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Abstract

We prove that the sum of two random trees possesses with high
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sesses with high probability a Hamilton cycle.

AMS Subject Classification.(1991) 05C80

Keywords. Sums of random trees, perfect matching, hamilton cycle.

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh

PA15213, af1p@andrew.cmu.edu; Partial support from NSF grant 953074.
†Department of Mathematics and Computer Science, Emory University, Atlanta,

Georgia 30322, and Adam Mickiewicz University, Poznań, Poland,
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1 Introduction

In this paper we prove that an appropriately defined sum of two random
trees possesses with high probability a perfect matching. Secondly, we show
that the sum of five random trees possesses with high probability a Hamilton
cycle.

We say that a sequence of events En (defined on a sequence of probabilistic
spaces) holds with high probability (whp in short) if the probabilities of these
events converge to 1 as n → ∞.

For an integer n, we use [n] to denote the set {1, . . . , n}. A random tree on
the set [n] is a tree on this set chosen uniformly at random from the family
of all trees on the set [n].

Definition 1 (Sums) Let k be a positive integer. For trees T1, . . . , Tk, all of
them on the set [n], we define their sum ST (T1, . . . , Tk) as the graph on the
vertex set [n] and edge set being the union of edge sets of the trees T1, . . . , Tk,
where the parallel edges coalesce.

Let f be a mapping from [n] → [n]. Let D(f) be its associated functional
digraph i.e. the graph with vertex set [n] and edges (i, f(i)), i ∈ [n]. For a
set f1, . . . , fk of such mappings we define their sum SM(f1, . . . , fk) as the
union of the digraphs D(fi), 1 ≤ i ≤ k.

Let k be a positive integer. Consider k random trees T1, . . . , Tk on [n] chosen
independently. We use the notation STn(k) for ST (T1, . . . , Tk).

A random mapping f : [n] → [n] is a mapping from the set [n] to itself chosen
uniformly at random from the family of all mappings [n] → [n]. Similarly,
as in the case for trees, we use SMn(k) to denote the sum of k random
mappings.

SMn(k) is a well studied model of random graph. Frieze [4] showed that
whp SMn(2) has a perfect matching (see also Shamir and Upfal [11] who
showed that whp SMn(6) has a perfect matching). Cooper and Frieze [2] have
shown that whp SMn(4) has a Hamilton cycle but the problem of whether
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or not SMn(3) has whp a Hamilton cycle is one of the most important open
questions in the theory of Random graphs.

There is also a well known bipartite mapping model SMn,n(k). Walkup [12]
had earlier shown that SMn,n(2) has whp a perfect matching.

STn(k) is less well studied. Schmutz [9] computed the expected number of
perfect matchings in STn(2) and showed that asymptotically it is (4/e)n. He
also studied a bipartite model STn,n(k) where the trees involved are random
subtrees of the complete bipartite graph Kn,n and showed that STn,n(2) has
whp a perfect matching.

In Section 2, we prove the following theorem

Theorem 2

(a) lim
n→∞
n even

Prob(STn(1) has a perfect matching ) = 0 .

(b) lim
n→∞
n even

Prob(STn(2) has a perfect matching ) = 1 .

Using the proof methodology of Frieze and  Luczak [5] who showed that
SMn(5) has whp a Hamilton cycle, we prove a result on the existence of
Hamiltonian cycles in STn(5) in Section 3.

Theorem 3

lim
n→∞

Prob(STn(5) has a Hamilton cycle ) = 1 .

2 Perfect Matchings - Proof of Theorem 2

(a) This follows immediately from Meir and Moon’s result [8] that the size of
the largest matching in a random tree is whp asymptotic to (1−ρ)n ≈ .432n
where ρeρ = 1.

(b) The proof of the second limit in Theorem 2 consists of several lemmas.
Our starting point is a lemma by Gallai and Edmonds (Lemma 4) which
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gives a sufficient condition for the existence of a perfect matching. In the
view of this lemma, it is enough to show that whp there is no bad set in
STn(2). To show that we are going to distinguish different sizes of a bad set.
Lemma 5 implies that for any fixed positive integer k0 STn(2) has whp no
bad set of a size at most k0. The next range of bad sets we eliminate are bad
sets of size at most u0n for some positive constant u0. Using Lemma 7 we
conclude that whp STn(2) has no such bad sets. Finally, a correspondence
between labelled trees on n vertices and mappings from the set [n] into itself
and Lemma 10 imply that whp STn(2) does not contain a bad set of size
larger than u0n.

