10.

Thus, with (conditional) probability 1− o(n−4),

each vertex of T is incident with at least
log n

100
− 3 log n

1000
− 10− 1 acceptable edges

and so |St+1| ≥
log n

200
|St|,

for all t. (The -1 accounts for the possible occurrence of the event C). So with (conditional)
probability 1− o(n−3) we have

|S`1 | = νL

as desired. (This assumes that |W | remains O(n99/100), see Remark 13 below.) 2

Having built T , if we have not already made a cycle, we have a tree of PN2Fs and the last level, `1
has leaves Γi, i = 1, ..., νL, each with a path P (Γi) of length at least nc. (Recall the definition of an
acceptable edge.) Now, perform a second stage which will be like executing νL-many Stage 1 ’s in
parallel by constructing trees Ti, i = 1, ..., νL each of depth `1, where the root of Ti is Γi. Suppose
for each i, P (Γi) ∈ P(u0, vi); we fix the vertex vi and build paths by first looking at neighbors of
u0, for all i (so in tree Ti, every Γ will have path P (Γ) ∈ P(u, vi) for some u).

Construct these νL trees in Stage 2 by only enforcing the conditions that x,w /∈ W . This change
will allow the PN2Fs to have small paths and cycles. We will not impose a bound on the branching
factor either. As a result of this and the fact that each tree Ti begins by considering edges from EB
incident to u0, the sets of endpoints of paths (that are not the vis) of PN2Fs at the same level are
the same in each of the trees Ti, i = 1, 2, . . . , νL. That is, for every pair 1 ≤ i < j ≤ νL, if Γi is a
node at level ` of tree Ti and P (Γi) ∈ P(w, vi) for some w /∈ Vτ then there exists a node Γj at level
` of tree Tj , such that P (Γj) ∈ P(w, vj). This can be proved by induction, see [5]. Indeed, let Li,`
denote the set of end vertices, other than vi, of the paths associated with the nodes at depth ` of
the tree Ti, i = 1, 2 . . . , νL, ` = 0, 1, . . . , `1. Thus Li,0 = {u0} for all i. We can see inductively that
Li,` = Lj,` for all i, j, `. In fact if v ∈ Li,` = Lj,` then {v, w} ∈ EB is acceptable for some i means
that w /∈W (at the start of the construction of level `+ 1) and hence if {w, x} is the non-M0 edge
for this i then x /∈W and it is the non-M0 edge for all j. In which case {v, w} is acceptable for all
i and we have Li,`+1 = L1,`+1.

The set of trees Ti, i = 1, ..., νL, will be succesfully constructed (i.e. have exactly νL leaves) with
probability 1− o(1/n3) and with a similar probability the number of nodes in each tree is at most
(100 log n)`1 = n2/3+o(1). Here we use the fact that the maximum degree in Gt1 ≤ 100 log n with
this probability, see (9). However, some of the trees may use unacceptable edges, and so we will
“prune” the trees by disallowing any node Γ that was constructed in violation of any of those
conditions. Call tree Ti GOOD if it still has at least νL leaves remaining after pruning and BAD
otherwise. Notice that

Pr(∃ i : Ti is BAD | E0) = o
(νL
n3

)
= o(n−2).
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Here the o(1/n3) factor is the one promised in Lemma 12.

Finally, consider the probability that there is no EB edge from any of the n2/3+o(1) endpoints found
in Stage 1 to any of the n2/3+o(1) endpoints found in Stage 2. At this point we will have only
exposed the EB-edges of Π0 incident with these endpoints. So if for some k ≤ νL we examine the
(at least) log n/100 edges incident to v1, v2, . . . , vk, then from Lemma 11(b), with X equal to the
EB-edges incident with W and A equal to the set of pairs (vi, w), i ≤ k where w is a leaf of some
Ti, 1 ≤ i ≤ νL, we see that the probability we fail to close a cycle and produce a proper 2-factor is
at most

exp

{
−k × n

2/3+o(1)n log n(
ν
2

) }
.

Thus taking k = n1/3+o(1) suffices to make the failure probability o(n−2). (If we have nγ endpoints
here, then we need k to be ω(n1−γ).) Also, this final part of the construction only contributes
n1/3+o(1) to W , viz. v1, v2, . . . , vk and O(k log n) of their neighbors. Our choice of k = n1/3+o(1)

and n2/3+o(1) for tree size makes this probability small and controls the size of W . There are other
choices, this is just one of them.

Therefore, the probability that we fail to eliminate a particular small cycle C is o(n−2) and then
given E0, the probability that Phase 2 fails is o(log n/n2) = o(1).

Remark 13 We should check now that w.h.p. |W | = O(n99/100) throughout Phase 2. It starts out
with at most n99/100 + n2/5 vertices (see Lemmas 3(a) and 10(a)) and we add O(n2/3+o(1) × log n)
vertices altogether in this phase.

So we conclude:

Lemma 14 The probability that Phase 2 fails to produce a proper 2-factor with minimum cycle
length at least nc is O(n−0.51).

2

4.4 Phase 3: Creating a Hamilton cycle

By the end of Phase 2, we will with probability 1−O(n−0.51) have found a proper 2-factor with all
cycles of length at least nc. Call this subgraph Π∗.

In this section, we will use the edges in

EC = {e ∈ Et0 \ (Et4 ∪ E(Ψ1)) : e ∩ V0 = ∅}

to turn Π∗ into a Hamilton cycle that contains M0, w.h.p. It is basically a second moment calcu-
lation with a twist to keep the variance under control. We note that Lemma 11 continues to hold
if we replace EB by EC and α by 1

20 + o(1).

Arbitrarily assign an orientation to each cycle. Let C1, ..., Ck be the cycles of Π∗ (note that if k = 1
we are done) and let ci = d|Ci \W |/2e. Then ci ≥ nc

2 −O(n99/100) ≥ 99n
logn for all i. Let a = n

logn and
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mi = 2b cia c+ 1 for all i and m =
∑k

i=1mi. We arbitrarily orient the cycles C1, . . . , Ck. Then from
each Ci, we will consider choosing mi edges {v, w} such that v, w ∈ Ci \W and v is the head of a
non-M0 arcs after the arbitrary orientation of the cycles. We then delete these m arcs and replace
them with m others to create a proper Hamilton cycle. We use a second moment calculation to
show that such a substitution is possible w..h.p.

