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Abstract We present a polynomial time algorithm to learn (in Valiant’s PAC model) cubes
in n— space (with general sides - not necessarily axes parallel) given uniformly distributed
samples from the cube. In fact, we solve a more general problem of learning in polynomial
time linear transformations in n—space. l.e., suppose z is an n—vector whose coordinates
are mutually independent random variables with unknown (possibly different) probability
distributions and A is an unknown nonsingular n xn matrix. Then given polynomially many
samples of y = Az, we are able to learn the columns of A approximately. Geometrically,
this is equivalent to learning a parallelepiped given uniformly distributed samples from it.
Actually, we will only need a weak 4-way independence which we will describe later; also
we will handle the case when y = Ax + b where b is an unknown vector.

We first show that using some standard Linear Algebra, we can learn parallelepipeds upto
rotations. This only involves analyzing the matrix of second moments of the “observed”
variables y.

The central problem is determining the rotation. We first prove that certain fourth moments
of y determine the rotation; we actually show that the maxima (and minima) of the fourth
moment function give us the columns of A. Then we show a constructive (polynomial time)
version of this result; i.e., we show that the maxima and minima can be found approximately
by a nonlinear (fourth degree) optimization algorithm.

While our primary motivation comes from Learning Theory, the problem has some similar-
ities to problems in Factor Analysis, a branch of Statistics. There, no assumption is made
about the independence of the z;, so the problem is more general; but also the results are
weaker in that one only finds A upto rotations. Then one uses heuristics to find a “pleasing”
rotation of A. (See for example [6].)

The paper closes with some generalizations of the result and open problems.
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1. Introduction The class of intersections of halfspaces is a widely studied concept class
in machine learning theory (e.g., [5, 2, 1, 4]). Not only are they quite natural geometrically,
but they also correspond to functions computed by simple neural networks. The case of
one half space is well-solved by Linear Programming.

Unfortunately, the case of two half spaces already presents a problem : In the Valiant
distribution-free PAC model, even an intersection of 2 halfspaces cannot be learned in a
representation dependent sense (the learners hypothesis must also be an intersection of 2
halfspaces) unless RP=NP [4, 10]. Some intuitive arguments for the difficulty of learning
this class in a representation-independent manner (the learners hypothesis may be any
polynomial-time prediction algorithm) are given by Baum [2]. Also, Long and Warmuth [8]
have shown that the class of convex polytopes given by their vertices is prediction complete
for P.

In restricted distribution models, however, there have been some positive results. In partic-
ular, Baum [1] showed that an intersection of two homogeneous halfspaces (the hyperplanes
that define them must pass through the origin) is learnable in polynomial time over any dis-
tribution A such that A(z) = A(—xz) for all z. Also, Blum and Kannan [3] have shown that
if the underlying distribution is uniform over the unit ball, we can PAC learn in polynomial
time the intersection of a constant number of half spaces.

Here we give the first result that tackles the intersection of a non constant number of half
spaces. Our result (already described in the Abstract) raises the question of whether other
convex sets can also be PAC learnt when we restrict attention to the uniform distribution.
These remain interesting open questions.

We note that there has been some prior work on learning cubes, but generally, attention
has been restricted to axes-parallel cubes and some generalizations - see for example Maass
and Warmuth [9].

A special case of our result says that we can learn product distributions when the axes of the
independent variables are unknown. We also note that Kearns, Mansour, Ron, Rubinfeld,
Schapire and Sellie [7] have considered the problem of learning a probability distribution
from given samples. Their focus is mainly on discrete distributions on {0,1}" and their
methods and results are of a different flavor.

We also note that while our algorithm is polynomial time bounded, both its time complexity
and the number of samples it needs need to be substantially improved before it becomes
practical.

In the next section, we present a preliminary result that finds A upto “rotations” using the
first and second moments of y. This follows from standard Linear Algebra. We have tried
to state this result here in a “clean” form without invoking quantities like the condition
number of A as is sometimes done because the result is applicable in other contexts. This
preliminary result makes no assumptions about the independence of the z;.

Then, in section 3 , we present the main result about finding the rotation. This assumes a
4-way independence of the z;. [We do not need any more independence than 4-way.|



2. Using Second Moment Information The “variance-covariance” matrix M (P) of
a probability distribution P on R" is an n X n matrix whose (¢, j) th entry is Ep(z;z;). If
x denotes a column vector (as we will use throughout), we can write it in matrix notation
as

M = Ep(zz”).