Before giving the lemmas we need some notation. Let G = (V,E) be a
graph. For U ⊆ V, let G[U ] = (U,EU) be a subgraph of G induced on
U, i.e., EU = {e ∈ E ; both vertices of e belong to U }. Further, let
NG(U) = {v ∈ V \ U ; there is u ∈ U such that {u, v} ∈ E} denote the
neighborhood of the set U and set N(U) = NSTn(2)(U). A subset U ⊆ V is
said to be stable if EU = ∅.

The following lemma is due to Gallai [6] and Edmonds [3] (cf. [4]).

Lemma 4 If a graph G does not have a perfect matching then there exists
K ⊆ V (G), |K| = k ≥ 0 such that if H = G[V (G) \K] then

H has at least k + 1 components with an odd number of vertices ; (1)

No odd component of H, which is not an isolated vertex, is a tree . (2)

The set K guaranteed by Lemma 4 will be called a bad set.

In the following sequence of lemmas, we are going to show that for n even
STn(2) has whp no bad set.

Before starting with the lemmas, we recall the following two formulas: the
number of forests on n vertices with k fixed roots is equal to knn−k−1, and
the number of forests on n vertices with k roots (there roots can be any k of

the n vertices) is equal to
(

n−1
k−1

)

nn−k.
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Lemma 5 For sets K,L ⊆ Vn, let A1(K,L) be the event that N(L) ⊆ K.
For positive integers k, l define the event A1(k, l) by

there exist K,L ⊆ Vn, K∩L = ∅, |K| = k, |L| = l such that A1(K,L) occurs.

For 0 < ǫ < 1 let u(ǫ) = [ 1−ǫ
3e4(1+ǫ)1+ǫ ]1/ǫ and suppose that u = u(ǫ) satisfies

(5e4)u/uu ≤ 21/8e2 .

Then setting n1 = ⌊un⌋ and l1 = ⌈(1 + ǫ)k⌉ and

A1(ǫ) =
n1
⋃

k=1

⌊n/2⌋
⋃

l=l1

A1(k, l) ,

we have
lim
n→∞

Prob(A1(ǫ)) = 0 .

Proof

To bound Prob (A1(k, l)) we are going to divide the ranges of k and l into
the following two cases:

(A) l ≤ ⌊n/(2e2)⌋ and any k, and

(B) l > ⌊n/(2e2)⌋ and any k.

Fix K,L and the lowest numbered vertex v ∈ K. Now, each tree T with
NT (L) ⊆ K is considered to be oriented towards v.

Case A. Let T be a tree oriented as described above. Delete edges oriented
out of vertices in L. This leaves a forest F ′ with l + 1 roots and n vertices.
There are at most (l + 1)nn−l−2 such forests, (not all forests with l + 1 roots
and n vertices respect NT (L) ⊆ K). To obtain T we construct a forest F ′′

with vertex set K ∪L and roots K and take T = F ′ ∪F ′′. We can construct
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F ′′ in k(k + l)l−1 ways. Hence,

Prob (A1(k, l)) ≤
(

n

k

)(

n

l

)(

(l + 1)nn−l−2k(k + l)l−1

nn−2

)2

(3)

≤ (ne)k+l

kkll
k2 l

2l(1 + k
l
)2l

n2l

≤ nkk2e3k

kk

(

el

n

)l

.

Putting µl = (el/n)l, we get µl/µl−1 < 1/2 for l < n/2e2.

Thus,
⌊n/2e2⌋
∑

l=l1

(

el

n

)l

≤ 2
(

el1
n

)l1

Hence,

n1
∑

k=1

⌊n/2e2⌋
∑

l=l1

Prob (A1(k, l)) ≤
⌊un⌋
∑

k=1

nkk2e3k

kk
2
(

el1
n

)l1

≤ 2
⌊un⌋
∑

k=1

(

3e4(1 + ǫ)1+ǫkǫ

nǫ

)k

= o(1) .

Case B. Let T be a tree oriented as described above. Let F ′ be the forest
obtained by deleting edges oriented out of K and deleting vertices in L. This
forms a forest with n − l vertices and k roots K. There are k(n − l)n−l−k−1

such forests and each forest can be extended in at most k(k + l)l−1nk−1

ways to form the oriented tree T. Indeed, we attach the vertices from L by
constructing a forest on K∪L with roots K in at most k(k+ l)l−1 ways. The
remaining k−1 edges oriented out of K can be chosen in at most nk−1 ways.
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Hence,

Prob (A1(k, l)) ≤
(

n

k

)(

n

l

)

[

k(n− l)n−l−k−1k(k + l)l−1nk

nn−2

]2

≤ (ne)k+l

kkll
k4e−2l+

2l(l+k+1)
n l2(l−1)e2k

n2(l−1)

≤ nke3k−lk4el+k+1ll−2

kknl−2

= e

(

nk4/ke4

k

)k (
l

n

)l−2

.