Given such a deletion of edges, re-label the broken arcs as (vj , uj), j ∈ [m] as follows: in cycle Ci
identify the lowest numbered vertex xi ∈ [n] which loses a cycle edge directed out of it. Put v1 = x1

and then go round C1 defining v2, v3, . . . vm1 in order. Then let vm1+1 = x2 and so on. We thus
have m path sections Pj ∈ P(uφ(j), vj) in Π∗ for some permutation φ.

It is our intention to rejoin these path sections of Π∗ to make a Hamilton cycle using EC , if we
can. Suppose we can. This defines a permutation ρ on [m] where ρ(i) = j if Pi is joined to Pj by
(vi, uφ(j)), where ρ ∈ Hm, the set of cyclic permutations on [m]. We will use the second moment
method to show that a suitable ρ exists w.h.p. A technical problem forces a restriction on our
choices for ρ. This will produce a variance reduction in a second moment calculation, as explained
in (27).

Given ρ define λ = φρ. In our analysis we will restrict our attention to ρ ∈ Rφ = {ρ ∈ Hm : φρ ∈
Hm}. If ρ ∈ Rφ then we have not only constructed a Hamilton cycle in Π∗ ∪ EC , but also in the
auxiliary digraph Λ, whose edges are (i, λ(i)).

The following lemma is from [6]. The content is in the lower bound. It shows that there are still
many choices for ρ and it is needed to show that the expected number of possible re-arrangements
of path sections grows with n.

Lemma 15 (m− 2)! ≤ |Rφ| ≤ (m− 1)!

Let H be the graph induced by the union of Π∗ and EC . In the following lemma we drop the
requirement that events occur with probability 1−O(n−0.51). This requirement was used to handle
issues related to M0 and the edges chosen. At this point these issues no longer matter and w.h.p.
takes its usual meaning.

Lemma 16 H contains a Hamilton cycle w.h.p.

Proof Let X be the number of Hamilton cycles in G that can be obtained by removing the
edges described above and rearranging the path segments generated by φ according to those in
ρ ∈ Rφ and connecting the path segments using edges in H.

We will use the inequality Pr(X > 0) ≥ E(X)2

E(X2)
to show that such a Hamilton cycle exists with the

required probability.

The definition of mi gives us n−|W |
a − k ≤ m ≤ n−|W |

a + k and so 1.99 log n ≤ m ≤ 2.01 log n.

Additionally we will use k ≤ n
nc

= logn
200 , mi ≥ 199 and ci

mi
≥ a

2.01 for all i.
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From Lemmas 11 and 15, we have, with α = 1/20 + o(1),

E(X) ≥ (1− o(1))

(
2α log n

n

)m
(m− 2)!

k∏
i=1

(
ci
mi

)
(25)

≥ 1− o(1)

m3/2

(
2mα log n

en

)m k∏
i=1

((
cie

1−1/10mi

m
1+(1/2mi)
i

)mi (
1− 2m2

i /ci√
2π

))
(26)

=
(1− o(1))e−k/10(2π)−k/2

m3/2

(
2mα log n

en

)m k∏
i=1

(
cie

m
1+(1/2mi)
i

)mi
where to go from (25) to (26) we have used the approximation (m− 2)! ≥ m−3/2(m/e)m and(

ci
mi

)
≥
cmii (1− 2m2

i /ci)

mi!
and mi! ≤

√
2πmi

(mi

e

)mi
e1/10mi .

Explanation of (25): We choose the arcs to delete in
∏k
i=1

(
ci
mi

)
ways and put them together as

explained prior to Lemma 15 in at least (m − 2)! ways. The probability that the required edges

exist in EC is (1 + o(1))
(

2α logn
n

)m
, from Lemma 11.

Continuing, we have

E(X) ≥ (1− o(1))(2π)−k/2e−k/10

m3/2

(
2mα log n

en

)m k∏
i=1

(
cie

(1.02)mi

)mi
≥ (1− o(1))(2π)−k/2

n1/2000m3/2

(
2mα log n

en

)m( ea

2.01× 1.02

)m
≥ 1− o(1)

n1/1000m3/2

(
log n

30

)m
→∞.

Let M,M ′ be two sets of selected edges which have been deleted in Π∗ and whose path sections
have been re-arranged into Hamilton cycles according to ρ, ρ′ respectively. Let N,N ′ be the corre-
sponding sets of edges which have been added to make the Hamilton cycles. Let Ω denote the set
of choices for M (and M ′.)

Let s = |M ∩M ′| and t = |N ∩N ′|. Now t ≤ s since if (v, u) ∈ N ∩N ′ then there must be a unique
(ṽ, u) ∈M ∩M ′ which is the unique Π∗-edge into u. It is shown in [6] that

t = s implies t = s = m and (M,ρ) = (M ′, ρ′). (27)

(This removes a large term from the second moment calculation). Indeed, suppose then that t = s
and (vi, ui) ∈ M ∩M ′. Now the edge (vi, uλ(i)) ∈ N and since t = s this edge must also be in N ′.
But this implies that (vλ(i), uλ(i)) ∈M ′ and hence in M ∩M ′. Repeating the argument we see that
(vλk(i), uλk(i)) ∈M ∩M ′ for all k ≥ 0. But λ is cyclic and so our claim follows.
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If 〈s, t〉 denotes the case where s = |M ∩M ′| and t = |N ∩N ′|, then

E(X2) ≤ E(X) + (1 + o(1))
∑
M∈Ω

(
2α log n

n

)m ∑
M ′∈Ω
N ′∩N=∅

(
2α log n

n

)m

+ (1 + o(1))
∑
M∈Ω

(
2α log n

n

)m m∑
s=2

s−1∑
t=1

∑
M ′∈Ω
〈s,t〉

(
2α log n

n

)m−t
= E(X) + E1 + E2 say.

Note that E1 ≤ (1 + o(1))E(X)2.

Now, with σi denoting the number of common M ∩M ′ edges selected from Ci,

E2 ≤ E(X)2
m∑
s=2

s−1∑
t=1

(
s

t

)[ ∑
σ1+...+σk=s

k∏
i=1

(
mi
σi

)(
ci−mi
mi−σi

)(
ci
mi

) ]
(m− t− 1)!

(m− 2)!

(
n

2α log n

)t
.

