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1 Introduction

A hypergraph is a pair (V, E) where V is a set and E = {X;, Xs,..., X, } is
a set of distinct subsets of E. The elements of V' are the vertices, and the
sets X; are the edges (strictly speaking, the hyperedges) of the hypergraph
G = (V,E). A hypergraph is said to be s-uniform or an s-graph if all its
edges contain s vertices. In what follows, more often than not, we shall talk
of graphs rather than hypergraphs; also, G and H will stand for s-uniform
hypergraphs.
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A set of edges M = {X, :i € I} is a perfect matching if
(i) @ # j € I implies X; N X; = 0, and
(ii) Ujer Xs = V.

One of the most interesting and difficult problems in probabilistic combina-

torics can be described as follows: suppose that the m edges X; are chosen
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independently at random from the ( ) possible s—subsets of V. For what
values of m is it likely that G will contain a perfect matching, and for what
values of m is it highly unlikely? When s = 2, this was solved by Erdos and
Rényi [4], but for s > 3 we have only some results of Schmidt and Shamir
[10] or Frieze and Janson [5] that give rather weak bounds on the appropriate

values of m.

It is reasonable to make the following conjecture, extending the results in

[10].

CONJECTURE. Let |V| = sn, where s is a positive integer constant. Let
m = n(logn + log s + ¢,) then,

0 Cp — —00,
lim Pr(G has a perfect matching ) ={ e ¢, — ¢,
1 Cp — 00.

The right-hand side of the above expression is simply the limiting probability

A related and special case of the problem is that of packing vertex disjoint
copies of a fixed graph H in a random graph G. For 2-graphs the existence
of perfect packings was solved completely by Luczak and Ruciniski [6] for the
case when H is a tree. Less precise results were obtained by Rucinski [9] for

arbitrary 2-graphs.



Given a graph H, for v € V, let dg(v) = |{i : v € X;}| be the degree of
v. We call H r—regular if dg(v) = r for all v € V. Let now V = [sn],
where [k] = {1,2,...,k} for all positive integers k, and let G = G(n,r,s) =
{G = (V,E) : G is r—regular and s—uniform }. Let G = G,, s be chosen
uniformly at random from G. The main aim of this paper is to prove the

following result.

Theorem 1 Suppose r,s are fized positive integers, v > 3, then

0 s>o0,

nh_>n°10 Pr(G s has a perfect matching ) = { 1 s<o,

where
1
o, = -1 + 1.

(r—1)log (%)

We note that if r is at least 3, then o, is never an integer, and so this result

is best possible.

Next let f(s) = min{r : s < 0,.}. Thus f(s) gives the threshold in terms of
degree for a s-uniform hypergraph to almost surely have a perfect matching.
The first few values of f(s) are shown in Table 1. For s large, note that f(s)

is approximately e*~!, for example 8 = 2980.1 and e = 8103.1.

S 213(4 |5 |6 7 8 9 10
f(s)|[3]7]19|53]| 146 | 401 | 1094 | 2977 | 8098

Table 1:



To prove the theorem, we make use of a remarkable new approach due to
Robinson and Wormald [7] and [8]. Although new to probabilistic combi-
natorics, we shall see that their method is in fact an Analysis of Variance
technique with a clever partition of the probability space based on the num-

ber of small cycles.
Since the case s = 2 is well known, from now on we shall assume that s > 3.

To prove our theorem, we need a suitable probabilistic model for generating
G(n,r,s). We shall use a natural extension of the Configuration Model of
Bollobés [3] which constitutes an extremely useful probabilistic interpretation

of the counting formula of Bender and Canfield [2].

2 Configurations

Let W, = {v} x [r] for v € V = [sn| and W = U,y W,. Each W, should be
regarded as a block of r fractional edges for each v € V', thus generalising the
concept of half-edges arising from the use of configurations in the context of
graphs. In this paper, a configuration is a partition of W into m = rn subsets
S of size s. Equivalently, a configuration is a set of m disjoint subsets of W,
each of size s. Let = Q(n,r,s) be the set of all such configurations, and

let ' = F(n,r,s) be chosen randomly from €.

For x = (v,i) € W welet V(z) =v. f F € Qand S € F we let V(S) =
{V(z) : € S}. We define the multigraph y(F) = (V,{V(S) : S € F}).

A configuration F is said to be simple, if S € F implies |V (S)| = s and any
two distinct sets Sy, S € F satisfy V(S1) # V(S2). Thus v(F) is s-uniform
if and only if F' is simple.