For n large enough,

⌊n/2⌋
∑

l=⌊n/2e2⌋+1

(

l

n

)l−2

≤ n
(

1

2

)
n

2e2
−2

≤
(

1

2

)
n

4e2

.

Hence,

n1
∑

k=1

⌊n/2⌋
∑

l=⌊n/2e2⌋+1

Prob (A1(k, l)) ≤ e
(

1

2

)
n

4e2
⌊un⌋
∑

k=1

(

nk4/ke4

k

)k

≤ e
(

1

2

)
n

4e2
⌊un⌋
∑

k=1

(

5e4n

k

)k

≤ en
(

(5e4)u

21/4e2uu

)n

= o(1) .

2

Lemma 6 Let ǫ be as in Lemma 5. Suppose a graph G contains a bad set
K, 1 ≤ k = |K| ≤ u(ǫ)n, and no subset of K is bad. Let H = G[Vn \K] have
s ≥ k + 1 odd components C1, C2, . . . , Cs with n1 = n2 = · · · = np = 1 < 3 ≤
np+1 ≤ · · · ≤ ns vertices, respectively.

Assume that A1(ǫ) does not occur. Then there exists a partition K,P,Q,R
of Vn with p = |P |, q = |Q| satisfying

N(R) ⊆ K,N(P ) ⊆ K,N(Q) ⊆ K ; (4)
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P is a stable set ; (5)

Each vertex of K is adjacent to at least one member of P ∪Q ; (6)

1 ≤ k ≤ u(ǫ)n, 0 ≤ p+q < (1+ǫ)k, p+⌊q/3⌋ ≥ k and q = 0 implies p ≥ k+1 .
(7)

Proof See [4]. 2

Let A2(ǫ) be the event that there is a partition satisfying (4) - (7) described
in Lemma 6.

We can immediately show that for any fixed integer k0

lim
n→∞
n even

Prob(STn(2) has a bad set K, with 1 ≤ |K| ≤ k0) = 0.

Let us take ǫ = 1/2k0 and assume that A1(ǫ) does not occur. If there is a bad
set K with 1 ≤ |K| ≤ k0 then the conditions of the Lemma 6 are satisfied
for some k ≤ k0. But (7) implies q < 3ǫk/2 which in this case forces q < 1
or q = 0. But then p ≥ k + 1 contradicts p < (1 + ǫ)k.

In the proof of the following lemma we assume that k ≥ k0 for some suitably
large k0.

Lemma 7 For small ǫ

lim
n→∞

Prob(A2(ǫ)) = 0 .

Proof

Fix K,P,Q and v ∈ K. Each tree satisfying (4) – (6) can be chosen in at
most k(n − p − q)n−p−q−k−1nk−1kp(k + q)q ways. We first build a forest on
V \ (P ∪Q) with roots in K (k(n− p− q)n−p−q−k−1 ways). Then each x ∈ P
is allowed to choose in K, each y ∈ Q is allowed to choose in K ∪Q and each
z ∈ K \ {v} is allowed to choose in Vn.
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Let Ki be the set of vertices in K which have a neighbour in P ∪ Q in the
tree Ti, i = 1, 2. There are two possibilities:

A: |K1| ≥ .9k.

Of the kp(k + q)q choices ascribed to vertices in P ∪Q, at most a proportion
.9k will make |K1| ≥ .9k. Indeed, for each x ∈ K the probability it is included
in such a choice is at most

1 −
(

1 − 1

k

)p
(

1 − 1

k + q

)q

≤ .64,

for large enough k. The corresponding events for each x are clearly negatively
correlated – note that we do not claim this for the choice of tree T1, but only
for the choices defined by the upper estimate. Thus,

Prob (|K1| ≥ .9k) ≤
(

k

.9k

)

(.64)k

≤ (.9)k.

B: |K1| < .9k. By a similar argument,

Prob (K2 ⊇ K \K1 | K1, |K1| < .9k) ≤ (.64).1k.