Some explanation: There are
(
s
t

)
choices for N ∩N ′, given s and t. Given σi there are

(
mi
σi

)
ways

to choose M ∩M ′ and
(
ci−mi
mi−σi

)
ways to choose the rest of M ′ ∩ Ci. After deleting M ′ and adding

N ∩N ′ there are at most (m− t− 1)! ways of putting the segments together to make a Hamilton
cycle.

We see that(
ci−mi
mi−σi

)(
ci
mi

) ≤
(

ci
mi−σi

)(
ci
mi

) =
mi(mi − 1) · · · (mi − σi + 1)

(ci −mi + 1) · · · (ci −mi + σi)
≤ (1 + o(1))

(
2.01

a

)σi
exp

{
−σi(σi − 1)

2mi

}
.

Also, Jensen’s inequality, applied twice implies that

k∑
i=1

σ2
i

2mi
=

(
k∑
i=1

σ2
i

)
·

(
k∑
i=1

σ2
i∑k

i=1 σ
2
i

1

2mi

)
≥ s2

k
· k

2m
=

s2

2m
for σ1 + ...+ σk = s.

Furthermore,
k∑
i=1

σi
2mi

≤ k

2
and

∑
σ1+...+σk=s

k∏
i=1

(
mi

σi

)
=

(
m

s

)
.

Using these approximations, we have

∑
σ1+...+σk=s

k∏
i=1

(
mi
σi

)(
ci−mi
mi−σi

)(
ci
mi

) ≤ e(1+o(1))k/2 exp

{
− s2

2m

}(
2.01

a

)s(m
s

)
.

So we can write

E2

E(X)2
≤ e(1+o(1))k/2

m∑
s=2

s−1∑
t=1

(
s

t

)
exp

{
− s2

2m

}(
2.01

a

)s(m
s

)
(m− t− 1)!

(m− 2)!

(
n

2α log n

)t
.

We approximate(
m

s

)
(m− t− 1)!

(m− 2)!
≤ C1

ms

s!

(
m− t− 1

e

)m−t−1( e

m− 2

)m−2

≤ C2
ms

s!

et

mt−1
,
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for some constants C1, C2 > 0.

Substituting this in, we obtain,

E2

E(X)2
≤b n1/399m

m∑
s=2

(
2.01

a

)s ms

s!
exp

{
− s2

2m

} s−1∑
t=1

(
s

t

)(
en

2αm log n

)t
≤ n1/399m

m∑
s=2

(
2.01

a

)s ms

s!
exp

{
− s2

2m

}
× 2m

(
en

2αm log n

)s−1

≤b
m2

n.99

∞∑
s=2

(
(2.01)en exp{−s/2m}

2αa log n

)s 1

s!

≤ m2

n.99

∞∑
s=2

30s

s!

= O(n−9/10).

Combining things, we get

E(X2) ≤ E(X) + E(X)2(1 + o(1)) + E(X)2n−9/10

and so
(EX)2

E(X2)
≥ 1

1
EX + 1 + o(1) + n−9/10

−→ 1

as n→∞, as desired. 2

Remark 17 We now consider the case where we are given M0 and we must choose edges disjoint
from M0.

(a) If we choose t1 edges independently of M0 then the probability they are disjoint from M0 is,
where N =

(
n
2

)
,(

N−n/2
t1

)(
N
t1

) =

t1−1∏
i=0

(
1− n

2(N − i)

)
≥ exp

{
−
t1−1∑
i=0

n

2(N − i)
+O

(
t1n

2

N2

)}
= n−1/2+o(1).

(b) We have shown that if we generate t1 edges independent of M0 then conditional on t0 ≤ τ1 ≤ t1
we have that with probability 1−O(n−0.51) there is a perfect matching in Eτ1 \M0.

(c) If we only choose from edges not in M0 then the distribution of the edges we choose is the same
as simply conditioning on Et1 ∩M0 = ∅.

It follows from (a),(b),(c) that if we avoid M0 then we will still w.h.p. find a perfect matching M1.
Indeed, letting A = {M1 exists} ,B = {Et1 ∩M0 = ∅} andn T = {t0 ≤ τ1 ≤ t1} as before, we have

Pr(Ā | B) =
Pr(ĀBT )

Pr(B)
+

Pr(ĀBT̄ )

Pr(B)
≤ Pr(Ā | T )

Pr(B) Pr(T )
+ Pr(T̄ | B). (28)
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Now
Pr(Ā | T )

Pr(B) Pr(T )
=

O(n−0.51)

Ω(n−0.5+o(1))(1− o(1))
= o(1)

and this deals with the first term on the RHS of (28).

For the second term on the RHS of (28) we have

Pr(T̄ | B) ≤ n
((n2)− 1

2
n−(n−2)
t1

)
((n2)− 1

2
n

t1

) ≤ n

(
1− n− 2(

n
2

)
− 1

2n

)t1
= o(1).

It follows that Pr(Ā | B) = o(1). The remainder of the proof that there is a Hamilton cycle
containing M0 goes through with minor changes that reflect the fact that we do not choose edges of
M0.

4.5 Proof of Corollary 2

We begin the proof by replacing the sequence E0, E1, . . . , Em, . . . by E′0, E
′
1, . . . , E

′
m, . . . , where the

edges of E′m = {e′1, e′2, . . . , e′m} are randomly chosen with replacement. This means in particular
that em is allowed to be a member of E′m−1. We let G′m be the graph ([n], E′m).

If an edge appears a second time, it will keep its original color. We let R denote the set of edges
that get repeated, up to time τ1,1. Note that

2t0 ≤ τ1,1 ≤ 2t1 w.h.p. (29)

since the Chernoff bounds imply that w.h.p. we there at most t0 +O(n1/2 log n) edges of each color
at time t0 and at least t1−O(n1/2 log n) edges of each color at time t1. Note that if eτ1,1 = {v, w} ∈ R
then v or w is isolated in G

(b)
τ1,1−1 or G

(w)
τ1,1−1.

Pr(eτ1,1 ∈ R) ≤ 4 Pr(∃e = {v, w} ∈ R : v has black degree 1 at time τ1,1) = o(1). (30)

Explanation: The factor 4 comes from v or w having black or white degree one at time τ1,1. Next
suppose first that eτ1,1 = {v, w} and that v has black degree zero in Gτ1,1−1 and w also has black
degree zero in Gτ1,1−1. Now w.h.p. there is no white edge joining v and w and so eτ1,1 /∈ R. Indeed,
the probability of this event can be bounded by

o(1) +

2t1∑
t=2t0

(
n

2

)
1(
n
2

)
(1− n− 1

2
(
n
2

) )t(1− n− 1

2
(
n
2

) )t−1
 ≤ o(1) + 2t1

(
log2 n

n

)2

= o(1).