We say that P is “uncorrelated” if Ep(x;) = 0Vi and M (P) is the identity matrix.

If we are given sufficiently many samples each drawn independently according to P, then
we can first estimate T; = Ep(x;) for each 7 and after moving the origin to Z, we have that
Ep(z;) = 0. We could also estimate M(P). This is a positive semi definite matrix and
we may decompose it as M = S? where S is symmetric and if M is nonsingular, then so
is §. In this case, if we transform space by S~!, we see that in the transformed space, P
will be uncorrelated. This process is useful in many contexts including the present one.
We state below a clean version of this. Since there are errors, we cannot expect that in
the transformed space, the variance-covariance matrix is the identity. Instead, we will be
satisfied with making its eigenvalues all close to 1 in absolute value. [Recall that a square
symmetric matrix has all eigenvalues equal to 1 iff it is the identity.] We get the following
result. (Proof deferred to the final paper.)

Lemma 1 Suppose P is any probability distribution in R™ with a nonsingular variance-
covariance matriz. Without loss of generality, assume that Ep(x;) = 0Vi and Ep(z?) = 1Vi.
Let py = max; Ep(z}). Also, let € € (0, 1/10). Then given 10n2use 2 samples each drawn
independently according to P, we can find in polynomial time a linear transformation T
such that

Ep((rz)(ra)")

has all its eigenvalues between 1 —e and 1 + €.

We apply this lemma, in the present context as follows : we have y = Ax + b, where z is a
vector random variable. A is an unknown nonsingular matrix and b is an unknown vector.
We also assume that the variance-covariance matrix of x is nonsingular. We may then
assume without loss of generality that (after changing A,b if necessary) that E(z;) = OVi
and that the variance-covariance matrix of = is the identity. The above result will imply
that we can find a matrix B such that the eigenvalues of B~'A are all close to 1 in absolute
value. (The proof is simple and is deferred to the final paper.) This says that B~!A is close
to a an orthonormal matrix. [Recall that a square (not necessarily symmetric) matrix has
all eigenvalues equal to 1 iff it is orthonormal.] With some abuse of terminology, we will
refer to this in the paper as “finding A approximately upto rotations”. Here is the result.

Lemma 2 Suppose A is a nonsingular n X n matriz and b any vector. Suppose x is a
random variable with values in R™ with E(z;) = 0Vi and variance-covariance matriz equal
to the identity. Let py = max; E(z}). Let e € (0 1/10). Then given 10n?use=? independent
samples of y = Az + b, we can find a matriz B such that the eigenvalues of B~ A are all
between 1 — e and 1+ € in absolute value.



3. Main Results The general problem we consider is the following.
There are n real valued random variables z = (z1, z9,...z,). We are given observations of
y = Ax + b,

where A is an unknown nonsingular matrix and b is an unknown vector. Our aim is to
find A,b approximately from polynomially many samples of y. First, we observe that after
changing b suitably and scaling A, we may assume without loss of generality that
Assumption 1 E(z;) =0Vi and E(z2) = 1Vi.

Now b; may be estimated as E(y;) and replacing y by y — E(y), we will assume henceforth
that b = 0. [We defer a careful error analysis of this to the final paper.]

Assumption 2 We will assume that in fact the variance-covariance matrix of z is the
identity.

Unlike the situation in the last section, this assumption does entail a loss of generality here,
since we will also need Assumption 3 below.

Under Assumptions 1 and 2, we may find a B as in Lemma 2 of the last section. In what
follows, we let
z=DB1y.

From the observations of y, we may obviously now obtain observations of z. Remembering
that b = 0, we see that

z= Rz where R = B7!'Ais a nearly orthonormal matrix.

We will use the observations of z to find R. For this, we need one more assumption, namely
that of 4-way independence as mentioned earlier. We make the precise assumption now.

Assumption 3 We will assume a weak form of 4-way independence. l.e., we will as-
sume that the expectation of each monomial of degree 4 in the z; ’s is the product of the
expectations of each variable to the suitable power. More precisely, we assume that

E(z;zjrrz;) = 0 whenever for any s, z, occurs an odd number of times in the product
T;xTjTRT;; we also assume that E(x?m?) =1

Note that independence of all the coordinates of x implies the above. In general, our
assumption is of course much weaker than total independence.

The central idea is contained in the following lemma which is a theoretical result that
ignores errors. The proof of this is relatively straightforward. The constructive version
which actually finds the maxima and minima in the presence of errors is more complicated
and will be discussed later.