Combining the two cases we see that for δ = (.64).1 we have

Prob(A2(k, p, q)) ≤ 2

(

n

k, p, q

)

[

k(n− p− q)n−p−q−k−1nk−1kp(k + q)q

nn−2

]2

δk

≤ 2
(ne)k+p+q

kkppqq
k2p+2q+2e2q

2/ke−
p+q

n
(n−p−q−k−1)

n2p+2q
δk ,

where A2(k, p, q) is the event that there is a partition satisfying (4) − (7)
in Lemma 6 for given k, p, q. We obtain for the probability of the event
A2(k, p, q), under the condition q ≥ 2

Prob (A2(k, p, q)) ≤ 2
ek−p−qk2p+2q+2

kkqqppnp+q−k
e2q

2/ke
2(1+ǫ)(2+ǫ)k2+2(1+ǫ)k

n δk

≤ 2
(

k

en

)p+q−k(k

p

)p(k

q

)q

k2e2q
2/ke

2(1+ǫ)(2+ǫ)k2+2(1+ǫ)k
n δk .
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We continue with the bound on Prob (A2(k, p, q)) using k
p
≤ 1 + q

p
, q ≤ 3

2
ǫk,

and p + q − k ≥ 1. Further, we use that the function x−x on the interval
(0,∞) has its maxima at x = 1/e. Thus, for every k ≥ k0 = k0(ǫ)

Prob (A2(k, p, q)) ≤ 2
(

k

en

)p+q−k(k

p

)p(k

q

)q

k2e9ǫ
2k/2e12u(ǫ)ke4u(ǫ)δk

≤ 2k3

en
e4u(ǫ)

(

2

3ǫ

)3ǫk/2

e5ǫk+12u(ǫ)kδk .

Choose ǫ small enough such that (2/3ǫ)3ǫ/2e5ǫ+12u(ǫ)δ ≤ µ < 1 for some
0 < µ < 1. For k ≥ k0 let S(k) = {(p, q) ; k, p, q satisfy conditions (7) }.
Note that |S(k)| ≤ 2k2 for ǫ small. We sum up over k, p, and q. Thus,

Prob (A2(ǫ)) =
⌊u(ǫ)n⌋
∑

k=k0

∑

(p,q)∈S(k)

Prob (A2(k, p, q))

≤ 4e3

n

⌊u(ǫ)n⌋
∑

k=k0

k5µk

= o(1) .

2

Summing up: choosing ǫ small enough and k0 sufficiently large, so far, we
have proved that there is a constant u0 > 0 such that

lim
n→∞
n even

Prob(STn(2) has a bad set K, with 1 ≤ |K| ≤ u0n) = 0.

To complete the proof of Theorem 2, we need to take care about large bad
sets.

Lemma 8 Let A3 denote the following event:

STn(2) contains at least (log n)3 sets S ⊆ Vn satisfying

|S| ≤ log log n ; (8)
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|ES| ≥ |S| . (9)

Then limn→∞ Prob(A3) = 0.

Proof Fix k ≥ 2. Let Xk be a random variable counting sets S with
|S| = k and |ES| ≥ k. Then

EXk ≤
(

n

k

)

∑k
t=2

∑

i,j≥1
i+j=t

(n− k)t
((

k−1
i−1

)

kk−i
) ((

k−1
j−1

)

kk−j
)

[(n− k)nn−(n−k)−1]
2

=

(

n

k

)

k2k∑k
t=2

(

2(k−1)
t−2

)

(n−k
k

)t

[(n− k)nk−1]2

≤ ek
(

n

n− k

)2 (k

n

)k k
∑

t=2

(

2(k − 1)

t− 2

)(

n− k

k

)t

.

As we have k ≤ log log n, we get

EXk ≤ ek
(

n

n− k

)2

k

(

2k

k

)

(

n− k

k

)k(k

n

)k

≤ (4e)kk
(

n− k

n

)k−2

≤ (4e)k log log n .

By the Markov inequality

Prob (A3) = Prob
(⌊log logn⌋

∑

k=3

Xk ≥ (log n)3
)

≤ 2 log log n(4e)log logn

(log n)3

= o(1) .

2

Now we shall make a use of a known one-to-one correspondence between
the family of labelled trees on n vertices with two marked vertices and the
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family of functional digraphs D(f) of mappings f : [n] → [n]. Each such
digraph D consists of vertices S(f) which form cycles and the remaining
vertices form a set of trees T which are attached to the cycles. To obtain
a tree T , with two appropriately marked vertices from D we shall consider
vertices lying on the cycles as a permutation drawn in cyclic form. Next we
write such a permutation in a line form, which in turn we treat as a directed
path P . As a final step, we re-attach the trees in T to their vertices on P
to obtain a tree with two marked vertices (these two vertices are simply the
beginning and the end of P ). One can easily reproduce the correspondence
from trees to mappings reversing the procedure described above. We believe
that the one-to-one correspondence stated above is due to Joyal. A complete
description of this correspondence can be found for example in Bender and
Williamson [1].