The o(1) accounts for τ1,1 not being in the interval [2t0, 2t1]. The factor
(
n
2

)
accounts for the choice

of v, w. The factor 1/
(
n
2

)
is the probability that the tth edge is {v, w} and the final product accounts

the black degree of both u, v being zero.

Now suppose that eτ1,1 = {v, w} and that v has black degree zero in Gτ1,1−1 and w has positive
black degree in Gτ1,1−1. An argument similar to that given for Lemma 3(g) shows that w.h.p. the
maximum white degree in G′2t1 is O(log n). There are n − 1 choices for w, of which O(log n) put
eτ1,1 into R. So eτ1,1 has an O(log n/n) chance of being in R. This verifies (30).
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At time m = τ1,1 the graphs G
(b)′
m , G

(w)′
m will w.h.p. contain perfect matchings, see [9]. That paper

does not allow repeated edges, but removing them enables one to use the result claimed. Here we
use the fact that w.h.p. there are only O(log2 n) repeated edges, (as explained below), they are
far apart, and are not incident to any low degree vertices. Thus any argument based on expansion
goes through without difficulty. We choose perfect matchings MB,MW uniformly at random from

G
(b)′
τ1,1 , G

(w)′
τ1,1 respectively. Thus by symmetry, each is a random perfect matching disjoint from its

oppositely colored perfect matching.

We couple the sequence G1, G2, . . . , with the sequence G′1, G
′
2, , . . . , by ignoring repeated edges in

the latter. Thus G′1, G
′
2, . . . , G

′
m is coupled with a sequence G1, G2, . . . , Gm′ where m′ ≤ m. It

follows from (30) that w.h.p. the coupled processes stop with the same edge. Furthermore, they
stop with two matchings MB,MW , independently chosen. We can then begin analysing Phase 2
and Phase 3 within this context.

We will prove that
Pr(MB ∩R = ∅) ≥ n−1/2−o(1). (31)

Corollary 2 follows from this. If MB ∩R = ∅ then the white edges are chosen conditional on being
disjoint from MB. It follows from (31) and the fact that Phases 1 and 2 succeed with probability
1−O(n−0.51) (i.e. when ignoring the conditioning, MB∩R = ∅) that they succeed w.h.p. conditional
on MB ∩R = ∅.

Phase 3 succeeds w.h.p. even if we avoid using edges in R. We have already carried out calculations
with an arbitrary set of O(n99/100 log n) edges that must be avoided. The size of R is dominated
by a binomial Bin(O(n log n), O(n−1 log n)) and so |R| = O(log2 n) w.h.p. So avoiding R does
not change any calculation in any significant way. In other words, we can w.h.p. find a zebraic
Hamilton cycle in G′m.

Finally note that the Hamilton cycle we obtain is zebraic.

Proof of (31): R is a uniformly random set, given its size and it is independent of MB. Indeed,
we can repeat edges arbitrarily without changing MB. Let tB be the number of black edges, then

Pr(MB ∩R = ∅ | tB) ≥
(

1− n/2

N

)tB
≥ exp

{
−tB

(
1

n
+O

(
1

n2

))}
.

Explanation of first inequality: Each choice of black edge has at most an n/2
N chance of repeating

an edge of MB, regardless of previously seen edges.

To remove the conditioning, we take expectations and then by convexity

E

(
exp

{
−tB

(
1

n
+O

(
1

n2

))})
≥ exp

{
−E(tB)

(
1

n
+O

(
1

n2

))}
≥ n−1/2−o(1)

since E(tB) ∼ 1
2n log n. This proves (31).

5 Proof of Theorem 2

For a vertex v ∈ [n] we let its black degree db(v) be the number of black edges incident with v in
Gt0 . We define its white degree dw(v) analogously. Let a vertex be large if db(v), dw(v) ≥ L0 and
small otherwise.
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We first show how to construct zebraic paths between a pair x, y of large vertices. We can in
fact construct paths, even if we decide on the color of the edges incident with x and y. We do
breadth first searches from each vertex, alternately using black and white edges, constructing search
trees Tx, Ty. We build trees with n2/3+o(1) leaves and then argue that we can connect the leaves
with a correctly colored edge. We then find paths between small vertices and other vertices by
piggybacking on the large to large paths.

We will need the following structural properties:

Lemma 18 The following hold w.h.p.:

(a) No set S of at most 10 vertices that is connected in Gt1 contains three small vertices.

(b) Let a be a positive integer, independent of n. No set of vertices S, with |S| = s ≤ aL1, L1 =
logn

log logn , contains more than s+ a edges in Gt1.

(c) There are at most n2/3 small vertices in Gt0.

(d) There are at most log3 n isolated vertices in Gt0.

Proof (a) We say that a vertex is a low color vertex if it is incident in Gt1 to at most Lε =
(1+ε)L0 edges of one of the colors, where ε is some sufficiently small positive constant. Furthermore,
it follows from (4) that

Pr(∃ a connected S in Gn,t1 with three low color vertices)

≤
10∑
k=3

(
n

k

)
kk−2

(
N−k+1
t1−k+1

)(
N
t1

) (
k

3

)
Pr(vertices 1,2,3 are low color | [k] is a connected set) (32)

≤b
10∑
k=3

(
n

k

)
kk−2

(
N−k+1
t1−k+1

)(
N
t1

) (
k

3

)(
2

Lε∑
`=0

(
n− k
`

)(p1

2

)` (
1− p1

2

)n−k−`)3

(33)

≤b
10∑
k=3

nk
(
t1
N

)k−1

(n−0.45)3

≤b
10∑
k=3

nk
(

log n

n

)k−1

(n−0.45)3

= o(1).

Explanation of (32),(33): Having chosen our tree,
(N−k+1
t1−k+1)

(Nt1)
is the probability that this tree exists

in Gt1 . Condition on this and choose three vertices. The final (· · · )3 in (33) bounds the probability
of the event that 1,2,3 are low color vertices in Gn,p1 . This event is monotone decreasing when
restricted to the edges of a fixed color, given the conditioning. So we can use (4) to replace Gn,t1
by Gn,p1 here.