Lemma 3 Suppose we have random wvariables © = (1,2, ...x,) satisfying assumptions
1,2 and 3 above. Suppose R is an orthonormal matriz. Consider the function F(u) (where
u is a column vector in R™) defined by

F(u) = E((u” Rz)*).



The local mazima (respectively, the local minima) of F() over the unit sphere ({u : |u| = 1})
are precisely the rows of A=% corresponding to i such that E(x}) > 3 (respectively, E(z}) <
3.)

Proof Sketch : Since R is orthonormal, the vector v7 = u” R varies over the unit sphere as
u does. Let F(u) = G(v) with this change of variables. Then G(v) = E((v"z)*). Expanding

the fourth power and using the assumptions, we can see after some manipulation that
n
G(v) =3+ > v[E(z}) — 3]
i=1

From this, it is not difficult to derive the lemma.
Exceptional variables

This still leaves open the i for which we have E(z}) = 3. We call these the “exceptional”
1. It is easy to see that we cannot in general avoid the exceptional 7. In the case that the
x; is a standard normal variable, ¢ will be exceptional as one may see by direct calculation.
In fact, if all the z; are independent standard normals, then the resulting distribution is
rotation invariant and so in fact, we cannot find the actual rotation R (since all R look
alike).

We perturb the distribution of the exceptional x; to make it non-exceptional and then find
the rotation. The technical details of the perturbation are complicated, and so as not to
obscure the main ideas in this extended abstract, we defer this to the final paper.

Error Analysis and Computing the local minima and maxima

We will only outline this here. As remarked earlier, we have observations of z = Rz where
now R is approximately an orthonormal matrix. First we will indicate the number N of
samples of z we use.

Let pit = E(|x!]) and p; = maxi<i<y piy for 4,¢ > 1. Thus by assumption p; = 0 and
po = 1.
Let
A; = E(x}) — 3, 1<i<n,
and
Arnaux = llélza;% ‘Azla Arnin = lglzlgnn |A'L‘
For this Extended Abstract, we assume that Ay, > 0.

2 x 10° x n'Oug
A2

min

Let N =
e o

and let 20, j =1,2,... N be the N independent observations of z.
Define

Poo(u) = E((u"2)"), u € Sp-1,



N
dn(u) = l Z(uTz(j))4, w€ Sp_1,
N st
PYv) = ZAW? + 3, v € Sy_1.
i=1

The relevance of 1 will be apparent when we see what ¢, looks like in the x coordinate
system:

oo (u)/|R"ul* = E((u’Rx)"/|R"u|")

— B((")
= Z ui,w;l +3 Z 'vajg
i=1 i£j
= Y Al +3. (1)
i=1
Let
(n(u) = vén (u) — (u” 7 ¢ (u))u (2)

denote the projection of 7¢n (u) orthogonal to u.

For a twice differentiable function F'(u), let Hess(F') denote the matrix [af—aF%(u)] Let
Hpy(u) = Hess(opn(u)).

We now describe our ascent algorithm. The algorithm as described finds a local maximum
of the function ¢y (u). Intuitively, the algorithm would make either first order moves (along
the component of the gradient tangential to the sphere) or if this component is negligible, it
makes second order moves dictated by an eigenvector of the Hessian. Actually, we combine
the two into one local optimization problem at each step. The crucial part will be to prove
that at the termination of the algorithm, when no first or second order moves are possible,
we are in fact done.

ASCEND

Step 0 Choose u € Sp—1 e.g. (1,0,0,...,0).
Assume that ¢n(u) > 3. (See Remark 2, below).

Step 1 Solve Problem Qn(u):

Maximize 1
Fv(u, &) = (n(u)TE+ §§T(HN(u) —4¢n (u)I)¢
subject to
€l <
uT£ =



Let &£ be a solution to @Qn(u) and

u+ &*
lu+&*|

=

If
. 52
B(i) 2 o) + S

then repeat Step 1, with u replaced by #, otherwise

Step 2 Terminate: output u.

Throughout this section u will always denote a vector in S,, 1. Also, the relations w = RTu
and v = w/|w| will always hold. Similar relations will be valid for v’ € S,,_1,v',w’ etc.

Remark 1: @Quy is easy to solve: After a bit of simple linear algebra, it reduces to a
maximum eigenvalue calculation.