For us the main properties of the connection between configurations and

graphs are the following.

(A) Each G € G arises from precisely (r!)*" simple configurations F'.

(B) lim Pr(F is simple ) = e~ (s=1)(r=1)/2
The assertion (B) follows from (3) with £ = 1, applied to Lemma 2 (as
[V(S)| < s is a 1-cycle in the context of this paper), and the observation
that

lim PI‘(HSl, Sy € F with V(Sl) = V(SQ)) =0.

n=r00
We will say that a perfect matching of F'is a set {S; : 4 € I} C F such that
(i) |V(S;)| = s, for all i € T,

(ii) 4,7 € I,i # j implies V(S;) NV (S;) = 0, and

(iti) Uier V(Si) = V.

Thus if F' is simple, it has a perfect matching if and only if y(F') has a perfect
matching. Hence Theorem 1 will follow immediately from (A) and (B) above

and the theorem below.

Theorem 2

lim Pr(F has a perfect matching ) =

n—o0

0 s>o0,
1 s<o,



3 Outline of a Proof of Theorem 2

We use the notation o ~ (§ to mean o = (1 + o(1))5 where the o(1) term
tends to zero as n tends to infinity. All subsequent inequalities are only

claimed to hold for sufficiently large n.

Suppose that F' is chosen randomly from 2. Let Z(F') denote the number of

perfect matchings in F'. We shall prove the following lemma in Section 4.

Lemma 1

r

E(Z) ~ V5 (r (~ 1)(3_1)@_1))”’ (1)

E(Z?) r—1
E(Z)? r—3s

: if s < 0. 2)

Q

Notice that the (easy) first part of Theorem 1 now follows immediately since

the right-hand side of (1) tends to zero exponentially fast when s > o,.

To apply the Analysis of Variance technique, we have to decide on a partition
of 2. We proceed analogously to Robinson and Wormald. For the moment

let b, x be arbitrarily large fized positive integers.

We now define a k—cycle of F for integer k£ > 1.

k=1: S € Fisal—cycleif |V(S)| < s.
k=2: 51,5, € F form a 2—cycle if |[V(S;) NV (Ss2)| > 2.

k>3: 51,5,...,S5, € F form a k—cycle if there exist distinct vy, vs, ..., v} €
V such that V; € V(Sl) N V(Sz—l-l) for 1 S 7 S k, (Sk+1 = Sl)



Observe that F' is simple if and only if it has no 1l-cycles and yields no

repeated edges.

Next let Cp denote the number of k—cycles of F' for k£ > 1.
(c1,cay...,c3) € N° where N = {0,1,2,...}, let Q. = {F € Q : Cy

cr, 1 < k < b}. Let

_ ((s=1)(r=1))"
Ak = ok .

Lemma 2 Let c be fized, then

b Ak oAk
me=Pr(F e Q) ~ [[ ;
i K

Now, for x > 0, define

S(z)={c e N:|ep — M| <2X® 1<k <b},

and
0= U
c#S(z)
Let
7=Pr(FeQ)

For ¢ € N? let
E.=E(Z|F € Q)
and

Vi = Var(Z | F € Qo).

Then we have

E(Z%) = Y 7 Ve+ > mE2

ceN? ceN?®



The following two lemmas, whose proofs will be given later, contain the
most important observations. Lemma 3 shows that for most groups, the
group mean is large and Lemma 4 shows that most of the variance can be

explained by the variance between groups.

Lemma 3 For all sufficiently large x the following assertions hold.
(a) T < e ** for some absolute constant o > 0.

(b) c € S(x) implies
E.> e_(ﬂJrW)E(Z),

for some absolute constants 3,~v > 0. O

Lemma 4 If x is sufficiently large then

> B> (1-be ™) (1 - (j - i)b) ( ::i) E(Z)%.

ceS(z)

where v is as in Lemma 3. O

Hence we have from (2) and (4),

Z ﬂ-Cv; S 6E(Z)2’ (5)

ceN?

where § = (be_37” + (:‘T})b) The rest is an application of the Chebyshev
inequality. Define the random variable Z(F) by

Z(F)=E,, if F € Q..



Then for any ¢t > 0

Pr(|Z—Z|>t) < E(Z-2)?/t)
= >y T Ve /12
< OE(2)*/t, (6)

where the last inequality follows from (5).