Now a simple first moment calculation shows that w.h.p. each vertex in [n] is incident with less
than log n/(log log n)1/2 edges of Et1 \Et0 . Indeed, the number of such edges incident with a fixed
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vertex v is dominated by the binomial Bin(t1 − t0, 2/n) = Bin(2n log log n, 2/n). And then

Pr(∃v) ≤ n
(

2n log log n

log n/(log log n)1/2

)(
2

n

)logn/(log logn)1/2

≤ n

(
4e(log log n)3/2

log n

)logn/(log logn)1/2

= o(1).

Hence, for (a) to fail, there would have to be a relevant set S with three vertices, each incident in
Gt1 with at most (1 + o(1))L0 edges of one of the colors, contradicting the above.

(b) We will prove something slightly stronger. Suppose that p = K logn
n where K > 0 is arbitrary.

We will show this result for Gn,p. The result for this lemma follows from when K = 1 + o(1) and
from (4). We get

Pr(∃ S) ≤b
aL1∑
s≥4

(
n

s

)( (
s
2

)
s+ a+ 1

)
ps+a+1

≤b
aL1∑
s≥4

(ne
s
· sep

2

)s
(sep)a+1

≤b (Ke2 log n)aL1

(
log2 n

n

)a+1

≤ no(1)

(
log3+L1 n

n

)a
log2 n

n

= o(1).

(c) Using (4) we see that if Z denotes the number of small vertices then

E(Z) ≤b n
L0∑
k=0

(p0

2

)k (
1− p0

2

)n−1−k
≤ n0.55.

We now use the Markov inequality.

(d) Using (4) we see that the expected number of isolated vertices in Gt0 is O(log2 n). We now use
the Markov inequality. 2

Now fix a pair of large vertices x < y. We will define sets S
(b)
i (z), S

(w)
i (z), i = 0, 1, . . . , `1, z = x, y.

Assume w.l.o.g. that `1 is even. We let S
(b)
0 (x) = S

(w)
0 (x) = {x} and then S

(b)
1 (x) (resp. S

(w)
1 (x)) is

the set consisting of the first `0 black (resp. white) neighbors of x in Gt0 . We will use the notation

S
(c)
≤i (x) =

⋃i
j=1 S

(c)
j (x) for c = b, w. We now iteratively define for i = 0, 1, . . . , (`1 − 2)/2.

Ŝ
(b)
2i+1(x) =

{
v /∈ S(b)

≤2i(x) : v 6= y is joined by a black Gt0-edge to a vertex in S
(b)
2i (x)

}
.

S
(b)
2i+1(x) = the first `i0 members of Ŝ

(b)
2i+1(x).

Ŝ
(b)
2i+2(x) =

{
v /∈ S(b)

≤2i+1 : v 6= y is joined by a white Gt0-edge to a vertex in S
(b)
2i+1(x)

}
.

S
(b)
2i+2(x) = the first `i0 members of Ŝ

(b)
2i+2(x) :
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We then define, for i = 0, 1, . . . , (`1 − 2)/2.

Ŝ
(w)
2i+1(x) =

{
v /∈ (S

(b)
≤`1(x) ∪ S(w)

≤2i(x)) : v 6= y is joined by a white Gt0-edge to a vertex in S
(w)
2i (x)

}
S

(w)
2i+1(x) = the first `i0 members of Ŝ

(w)
2i+1(x).

Ŝ
(w)
2i+2(x) =

{
v /∈ (S

(b)
≤`1(x) ∪ S(w)

≤2i+1(x)) : v 6= y s joined by a black Gt0-edge to a vertex in S
(w)
2i+1(x)

}
S

(w)
2i+2(x) = the first `i0 members of Ŝ

(w)
2i+2(x) :

Lemma 19 If 1 ≤ i ≤ `1, then in Gt0, for c = b, w,

Pr(|Ŝ(c)
i+1(x)| ≤ `0|S(c)

i (x)| | |S(c)
j (x)| = `j0, 0 ≤ j ≤ i) = O(n−K) for any constant K > 0.

Proof This follows easily from (5) and the Chernoff bounds and ``10 = o(n). In Gn,p0 , given

that |S(c)
2i (x)| = `i0, each random variable Ŝ

(c)
2i+1(x) is binomially distributed with parameters n−o(n)

and 1− (1− p0/2)`
i
0 . The mean is therefore asymptotically 1

2`
i
0 log n = Ω(log2 n) and we are asking

for the probability that it is much less than half its mean. 2

It follows from this lemma, that w.h.p., we may define S
(b)
0 (x), S

(b)
1 (x), . . . , S

(b)
`1

(x) where |S(b)
i (x)| =

`i0 such that for each j and z ∈ S(b)
j (x) there is a zebraic path from x to z that starts with a black

edge. For S
(w)
`1

(x) we can say the same except that the zebraic path begins with a white edge.

Having defined the S
(c)
i (x) etc., we define sets S

(c)
i (y), i = 1, 2 . . . , `1, c = b, w. We let S

(b)
0 (y) =

S
(w)
0 (y) = {y} and then S

(b)
1 (y) (resp. S

(w)
1 (y)) is the set consisting of the first `0 black (resp.

white) neighbors of y that are not in S
(b)
≤`1(x) ∪ S(w)

≤`1(x). We note that for c = b, w we have that

w..h.p. |Ŝ(c)
1 (y)| ≥ L0 − 18 > `0. This follows from Lemma 18(b). We can appply this lemma

because w.h.p. t0 ≤ τ1 ≤ t1. Indeed, suppose that y has ten neighbors T in S
(w)
≤`1(x). Let S be the

set of vertices in the paths from T to x in S
(w)
≤`1(x). If |S| = s then S ∪ {y} contains at least s+ 9

edges. This is because every neighbour after the first adds an additional k vertices and k+ 1 edges
to the subgraph of Gt0 spanned by S ∪ {y}, for some k ≤ `1. Now s+ 1 ≤ 10`1 + 1 ≤ 7L1 and the
s+ 9 edges contradict the condition in the lemma, with a = 7.

We make a slight change in the definitions of the Ŝ
(c)
i (y) in that we keep these sets disjoint from

the S
(c′)
i (x). Thus we take for example

Ŝ
(w)
2i+1(y) ={
v /∈ (S

(w)
≤2i(y) ∪ S(b)

≤`1(x) ∪ S(w)
≤`1(x)) : v is joined by a white Gt0-edge to a vertex in S

(w)
2i (y)

}
.