Remark 2: 1(v) > 3 implies that there exists at least one positive A;. Now ¢y (u) is close
to 1 (v) — Lemma 4 below and so ¢x(u) > 3 should yield ¢(v) > 3. It is conceivable, that
through sampling error, we have ¢y(u) > 3 and yet A; < 0 for all i. In which case we
maximizing ¢x would be a mistake. We can recognize this as follows: if there is a positive
A; then after O(nd—?) iterations the value of ¢ will have increased by at least Apin/2.
But if there are no positive A;, ¢ can only increase by at most Amind?/(100n). So we
proceed under the assumption that there is at least one positive A;.

Our analysis will track the changes in v as w is changed by ASCEND. We will show that
when the algorithm terminates we should be close to a local maximum of 1 which means
that v is close to a standard basis vector (0,0,...,1,0,...) and then +u must be close to
a column of R. A further calculation is needed to get the sign correct.

Now ¥ (v) < Apax + 3 and (Lemma 4) ¢xn(u) and 1 (v) are close. So, ASCEND terminates
after at most O(nd—2) iterations.

4. Proof of Correctness of the Algorithm The proof of correctness is very technical,
mainly owing to the fact that we only have approximations to the real E((ul2)*) and its
derivatives. We defer most of the long proof to the final paper

Our aim now is to show that when ASCEND terminates, it is likely to have produced a
column of R. Our first lemma explains that whp ¢y (u) and 1 (v) are close.

Lemma 4 With contrary probability at most

~25000m 0 pg (1 + a)?
B NAZ, 62

min

b3
we find that for all u,u’ € Sp_1,

(a)
Amin(s2

100n ’

¢ (u) = p(v)] <



(b)
lu' —u| < 3|v" — .
Proof (deferred to full paper).
Note that (a) implies that 9 (v) also increases with each iteration of ASCEND.
We now continue under the asumption that (a), (b) of the above lemma hold. Fix u € S,,_;

and let v’ = (u + h)/|u + h| where hTu = 0 and min{|u’' — ul, |h|} < .1.

Lemma 5 3
2lhl < u' —u| < [h]. (3)

Proof (deferred to full paper).
We now compare ¢y (u) and ¢y (u') when |h| is small.
1

¢N(ul) = m(ﬁj\/(u +h)
= m(‘bN (U) + C]q\;h + %hTHNh + erry (u’ h)) (4)
= ¢n(u) + fn(u,h) +err(u, h), (5)

We will show in the full paper that with contrary probability at most py,

31(1 + @)’ R
Npy

lerr(u, h)| <

; (6)

for all u € S;,,_1 and sufficiently small |h|.

We can now claim that on termination u is (almost) a local maximum.

Lemma 6 On termination of ASCEND
Amin(52

u' € Sp_1, |[u' —u| < 35/4 implies dn(u') < dn(u) + 50m

Proof See Appendix

We now translate Lemma 6 to the v domain.

Lemma 7 On termination of ASCEND

! ! ; : ! 7Amin(52
v € Sp_1, |V —v| < /4 implies p(v') < p(v) + oo
n

Proof See Appendix

We can now show that on termination v is close to some standard basis vector e;. Let ( =
C(v) (see (2) denote the projection of Vi)(v) orthogonal to v. We consider two possibilities:
[¢] =6 or [¢] < 6.



Lemma 8 If || > ¢ then there exists v’ such that |[v' —v| < /4 and

' 62

P(v') > P(v) + 64 max(Amax + 3)

Proof See Appendix

So we can deduce from Lemmas 7 and 8 that ASCEND terminates with |(| < 6. This puts
a significant restriction on the shape of v.

Lemma 9 |((v)| < d implies that for 1 < j <n,

lvj| < 842,

D n61/2 D n51/2
1 [— |1 — < |l < A [— [ 1
4Aj ( 3Amin> - ‘2)]| - 4Aj ( + 3Amin ’

where D =435 Ajvﬁ.

or

Proof See Appendix.

We are left with the case where

I¢(v)| < 0 and max{|v;| : 1 <i<n} <1—4§2 (7)

Lemma 10 If (7) holds then there exists v' such that [v' —v| < §/4 and

3A ind>

B(') > o) + 220

Proof See Appendix.

We now give a lemma, which summarizes the above discussion.

Lemma 11 When ASCEND terminates, there ezists i and kK € £1 such that |u — kR;| <
(1 _ a)71/2(61/2 + 041/2).

Proof See Appendix

Having computed plus or minus one column of R (approximately) we find the remaining
columns by working in the subspace orthogonal to it. We then use third moment information
to correct signs. We left-multiply our estimate for R by B to obtain our estimate for A.