Now put ¢t = e~(#+72)E(Z)/2 where 3, are from Lemma 3. Applying Lemma

3 we obtain

Pr(Z #0)

v

Pr(Z > e PHM9E(Z)/2)
Pr(|Z - Z| <tA(F ¢0Q)

1 — 45626119 _ 7

v

v

Hence, using Lemma 3,

—1\?%
lim Pr(Z = 0) < 4¢* (bew =) ) fe (7)

n— o0 r—1

Note that (s — 1)/(r — 1) < 1/2 so putting b = 3yz/log2 and choosing z
large enough the right-hand side of (7) becomes as small as we like. Hence

(7) implies that lim,_,, Pr(Z = 0) = 0, proving Theorem 2.

4 Moments

First of all let




denote the number of ways of partitioning [sm] into m s-sets. Then for any
k>0,
Ys(rn — k)
Ps(rn)
(s)*(rn)*

(srn)sk

Pr(F contains k given s-tuples)

if k is fixed. Hence, by Stirling’s Formula,

B(Z) = w2

NG (r <?" — 1)(5_1)(7'—1))71,

Here 1,(n)r*" counts the number of distinct possible perfect matchings.

Q

We can assume from now on that s < o,. Next we have

n

B(Z%) = B(2) 3 1) a K= 1) P =204 8) /(1) )

k=0
To justify (7), choose a fixed perfect matching My and compute the proba-
bility that F' contains a perfect matching M given it contains M. Summing
over My accounts for E(Z). The parameter k denotes the number of s-tuples
common to M and M,. (",:) counts the number of ways of choosing these.
There are ¢,(n — k)(r — 1)*("*) possible completions. The remaining terms

give the probability of M given M,.
Let uy denote the summand in the right-hand side of (8). Thenfor 1 < k <n

rn—2n+k)+z
sn— sk —1i

(9)

uk+1_ n—k —
u  (k+1)(r—1)* 1;[

We first eliminate £ < en and n—k < en from consideration, where € = €(r, s)

is small.

10



From (9), when k& < n/(10r) we have ug1/ux > 5. Hence

Ln/(207)]

1
Yo owe < 2u|_n/(20r)j§WU|_n/(10r)J)
k=0

and so the first n/(20r) terms can be “ignored”. Similarly, if for some € > 0

we have k > n(1 — €) then

upr _ (r—1—¢) !
up  (r—1)%e2 7

(10)

Also u,, = 1 and since > uy > E(Z) we can also ignore k > n(1 —r~*). Thus
on applying Stirling’s Formula and putting £ = n(1 + z)/r we get

Q

E(Z?) r Ite
E(Z)? Z V2r(1+2)(r—1—2)n <<1 i w)

1 N ) e et n/r
X P — J—
+ (r—1)2 < r— 1)

T 1
-2 Ll +o)(r—1—2)m ((1 T oy P

> k(k — 1;: — 1)kt (S m2t m> })n/r - (1)

k=2

The range of summation for z is {—1+2 : n/(20r) <k < n(1—r~*)}. Thus
—1 < z < r— 1. Note that the term with z ~ 0 corresponding to k = |n/r]|

is approximately 1 and so we can eliminate any terms of order o(n™1).

We continue with the terms with |z| < 1. Here we can expand (1 + z)'*®

and see that they contribute

k

e (S (0

|a:|z<1 \/271'(1 +z)(r—1—=z

k=2

11



(r 3—_1)2k—1 * ((_7,11165;2;_?))} < (12)
'wzlgl Jrl ) —1—an {‘Z (Hﬁ

(o) 5)) <
|z|z<1 \/2w(1+x):r— 1—2)n eXp{_va2}- (13)

P

We shall subsequently eliminate the terms with z > 1 as being insignificant

and so from (11) and (13),

E(Z2) ~ ex —4(r_8)nx2 ogn)®/v/n
E(Z? © /7WT_1H|Z|§§LNE p{ 21+ Olllog )/f)}

2m(r — 1)
1 o0 (r—s)
m/wexp{—%r_l)zx }dx
r—1

Q

r—s
as claimed. (Note that in going from the first line to the second line, the

factor r disappears as x changes in steps of r/n.)

Now to deal with the case z > 1. Returning to (11), we bound from above

its right-hand side, for z > 1, by
o0 mk S— n/T
La>1 ((1_+z1)1+w eXp {m + Lkl WD (3 2+ rfi) }) -

Tt (s o {2 + (22 + ¢505) #* O g s ))” (1)
< S (s o0 {o + (5 + ¢5p) 2°})

since £ < r — 1 in the summation.