Then we note that excluding o(n) extra vertices has little effect on the proof of Lemma 19 which

remains true with x replaced by y. We can then define the S
(c)
i (y) by taking the first `0 vertices.

Suppose now that we condition on the sets S
(c)
i (x), S

(c)
i (y) for c = b, w and i = 0, 1, . . . , `1. The

edges between the sets with c = b and i = `1 and those with c = w and i = `1 are unconditioned.
Let

Λ = `2`10 = n4/3−o(1).
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Then, for example, using (4), (strictly speaking, bounding the probability of monotone events in
the context of a hypergeometric distribution by the corresponding probability under a binomial
distribution),

Pr( 6 ∃ a black Gt0 edge joining S
(b)
`1

(x), S
(b)
`1

(y)) ≤ 3

(
1− log n

(2 + o(1))n

)Λ

= O(n−K),

for any positive constant K. 2

Thus w.h.p. there is a zebraic path with both terminal edges black between every pair of large

vertices. A similar argument using S
(w)
`1

(x), S
(w)
`1

(y) shows that w.h.p. there is a zebraic path with
both terminal edges white between every pair of large vertices.

If we want a zebraic path with a black edge incident with x and a white edge incident with y then

we argue that there is a black Gt0 edge between S
(b)
`1

(x) and S
(w)
`1−1(y).

We now consider the small vertices. Let Vσ be the set of small vertices that have a large neighbor in
Gτ1 . The above analysis shows that there is a zebraic path between v ∈ Vσ and w ∈ Vσ ∪Vλ, where
Vλ is the set of large vertices. Indeed if v is joined by a black edge to a vertex w ∈ Vλ then we can
continue with a zebraic path that begins with a white edge and we can reach any large vertex and
choose the color of the terminating edge to be either black or white. This is useful when we need
to continue to another vertex in Vσ.

We now have to deal with small vertices that have no large neighbors at time τ1. It follows from
Lemma 18(a) that such vertices have degree one or two in Gτ1 and that every vertex at distance
two from such a vertex is large.

Lemma 20 All vertices of degree at most two in Gt0 are w.h.p. at distance greater than 10 in Gt1,

Proof Simpler than Lemma 3(b). We use (5) and then

Pr(∃ such a pair of vertices) ≤b t
1/2
1

9∑
k=0

nkpk−1
1

(
(1− p0)n−k−1 + (n− k)p0(1− p0)n−k−2

)2
= o(1).

2

Let Zi be the number of vertices of degree 0 ≤ i ≤ 2 in Gt0 that are adjacent in Gτ1 to small

vertices that are themselves only incident to edges of one color. Lemma 18(a) implies that

Z2 = 0 w.h.p. (34)

Now consider the case i = 1. Here we let Z ′1 be the number of vertices of degree one in Gt0 that
are adjacent in Gt0 to vertices that are themselves only incident to edges of one color. Note that
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Z1 ≤ Z ′1. Then we have, with the aid of (8),

E(Z ′1) ≤ n
(
n− 1

1

)(N−n+1
t0−1

)(
N
t0

) n−2∑
k=1

(
n− 2

k

)(N−2n+3
t0−1−k

)(
N−n+1
t0−1

) 2−(k−1). (35)

≤b n2 t0
N

(
N − t0
N − 1

)n−2 n−2∑
k=1

(
n− 2

k

)
2−k

(
t0 − 1

N − n+ 1

)k (N − n− t0 + 2

N − n− k + 1

)n−2−k

≤b n log n exp

{
−(n− 2)(t0 − 1)

N − 1

} n−2∑
k=1

(
n− 2

k

)(
t0 − 1

2(N − n+ 1)

)k (N − n− t0 + 2

N − n− k + 1

)n−2−k

≤ n log n exp

{
−(n− 2)(t0 − 1)

N − 1

} n−2∑
k=1

(
n− 2

k

)(
t0

2(N − n)

)k (N − n− 2t0/3

N − n

)n−2−k

≤b log3 n

(
t0

2(N − n)
+
N − n− 2t0/3

N − n

)n−2

≤ log3 n

(
N − t0/6
N − n

)n−2

= o(1).

Explanation for (35): We choose a vertex v of degree one and its neighbor w in n
(
n−1

1

)
ways.

The probability that v has degree one is
(N−n+1
t0−1 )

(Nt0)
. We fix the degree of w to be k + 1. This now

has probability
(N−2n+3
t0−k−1 )

(N−n+1
t0−1 )

. The final factor 2−(k−1) is the probability that w only sees edges of one

color.

Finally, consider Z0. Condition on Gt0 and assume that Properties (c),(d) of Lemma 18 hold. For
a given isolated vertex, the first Gt0 edge incident with it will have a random endpoint. It follows
immediately that

Pr(Z0 > 0) ≤ o(1) + log3 n× n2/3

n
= o(1). (36)

Here the o(1) accounts for Properties (c),(d) of Lemma 18 and log3 n×n−1/3 bounds the expected
number of “first edges” that choose small endpoints.

Equations (34), (35) and (36) show that Z0 + Z1 + Z2 = 0 w.h.p. In which case it will be possible
to find zebraic paths starting from small vertices. Indeed, we now know that w.h.p. any small
vertex v will be adjacent to a vertex w that is incident with edges of both colors and that any other
neighbor of w is large.

6 Proof of Theorem 3

The case r = 2 is implied by Corollary 2. This follows from Corollary 2 and (29). So we can assume
that r ≥ 3.
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6.1 p ≤ (1− ε)pr

For a vertex v, let

Cv = {i : v is incident with an edge of color i} .
Iv = {i : {i, i+ 1} ⊆ Cv} . (r + 1 = 1 here.)

Let v be bad if Iv = ∅. The existence of a bad vertex means that there are no r-zebraic Hamilton
cycles. Let ZB denote the number of bad vertices. Now if r is odd and Cv ⊆ {1, 3, . . . , 2br/2c − 1}
or r is even and Cv ⊆ {1, 3, . . . , r − 1} then Iv = ∅. Hence,

E(ZB) ≥ n
(

1− αrp

r

)n−1
= nε−o(1) →∞.