This defines a natural measure preserving mapping φ from the space of ran-
dom mappings to the space o random trees (φ just “forgets” the random
choice of pair of marked vertices). To finish the proof of Theorem 2 we will
use φ to construct STn(2) in the following way: we first generate SMn(2)
from random functions f1, f2 and then apply φ to both of them.

Definition 9 Let a pair of sets K,P ⊆ Vn be matched if
(ι) P is stable in STn(2);
(ιι) N(P ) = K;
(ιιι) |P | ≥ |K| − δ(n) ,
where δ(n) = ⌈ n

log logn
+ (log n)3⌉.

Lemma 10 Suppose STn(2) has no bad sets of size u0n or less but STn(2)
contains a bad set K0, k = |K0| > u0n. Suppose K0 does not strictly contain
another bad set and A3 does not occur in STn(2). Let S = S(f1) ∪ S(f2). If
s = |S| then either SMn(2) contains a matched pair K,P with

|P | + δ(n) + s ≥ k ≥ |K| ≥ |P |

or
K0 contains a bad set of SMn(2).
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Proof Arguing as in Lemma 2.7 of [4] we see that STn(2) contains a
matched pair K1, P1 with

|P1| + δ(n) ≥ k ≥ |K1| ≥ |P1|.

Let P = P1\S. Then P is stable and |P | ≥ |P1|−s. Also, NSMn(2)(P ) ⊆ K1.
Now take K = NSMn(2)(P ). Either |K| < |P | and K is a bad set of SMn(2)
or |K| ≥ |P | and K,P is the required matched pair. 2

Both possibilities in Lemma 10 are shown not to happen whp in [4], com-
pleting the proof of Theorem 2. (We observe first that whp s = O(

√
n)

cf. Kolchin [7]. The definition of matched pair in [4] has to be amended to
δ(n)+O(

√
n), but this does not affect the proof there given in any significant

way.)

3 Hamilton Cycles - Proof of Theorem 3

Frieze and  Luczak [5] proved that whp there is a Hamilton cycle in SMn(5).
We will use the same proof technique here, giving only a sketch as the main
ideas are very similar.

We consider STn(5) to be the union of STn(4) and a random tree T5. We
observe first that Theorem 2 shows that whp STn(4) contains the union of
two perfect matchings M1,M2. We can argue (see Lemma 2 of [5]) that M1

and M2 are an independent pair of matchings, chosen uniformly from the set
of all possible perfect matchings. Furthermore, (see Lemma 3 of [5]) M1∪M2

is whp the union of at most 3 log n vertex disjoint cycles – some cycles may
possibly just be double edges.

We show next that whp STn(4) has good expansion properties. For sets
K,L ⊆ Vn, let Ã1(K,L) be the event that NSTn(4)(L) ⊆ K and let

A4 =
⋃

|K|≤10−3n
|L|=2|K|

Ã1(K,L).

Lemma 11 Prob(A4) = o(1).
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Proof It follows from (3) that

Prob(A4) ≤
10−3n
∑

k=1

(

n

k

)(

n

2k

)(

(k + 1)nn−k−22k(3k)k−1

nn−2

)4

≤
10−3n
∑

k=1

(k + 1)4
(

81e3k

4n

)k

= o(1).

2

The idea now is to use the extension-rotation procedure (as described in [5]).
The main idea that we get from [5] is to reserve the edges of T5 for closing
paths. More precisely, at some points of our extension-rotation procedure we
will have a set A, |A| ≥ 10−3n and for each a ∈ A there is a collection of
paths with endpoints B(a), |B(a)| ≥ 10−3n and we succeed if we always find
a T5-edge of the form (a, b) where b ∈ B(a). With high probability we only
need to attempt this at most 3 log n times (from Lemma 11). Let us suppose
that the edges of T5 come from a random mapping f5 where an adversary
has altered the edges coming out of a set S of O(

√
n) nodes. When given

A, {B(a) : a ∈ A} we choose the lowest numbered a ∈ A \ S whose f5 value
has not been examined. So, whp we examine a further O(log n) a’s before
finding one with f5(a) ∈ B(a). Thus, whp the number of edges examined
and altered throughtout the procedure is O(

√
n) and we succeed in finding

a Hamilton cycle.
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