12



Now consider

W exp{z + C:r2}>

6(2) = o (z) = log (
572—|—%

——. Note that

where ( =

' (z) =2z —log(l+ )

and
¢"(x) =20 -5

Observe first that 2¢ < log?2 for all s > 3 and o, > s. Also, ¢ is concave
and decreasing until z = % — 1 and convex from then on. Also for fixed s
and z > 1, ¢(z) decreases with r. Our strategy is now as follows: taking
r = f(s) (see Table 1) we let € = 1/7 in (10) and put =, = &r — 1. We then

verify that
(r = (8/7) "7

= 1) >1 for r > f(s) (15)

and
¢57f(5)(1))¢s,f(s)($3) S —.0001 . (16)

Then in the range x € [1,z,] we can use (14) and (16) and in the range
[zs,7 — 1] we can use (10) and (15) to show that the contribution of z > 1 is

negligible.

Inequality (15) is trivial, as is @ s(s)(1) < —.0001 . Inequality (16) is rather
tight for small s, but nevertheless true. For large s, f(s) ~ e* ! is a good
approximation. Also, for s > 4 we can take ¢ = 1/5 and z, = %r — 1 which

makes things easier. We leave the detailed verification of (16) to the reader.

13



5 Cycles

First for k£ > 2, we have

sn\ (k —1)! o[ sTn k(s!)k(rn)k
E(Cy) = -1 —
(C) ( k ) 2 (r(r=1)) (s - 2) (srn)sk
(=1 - 1)
2k )
Here (SI:L) accounts for choosing the vy, v, ..., vg, and (k — 1)!/2 counts the

cyclic orderings. (r(r — 1))* counts the choices of points in the blocks W,,,
k
and (:f;) approximates the choices of the remaining k(s — 2) points. Then

we have the probability that the k£ chosen s-tuples are in F'.
When k = 2,
sn) (r\°. [ srn )’ (s1)?%(rn)?
E(G) ~ ( 2 ) (2 2(3 - 2) (srn)?s
s—1)?
1 )

—~
=
I
—_
~
[\
—

Q

and when k£ =1,

sie = i) ()
(= 2=

Q

Thus E(C) = A, for fixed £ > 1. Routine calculations can strengthen this
to show that C} is asymptotically Poisson with this parameter and that in

fact Cy,Cy,...,Cy are asymptotically independent. This proves Lemma 2.

14



6 Proof of Lemma 4

Let My be some fixed perfect matching . Then

1
E. = 1
2 00 2o
—yy L
o7 o Qe |9
FEQe
Q
_ | |ZPr(F;MandFch)
1Qe| 97
Pr(F D M,)
= — Pr(FeQ.|FOM
Pr() o TF €2 M)
E(Z)Pr(F € Q. | F D M)

- Pr0) . (17)

Let E;, t = 0,1,...,ky = |k/2] denote the expected number of k-cycles
which contain ¢ s-tuples from My. Then Eq = ((s — 1)(r — 2))*/(2k) and for
t>1

R L e |
< l(k 8_”2) (k — 20)1((r — 1)(r — 2))* ( (Z - ;)n>kt]

- ) ()

To see this, consider the first term inside [ |’s. Choose ¢ s-tuples T from M,

and cyclically order them ((’tl) (tgl)!). Choose ordered pairs of elements of
these tuples to connect with non-Mj tuples ((s(s—1))*). For each such point
choose an element from the same block to go in a non-M, tuple ((r — 1)%).

Choose z1,zs,...,2; > 1 where 1 + 29 + ---x; = k —t. There will be

15



z; non-Mj tuples between the ¢’th and (i+1)’th M, tuple ((kt_:l)) Now

consider the third term [ |. We choose k — 2t members U of V' and order

them ((kinzt)(k - 2t)!). They are to be placed in s-tuples which will then

be put between the tuples in 7'. Choose ordered pairs from each W,,u € U
(((r—1)(r—2))*=2). Then choose the remaining (s — 2)(k —t) points for the
non- M, tuples <z (s(::;)") k_t> . The middle term [ ] is simply the conditional
probability that the chosen tuples are in F'.