A straightforward second moment calculation shows that ZB 6= 0 w.h.p. and this proves the first
part of the theorem.

6.2 p ≥ (1 + 3ε)pr

Note the replacement of ε by 3ε here, for convenience. Note also that ε is assumed to be sufficiently
small for some inequalities below to hold.

Write 1− p = (1− p1)(1− p2)2 where p1 = (1 + ε)pr and p2 ∼ εpr . Thus Gn,p is the union of Gn,p1
and two independent copies of Gn,p2 . If an edge appears more than once in Gn,p, then it retains
the color of its first occurence.

Now for a vertex v let di(v) denote the number of edges of color i incident with v in Gn,p1 . Let

Jv = {i : di(v) ≥ η0 log n}

where η0 = ε2/r.

Let v be poor if |Jv| < βr where βr = br/2c+ 1. Observe that αr +βr = r+ 1. Then let ZP denote
the number of poor vertices in Gn,p1 . A simple calcluation shows that w.h.p. the minimum degree
in Gn,p1 is at least L0 and that the maximum degree is at most 6 log n. Then

Pr(ZP > 0) ≤ o(1) + n

6 logn∑
k=L0

(
n− 1

k

)
pk1(1− p1)n−1−k

r∑
l=r−βr+1

(
r

l

)(
k

lη0 log n

)(
1− l

r

)k−rη0 logn

≤ o(1) + n

6 logn∑
k=0

(
n− 1

k

)
pk1(1− p1)n−1−k2r

(
6 log n

rη0 log n

)(
βr − 1

r

)k ( r

βr − 1

)rη0 logn

= o(1) + n2r
(

6 log n

rη0 log n

)(
r

βr − 1

)rη0 logn 6 logn∑
k=0

(1− p1)n−1

(
n− 1

k

)(
p1(βr − 1)

r(1− p1)

)k
≤ o(1) + 2rn1+rη0 log(6e/η0)(1− p1)n−1

(
1 +

(βr − 1)p1

r(1− p1)

)n−1

≤ o(1) + 2rn1+rη0 log(6e/η0)

(
1− (1 + o(1))αrp1

r

)n−1

= o(1).
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We can therefore assert that w.h.p. there are no poor vertices. This means that

Kv = {i : di(v), di−1(v) ≥ η0 log n} 6= ∅ for all v ∈ [n]. (37)

The proof now follows our general 3-phase procedure of (i) finding an r-zebraic 2-factor, (ii) remov-
ing small cycles so that we have a 2-factor in which every cycle has length Ω(n/ log n) and then (iii)
using a second moment calculation to show that this 2-factor can be re-arranged into an r-zebraic
Hamilton cycle.

6.2.1 Finding an r-zebraic 2-factor

We partition [n] into r sets Vi = [(i− 1)n/r + 1, in] of size in/r. Now for each i and each vertex v
let

Ni(v) = {w : {v, w} is an edge of Gn,p1 of color i}.

d+
i (v) = |Vi+1 ∩Ni(v)| and d−i (v) = |Vi−1 ∩Ni−1(v)|.

(Here r + 1 is interpreted as 1 and 1-1 is interpreted as r).

We now let a vertex v ∈ Vi be i-large if d+
i (v), d−i (v) ≥ η log n where η = min {η0, η1, η2} and η1 is

the solution to

η1 log

(
e(1 + ε)

rη1αr

)
=

1

rαr

and η2 is the solution to

η2 log

(
3er(1 + ε)

η2αr

)
=

1

3αr
.

Let v be large if it is i-large for all i. Let v be small otherwise. (Note that d+
i (v), d−i (v) are defined

for all v, not just for v ∈ Vi, i ∈ [r]).

Let Vλ, Vσ denote the sets of large and small vertices respectively.

Lemma 21 W.h.p., in Gn,p1,

(a) |Vσ| ≤ n1−θ where θ = ε
2rαr

.

(b) No connected subset of size at most 2 log log n contains more than µ0 = rαr members of Vσ.

(c) If S ⊆ [n] and |S| ≤ n0 = n/ log2 n then e(S) ≤ 100|S|.

Proof
(a) If v ∈ Vσ then there exists i such that d+

i (v) ≤ η log n or d−i (v) ≤ η log n. So we have

E(|Vσ|) ≤ 2rn

η logn∑
k=0

(
n/r

k

)(p1

r

)k (
1− p1

r

)n/r−k
(38)

≤ 3r

(
(1 + ε)e

rηαr

)η logn

n1−(1+ε+o(1))/rαr (39)

≤ n1−2θ+o(1).
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Part (a) follows from the Markov inequality. Note that we can lose the factor 2 in (38) since
d+
i (v) = d−i+2(v).

(b) The expected number of connected sets S of size at most 2 log log n containing µ0 members of
Vσ can be bounded by

2 log logn∑
s=µ0

(
n

s

)
ss−2ps−1

1

(
s

µ0

)(
r

η logn∑
k=0

(
n/r − s

k

)(p1

r

)k (
1− p1

r

)n/r−s−k)µ0
. (40)

Explanation: We choose s vertices for S and a tree to connect up the vertices of S. We then
choose µ0 members A ⊆ S to be in Vσ. We multiply by the probability that for each vertex in A,
there is at least one j such that v has few neighbors in Vj \ S connected to v by edges of color j.

After bounding the the sum in brackets raised to µ0 as in (39), the sum in (40) can be bounded by

n

2 log logn∑
s=µ0

(4e log n)sn−µ0(1+ε+o(1))/rαr = o(1).

(c) This is proved in the same manner as Lemma 3(c). 2

For v ∈ Vσ we let φ(v) = min {i : i ∈ Kv}. Equation (37) implies that φ(v) exists for all v ∈ [n].

Then let Xi = {v ∈ Vσ : φ(v) = i} for i ∈ [r] and

Yi = {w /∈ Vσ : ∃v ∈ Vσ, s.t. (φ(v) = i− 1, w ∈ Ni−1(v)) or (φ(v) = i+ 1, w ∈ Ni(v))} .

It is possible that a vertex w lies in more than one Yi. In which case, delete it from all but one of
them. Now let

Wi = (Vi \ Vσ) ∪Xi ∪ Yi, i = 1, 2, . . . , r.