5. Open Problems, Conclusion It would be very interesting to extend this to other
convex sets than parallelepipeds. The immediate target should be simplices. In this con-
nection, it is worthwhile noting a result of Fiedler that the Graph Isomorphism problem
is reducible to the problem of the problem of determining whether there is a rotation (an
orthonormal transformation) that maps a simplex into another.



It would also be interesting to dispense with the assumption of 4-way independence and
consider situations closer to what is done in Factor Analysis - namely where one assumes
that the joint distributions of the z; are in a known class like the normal. This also is
related to the problem of learning cubes under other distributions than the uniform.
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Proof of Lemma 6 Write v’ = (u + h)/|u + h| where h = u%—'u,

Appendix

Lemma 5 implies that |h| < ¢. Then

o (u')

IN

IN

<

én (
on(
én (T
én (
én (

— u satisfies hT'u = 0.

u) + fn(h) +err(u, h)

) + err(u, h)

h) + err(a, ")

ind” + err(u, h) + err(a, £¥)

)
u) + fn (€
)+ err(
u) +
AII111162
u) 20n

Proof of Lemma 7 |[v' — v| < §/4 implies that |u' — u| < 3§/4 (Lemma 4(b)). So

p) < ity + Do Lemma 4(a)
Y= PN T Hoon
83
< on(u)+ 3A5181;;5 Lemma 6
7Amind?
< Pv) + 100m Lemma 4(a).
Proof of Lemma 8 Let
\ - 1 )
8(4Amax +3) [C]
)
> < 4Amax
T 32Amax(4Amax + 3) (Ic] < 4Amax)
and
R S
o+ X
It follows from Lemma 5 that |v' — v| < |A(| < 6/4. Also,
! 1 2 A t T
3= — 3+ H
where 0 < ¢ <1 and H = Hess(¢(v)). Now
o+ 27 = (L4 NP[C) 72 > 1= 237

and [(TH(¢| < 12Amax[¢|? (since H = diag(12A;02) and so

P(v') = (v)

>

>

AP = 23+ X[¢P) (9(v) — 3) — 6Amax))

AlS

|2

2

bl



since ¥ (v) — 3 < Amax and |(| < 4.
Proof of Lemma 9 "
Gj(v) =4 v} — (4 Ajv});.
7j=1

Suppose |{(v)| < é. Then,

[vl[4A0F —D| < 6
So either
;| < Y2, or
\4Ajv]2- —D| < 6Y?  andso
, D §'/2
v; — i, S any or
D 51/2 0 D 51/2
m(“f) f“@(”f)

Let J = {j : [vj| > 6'/?}. Then ZjGJ’UJQ- >1—nd and so

1/2
(%)Z 1_ >1—né.

This implies that

n
3Arnin
—_— n -

We are using the fact that D + §'/2 > 0, which follows from the fact that D increases and
is initially at least —Apind%/n. O

Proof of Lemma 10 We apply Lemma 9. Putting K; = 1/D/(44;), let
Jio= {j: <67
Jo = {j: Kj(1—n6"?/(30min)) < loj] < K;j(1+nd"/?/(3Amin))}-
Now |J2| > 2 else,

Sw < (1-0Y2+(n—1)5
i=1
< 1.

ii



Choose k, ¢ € Jo. Define h by

h‘j = 0, J 3& k’ea
hk = Ty,
he = —Tug,

where T = §/4(v} + v7)'/2. We can assume that h”'¢ > 0, otherwise we replace it by —h.
Observe that hTv = 0 and |h| = §/4. Let v' = (v + h)/|v + h|. Arguing as in (5) we see

that

p(v') -3

Y

Y

>

>

1
P) —3+CTh+ 5hT(H — DI)h + 4nApax b2
P(v) — 3 + 672005 (Ag 4+ Ag) — D3? /32 + 4nApax|b|?

) 172 \ 1/2

P(v) — 3+ 31;6 (1 _ 3”2 - ) — D52/32 + 4nAmaX\h|3
Dé?

Y(w) =3+~
3Amin52

P(v) —3+ i

Proof of Lemma 11 From Lemmas 7, 8 and 10 we see that there exists 7 such that
lv;| > 1 — 6'/2. But then for some x € +1,

lu — KR

(1—a)™"?|R" (u— KkR;)|
(1 —a)"Y2(|(v — ke;| + |ke; — RT Re;))
(1—a) Y22 + a).
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