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Abstract

The random greedy algorithm for constructing a large partial Steiner-Triple-System

is defined as follows. We begin with a complete graph on n vertices and proceed to

remove the edges of triangles one at a time, where each triangle removed is chosen

uniformly at random from the collection of all remaining triangles. This stochastic

process terminates once it arrives at a triangle-free graph. In this note we show that

with high probability the number of edges in the final graph is at most n7/4+o(1).

1 Introduction

We consider the random greedy algorithm for triangle-packing. This stochastic graph process

begins with the graph G(0), set to be the complete graph on vertex set [n], then proceeds to

repeatedly remove the edges of randomly chosen triangles (i.e. copies of K3) from the graph.

Namely, letting G(i) denote the graph that remains after i triangles have been removed, the

(i+1)-th triangle removed is chosen uniformly at random from the set of all triangles in G(i).

The process terminates at a triangle-free graph G(M). In this work we study the random

variable M , i.e., the number of triangles removed until obtaining a triangle-free graph (or

equivalently, how many edges there are in the final triangle-free graph).

This process and its variations play an important role in the history of combinatorics.

Note that the collection of triangles removed in the course of the process is a maximal

collection of 3-element subsets of [n] with the property that any pair of distinct triples in the

collection have pairwise intersection less than 2. For integers t < k < n a partial (n, k, t)-

Steiner system is a collection of k-element subsets of an n-element set with the property that

any pairwise intersection of sets in the collection has cardinality less than t. Note that the

number of sets in a partial (n, k, t)-Steiner system is at most
(

n
t

)

/
(

k
t

)

. Let S(n, k, t) be the
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maximum number of k-sets in a partial (n, k, t)-Steiner system. In the early 1960’s Erdős

and Hanani [5] conjectured that for any integers t < k

lim
n→∞

S(n, k, t)
(

k
t

)

(

n
t

) = 1. (1)

In words, for any t < k there exist partial (n, k, t)-Steiner systems that are essentially as large

as allowed by the simple volume upper bound. This conjecture was proved by Rödl [7] in

the early 1980’s by way of a randomized construction that is now known as the Rödl nibble.

This construction is a semi-random variation on the random greedy triangle-packing process

defined above, and thereafter such semi-random constructions have been successfully applied

to establish various key results in Combinatorics over the last three decades (see e.g. [1] for

further details).

Despite the success of the Rödl nibble, the limiting behavior of the random greedy packing

process remains unknown, even in the special case of triangle packing considered here. Recall

that G(i) is the graph remaining after i triangles have been removed. Let E(i) be the edge set

of G(i). Note that |E(i)| =
(

n
2

)

−3i and that E(M) is the number of edges in the triangle-free

graph produced by the process. Observe that if we show |E(M)| = o(n2) with non-vanishing

probability then we will establish (1) for k = 3, t = 2 and obtain that the random greedy

triangle-packing process produces an asymptotically optimal partial Steiner system. This is

in fact the case: It was shown by Spencer [9] and independently by Rödl and Thoma [7]

that |E(M)| = o(n2) with high probability1. This was extended to |E(M)| ≤ n11/6+o(1) by

Grable in [6], where the author further sketched how similar arguments using more delicate

calculations should extend to a bound of n7/4+o(1) w.h.p.

By comparison, it is widely believed that the graph produced by the random greedy

triangle-packing process behaves similarly to the Erdős-Rényi random graph with the same

edge density, hence the process should end once its number of remaining edges becomes

comparable to the number of triangles in the corresponding Erdős-Rényi random graph. At

this critical edge density a positive fraction of the edges in the Erdős-Rényi graph are not

contained in any triangle, and such edges in G(i) clearly remain in the final graph.

Conjecture (Folklore). With high probability |E(M)| = n3/2+o(1).

Joel Spencer has offered $200 for a resolution of this question. The authors are not aware of

any proof of a non-trivial lower bound on |E(M)| in the literature.