Thus
where
_or—=1
~(r—2)2
Now
ko gt (o —t—1 kko otk (1 —
;7< t—1 ) -7 ;k—t< t )
L g v L (x040)
: k+9 ]1%21]( 0 )
_ 1 Kk z(l+x)
= k+9 ]Z ( )
L ok z(l+ z)
= —E—H[m]log<1—T>
1 MEEN x oz
= — —0*[z"]log <+%+ 0+%> <1+%_ — )

16
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o )
k k lyo+1 1_Jo+1
e () ()

Thus, putting ur = E(Cy | My) we see that
o ((s=1(r—1)F (=)
He =~ 2%k <1+(r—1)’“>
(=1)*
w1+ 520w

Of course, further calculations will show that, given F' O M, the Cj are

asymptotically independently Poisson with means py. Hence, from (17),

b /,[/k Cr
E.~E2)]] (-) e (18)
k=1 Ak
So,
2\ %k o—(2pk—Ak)
Y nE: ~ E(Z)? Y H<ﬂ> T
ceS(x) c€5(z) k=1 Ak Cr*
b ckZAk+mA2/3 2\ Ck 7(2#,‘:7}%)
= E2°]] % (“—) S (19
k=1 Cr=Ak zki/s k Ck>
We need to estimate
)\k—a:)\i/s 2\ Ck 0o 2\ Ck
1 1
e kM) | N7 (%) —~+ > (%) —1- (20
=0 k Ce? cr=MAg +aA¥/® k Ch:
First put
2
)\k—(U/\i/?’ = (1—ak) <&>,
Ak
2/3 i
e+ X = (1+ﬁk)(A—’“>
k



where oy, O > —3% when z is sufficiently large.
) 2 /3 y g
k

From Alon and Spencer [1,p.239] we obtain

(1—ax)( 2/)‘ ) —(p2
> (”i> e /%) < e oRHE/ (M)

2 5

!
c=0 Cr:

e TN/ /10, (21)

0 ui e_(ui/)‘k) eﬂk ”z/)‘k
S (B < (e
Ak ! (1 + By) 1B

ce=(14+8r) (43 /Ax)
Ax/2
B exp{z/(20*)} T2
T\ (/@A) /e

If 271/ > 407 then zA)/® > 40y for k = 1,2,...,b and then the right-hand
side of (21) is at most e 4® for k = 1,2,...,b.

IN

and

On the other hand to make the right-hand side of (22) less than e %7® we
need to make

d(z/(2N%)) = 167/X°, (23)

where
1+y

$(y) = y log(1+y) —1.
Now when y < 1 we have ¢(y) > y/3 and making z > 96 handles those k

for which 48~ A3 < 1. The set of k for which 48~ A3 > depends only
k k

on v (i.e. is finite) and we can clearly increase = to make (23) true for all of

these.

Hence, for z sufficiently large,

3 meEZ>E(Z)*(1 —be ) [ exp {M} : (24)

ceS(z) k=1 Ak

18



Also

ﬁ eXP{W} = exp{ i %}

k=b+1

AN
/N
—
|

|
S| ®»
I ||

= =
N——

o
N——

—_

Thus, from (24), with

0= o) (1 (421),

2 2 1 (Nk - )\k)2
B > (1-0)E(Z) exp{ ————
= (1-0)E(Z)*exp {; 2 k:((sfr'_—ll))k }
~ (1-0)E(2) : — i

This completes the proof of Lemma 4.

7 Proof of Lemma 3

First we quote a lemma from [7].

Lemma 5 Let ny,7m2,... be given. Suppose that n; > 0 and that for some
c¢> 1,m,01/m > ¢ for all i > 1. Then, uniformly over x > 1,
Rz)=> Y — =0(e*)

. lem
=1 t=m;(1+ys) te

where y; = :cm_l/3 and ¢y = min{ni/g,nf/3}/4-

19



(a) Putting n; = \; satisfies the conditions of Lemma 5 with ¢ = r — 1. Now

b

T < > Y Pr(Ci=c

k=1 c>Xp (14yx)

b /\Ce_)\k —Qx
> Y T =0,

k=1c>Ap(14yr)

Q

for some constant «, independent of x.

(b) Applying (18) we obtain

E.~E(Z) kr:[l (1 + (iili§k>6k exp {(—1)’“—1%} > E(Z) AB®,
where
() (o
and
B= 1L 1- <r—11>k>kk/ (e (r—11>k>_kk/

Easy computations give

(—1)* (—1)2+ (—1)3k+2

A = ﬁexp{/\k((r_i)k 2(r — 1) 3(r—1)3k+"‘>+(—1)’“‘1 ~
> few{-air ) - (53)

and

o A N
B> 1——— >expl—Y — kL
(- ) B
The sum in the exponential term is convergent and so B is bounded below

by a positive absolute constant.

20
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