Suppose that wi = |Wi| − n/r for i ∈ [r] and let w+
i = max {0, wi} for i ∈ [r]. We now remove

w+
i randomly chosen large vertices from each Wi and then randomly assign w−i = −min {0, wi} of

them to each Wi, i ∈ [r]. Thus we obtain a partition of [n] into r sets Zi, i = 1, 2, . . . , r, of size n/r
for i ∈ [r].

Let Hi be the bipartite graph induced by Zi, Zi+1 and the edges of color i in Gn,p1 . We now argue
that

Lemma 22 Hi has minimum degree at least 1
2η log n w.h.p.

Proof It follows from Lemma 21(b),(d) that no vertex in Zi ∩Vi loses more than µ0 neighbors
from the deletion of Vσ or from the movement of the vertices in the Yi’s. Also, we move v ∈ Vσ to
a Zi where it has degree at least η log n − µ0 in Vi−1 and Vi+1. Its neighborhood may have been
affected by the deletion of Vσ or the movement of the Yi’s, but only by at most µ0. Thus for every
i and v ∈ Xi, v has at least η log n− µ0 neighbors in Zi−1 connected to v by an edge of color i− 1
and at least η log n− µ0 neighbors in Zi+1 connected to v by an edge of color i

Now consider the random re-shuffling to get sets of size n/r. Fix a v ∈ Vi. Suppose that it has
d = Θ(log n) neighbors in Zi+1 connected by an edge of color i. Now randomly choose w+

i+1 =
O(|Vσ| log n) vertices to delete from Zi+1. The number νv of neighbors of v chosen is dominated by

Bin
(
w+
i+1,

d
n/r

)
. This follows from the fact that if we choose these w+

i+1 vertices one by one, then
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at each step, the chance that the chosen vertex is a neighbor of v is bounded from above by d
n/r .

So, given the condition in Lemma 21(a) we have

Pr(νv ≥ 2/θ) ≤
(
n1−θ+o(1)

2/θ

)(
dr

n

)2/θ

≤

(
n1−θ+o(1)edrθ

n

)2/θ

= o(n−1).

2

We can now verify the existence of perfect matchings w.h.p.

Lemma 23 W.h.p., each Hi contains a perfect matching Mi, i = 1, 2, . . . , r.

Proof Fix i. We use Hall’s theorem and consider the existence of a set S ⊆ Zi that has fewer
than |S| Hi-neighbors in Zi+1. Let s = |S| and let T = NHi(S) and t = |T | < s. We can rule out
s ≤ n0 = n/2 log2 n through Lemma 21(c). This is because we have e(S ∪ T )/|S ∪ T | ≥ 1

4η log n in
this case. Let nσ = |Vσ| and now consider n/2 log2 n ≤ s ≤ n/2r. Given such a pair S, T we deduce
that there exist S1 ⊆ S ⊆ Vi, |S1| ≥ s− nσ and T1 ⊆ T ⊆ Vi+1 and U1 ⊆ Vi+1, |U1| ≤ nσ such that
there are at least ms = (sη/2− 6nσ) log n edges between S1 and T1 and no edges between S1 and
Vi+1 \ (T1 ∪ U1). There is no loss of generality in increasing the size of T to s. We can then write

Pr(∃ S, T in Gn,p1) ≤
n/2r∑
s=n0

(
n/r −O(nσ log n)

s

)2( s2

ms

)
pms1 (1− p1)(s−nσ)(n/r−s−nσ)

≤
n/2r∑
s=n0

(ne
rs

)2s
(
s2p1e

ms

)ms
e−(s−nσ)(n/r−s−nσ)p1

≤
n/2r∑
s=n0

(( s
n

)η logn/3
(

3er(1 + ε)

αrη

)η logn/2

n−(1−o(1))/2αr

)s
= o(1).

For the case s ≥ n/2r we look for subsets of Zi+1 with too few neighbors in Zi. 2

It follows from symmetry considerations that the Mi are independent of each other. Indeed, once
we condition on the number of edges mi being colored i = 1, 2, . . . , r, we find that the actual graphs
induced by each color are independent of each other. What we have proved implies that for almost
all sequences m1,m2, . . . ,mr, each Hi has a perfect matching.

Analogously to Lemma 8, we have

Lemma 24 The following hold w.h.p.:

(a)
⋃r
i=1Mi has at most 10 log n components. (Components are r-zebraic cycles of length divisible

by r.)

(b) There are at most nb vertices on components of size at most nc.
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Proof The matchings induce a permutation π on W1. Suppose that x ∈W1. We follow a path
via a matching edge to W2 and then by a matching edge to W3 and so on until we return to a
vertex π(x) ∈ W1. π can be taken to be a random permutation and then the lemma follows from
Lemma 8. 2

The remaining part of the proof is similar to that described in Sections 4.3, 4.4. We use the edges
of the first copy Gn,p2 of color 1 to make all cycles have length Ω(n/ log n) and then we use the
edges of the second copy of Gn,p2 of color 1 to create an r-zebraic Hamilton cycle. The details are
left to the reader.

7 Dealing with the directed analogs

A great deal of the analysis we have seen extends without much comment to the directed case. In
particular, in Theorem 1, once we have a shown the existences of a matching M1 that is independent
of M0, orientation hardly affects the proof. So for Theorem 4 all we really need to argue for is a
perfect matching M1 =

{
g1, g2, . . . , gn/2

}
such that if gi = {xi, yi} then we can assume that (i) xi

is odd and yi is even and (ii) gi is oriented from yi to xi. For this we will apply Hall’s theorem
to the bipartite graph H with bipartition A = {2, 4, . . . , n} , B = {1, 3, . . . , n− 1}. H has an edge
{a, b} iff (a, b) is an edge of Dm. The stopping time ~τ1 is for H to have minimum degree one and
w.h.p. this will be enough for H to have a perfect matching. After this the proof continues more
or less as in the proof of Theorem 1. The “zebraic” corollary to Theorem 4 is not so simple. If we
follow the undirected argument then we see that we need to exert control over the orientations of
the black and white perfect matchings, they have to be compatible in some sense, and the hitting
time for this is not so obvious.

The proof of Theorem 5 is almost identical to that of Theorem 3. We simply change Iv in Section
6 to

Iv =
{
i : d

(i)
− > 0 and d

(i+1)
+ > 0

}
,

where d
(i)
− is the number of edges of color i oriented into v and d

(i+1)
+ is the number of edges of

color i+ 1 oriented out of v.

The proof of Theorem 6 follows that of Theorem 2.
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