In this note we apply the differential-equation method for dynamic concentration to

achieve an upper bound on E(M). In contrast to the aforementioned nibble-approach,

whose application in this setting involves delicate calculations, our approach yields a short

proof of the following best-known result:

1Here and in what follows, “with high probability” (w.h.p.) denotes a probability tending to 1 as n → ∞.
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Theorem 1. Consider the random greedy algorithm for triangle-packing on n vertices. Let

M be the number of steps it takes the algorithm to terminate and let E(M) be the edges of

the resulting triangle-free graph. Then with high probability, |E(M)| = O
(

n7/4 log5/4 n
)

.

Wormald [11] also applied the differential-equation method to this problem, deriving an

upper bound of n2−ǫ on |E(M)| for any ǫ < ǫ0 = 1/57 while stating that “some non-

trivial modification would be required to equal or better Grable’s result.” Indeed, in a

companion paper we combine the methods introduced here with some other ideas (and a

significantly more involved analysis) to improve the exponent of the upper bound on |E(M)|
to 2− 1

2
√
2
+ o(1). This follow-up work will appear in [3].

2 Evolution of the process in detail

As is usual for applications of the differential equations method, we begin by specifying the

random variables that we track. Of course, our main interest is in the variable

Q(i)
△

= # of triangles in G(i) .

In order to track Q(i) we also consider the co-degrees in the graph G(i):

Yu,v(i)
△

= |{x ∈ [n] : xu, xv ∈ E(i)}|

for all {u, v} ∈
(

[n]
2

)

. Our interest in Yu,v is motivated by the following observation: If the

(i+ 1)-th triangle taken is abc then

Q(i+ 1)−Q(i) = Ya,b(i) + Yb,c(i) + Ya,c(i)− 2 .

Thus, bounds on Yu,v yield important information about the underlying process. We mention

in passing that Grable’s argument hinges on an analysis of an analogous set of variables. The

main difference is that Grable’s nibble-based proof uses very different methods to bound

variations. (And Grable provides the full details only to the point where n11/6+o(1) edges

remain.)

Now that we have identified our variables, we determine the continuous trajectories that

they should follow. We establish a correspondence with continuous time by introducing a

continuous variable t and setting

t = i/n2

(this is our time scaling). We expect the graph G(i) to resemble a uniformly chosen graph

with n vertices and
(

n
2

)

− 3i edges, which in turn resembles the Erdős-Rényi graph Gn,p with

p = 1− 6i/n2 = p(t) = 1− 6t .
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(Note that we can view p as either a continuous function of t or as a function of the discrete

variable i. We pass between these interpretations of p without comment.) Following this

intuition, we expect to have Yu,v(i) ≈ p2n and Q(i) ≈ p3n3/6. For ease of notation define

y(t) = p2(t) , q(t) = p3(t)/6 .

We state our main result in terms of an error function that slowly grows as the process

evolves. Define

f(t) = 5− 30 log(1− 6t) = 5− 30 log p(t) .

Our main result is the following:

Theorem 2. With high probability we have

Q(i) ≥ q(t)n3 − f 2(t)n2 log n

p(t)
and (2)

|Yu,v(i)− y(t)n| ≤ f(t)
√

n log n for all {u, v} ∈
(

[n]
2

)

, (3)

holding for every

i ≤ i0 =
1
6
n2 − 5

3
n7/4 log5/4 n.

Furthermore, for all i = 1, . . . ,M we have

Q(i) ≤ q(t)n3 + 1
3
n2p(t) . (4)

Note that the error term in the upper bound (4) decreases as the process evolves. This is

not a common feature of applications of the differential equations method for random graph

process; indeed, the usual approach requires an error bound that grows as the process evolves.

While novel techniques are introduced here to get this ‘self-correcting’ upper bound, two

versions of ‘self-correcting’ estimates have appeared to date in applications of the differential

equations method in the literature (see [4] and [10]). The stronger upper bound on the

number of edges in the graph produced by the random greedy triangle-packing process given

in the companion paper [3] is proved by establishing self-correcting estimates for a large

collection of variables (including the variable Yu,v introduced here).

Observe that (2) (with i = i0) establishes Theorem 1. We conclude this section with a

discussion of the implications of (4) for the end of the process, the part of the process where

there are fewer then n3/2 edges remaining. Our first observation is that at any step i we can

deduce a lower bound on the number of edges in the final graph; in particular, for any i we

have E(M) ≥ E(i) − 3Q(i). We might hope to establish a lower bound on the number of

edges remaining at the end of the process by showing that there is a step i where E(i)−3Q(i)

is large. The bound (4) is (just barely) too weak for this argument to be useful. But we can

deduce the following. Consider i = n2/6 − Θ(n3/2); that is, consider p = cn−1/2. Once c is

small enough the upper bound (4) is dominated by the ‘error’ term n2p/3. If Q remains close

to this upper bound then for the rest of the process we are usually just choosing triangles
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in which every edge is in exactly one triangle; in other words, the remaining graph is an

approximate partial Steiner triple system. If Q drops significantly below this bound then

the process will soon terminate.

3 Proof of Theorem 2

The structure of the proof is as follows. For each variable of interest and each bound

(meaning both upper and lower) we introduce a critical interval that has one extreme at

the bound we are trying to maintain and the other extreme slightly closer to the expected

trajectory (relative to the magnitude of the error bound in question). The length of this

interval is generally a function of t. If a particular bound is violated then sometime in the

process the variable would have to ‘cross’ this critical interval. To show that this event

has low probability we introduce a collection of sequences of random variables, a sequence

starting at each step j of the process. This sequence stops as soon as the variable leaves

the critical interval (which in many cases would be immediately), and the sequence forms

either a submartingale or supermartingale (depending on the type of bound in question).

The event that the bound in question is violated is contained in the event that there is an

index j for which the corresponding sub/super-martingale has a large deviation. Each of

these large deviation events has very low probability, even in comparison with the number

of such events. Theorem 2 then follows from the union bound.

For ease of notation we set

i0 =
1
6
n2 − 5

3
n7/4 log5/4 n , p0 = 10n−1/4 log5/4 n .

Let the stopping time T be the minimum of M and the first step i < i0 at which (2) or

(3) fail and the first step i at which (4) fails. Note that, since Yu,v decreases as the process

evolves, if i0 ≤ i ≤ T then we have

Yu,v(i) = O
(

n1/2 log5/2 n
)

for all {u, v} ∈
(

[n]
2

)

.

We begin with the bounds on Q(i). The first observation is that we can write the expected

one-step change in Q as a function of Q. To do this, we note that we have

E[∆Q | G(i)] = −
∑

xyz∈Q

Yxy + Yxz + Yyz − 2

Q
= 2− 1

Q

∑

xy∈E

Y 2
xy (5)

and

3Q =
∑

xy∈E

Yxy .

(And, of course, |E| = n2p/2 − n/2.) Observe that if Q grows too large relative to its

expected trajectory then the expected change will be become more negative, introducing
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a drift to Q that brings it back toward the mean. A similar phenomena occurs if Q gets

too small. Restricting our attention to a critical interval that is some distance from the

expected trajectory allows us to take full advantage of this effect. This is the main idea in

this analysis.

For the upper bound on Q(i) our critical interval is

(

q(t)n3 + 1
4
n2p , q(t)n3 + 1

3
n2p
)

. (6)

Suppose Q(i) falls in this interval. Since Cauchy-Schwartz gives

∑

xy∈E

Y 2
xy ≥

(

∑

xy∈E Yxy

)2

|E| ≥ 9Q2

n2p/2
,

in this situation we have

E[Q(i+ 1)−Q(i) | G(i)] ≤ 2− 18Q

n2p
< 2− 3np2 − 9

2
= −3np2 − 5

2
.

Now we consider a fixed index j. (We are interested in those indices j where Q(j) has just

entered the critical window from below, but our analysis will formally apply to any j.) We

define the sequences of random variables X(j), X(j + 1), . . . , X(Tj) where

X(i) = Q(i)− qn3 − n2p

3

and the stopping time Tj is the minimum of max{j, T} and the smallest index i ≥ j such

that Q(i) is not in the critical interval (6). (Note that if Q(j) is not in the critical interval

then we have Tj = j.) In the event j ≤ i < Tj we have

E[X(i+ 1)−X(i) | G(i)] = E[Q(i+ 1)−Q(i) | G(i)]−
(

q(t+ 1/n2)− q(t)
)

n3

−
(

p(t+ 1/n2)− p(t)
) n2

3

≤ −3np2 − 5

2
+ 3np2 + 2 +O (1/n)

≤ 0 .

So, our sequence of random variables is a supermartingale. Note that if Q(i) crosses the

upper boundary in (4) at i = T then, since the one step change in Q(i) is at most 3n, there

exists a step j such that

X(j) ≤ −n2p(t(j))

12
+O(n)

while T = Tj and X(T ) ≥ 0. We apply Hoeffding-Azuma to bound the probability of such

an event. As our sequence of random variables starts at step j of the process, the number

of steps is at most n2p(t(j))/6. The maximum 1-step difference is O(n1/2 log5/2 n) (as i < T
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implies bounds on the co-degrees). Thus the probability of such a large deviation beginning

at step j is at most

exp

{

−Ω

(

(n2p(t(j)))
2

(n2p(t(j))) ·
(

n1/2 log5/2 n
)2

)}

= exp

{

−Ω

(

np(t(j))

log5 n

)}

.

As there are at most n2 possible values of j, we have the desired bound.

Now we turn to the lower bound on Q, namely (2). Here we work with the critical interval

(

q(t)n3 − f(t)2n2 log n

p
, q(t)n3 − (f(t)− 1)f(t)n2 log n

p

)

. (7)

Suppose Q(i) falls in this interval for some i < T . Note that our desired inequality is in

the wrong direction for an application of Cauchy Schwartz to (5). In its place we use the

control imposed on Yu,v(i) by the condition i < T . For a fixed 3Q =
∑

uv∈E Yu,v, the sum
∑

uv∈E Y 2
u,v is maximized when we make as many terms as large as possible. Suppose this

allows α terms in the sum
∑

xy∈E Yxy equal to np2 + f
√
n log n and α + β terms equal to

np2 − f
√
n log n. For ease of notation we view α, β as rationals, thereby allowing the terms

in the maximum sum to split completely into these two types. Then we have

βf
√

n log n = |E| · np2 − 3Q = 3qn3 − 3Q− n2p2

2
.

Therefore, we have

∑

xy∈E

Y 2
xy ≤ α

(

np2 + f
√

n log n
)2

+ (α + β)
(

np2 − f
√

n log n
)2

=

(

n2p

2
− n

2

)

· n2p4 +

(

n2p

2
− n

2

)

· f 2n log n− 2βfp2n3/2 log1/2 n

=
n4p5

2
+

f 2pn3 log n

2
− 1

2

(

n3p4 + f 2n2 log n
)

− 2p2n

(

3qn3 − 3Q− n2p2

2

)

≤ 6np2Q− n4p5

2
+

f 2pn3 log n

2
+

n3p4

2
.

Now, for j < i0 define Tj to be the minimum of i0, max{j, T} and the smallest index i ≥ j

such that Q(i) is not in the critical interval (7). Set

X(i) = Q(i)− q(t)n3 +
f(t)2n2 log n

p(t)
.
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For j ≤ i < Tj we have the bound

E[X(i+ 1)−X(i) | G(i)] = E[Q(i+ 1)−Q(i) | G(i)]− n3(q(t+ 1/n2)− q(t))

+

(

f 2(t+ 1/n2)

p(t+ 1/n2)
− f 2(t)

p(t)

)

n2 log n

≥ 2− 6np2 +
n4p5

2Q
− f 2pn3 log n

2Q
+O(p) + 3p2n+O(1/n)

+

(

2f ′f

p
+

6f 2

p2

)

log n+O

(

log3 n

n2p3

)

≥ (f − 1)fn2 log n

p
· n4p5

2(qn3)2
− f 2pn3 log n

2Q
+

(

2f ′f

p
+

6f 2

p2

)

log n

≥
[

18f 2

p2
− 18f

p2
− (1 + o(1))

3f 2

p2
+

(

2f ′f

p
+

6f 2

p2

)]

log n

≥ 0 .

If the process violates the bound (2) at step T = i then there exists a j < i such that T = Tj ,

X(T ) = X(i) < 0 and

X(j) >
f(t(j))n2 log n

p(t(j))
−O(n) .

The submartingale X(j), X(j + 1), . . . X(Tj) has length at most n2p(t(j))/6 and maximum

one-step change O(n1/2 log5/2 n). The probability that we violate the lower bound (2) is at

most

n2 · exp
{

−Ω

(

f 2(t(j))n4 log2 n/p2(t(j))

n2p(t(j)) · n log5 n

)}

= n2 · exp
{

−Ω

(

f 2(t(j))n

log3 n

)}

= o(1) .

Finally, we turn to the co-degree estimate Yu,v. Let u, v be fixed. We begin with the

upper bound. Our critical interval here is

(

y(t)n+ (f(t)− 5)
√

n log n , y(t)n+ f(t)
√

n log n
)

. (8)

For a fixed j < i0 we consider the sequence of random variables Zu,v(j), Zu,v(j+1), . . . , Zu,v(Tj)

where

Zu,v(i) = Yu,v(i)− y(t)n− f(t)
√

n log n

and Tj is defined to be the minimum of i0, max{j, T} and the smallest index i ≥ j such that

Yu,v(i) is not in the critical interval (8). To see that this sequence forms a supermartingale,

we note that i < T gives
∣

∣Q(i)− q(t)n3
∣

∣ ≤ f(t)2n2 log n

p(t)
,
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and therefore

E[Zu,v(i+ 1)− Zu,v(i)] ≤ −
∑

x∈N(u)∩N(v)

Yu,x + Yv,x − 1uv∈E(i)

Q

− n
(

y(t+ 1/n2)− y(t)
)

−
√

n log n
(

f(t+ 1/n2)− f(t)
)

≤ −2(yn+ (f − 5)
√
n log n)(yn− f

√
n log n)

Q
+O

(

1

n2p

)

− y′(t)

n
− f ′(t)

log1/2 n

n3/2
+O

(

1

n3p2

)

≤ −2(yn+ (f − 5)
√
n log n)(yn− f

√
n log n)

qn3

+ 2 · f
2n2 log n

p
· (yn)2

(qn3)2
− y′(t)

n
− f ′(t)

log1/2 n

n3/2
+O

(

1

n2p

)

≤ 10yn3/2 log1/2 n

qn3
+

14f 2n log n

qn3
+O

(

1

n2p

)

− f ′(t)
log1/2 n

n3/2

To get the supermartingale condition we consider each positive term here separately. The

following bounds would suffice

60

p
≤ f ′

3
,

84f 2
√
log n

p3n1/2
≤ f ′

3
,

1

n1/2p
= o

(

f ′
√

log n
)

.

The first term requires

f ′(t) ≥ 180

p(t)
=

180

1− 6t
.

We see that this requirement, together with the initial condition f(0) ≥ 5, imposes

f(t) ≥ 5− 30 log(1− 6t) = 5− 30 log p(t) .

But this value for f also suffices to handle the remaining terms as we restrict our attention

to p ≥ p0 = 10n−1/4 log5/4 n. Thus, we have established that Zu,v(i) is a supermartingale.

To bound the probability of a large deviation we recall a Lemma from [2]. A sequence of

random variables X0, X1, . . . is (η,N)-bounded if for all i we have

−η < Xi+1 −Xi < N .

Lemma 3. Suppose 0 ≡ X0, X1, . . . is an (η,N)-bounded submartingale for some η < N/10.

Then for any a < ηm we have P(Xm < −a) < exp
(

− a2/(3ηNm)
)

.

As −Zu,v(j),−Zu,v(j + 1), . . . is a (6/n, 2)-bounded submartingale, the probability that we

have T = Tj with Yu,v(T ) > yn+ f
√
n log n is at most

exp

{

− 25n log n

3 · (6/n) · 2 · (p(t(j))n2/6)

}

≤ exp

{

−25 log n

6

}

.
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Note that there are at most n4 choices for j and the pair u, v. As the argument for the lower

bound in (3) is the symmetric analogue of the reasoning we have just completed, Theorem 2

follows. �
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